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A DETAILED LIST OF RESPONSES 

TO REVIEWER #2 

 

Anonymous Reviewer #2 comments 

General comments: 

The work "Multi-spatial scale assessment and multi-dataset fusion of global terrestrial 

evapotranspiration (ET) datasets" presents a detailed comparison of 30 global-scale 

evapotranspiration datasets and uses Bayesian Model Averaging to create a new 

weighted ensemble dataset.  The paper is logically structured and clear overall.  

The comparison of such a large sample of ET datasets and the evaluation and 

comparison at a range of scales alone are interesting, novel, and valuable.  For the 

dataset to be useful, more methodological details are needed about the pre-processing 

methods used align all datasets to a consistent spatial and temporal basis beyond the 

descriptions provided in the supplementary material.  In addition, more detail is 

needed regarding the robustness of the BMA approach to key assumptions, namely 

land cover change, land cover classification uncertainty at the resolutions presented, 

and BMA model validation.  Many such questions would be far easier to review and 

provide feedback on if (annotated) code used to generate the dataset were provided.  

These additions as well as a correction of the 1 degree resolution dataset are 

recommended before publication in ESSD. 

Response: We greatly appreciate your careful reading of the manuscript, insightful 

comments, and valuable suggestions. Your thoughtful review has enhanced our paper 

considerably. The manuscript has been revised thoroughly according to your 

comments and those of the individual reviewers, with our point-by-point responses 

detailed below. 

 

Specific comments: 

1. There is a problem with the 1 degree dataset starting at approximately timestep 262.  
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Response: First of all, we thank you for your comments. We apologize that due to our 

carelessness, an incorrect version of the 1 degree spatial resolution BMA-ET dataset 

was uploaded here, for which we have updated and corrected. 

 

2. Figure 7: What resolution and spatial interpolation methods were used to fill in data 

gaps in producing Figure 7?  Below is a detail mean annual derived from 0.5 degree 

data (see attached notebook for full size image, the 500px restriction on image 

attachments is rather limiting here). 

Response: Thank you for your comments. We apologize that we did not explain this 

clearly in the paper. In performing the plotting Figure 6 (corresponding to Figure 7 in 

the original version), we assigned the grid points with no values to 0 mm and did not 

use any spatial interpolation to fill in the data gaps. We have corrected Figure 6. 

 

3. Line 178: how was training/validation split done for evaluating BMA performance? 

Given the sparsity of flux sites, why wasn’t cross-validation considered? How 

sensitive are model weights to the training sample? 

Response: Many thanks for highlighting this point. In this study, we use 60% of 

station data for training and 40% of station data for validation. In order to verify the 

robustness of the results, we performed 2 additional sets of experiments, 70% of data 

for training and 30% of data for validation, 80% of data for training and 20% of data 

for validation, respectively. The results show that the data accuracy of the fusion 

product BMA-ET is not sensitive to FLUXNET station split. The accuracy evaluation 

results showed remarkable consistency across different training set proportions (60%, 

70%, and 80%), with BMA-ET demonstrating correlation coefficients of 0.68, 0.67, 

and 0.65 respectively when compared to FLUXNET-ET (Figure R1). In addition, we 

also evaluate the accuracy of BMA-ET under different vegetation types. The results 

show that the accuracy of BMA-ET under each vegetation type is not sensitive to the 

split ratio of the training set (Figures R2–R4). 
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Figure R1 (Corresponding to Figure S29). Accuracy evaluation of BMA-ET. (a) 60% 

of data for training and 40% of data for validation, (b) 70% of data for training and 30% 

of data for validation, (c) 80% of data for training and 20% of data for validation. 
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Figure R2 (Corresponding to Figure S30). Accuracy evaluation of BMA-ET over 

different vegetation types. 60% of data for training and 40% of data for validation. 
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Figure R3 (Corresponding to Figure S31). Accuracy evaluation of BMA-ET over 

different vegetation types. 70% of data for training and 30% of data for validation. 

 

Figure R4 (Corresponding to Figure S32). Accuracy evaluation of BMA-ET over 

different vegetation types. 80% of data for training and 20% of data for validation. 

 

We have made the following additions in section 4.1: 

“In this study, we use 60% of station data for training and 40% of station data for 

validation. In order to verify the robustness of the results, we performed 2 additional 

sets of experiments, 70% of data for training and 30% of data for validation, 80% of 

data for training and 20% of data for validation, respectively. The results show that 

the data accuracy of the fusion product BMA-ET is not sensitive to FLUXNET2015 

station split. The accuracy evaluation results showed remarkable consistency across 

different training set proportions (60%, 70%, and 80%), with BMA-ET demonstrating 

correlation coefficients of 0.68, 0.67, and 0.65 respectively when compared to 

FLUXNET2015 ET (Fig. S29). In addition, we also evaluate the accuracy of 

BMA-ET under different vegetation types. The results show that the accuracy of 
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BMA-ET under each vegetation type is not sensitive to the split ratio of the training 

set (Fig. S30, S31 and S32).” 

 

4. Line 191: Can you quantify or estimate distributions of typical land cover changes 

at the appropriate dataset resolution as a basic test of model sensitivity to the 

stationary land cover assumption? 

Response: We sincerely thank the reviewer for noting this. We performed a dynamic 

comparison of the data set MOD12Q1 for the three periods of 2001, 2010 and 2020 

(Figure R5). We found that the consistency of the land cover types between the years 

was high, with the proportions of consistency between 2001 and 2010, 2010 and 2020, 

and 2001 and 2020 being 0.80,0.86 and 0.78, respectively (Figure R6). In addition, we 

also analyzed the percentage of global land area covered by 12 vegetation types 

(Figure R7). The results show that the proportion of area covered by various 

vegetation types does not vary much between years, especially for the four main 

vegetation types, OSH, WSA, SAV and GRA, which account for a larger proportion 

of the area. 
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Figure R5 (Corresponding to Figure S33). Spatial distribution of land cover changes 

in three periods (2001, 2010, 2020) based on MOD12Q1. 

 
Figure R6 (Corresponding to Figure S34). Consistency between MOD12Q1 land 

cover types across years. Subfigures a-c show the level of consistency between land 

cover types for 2001 and 2010, 2010 and 2020, and 2001 and 2020, respectively. The 
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level of consistency is characterized by the ratio of the number of grid points with 

consistent vegetation types to the total number of grid points on land. 

 

Figure R7 (Corresponding to Figure S35). Percentage of global land area covered by 

12 vegetation types based on MOD12Q1. The bars in each subfigure represent the 

proportion of vegetation types in 2001, 2010 and 2020, respectively. 

 

We have made the following additions in section 4.1. 

“To validate model sensitivity to the stationary land cover assumption, we performed 

a dynamic comparison of the data set MOD12Q1 for the three periods of 2001, 2010 

and 2020 (Fig. 33). We found that the consistency of the land cover types between the 

years was high, with the proportions of consistency between 2001 and 2010, 2010 and 

2020, and 2001 and 2020 being 0.80, 0.86 and 0.78, respectively (Fig. 34). In addition, 

we also analyzed the percentage of global land area covered by 12 vegetation types 

(Fig. 35). The results show that the proportion of area covered by various vegetation 
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types does not vary much between years, especially for the four main vegetation types, 

OSH, WSA, SAV and GRA, which account for a larger proportion of the area.” 

 

5. Line 245: It isn't clear why correlations here are based on mean annual values and 

elsewhere (Figure S18) based on monthly data, making it more difficult to interpret 

the different comparisons presented (i.e. site, basin, global scales). 

Response: Thank you for your comments. We apologize for not explaining this 

clearly in the paper. In Figure S18, each small circle represents a basin. This figure is 

not a comparison of ET datasets at any time scale, and it is a comparison of ET for all 

basins. Therefore, each small circle represents a multi-year average ET value for that 

basin. In this figure, even when replaced with monthly average ET values for each 

watershed, the comparison of multi-year average evapotranspiration from 30 ET 

datasets and multi-year average observed evapotranspiration from basin water balance 

are unchanged.  

 

We have made the additions in the title of Figure S20. 

“Fig. S20: Comparison of multi-year average evapotranspiration from 30 ET datasets 

and multi-year average observed evapotranspiration from basin water balance. Each 

small circle in the figure represents a basin.” 

 

6. Line 284 -- comparing typical MAE values with the stated trend, what is the 

uncertainty in the 0.21mm/yr trend line? How significant is the magnitude (and 

precision) of this trend compared to typical variability due to error? 

Response: Thank you for your comments. Based on the fused dataset BMA-ET, we 

calculated the change trend of ET from 1980 to 2020. The global average ET change 

trend and its uncertainty is 0.65 (0.51–0.78) mm/yr (Figure R8). By calculating the 

signal-to-noise ratio (SNR) of the year-by-year ET data, it is found that the SNR is 

less than 1, i.e., the ET trend is smaller than the interannual variability, which 

indicates that the ET trend signal is weak or noisy. The SNR only reflects the ratio of 

the trend to the interannual noise, and cannot distinguish between a weak true climatic 
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signal (the trend is small) and a large noise in the data (e.g., fluctuations introduced by 

the observation error or the interpolation of the missing values). The Mann-Kendall 

test is a nonparametric test that does not require data distribution assumptions 

(Kendall, 1948; Mann, 1945); it is effective in detecting linear or nonlinear monotonic 

trends (continuously rising/declining) and is suitable for long-term climate change 

analyses; and it is insensitive to extreme values and robust. Therefore, we used the 

Mann-Kendall test to verify the significance of the trend. Despite the low SNR of the 

ET series, the Mann-Kendall test showed that the trend was significant (p<0.01), 

suggesting a persistent upward trend in the ET series. 

 

 

Figure R8 (Corresponding to Figure S25). Interannual variations of BMA-ET during 

1980–2020. The global land average results are calculated based on a weighted 

average of the global land area. 

 

7.A basic attempt to replicate Figure S23 was unsuccessful. There is likely a simple 

explanation for the substantial offset (~20mm) but it is much more laborious to 

investigate without the full replication code. A copy of the code used to generate the 

figures presented in this review is attached.  

Response: I’m sorry we didn’t make that clear. We used the area-weighted average 

method in calculating the global average ET. Data are available in a regular 
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longitude-latitude grid. Therefore, grid cells do not have an equal size, with smaller 

grid cells at higher latitudes. Hence, for calculating the land area fractions, we must 

assign a weight to each grid cell on the basis of size. Here we compute these weights 

(𝑤!) as the size of each grid cell at latitude 𝑙𝑎𝑡! relative to the size of the largest grid 

cells located at the Equator, given by: 

 𝑊! = '"#$%&'(!)(+.-×/01)34"#$%&'(!4(+.-×/01)3
"#$(+.-×/01)4"#$(4+.-×/01)

'  (1) 

where 𝑙𝑎𝑡 is the vector indicating the latitude of each grid cell center, and ranges 

from −90 + (0.5 × 𝑟𝑒𝑠)  to 90 − (0.5 × 𝑟𝑒𝑠)  with increasing step or resolution 

denoted by 𝑟𝑒𝑠. 

 

We have made the additions in Figure S25. 

 

8.Figure 8: What are the units these models are compared on? i.e. is standard 

deviation mm/year?  Was some kind of normalization/standardization done to make 

the reference dataset standard deviation exactly 1? 

Response: Thank you. The Taylor diagram was first proposed by Taylor and is 

mainly used to evaluate the ability of different models to simulate a variable. The plot 

combines three evaluation metrics: the correlation coefficient, the root mean square 

error, and the ratio of the standard deviations of the simulated and observed fields on 

a single polar plot. See Taylor for specific formulas. Standardized Taylor diagram 

normalize the standard deviation and root mean square error to eliminate their 

physical units of measure. When the correlation coefficient is larger, the 

root-mean-square error is smaller, and the ratio of the standard deviation of the 

simulated values to that of the observed values tends to be closer to 1, it indicates that 

the simulation results are in good agreement with the measured data, i.e., the model 

simulation results are highly reliable. In this study, a standardized Taylor diagram was 

used for the comprehensive assessment of the global ET dataset. 

 

We have made the following additions in section 2.2. 
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“We also used standardized Taylor diagrams for comprehensive evaluation of ET 

datasets (Supplementary information Text S5).” 

 

We have made the following additions in Text S5. 

“Text S5. Taylor diagram 

The Taylor diagram was first proposed by Taylor and is mainly used to evaluate the 

ability of different models to simulate a variable. The plot combines three evaluation 

metrics: the correlation coefficient, the root mean square error, and the ratio of the 

standard deviations of the simulated and observed fields on a single polar plot. See 

Taylor for specific formulas. Standardized Taylor diagram normalize the standard 

deviation and root mean square error to eliminate their physical units of measure. 

When the correlation coefficient is larger, the root-mean-square error is smaller, and 

the ratio of the standard deviation of the simulated values to that of the observed 

values tends to be closer to 1, it indicates that the simulation results are in good 

agreement with the measured data, i.e., the model simulation results are highly 

reliable. In this study, a standardized Taylor diagram was used for the comprehensive 

assessment of the global ET dataset.” 

 

We have made the following additions in Figure 7: 

 
Figure 7: Standardized Taylor diagram of ET datasets at all stations from 1991 to 

2011. The observation data are ET from FLUXNET2015. 
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9.Figure 8: What is the advantage of the BMA-ET dataset over the GLDAS-VIC 

dataset, or other datasets with similar correlation, lower RMSE, and standard 

deviation closer to the reference dataset? 

Response: Thank you for your comments. In Figure R9 (Corresponding to Figure 7), 

BMA-ET has the highest correlation coefficient with FLUXNET2015. While the 

RMSE of BMA-ET vs. FLUXNET 2015 site ET was not the lowest, the ET dataset 

with the lower RMSE had a much lower correlation coefficient than BMA-ET, less 

than 0.6. In addition, the BMA-ET dataset has a longer time period of coverage than 

other datasets with similar correlations, lower RMSEs and standard deviations closer 

to the reference dataset. Therefore, BMA-ET is more suitable for long-term climate 

change studies. 

 

 
Figure R9 (Corresponding to Figure 7). Standardized Taylor diagram of ET datasets 

at all stations from 1991 to 2011. The observation data are ET from FLUXNET2015. 

 

10.Line 313: What is the sensitivity of model performance to typical differences / 

uncertainties introduced by spatial scale mismatch? 

Response: Since the original spatial resolutions of the 30 datasets are different, and 

this study uses a bilinear interpolation method to unify them to the same resolution, 

this resampling process introduces some uncertainty. Therefore, this study compared 

the differences in ET data at 1° and 0.5° globally and under each vegetation type, 

respectively. The results show that correlation coefficients for ET datasets at 1° and 



 14 

0.5° spatial resolution globally are more than 0.9 among all ET datasets (Figure R10). 

For each vegetation type, correlation coefficients for ET datasets at 1° and 0.5° spatial 

resolution are over 0.8. This suggests that the uncertainty due to differences in spatial 

resolution is relatively small. 

 
Figure R10 (Corresponding to Figure S4). Correlation coefficients for ET datasets at 1° 

and 0.5° spatial resolution globally and for each vegetation type.  

 

We have made the following additions in section 2.2 and Figure S4. 

“This study compared the differences in ET data at 1° and 0.5° globally and under 

each vegetation type, respectively. The results show that the sensitivity to spatial 

resolution is low for each ET dataset (Fig. S4).” 

 

11.Section 4.2: More discussion of how data leakage was avoided is needed. How is 

training data independent of validation data in each comparison?   
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Response: We thank the reviewer for your valuable suggestion. To address the above 

issues, we completed the following two components.  

 

(1) 30 datasets are clustered and then fused 

First, we calculated a Pearson correlation coefficient matrix using the residuals from 

the 30 sets of ET datasets with observations from FLUXNET2015 sites. Second, the 

30 sets of ET datasets were clustered based on the residual correlation coefficient 

matrix. Third, for each vegetation type, the BMA fusion of the ET data within each 

cluster was performed first, and then the BMA fusion of the fused data for each 

cluster was performed. 

 

(2) Independent data source validation 

We used independent data sources to validate the fusion dataset BMA-ET, 

specifically including AmeriFlux, ChinaFlux, and ICOS. The site information of 

AmeriFlux, ChinaFlux, and ICOS list in Tables S5–S7. Additionally, we also 

evaluated the accuracy of BMA-ET using FLUXNET2015 data from 2012 to 2015. 

The results demonstrate that BMA-ET outperforms other external datasets, achieving 

correlation coefficients of 0.61, 0.72, and 0.74 with site-level ET measurements from 

AmeriFlux, ChinaFlux, and ICOS, respectively (Figure R11). Using FLUXNET2015 

as reference observations, BMA-ET showed a correlation coefficient of 0.58 with 

FLUXNET2015 site-level ET during 2012–2015 (Figure R11), while also 

demonstrating high accuracy across various vegetation types (Figure R12). 
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Figure R11 (Corresponding to Figure 8). Accuracy evaluation of BMA-ET. The 

observation data is ET from (a) FLUXNET2015 during the period 2012–2015, (b) 

AmeriFlux during the period 1994–2020, (c) ChinaFlux during the period 2003–2010, 

(d) ICOS during the period 2003–2010. 
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Figure R12 (Corresponding to Figure S28). Accuracy evaluation of BMA-ET under 

different vegetation types during the period 2012–2015. The observation data is ET 

from FLUXNET2015. 

 

We have made the following additions in section 2.2: 

“Finally, evapotranspiration fusion was completed using a BMA method. The 30 sets 

of ET datasets are clustered and then fused. First, we calculated a Pearson correlation 

coefficient matrix using the residuals from the 30 sets of ET datasets with 

observations from FLUXNET2015 sites. Second, the 30 sets of ET datasets were 

clustered based on the residual correlation coefficient matrix (Table S9). Third, for 

each vegetation type, the BMA fusion of the ET data within each cluster was 

performed first, and then the BMA fusion of the fused data for each cluster was 

performed.” 
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We have made the following additions in section 3.2: 

“We used independent data sources to validate the fusion dataset BMA-ET, 

specifically including AmeriFlux, ChinaFlux, and ICOS. Additionally, we also 

evaluated the accuracy of BMA-ET using FLUXNET2015 data from 2012 to 2015. 

The results demonstrate that BMA-ET outperforms other external datasets, achieving 

correlation coefficients of 0.61, 0.72, and 0.74 with site-level ET measurements from 

AmeriFlux, ChinaFlux, and ICOS, respectively (Fig. 8). Using FLUXNET2015 as 

reference observations, BMA-ET showed a correlation coefficient of 0.58 with 

FLUXNET2015 site-level ET during 2012–2015 (Fig. 8), while also demonstrating 

high accuracy across various vegetation types (Fig. S28).” 

 

---------------------------------------------- end line----------------------------------------------- 

In order to make the review of our revision more convenient, we have marked all 

changes using the “Track Changes” function in Microsoft Word and have uploaded 

the “tracked changes” version as Supplementary Material. 
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