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A DETAILED LIST OF RESPONSES 

TO REVIEWER #1 

 

Anonymous Reviewer #1 comments 

General comments: 

Reviewer #1: The research entitled "Multi-spatial Scale Assessment and Multi-dataset 

Fusion of Global Terrestrial Evapotranspiration Datasets" meticulously evaluated the 

accuracy and uncertainty inherent in thirty ET datasets at multiple spatial scales. 

These datasets encompass a variety of methodologies, including those derived from 

remote sensing–based, machine learning–based, reanalysis–based, and land–

surface–model–based. Then the study produced a fusion ET dataset (BMA-ET) 

using BMA method and dynamic weighting scheme for different vegetation types. 

The article is well-written and demonstrates strong logical coherence. However, I am 

doubt about the purpose of this study. As the authors have pointed out, “there are 

large discrepancies among ET estimates from different methods”, I am wondering 

how does the research handle the uncertainty between different types of ET datasets. 

Due to differences in algorithm frameworks and input data, the uncertainty of 

estimation results varies. The ET Fusion not only combines the advantages of 

different models, but also integrates uncertainty and even enhances errors. Regarding 

this, the author did not provide a solution. For a global ET dataset, data availability is 

more important than validation accuracy, and the results and novelty do not reach the 

desired level, which I do not think meet the requirements of ESSD. Thus, I 

recommend rejection. Please see my specific comments below. 

Response: We greatly appreciate your careful reading of the manuscript, insightful 

comments, and valuable suggestions. Your thoughtful review has enhanced our paper 

considerably. The manuscript has been revised thoroughly according to your 

comments and those of the individual reviewers, with our point-by-point responses 

detailed below. 

 

Specific comments: 
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1. I think the most significant problem with this research is that all the machine 

learning ET models and some other models (GLASS, PML, etc.) have been calibrated 

by ground observations from FLUXNET. The BMA-ET generated in this study used 

FLUXNET observations to fuse thirty ET datasets, which poses a problem of data 

reuse, and the estimated results may even overfit. 

Response: We thank the reviewer for your valuable suggestion. Indeed, the use of 

FLUXNET2015 data for calibration or validation in some datasets has affected the 

results to some extent. To address the above issues, we completed the following two 

components.  

 

(1) 30 datasets are clustered and then fused 

First, we calculated a Pearson correlation coefficient matrix using the residuals from 

the 30 sets of ET datasets with observations from FLUXNET2015 sites. Second, the 

30 sets of ET datasets were clustered based on the residual correlation coefficient 

matrix. Third, for each vegetation type, the BMA fusion of the ET data within each 

cluster was performed first, and then the BMA fusion of the fused data for each 

cluster was performed. 

 

(2) Independent data source validation 

We used independent data sources to validate the fusion dataset BMA-ET, 

specifically including AmeriFlux, ChinaFlux, and ICOS. The site information of 

AmeriFlux, ChinaFlux, and ICOS list in Tables S5–S7. Additionally, we also 

evaluated the accuracy of BMA-ET using FLUXNET2015 data from 2012 to 2015. 

The results demonstrate that BMA-ET outperforms other external datasets, achieving 

correlation coefficients of 0.61, 0.72, and 0.74 with site-level ET measurements from 

AmeriFlux, ChinaFlux, and ICOS, respectively (Figure R1). Using FLUXNET2015 

as reference observations, BMA-ET showed a correlation coefficient of 0.58 with 

FLUXNET2015 site-level ET during 2012–2015 (Figure R1), while also 

demonstrating high accuracy across various vegetation types (Figure R2). 
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Figure R1 (Corresponding to Figure 9). Accuracy evaluation of BMA-ET. The 

observation data is ET from (a) FLUXNET2015 during the period 2012–2015, (b) 

AmeriFlux during the period 1994–2020, (c) ChinaFlux during the period 2003–2010, 

(d) ICOS during the period 2003–2010. 
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Figure R2 (Corresponding to Figure S28). Accuracy evaluation of BMA-ET under 

different vegetation types during the period 2012–2015. The observation data is ET 

from FLUXNET2015. 

 

We have made the following additions in section 2.2 and 3.2. 

 

2. How did the authors handle the estimation accuracy of sparse areas such as South 

America and Africa during the fusion process? 

Response: Thank you for this pertinent advice. In this study, ET data were fused not 

by continent, but also by vegetation type. It is important to acknowledge that the 

number of sites is small in some vegetation types, and because of the overall short 

time period covered by the flux sites, this study spliced the time series of all the sites 

in each vegetation type, resulting in a longer time-span data set of site observations to 
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be used as observations for the BMA analysis. The relevant content has been 

described in detail in the section 2.2. 

 

3. The BMA is not an advanced fusion algorithm. The GLASS v4.0 integrated five 

ET algorithms using BMA in 2014 and upgraded to v5.0 using a deep learning 

algorithm in 2022. Which version of GLASS product was fused in this study? Why 

don't the authors consider using deep learning fusion algorithms? 

Response: Thank you for this comment. We considered GLASS v5, but since its 

temporal coverage is 2001–2015 and the fusion process requires the introduction of an 

evapotranspiration product with a longer coverage period, GLASS v4 was finally 

selected for this study. The GLASS v4 evapotranspiration product uses a Bayesian 

approach to estimate global land surface latent heat fluxes by combining five 

traditional latent heat flux algorithms (MOD16 algorithm, improved PM, PT-JPL, 

MS-PT, and Semi-Empirical Penman Algorithm), using observations from 240 flux 

sites around the globe as a reference to determine the weighting values for each 

algorithm. In this study, the Bayesian model averaging method was chosen over deep 

learning algorithms for the fusion of multiple sets of ET products for the following 

reasons: 

 

(1) Explicit uncertainty quantification and probabilistic outputs 

BMA provides probabilistic outputs (e.g., confidence intervals) by directly 

quantifying the uncertainty of the model weights and the error distribution of the input 

data through a Bayesian framework (Vrugt et al., 2008). For example, when fusing 

multi-source ET data, BMA can explicitly give the contribution weights of different 

data sources and their uncertainties, which facilitates the assessment of the reliability 

of the fusion results (Vrugt and Robinson, 2007). Deep learning methods typically 

output deterministic results and require the additional introduction of a probabilistic 

framework to quantify uncertainty, but are computationally complex and weakly 

interpretable (Zhang and Zhu, 2018). 
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(2) Physical Interpretability and Model Transparency 

The BMA approach preserves the physical meaning of each input model (e.g. 

Penman-Monteith equations, remote sensing inversion algorithms), and reflects the 

applicability of different models under specific conditions through the assignment of 

weights (Vrugt et al., 2008). The results can be directly related to the physical 

mechanisms of the input models, compounding the need for mechanism interpretation 

in geoscientific studies. Deep learning methods, as ‘black box’ models, have internal 

feature representations that are disconnected from the physical process, making it 

difficult to explain the logic of weight assignment or to correct for sources of model 

bias (Castelvecchi, 2016). 

 

(3) Robustness for small sample data 

When the amount of data is limited (e.g., sparse ground validation sites), the BMA 

method can avoid overfitting through Bayesian prior distributions and model weight 

optimization, and is particularly suitable for regional-scale ET fusion (Vrugt et al., 

2008). For example, when fusing a small amount of vorticity covariance flux data 

with multi-source ET products, BMA can constrain the range of weights through prior 

knowledge. Deep learning methods, on the other hand, are prone to overfitting or 

underfitting when there are insufficient samples (Zhang et al., 2019), and data 

augmentation strategies are limited by physical plausibility in geomatics. 

 

4. Table 2 shows that the spatial resolutions of the 30 ET datasets are different. How 

did the author solve the problem of spatial scale mismatch during the fusion process? 

Response: Indeed, as you mentioned, the 30 ET datasets have different spatial 

resolutions. Therefore, we used a bilinear interpolation method to unify the spatial 

resolution of all the ET datasets to 0.5°×0.5° and 1°×1° before performing the fusion 

of the multi-source ET datasets. 

 

We have made the following additions in section 2.2. 
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5. The 30 ET datasets cover different time ranges. How to carry out ET fusion for 

years with missing ET data? 

Response: We sincerely thank the reviewer for noting this. Since different ET 

datasets cover different years, for the common coverage years 1982–2011, the 

weights of each ET dataset under each vegetation type were obtained by performing 

BMA analyses based on 30 ET datasets, and these weights were applied to all the 

years 1982–2011. For the non-common coverage years 1980–1981 and 2012–2020, 

the weights for each year were obtained by filtering all ET datasets covering that year 

for BMA analysis to obtain the corresponding weights. The BMA analysis process 

mentioned above is all based on the years 1991–2011, except that the number of ET 

products involved in the BMA analysis is changing. 

 

We have made the following additions in section Text S6 and Figure S5. 

 

6. What are the spatial and temporal resolution of BMA-ET? How to handle the 

mismatches with 30 ET input datasets? 

Response: In order to meet the needs of research at different spatial scales, we 

produced 2 sets of BMA-ET datasets with spatial resolutions of 0.5°×0.5° and 1°×1°. 

At the spatial scale, we used bilinear interpolation to unify the spatial resolution of the 

30 sets of ET datasets to 0.5°×0.5° and 1°×1°. In turn, the subsequent ET evaluation 

and fusion were performed. At the temporal scale, the response content of the fifth 

comment was attended. 

 

We have made the following additions in section 2.2, Text S6 and Figure S5. 

 

7. Is the observation interval of the ground measurements from FLUXNET half an 

hour? How to process observation data into monthly scale? Is nighttime observation 

data used? 

Response: In this study, half-hourly data from FLUXNET2015 were selected as ET 

site observations. The half-hourly scale ET data were aggregated to the monthly scale, 
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resulting in monthly scale ET site data for subsequent analyses. Given that flux data 

from nighttime eddy covariance measurements are usually subject to large 

deficiencies and errors, only daytime latent heat flux data were selected for this study. 

Daytime was defined as the period from 07:00 to 19:00 local time. The study did not 

use incident shortwave radiation to define the daytime period because occasionally 

large values of shortwave radiation occur at night.  

 

We have made the following additions in section Text S1. 

 

8. In line 181: What do 10 sites refer to? Does it refer to 60% of CRO sites? Please 

explain more clearly. 

Response: I’m sorry that we didn’t make this clear in the paper. Here, 10 sites refer to 

60% of the CRO sites. 

 

We have made the following additions in section 2.2. 

 

9. In section 2.2 (lines 176-195), “The ET fusion datasets for each vegetation type 

were spliced to obtain the final global ET fusion dataset”. How to obtain the 

boundaries of vegetation types at the regional scale? What is the accuracy? Have 

authors considered the fusion errors caused by land cover classification errors? 

Response: Thank you for this pertinent advice. In general, the vegetation cover type 

boundaries are curves, i.e., Shapefile vector boundaries. However, in this study, the 

vegetation cover type we use is grid point data. And the vegetation cover type grid 

point data is produced by the previous study. The MCD12Q1 data are considered in 

this study. The MCD12Q1 data is a fusion of data from sensors Terra and Aqua, with 

a spatial resolution of 500 metres, and provides interannual global data on land cover 

types (from 2001 onwards), containing six classification systems, where the 

International Geosphere Biosphere Programme (IGBP) is used (Cai et al., 2014). The 

IGBP classifies land cover types into 17 categories, including 11 natural vegetation 

classifications, 3 land use and land mosaics, and 3 unvegetated land classifications. 
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The product uses supervised classification in addition to additional post-processing of 

the data, i.e., some a priori knowledge and ancillary data are incorporated to improve 

the accuracy of the classification. This study uses the MOD12 Q1 dataset to classify 

global land cover. The following maps show the spatial distribution of masks globally 

(Figure R3) and for each of the 12 land cover types (Figure R4). 

 

Figure R3 (Corresponding to Figure S3). Global spatial distribution of land cover 

types based on MOD12Q1. 

 

Figure R4. Global spatial distribution of 12 types of land cover types based on 

MOD12Q1. 
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On this basis, we also considered the comments of Reviewer #2. We performed a 

dynamic comparison of the data set MOD12Q1 for the three periods of 2001, 2010 

and 2020 (Figure R5). We found that the consistency of the land cover types between 

the years was high, with the proportions of consistency between 2001 and 2010, 2010 

and 2020, and 2001 and 2020 being 0.80,0.86 and 0.78, respectively (Figure R6). In 

addition, we also analyzed the percentage of global land area covered by 12 

vegetation types (Figure R7). The results show that the proportion of area covered by 

various vegetation types does not vary much between years, especially for the four 

main vegetation types, OSH, WSA, SAV and GRA, which account for a larger 

proportion of the area. 
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Figure R5 (Corresponding to Figure S33). Spatial distribution of land cover changes 

in three periods (2001, 2010, 2020) based on MOD12Q1. 

 
Figure R6 (Corresponding to Figure S34). Consistency between MOD12Q1 land 

cover types across years. Subfigures a-c show the level of consistency between land 

cover types for 2001 and 2010, 2010 and 2020, and 2001 and 2020, respectively. The 

level of consistency is characterized by the ratio of the number of grid points with 

consistent vegetation types to the total number of grid points on land. 
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Figure R7 (Corresponding to Figure S35). Percentage of global land area covered by 

12 vegetation types based on MOD12Q1. The bars in each subfigure represent the 

proportion of vegetation types in 2001, 2010 and 2020, respectively. 

 

We have made the following additions in section 4.1. 

 

10. In Figure 2, “the 12 vegetation cover types do not cover the entire study area. For 

areas not covered, an equal weighting approach was taken”. Is this weight scheme 

reasonable? 

Response: Thank you for your comment. Areas not covered by the ten vegetation 

cover types could not be analyzed for BMA as no site information was available. Here, 

we introduce a Bayesian-Three Cornered Hat (BTCH) method. This method is an 

advanced statistical approach for multi-source data fusion and error estimation, which 

is particularly applicable to the fields of remote sensing, Earth observation and model 

evaluation. Its core advantage lies in its ability to estimate the error characteristics 

(e.g., random error, systematic bias) and their relative weights of multiple data 

sources simultaneously without relying on real reference data. The computational 

process of BTCH method is detailed in Text S8. 

 

We compared the results of ET fusion of uncovered areas of 10 vegetation types 

based on the BTCH method and the equal weighting method (Figure R8). The results 

showed that the correlation coefficients between the ET estimates based on the equal 

weighting method and the BTCH-based method were high in the area not covered by 

the 10 vegetation types, reaching more than 0.9 at most of the grid points (Figure R8). 

Moreover, only 11.6% of the global land area is not covered by 10 vegetation types, 

the percentage of uncovered areas is small and therefore introduces little error. This 

type of area is mainly found in North Africa, the Middle East and parts of Central 

Asia. In summary, in the areas not covered by the 10 vegetation types, it is reasonable 

for us to use an equal weighting approach to fuse all ET datasets. 
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Figure R8 (Corresponding to Figure S36). Spatial distribution of multi-year average 

ET during 1980–2020 in the uncovered areas of 10 vegetation types. (a) the spatial 

distribution of ET based on the equal weight method, (b) the spatial distribution of ET 

based on the BTCH, (c) the correlation coefficient of ET between two methods, with 

the black dots representing that the ET of the grid point passed the significance test 

(p<0.05). 

 

We have made the following additions in section 4.1 and Figure S36. 

 

11. In Figure 4, 30 ET datasets were well evaluated, and Table 3 showed the 

guidelines for the use of ET datasets. So, in the BMA-ET fusion process, were all 30 

ET datasets used for fusion, or only the recommended datasets used for fusion? If as 
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the authors stated, the accuracies of RA and LSM are not good, why are they still used 

for fusion? 

Response: Thank you for your comment. The BMA method will control the weights 

of different ET datasets. Bayesian model averaging (BMA) provides a methodology 

to explicitly handle conceptual model uncertainty in the interpretation and analysis of 

environmental systems. This method combines the predictive capabilities of multiple 

different models and jointly assesses their uncertainty. The probability density 

function (pdf) of the quantity of interest predicted by BMA is essentially a weighted 

average of individual pdf’s predicted by a set of different models that are centered 

around their forecasts. The weights assigned to each of the models reflect their 

contribution to the forecast skill over the training period. 

 

Based on the results of ET integrated evaluation, the performance of the datasets 

based on remote sensing inversion and machine learning reconstruction is relatively 

better. Therefore, we also selected eight ET datasets for the fusion study as a 

robustness test of the number of ET datasets involved in the fusion process. The eight 

ET datasets include four datasets based on remote sensing inversion (PML, GLEAM, 

GLASS and PLSH datasets) and four datasets based on machine learning 

reconstruction (FLUXCOM-CRUNCEP_v8, FLUXCOM-GSWP3, 

FLUXCOM-WFDEI and MTE datasets). Only the better 8 ET data were selected for 

fusion, and there was little difference between the results of the two when all 30 ET 

data were involved in the fusion (Figure R9). The correlation coefficient between the 

2 sets of ET fusion products exceeds 0.9 in most regions of the globe. This indicates 

that the BMA method gives higher weights to the better ET products. This also fully 

reflects the advantages of the BMA method. In order to prevent the effect of such a 

subjective behavior as selecting 8 out of 30 ET datasets, so this study still maintains 

the participation of all ET datasets. 
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Figure R9. Spatial distribution of multi-year average ET during 1981–2018 over the 

globe. (a) the spatial distribution of ET fusion product from 8 sets of ET data, (b) the 

spatial distribution of ET fusion product from 30 sets of ET data, (c) the correlation 

coefficient of two ET fusion products, with the black dots representing that the ET of 

the grid point passed the significance test (p<0.05). 

 

12. In lines 237-238, the RS and ML ET datasets are recommended in the site scale 

validation results. Whereas, in lines 256-257, the ML ET datasets have greater TCH 

relative uncertainty. Do these two conclusions conflict? Please provide a detailed 

explanation. 

Response: Thank you for your comment. The results show that the ML ET datasets 

have greater TCH relative uncertainty. This conclusion is for the basin scale. The 

basin-scale TCH analyses were performed based on the results of the basin-weighted 

average, rather than on a grid- by-grid basis within the basin. The results of basin 
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averaging make it difficult to accurately characterize the true situation at the global 

grid scale. Therefore, we also used the TCH method to analyze the uncertainty over 

the globe on a grid-by-grid basis. For TCH relative uncertainty, machine learning– 

and remote sensing–based datasets have less relative uncertainty (Figure R10). The 

results of the global TCH analysis are consistent with the results of the site-based ET 

assessment, both of which concluded that the remote sensing and machine 

learning-based ET dataset has higher accuracy. Therefore, there is no conflict between 

the conclusions. 

 
Figure R10 (Corresponding to Figure S24). Spatial distribution of relative uncertainty 

of TCH for each ET dataset on monthly scale for the common coverage years from 

1982 to 2011 (unit: %). 
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13. In Figure 1, the common period of coverage for all ET datasets is 1982–2011. 

How did this study produce the BMA-ET dataset from 1980 to 2020? 

Response: This issue is similar to the fifth comment you mentioned, so see the 

response to the fifth comment for more information. Since different ET datasets cover 

different years, for the common coverage years 1982–2011, the weights of each ET 

dataset under each vegetation type were obtained by performing BMA analyses based 

on 30 ET datasets, and these weights were applied to all the years 1982–2011. For the 

non-common coverage years 1980–1981 and 2012–2020, the weights for each year 

were obtained by filtering all ET datasets covering that year for BMA analysis to 

obtain the corresponding weights. 

 

We have made the following additions in section Text S6 and Figure S5. 

 

14. In lines 355-356, the study recommended RS and ML based ET datasets 

(especially MTE and PML) based on the evaluation results. So why does the 

BMA-ET merge 30 ET datasets? Is it better to merge only MTE and PML? 

Response: Thank you for your comment. This issue is similar to the eleventh 

comment you mentioned, so see the response to the eleventh comment for more 

information. The BMA method will control the weights of different ET datasets. Only 

the better 8 ET data were selected for fusion, and there was little difference between 

the results of the two when all 30 ET data were involved in the fusion. In order to 

prevent the effect of such a subjective behavior as selecting 8 out of 30 ET datasets, 

so this study still maintains the participation of all ET datasets. In addition, if only 

MTE and PML were fused, it would be difficult to fuse the two ET datasets to obtain 

ET data for a long time series (1980–2020) because the time periods covered by these 

two ET datasets are too short. 

 

---------------------------------------------- end line----------------------------------------------- 
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In order to make the review of our revision more convenient, we have marked all 

changes using the “Track Changes” function in Microsoft Word and have uploaded 

the “tracked changes” version as Supplementary Material. 
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A DETAILED LIST OF RESPONSES 

TO REVIEWER #2 

 

Anonymous Reviewer #2 comments 

General comments: 

The work "Multi-spatial scale assessment and multi-dataset fusion of global terrestrial 

evapotranspiration (ET) datasets" presents a detailed comparison of 30 global-scale 

evapotranspiration datasets and uses Bayesian Model Averaging to create a new 

weighted ensemble dataset.  The paper is logically structured and clear overall.  

The comparison of such a large sample of ET datasets and the evaluation and 

comparison at a range of scales alone are interesting, novel, and valuable.  For the 

dataset to be useful, more methodological details are needed about the pre-processing 

methods used align all datasets to a consistent spatial and temporal basis beyond the 

descriptions provided in the supplementary material.  In addition, more detail is 

needed regarding the robustness of the BMA approach to key assumptions, namely 

land cover change, land cover classification uncertainty at the resolutions presented, 

and BMA model validation.  Many such questions would be far easier to review and 

provide feedback on if (annotated) code used to generate the dataset were provided.  

These additions as well as a correction of the 1 degree resolution dataset are 

recommended before publication in ESSD. 

Response: We greatly appreciate your careful reading of the manuscript, insightful 

comments, and valuable suggestions. Your thoughtful review has enhanced our paper 

considerably. The manuscript has been revised thoroughly according to your 

comments and those of the individual reviewers, with our point-by-point responses 

detailed below. 

 

Specific comments: 

1. There is a problem with the 1 degree dataset starting at approximately timestep 262.  
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Response: First of all, we thank you for your comments. We apologize that due to our 

carelessness, an incorrect version of the 1 degree spatial resolution BMA-ET dataset 

was uploaded here, for which we have updated and corrected. 

 

2. Figure 7: What resolution and spatial interpolation methods were used to fill in data 

gaps in producing Figure 7?  Below is a detail mean annual derived from 0.5 degree 

data (see attached notebook for full size image, the 500px restriction on image 

attachments is rather limiting here). 

Response: Thank you for your comments. We apologize that we did not explain this 

clearly in the paper. In performing the plotting Figure 7, we assigned the grid points 

with no values to 0 mm and did not use any spatial interpolation to fill in the data gaps. 

We have corrected Figure 7. 

 

3. Line 178: how was training/validation split done for evaluating BMA performance? 

Given the sparsity of flux sites, why wasn’t cross-validation considered? How 

sensitive are model weights to the training sample? 

Response: Many thanks for highlighting this point. In this study, we use 60% of 

station data for training and 40% of station data for validation. In order to verify the 

robustness of the results, we performed 2 additional sets of experiments, 70% of data 

for training and 30% of data for validation, 80% of data for training and 20% of data 

for validation, respectively. The results show that the data accuracy of the fusion 

product BMA-ET is not sensitive to FLUXNET station split. The accuracy evaluation 

results showed remarkable consistency across different training set proportions (60%, 

70%, and 80%), with BMA-ET demonstrating correlation coefficients of 0.68, 0.67, 

and 0.65 respectively when compared to FLUXNET-ET (Figure R11). In addition, we 

also evaluate the accuracy of BMA-ET under different vegetation types. The results 

show that the accuracy of BMA-ET under each vegetation type is not sensitive to the 

split ratio of the training set (Figures R12–R14). 
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Figure R11 (Corresponding to Figure S29). Accuracy evaluation of BMA-ET. (a) 60% 

of data for training and 40% of data for validation, (b) 70% of data for training and 30% 

of data for validation, (c) 80% of data for training and 20% of data for validation. 
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Figure R12 (Corresponding to Figure S30). Accuracy evaluation of BMA-ET over 

different vegetation types. 60% of data for training and 40% of data for validation. 
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Figure R13 (Corresponding to Figure S31). Accuracy evaluation of BMA-ET over 

different vegetation types. 70% of data for training and 30% of data for validation. 

 

Figure R14 (Corresponding to Figure S32). Accuracy evaluation of BMA-ET over 

different vegetation types. 80% of data for training and 20% of data for validation. 

 

We have made the following additions in section 4.1. 

 

4. Line 191: Can you quantify or estimate distributions of typical land cover changes 

at the appropriate dataset resolution as a basic test of model sensitivity to the 

stationary land cover assumption? 

Response: We sincerely thank the reviewer for noting this. We performed a dynamic 

comparison of the dataset MOD12Q1 for the three periods of 2001, 2010 and 2020. In 

addition, we also analyzed the percentage of global land area covered by 12 

vegetation types. Refer to Question 9 from Reviewer #1 for our specific responses. 
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5. Line 245: It isn't clear why correlations here are based on mean annual values and 

elsewhere (Figure S18) based on monthly data, making it more difficult to interpret 

the different comparisons presented (i.e. site, basin, global scales). 

Response: Thank you for your comments. We apologize for not explaining this 

clearly in the paper. In Figure S18, each small circle represents a basin. This figure is 

not a comparison of ET datasets at any time scale, and it is a comparison of ET for all 

basins. Therefore, each small circle represents a multi-year average ET value for that 

basin. In this figure, even when replaced with monthly average ET values for each 

watershed, the comparison of multi-year average evapotranspiration from 30 ET 

datasets and multi-year average observed evapotranspiration from basin water balance 

are unchanged.  

 

We have made the following additions in the title of Figure S20. 

 

6. Line 284 -- comparing typical MAE values with the stated trend, what is the 

uncertainty in the 0.21mm/yr trend line? How significant is the magnitude (and 

precision) of this trend compared to typical variability due to error? 

Response: Thank you for your comments. Based on the fused dataset BMA-ET, we 

calculated the change trend of ET from 1980 to 2020. The global average ET change 

trend and its uncertainty is 0.65 (0.51–0.78) mm/yr (Figure R15). By calculating the 

signal-to-noise ratio (SNR) of the year-by-year ET data, it is found that the SNR is 

less than 1, i.e., the ET trend is smaller than the interannual variability, which 

indicates that the ET trend signal is weak or noisy. The SNR only reflects the ratio of 

the trend to the interannual noise, and cannot distinguish between a weak true climatic 

signal (the trend is small) and a large noise in the data (e.g., fluctuations introduced by 

the observation error or the interpolation of the missing values). The Mann-Kendall 

test is a nonparametric test that does not require data distribution assumptions 

(Kendall, 1948; Mann, 1945); it is effective in detecting linear or nonlinear monotonic 

trends (continuously rising/declining) and is suitable for long-term climate change 

analyses; and it is insensitive to extreme values and robust. Therefore, we used the 



 25 

Mann-Kendall test to verify the significance of the trend. Despite the low SNR of the 

ET series, the Mann-Kendall test showed that the trend was significant (p<0.01), 

suggesting a persistent upward trend in the ET series. 

 

 

Figure R15 (Corresponding to Figure S25). Interannual variations of BMA-ET during 

1980–2020. The global land average results are calculated based on a weighted 

average of the global land area. 

 

7.A basic attempt to replicate Figure S23 was unsuccessful. There is likely a simple 

explanation for the substantial offset (~20mm) but it is much more laborious to 

investigate without the full replication code. A copy of the code used to generate the 

figures presented in this review is attached.  

Response: I’m sorry we didn’t make that clear. We used the area-weighted average 

method in calculating the global average ET. Data are available in a regular 

longitude-latitude grid. Therefore, grid cells do not have an equal size, with smaller 

grid cells at higher latitudes. Hence, for calculating the land area fractions, we must 

assign a weight to each grid cell on the basis of size. Here we compute these weights 

(𝑤!) as the size of each grid cell at latitude 𝑙𝑎𝑡! relative to the size of the largest grid 

cells located at the Equator, given by: 

 𝑊! = '"#$%&'(!)(+.-×/01)34"#$%&'(!4(+.-×/01)3
"#$(+.-×/01)4"#$(4+.-×/01)

'  (1) 
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where 𝑙𝑎𝑡 is the vector indicating the latitude of each grid cell center, and ranges 

from −90 + (0.5 × 𝑟𝑒𝑠)  to 90 − (0.5 × 𝑟𝑒𝑠)  with increasing step or resolution 

denoted by 𝑟𝑒𝑠. 

 

We have made the following additions in Figure S25. 

 

8.Figure 8: What are the units these models are compared on? i.e. is standard 

deviation mm/year?  Was some kind of normalization/standardization done to make 

the reference dataset standard deviation exactly 1? 

Response: Thank you. The Taylor diagram was first proposed by Taylor and is 

mainly used to evaluate the ability of different models to simulate a variable. The plot 

combines three evaluation metrics: the correlation coefficient, the root mean square 

error, and the ratio of the standard deviations of the simulated and observed fields on 

a single polar plot. See Taylor for specific formulas. Standardized Taylor diagram 

normalize the standard deviation and root mean square error to eliminate their 

physical units of measure. When the correlation coefficient is larger, the 

root-mean-square error is smaller, and the ratio of the standard deviation of the 

simulated values to that of the observed values tends to be closer to 1, it indicates that 

the simulation results are in good agreement with the measured data, i.e., the model 

simulation results are highly reliable. In this study, a standardized Taylor diagram was 

used for the comprehensive assessment of the global ET dataset. 

 

We have made the following additions in section 2.2, Figure 8 and Text S5. 

 

9.Figure 8: What is the advantage of the BMA-ET dataset over the GLDAS-VIC 

dataset, or other datasets with similar correlation, lower RMSE, and standard 

deviation closer to the reference dataset? 

Response: Thank you for your comments. In Figure R16 (Corresponding to Figure 8), 

BMA-ET has the highest correlation coefficient with FLUXNET2015. While the 

RMSE of BMA-ET vs. FLUXNET 2015 site ET was not the lowest, the ET dataset 
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with the lower RMSE had a much lower correlation coefficient than BMA-ET, less 

than 0.6. In addition, the BMA-ET dataset has a longer time period of coverage than 

other datasets with similar correlations, lower RMSEs and standard deviations closer 

to the reference dataset. Therefore, BMA-ET is more suitable for long-term climate 

change studies. 

 

 
Figure R16 (Corresponding to Figure 8). Standardized Taylor diagram of ET datasets 

at all stations from 1991 to 2011. The observation data are ET from FLUXNET2015. 

 

10.Line 313: What is the sensitivity of model performance to typical differences / 

uncertainties introduced by spatial scale mismatch? 

Response: Since the original spatial resolutions of the 30 datasets are different, and 

this study uses a bilinear interpolation method to unify them to the same resolution, 

this resampling process introduces some uncertainty. Therefore, this study compared 

the differences in ET data at 1° and 0.5° globally and under each vegetation type, 

respectively. The results show that correlation coefficients for ET datasets at 1° and 

0.5° spatial resolution globally are more than 0.9 among all ET datasets (Figure R17). 

For each vegetation type, correlation coefficients for ET datasets at 1° and 0.5° spatial 

resolution are over 0.8. This suggests that the uncertainty due to differences in spatial 

resolution is relatively small. 
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Figure R17 (Corresponding to Figure S4). Correlation coefficients for ET datasets at 1° 

and 0.5° spatial resolution globally and for each vegetation type.  

 

We have made the following additions in section 2.2 and Figure S4. 

 

11.Section 4.2: More discussion of how data leakage was avoided is needed. How is 

training data independent of validation data in each comparison?   

Response: We thank the reviewer for your valuable suggestion. To address the above 

issues, we completed the following two components: 30 datasets are clustered and 

then fused; independent data source validation. Refer to Question 1 from Reviewer #1 

for our specific responses. 

 

---------------------------------------------- end line----------------------------------------------- 
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In order to make the review of our revision more convenient, we have marked all 

changes using the “Track Changes” function in Microsoft Word and have uploaded 

the “tracked changes” version as Supplementary Material. 
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A DETAILED LIST OF RESPONSES 

TO REVIEWER #3 

 

Anonymous Reviewer #3 comments 

General comments: 

This study applies BMA to merge multiple ET datasets, but two fundamental issues 

must be addressed before publication in ESSD: potential data leakage and the 

assumption of independent errors among datasets. If unresolved, the study lacks the 

necessary rigor for acceptance. 

Response: We greatly appreciate your careful reading of the manuscript, insightful 

comments, and valuable suggestions. Your thoughtful review has enhanced our paper 

considerably. The manuscript has been revised thoroughly according to your 

comments and those of the individual reviewers, with our point-by-point responses 

detailed below. 

 

Specific comments: 

1. ML datasets (e.g., FLUXCOM, MTE) trained on FLUXNET are also used for 

BMA likelihood estimation, raising concerns about inflated weights. Has the author 

evaluated this effect? Clearly identify datasets incorporating FLUXNET and assess 

their influence on BMA weights. If necessary, limit their posterior weights or 

introduce independent validation datasets.  

Response: First of all, we thank you for your comments. We used independent data 

sources to validate the fusion dataset BMA-ET, specifically including AmeriFlux, 

ChinaFlux, and ICOS. Refer to Question 1 from Reviewer #1 for our specific 

responses. 

 

2.BMA assumes independent errors, but ML datasets share training data, RS datasets 

rely on MODIS, and LSMs use similar climate forcings. Has the author assessed 

inter-dataset correlations and their impact on weight allocation? 
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Response: We appreciate the reviewer’s insightful comment. Indeed, BMA’s 

assumption of independent errors may not fully hold for our 30 ET datasets, as they 

share underlying inputs (e.g., MODIS reflectance for RS products) or climate forcings 

(e.g., ERA5 for LSMs). We addressed this issue through the following approaches: 30 

datasets are clustered and then fused. Refer to Question 1 from Reviewer #1 for our 

specific responses. 

 

3.Considering introduce a covariance matrix (compute Pearson correlation matrices 

for FLUXNET residuals) into the likelihood function of BMA accounts for 

inter-dataset correlations. Compare weight distributions before and after adjustment. 

Alternatively, cluster highly correlated datasets (e.g., FLUXCOM, MTE) and down 

weight them collectively. 

Response: We fully agree that accounting for inter-dataset correlations is critical for 

robust Bayesian Model Averaging (BMA). To address this, we completed the 

following: 30 datasets are clustered and then fused. Refer to Question 1 from 

Reviewer #1 for our specific responses. 

 

4.The study applies a 60%-40% FLUXNET station split for BMA training and 

validation. Considering implement K-fold cross-validation or leave-one-out validation 

to assess the stability of BMA weights across different training subsets. 

Response: Thank you for your comments. In this study, we use 60% of station data 

for training and 40% of station data for validation. In order to verify the robustness of 

the results, we did 2 additional sets of experiments: 70% of data for training and 30% 

of data for validation, 80% of data for training and 20% of data for validation, 

respectively. Refer to Question 3 from Reviewer #2 for our specific responses. 

 

5.Bootstrap resampling of FLUXNET data could estimate confidence intervals for 

BMA weights and ET estimates. If dataset dependencies are strong, current 

uncertainty estimates may be underestimated. Try add confidence intervals (e.g., 95% 

CI) to BMA-ET results in figures such as Fig. 7 or Fig. S23 and discuss implications. 
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Response: We sincerely appreciate the reviewer’s insightful suggestion regarding 

uncertainty quantification. Following the reviewer’s advice, we performed bootstrap 

resampling based on the fused dataset BMA-ET, and we calculated the trend of ET 

change from 1980 to 2020. The global average ET change trend and its confidence 

intervals are 0.65 (0.51–0.78) mm/yr. We added shaded 95% CI bands to BMA-ET 

trend lines in Figure S25.  

 

Implications: 

The ET trend (0.65 mm/yr) indicates a significant increase in global land-averaged 

evapotranspiration (ET), which may be related to climate warming, longer vegetation 

growing seasons, or changes in water availability. The width of the 95% confidence 

intervals for the global terrestrial mean ET trend reflects data heterogeneity and 

methodological uncertainty (e.g., uneven distribution of FLUXNET sites). The main 

sources of uncertainty are input data and natural variability. The uncertainty of input 

data mainly involves systematic bias of different ET products in different climate 

zones (Jung et al., 2019). The natural variability refers inter-annual fluctuations, such 

as ENSO may mask long-term trends (Börgel et al., 2020; Grothe et al., 2020; Wu et 

al., 2011). 

 

6.SI L355, TableS1, The TRENDY model dataset link is inaccessible. Is it publicly 

available? Clarify access restrictions and provide an alternative link if possible. 

Response: We apologize that the previous link is no longer working, the TRENDY 

model data access is supplemented in Table S1.  

 

7.L125, Table2, the citation Tian et al. (2015) may not be the best reference for 

DLEM ET data. Consider citing Pan et al. (2015) or Friedlingstein et al. (2023) 

(TRENDY v12 reference), which are more relevant to ET estimates. 

Response: We have updated the references for the DLEM ET data.  
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8.L156, Suggest use FLUXNET2015 (2012-2014) data to supplement site validation 

and evaluate BMA-ET performance. Additionally, explore AmeriFlux or ICOS 

(2015-2020) data for further validation, enhancing extended-period credibility. 

Response: Thanks. Following your suggestion, we used independent data sources to 

validate the fusion dataset BMA-ET, specifically including AmeriFlux, ChinaFlux, 

and ICOS. Additionally, we also evaluated the accuracy of BMA-ET using 

FLUXNET2015 data from 2012 to 2015. Refer to Question 1 from Reviewer #1 for 

our specific responses. 

 

9.L274, Figure 6(a) color scheme appears cluttered. Align with subplot (b) by using 

consistent colors—RS datasets in red, ML datasets in yellow, etc. This improves 

clarity and direct comparison. 

Response: Good advice. We have modified the colors in Figure 6 accordingly. 

 

10.L300, figure8, same as above. 

Response: We have modified the colors in Figure 8 accordingly. 

 

---------------------------------------------- end line----------------------------------------------- 

In order to make the review of our revision more convenient, we have marked all 

changes using the “Track Changes” function in Microsoft Word and have uploaded 

the “tracked changes” version as Supplementary Material. 
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