
Dear Reviewer:

Thank you for the comments concerning our manuscript entitled “A daily reconstructed
chlorophyll-a dataset in South China Sea from MODIS using OI-SwinUnet” (ID: ESSD-2024-6).
Those comments are all valuable and very helpful for revising and improving our paper, as well as
the important guiding significance to our researches. We have studied comments carefully and
have made correction which we hope meet with approval.

Revised portion are highlighted using the “Track Changes” function in the paper. The main
corrections in the paper and the responds to the Reviewer’s comments are as flowing:

Responds to the Reviewers’ comments:

Reviewer #2:

GENERAL COMMENTS

1. Innovation: The combination of OI and SwinUnet for reconstructing missing
chlorophyll-a data is commendable. It addresses a significant gap in marine science
research by providing a method to fill in missing satellite data, which is a common
problem due to factors like cloud cover, sun glint, and sensor limitations.

Response: Thanks for this comment. The lack of complete satellite observation data impedes
the utilization of satellite data in the domain of oceanic research. Deep learning offers
significant potential in the realm of ocean remote sensing by extracting complex features from
images using a vast quantity of data. We are developing a deep learning model using the
SwinUnet framework to reconstruct sea surface chlorophyll data obtained from remote sensing.
Our goal is to provide continuous and complete datasets that are accurate and reliable, which
will be valuable for researchers.

2. Evaluation: The manuscript does an excellent job of comparing the OI-SwinUnet method
against other common reconstruction methods such as DINEOF, OI, and Unet,
demonstrating its superiority in handling missing data reconstruction in the South China
Sea.

Response: Thanks for this comment. The current major remote sensing data reconstruction
methods can be classified as traditional algorithms, including DINEOF and OI. Recently,
researchers have also endeavored to do research on deep learning remote sensing
reconstruction models, such as CNN-Unet. This work presents an analysis of the benefits and
challenges encountered by DINEOF, OI, and CNN-Unet in the process of reconstructing
remote sensing data. We also conduct a comparative evaluation of these methods with our
suggested approach, OI-SwinUnet. The findings indicate that OI-SwinUnet is capable of
preserving and restoring a greater amount of small- and meso-scale details compared to
traditional algorithms. Furthermore, it is better suited than CNN-Unet for reconstructing
extensive, high-resolution chlorophyll a concentration products detected by satellites in the



South China Sea.

3. Applicability and impact: The study’s findings have significant implications for marine
science, particularly in understanding the spatial and temporal distribution of
chlorophyll-a in the South China Sea. The reconstructed dataset can enhance studies
related to marine ecology, biogeochemical cycles, and ocean dynamics.

Response: Thanks for this comment. It is our expectation that the rebuilt dataset will be useful
not only for analyzing the temporal and spatial aspects of chlorophyll distribution at the surface
of the South China Sea under long time periods, but also for capturing the phytoplankton
outburst events that happen locally or by accident. In the manuscript, we also analyze the
differences between reconstructed datasets and satellite observation datasets in the application
of monitoring the ecological effects of mesoscale eddies. Since the reconstructed dataset is
characterized by spatiotemporal integrity, it is also particularly suitable for the changing pattern
of surface chlorophyll over the full life cycle of eddies, which will help us to have a more
comprehensive understanding of the ecological effects of mesoscale eddies.

SPECIFIC COMMENTS

1. I would recommend revising the title of the manuscript by adding “the” before “South
China Sea”.

Response: Thanks for this comment. We have revised the title by adding “the” before “South
China Sea”.

2. Introduction: The introduction provides a solid rationale for the study, situating it well
within the current state of literature. However, it would benefit from a more detailed
discussion of recent advances in data reconstruction techniques, particularly those
employing machine learning and deep learning methods beyond the marine sciences, to
highlight the novel contribution of OI-SwinUnet.

Response: Thanks for this useful comments. In the revised manuscript, we discuss recent
developments in two reconstruction approaches, OI and DINEOF (Line: 56-85).

“The OI algorithm leverages the conservative nature of marine elements and takes into account
the spatial distribution characteristics of each element. It interpolates the unevenly distributed
data to the corresponding grid points, resulting in an optimal estimation. This algorithm
increases the coverage area and data density, allowing for the simultaneous use of observation
data with varying error characteristics. It effectively addresses the issue of sparse spatial
distribution of marine data. The optimal interpolation method has gained global recognition
since the 1980s and has been adopted by the U.S. National Meteorological Center (NMC) and
the European Centre for Medium-Range Weather Forecasts (ECMWF) for assimilation analysis
and numerical prediction (Shaw 1986). The method is extensively employed in the marine
domain to reconstruct historical datasets of sea surface temperature (SST), in situ
measurements, and sea level anomaly (SLA) datasets. Currently, it is the most often used data



assimilation method in the field of marine meteorology. The assumption made by "OI" is that
the datasets are independent in terms of space and time. However, it fails to adequately
consider the spatial and temporal correlation of the data. The suboptimal computational
efficiency of the optimal interpolation approach is also a constraining factor in its
implementation.

DINEOF is a data reconstruction technique that relies on the use of Empirical Orthogonal
Function (EOF). It possesses the benefit of internal adaptive correlation without requiring any
predetermined values for variables. The cross-correction set is implemented to facilitate the
optimal reduction of truncation and estimation errors when constructing the EOF by accounting
for default values. This method not only addresses missing data and eliminates noise from the
data image, but also produces a dynamically adjusted image that accurately represents the
overall condition of the data and its temporal development trend. This is achieved by utilizing
the most significant modes obtained through optimal truncation (Alvera-Azarate, Barth and
Rixen 2005). Due to the fact that the initial modes in the DINEOF method, which are derived
from the entire target dataset decomposed by EOF, represent changes that occur over a period
of more than six months, the reconstruction of multi-year time scale large data volume satellite
remote sensing datasets using the DINEOF method focuses primarily on capturing temporal
and spatial large-scale information. It disregards the small-scale information from a few local
observation points. Therefore, using the interpolated target ocean dataset with missing
measurements generated by the DINEOF method is not suitable for studying temporal
small-scale processes, such as local weather-scale phenomena.”

We also present recent developments in deep learning models that combine CNNs and attention
gates for chlorophyll product reconstruction in nearshore marine environments (Line: 88-93).

“Unet is a compact convolutional neural network architecture that includes an encoder-decoder
framework, which involves downsampling and upsampling operations. Additionally, Unet
incorporates Attention Gates (AGs) inside its network structure. By training Unet with AGs, the
background regions in the image are suppressed while the salient features in the data-missing
regions are highlighted. This leads to an improvement in the sensitivity of the model and the
accuracy of reconstruction.”

In the final section of the Introduction, we address the issues encountered by current data
reconstruction techniques and propose a novel OI-SwinUnet scheme (Line: 116-122).

“This paper aims to address the existing challenges and research gaps in traditional
reconstruction methods and CNN-based reconstruction models. It focuses on studying the
mechanism of chlorophyll in multi-scale spatio-temporal changes in the South China Sea
(SCS), including weather-scale. To achieve effective filling of missing data in remotely sensed
data products, we proposes a novel approach called the OI-SwinUnet method. This method
combines the techniques of optimal interpolation (OI) and SwinUnet, and utilizes a multi-scale
optimal interpolation, quadratic revision of transformer-based U-type coding and decoding
network.”



Newly Added References

Alvera-Azarate, A., Barth, A., & Rixen, M. (2005). Reconstruction of Incomplete Satelite SST Data
Sets Using Empirical Orthogonal Functions: Application to the Adriatic Sea Surface Temperature.
Ocean Modelling, 9, 325-346

Shaw, B.D. (1986). Data Assimilation Scientific Documentation Research Manual. England: European
Centre for Medium-Range Weather Forecasts

3. Method: The detailed explanation of the OI-SwinUnet model, including its components
and the rationale behind its design, provides clarity and demonstrates the robustness of
the approach. However, more details on the specific configurations of the SwinUnet
architecture used in this study (e.g., number of layers, heads in multi-head self-attention)
could further enhance this section.

Response: Thanks for this useful comment. In the revised manuscript, we have rewritten the
SwinUnet part of Method. It is described in three parts:: "SwinUnet framework - Swin
Transformer block - (S)W-MSA module", and the detailed configurations of SwinUnet are
added, such as the frequency of upsampling/downsampling, the size of the feature map for each
stage, the size of the window of the (S ) window size of W-MSA, the length of the vector of
tokens, and so on.

(1) “SwinUnet framework” (Line 233-259): The Unet architecture serves as the fundamental
framework for SwinUnet. The model comprises four primary components, namely, the encoder,
decoder, bottleneck, and skip connections (Figure 3). Given that the original SwinUnet model
requires 3 channels of input data, we encountered disparity because our preprocessed data
comprised 66 channels. To address this discrepancy, we introduce an additional convolutional layer
prior to the patch partition layer. This new layer serves the purpose of transforming the data from its
original 66 channels to the required 3 channels. In order to transform the image into an embedding
sequence, we divide the entire input tensor into patches of size 4 × 4 that do not overlap. These
patches are then flattened in the direction of the channels. By employing this partitioning technique,
the dimensions of the feature map transform from [H, W, 3] to [ H 4 , W 4 , 48] . Next, the linear
embedding layer linearly transforms the feature dimension of each pixel from 48 to C. This results
in a change in the shape of the feature map from [ H 4 , W 4 , 48] to [ H 4 , W 4 , C] . Within the
encoder, the patches are inputted into the Swin Transformer block to facilitate learning, while the
feature size and resolution stay constant. Simultaneously, the patch merging layer will decrease the
quantity of feature maps by a factor of 2 through downsampling, while doubling the feature
dimension compared to its original size. This step will be iterated three times in the encoder. The
symmetric decoder, which relies on the Swin Transformer block, serves as the counterpart to the
encoder. The deep features that were recovered are enlarged in the decoder using a patch expanding
layer. The patch expanding layer transforms the feature maps of adjacent dimensions into higher
resolution feature maps (2× up-sampling) and reduces the feature dimensions by half. In order to
prevent the failure of convergence in a deep Swin Transformer block, the bottleneck is constructed
using only two SW-MSA modules. This construction ensures that the feature size and resolution
stay unchanged. Like UNet, skip connections are employed to integrate multiscale information from
the encoder with up-sampled features. Shallow and deep features are linked together to reduce the



loss of spatial information caused by downsampling. Ultimately, the feature map's resolution is
increased four times by utilizing the final patch expanding layer, resulting in a restoration to the
original input resolution. Afterwards, a linear projection layer is used to generate pixelwise
predictions using the upsampled features.

(2) “Swin Transformer block” (Line 260-268): The fundamental element of SwinUnet is the Swin
Transformer block (Figure 4). The construction of the Swin Transformer block is based on the
concept of the shift window. The Swin Transformer block is composed of two normalization layers
(LNs), a multihead self-attention module, residual connections, and a multilayer perceptron (MLP)
layer with a GELU nonlinear activation function (Xiao et al. 2020). The use of the window-based
multihead self-attention module (W-MSA) and the shift window-based multihead self-attention
module (SW-MSA) is observed in two consecutive transformer blocks (Figure 4). The formula for
the block can be represented as follows.

(3) “(S)W-MSA module” (Line 269-275): The W-MSA module initially partitions the feature map
into several windows based on the specified M × M dimensions. It subsequently computes the
self-attention within each window independently. Nevertheless, the W-MSA module lacks the
capability to transfer information between windows. Therefore, it becomes imperative to implement
SW-MSA, which relies on shifted windows, in order to address this limitation. The SW-MSA
module, together with the W-MSA module in the Swin Transformer block, forms a two-tier
structure through which information can be passed through neighboring windows.

(4) “configurations of SwinUnet” (Line 281-295): The configuration of SwinUnet is shown in
Table 1. The downsampling (upsampling) rate refers to the frequency at which upsampling and
downsampling are carried out by the patch merging layer and patch expanding layer. After
resampling, the output feature maps for each stage have heights and widths of [560 × 560,280 ×
280,140 × 140,70 × 70] accordingly. The window size for performing MSA and SW-MSA
operations is set to 7×7. As a result, each stage contains a total of [6400, 1600, 400, 100] windows.
The hidden size refers to the length of the vector associated with each token, which represents the
feature dimension of the feature map. Upon traversing the linear embedding layer, the feature
dimension of the feature map in Unet's stage 1 is augmented to 96, and thereafter doubles in size in
the following stages. The depth refers to the quantity of W-MSA and SW-MSA modules present in
the Swin Transformer block. Specifically, in the first three stages, the Swin Transformer block is
composed of a double layer structure consisting of one W-MSA module and one SW-MSA module.
In stage 4, often known as the bottleneck, there is only one SW-MSA module. The MLP size refers
to the number of nodes in the first fully-connected layer of the MLP module, which is four times the
hidden size. The "heads" parameter represents the number of nodes in both the W-MSA and
SW-MSA in the Swin Transformer block.

Table 1 Detailed architecture configurations of SwinUnet
Downsampling/Ups

ampling Rate
(Output Feature
Map Size)

Window
size

Window
Numbers

Hidden
Size

Depth MLP
Size

Heads

Stage 1 4 7×7 6400 96 2 384 3



(560×560)
Stage 2 8

(280×280)
7×7 1600 192 2 768 6

Stage 3 16
(140×140)

7×7 400 384 2 1536 12

Stage 4 32
(70×70)

7×7 100 768 1 3072 24

4. Results: The results convincingly demonstrate the superiority of the OI-SwinUnet method
over traditional reconstruction methods like DINEOF, OI, and Unet through
comprehensive statistical evaluation. While the statistical metrics employed are
appropriate, incorporating a discussion on the practical significance of these statistical
improvements in real-world applications would add value. Moreover, presenting case
studies or specific instances where the reconstructed data reveal new insights about
marine ecological processes could illustrate the method's impact more vividly.

Response: Thanks for this useful comment. We compared the effectiveness of OI-SwinUnet
and the other three methods in filling in the gaps in the time series using two typical pixels
(highly turbid water and clean water) in the revised manuscript. The results demonstrated that
OI-SwinUnet could reasonably reproduce the inter-annual and seasonal variation patterns of
chlorophyll in both the highly turbid water and the clean water. (Line: 362-375)

“Two representative pixels were sampled from the Pearl River Estuary in the northern part of
the South China Sea and the central part of the South China Sea. These pixels were chosen to
represent highly turbid water and clean water, respectively (red triangles in Figure 10). The
purpose was to compare the performance of OI-SwinUnet and three other methods in terms of
filling gaps in time series data. The results indicate that our proposed OI-SwinUnet
demonstrates strong resilience to localized extremes, typically outliers. Within the clean water
region, the OI-SwinUnet, DINEOF, and OI methods are capable of analyzing the dynamic
patterns of the chlorophyll time series. However, the Unet method performs slightly less
accurately, as it tends to underestimate chlorophyll values in most time intervals. This
discrepancy is particularly evident in time intervals where satellite observations are
consistently absent. In areas with high levels of turbid water, the OI-SwinUnet method
performs similarly to the DINEOF method during periods of consecutive high chlorophyll
levels. Figure 9 demonstrates that DINEOF is more successful in reconstructing high
chlorophyll levels. This suggests that the method can effectively fill in the gaps in the time
series data, allowing for reasonable patterns of interannual variation in chlorophyll-a to be
observed.”



Figure 9: Gap-filled time series of two represented pixels (a) clear water, and (b) high turbid water using

DINEOF , OI, Unet and OI-SwinUnet methods

5. Validation and metrics: The use of various statistical metrics (RMSD, R2, bias) for model
evaluation is appropriate. Additionally, assessing the model's performance across
different missing data patterns (MCAR, MAR, MNAR) adds to the robustness of the
findings. Future work could include comparisons with in-situ measurements if available,
to further validate the reconstructed chlorophyll-a concentrations against ground truth
data, and discussing how these advancements can influence our understanding of
phytoplankton dynamics in response to climate change.

Response: Thanks for this comment. The purpose of designing experiments with various
missing data patterns and rates is to assess how the performance of the reconstruction model is
affected by growing data sparsity and the complexity of the missing scenario. The findings
indicate that OI-SwinUnet is capable of learning the characteristics at various spatial scales,
even when the satellite observation data is intentionally concealed. This is achieved by utilizing
the knowledge from both before and after time, resulting in the precise reconstruction of the
areas that were previously missing. In situ measurements are crucial for validating models by
providing accurate data. Regrettably, we did not gather any in situ measurements of chlorophyll
from 2013 to 2017. The reviewer's comments serve as a valuable reference for our future
endeavors. In our upcoming work, we will diligently gather numerous field observations to
further assess and authenticate the OI-SwinUnet model.

6. Discussion on limitations and future work: While the manuscript highlights the
advantages of the OI-SwinUnet method, a more detailed discussion on its limitations and
potentials for improvement would be valuable. For instance, how does the method



perform in extremely turbid waters or under conditions of very high cloud cover? Also,
exploring the potential of incorporating additional satellite sensors or data sources could
be mentioned as a direction for future research.

Response: Thanks for this useful comment. Through the selection of various pixels and the
analysis of the time series of reconstruction results from different methods, we have discovered
that while OI-SwinUnet generally performs well, its reconstruction performance is slightly
inferior to that of DINEOF when dealing with highly turbid and chlorophyll-rich waters. This
is an important aspect to consider in our future work. Furthermore, we have contemplated
integrating additional sensors or data sources, such as the chlorophyll products obtained from
Sentinel-3A/B OLCI. The OI module may integrate data from several sensors to create a
combined product from multiple satellites. This merged product is then passed to the SwinUnet
module for reconstruction. Undoubtedly, there are still pending tasks that need to be completed
prior to integrating additional satellite products, including doing study on the coherence of
those products.

7. Implication: The manuscript could benefit from a more detailed discussion on how the
reconstructed dataset can be used to advance marine science research, beyond the
examples provided. Potential applications in climate change studies, marine resource
management, and oceanic carbon cycle research could be explored.

Response: Thanks for this comment. We have included a potential application to the conclusion
section such as the reconstruction of datasets for the purpose of advancing carbon cycle
research in the final portion of the study.

Line 679-689: “In the future, we can employ reconstructed data to further enhance marine
scientific study. The real-time, large-scale, long time-series, and stable observation data
obtained from satellite remote sensing are highly advantageous for monitoring and assessing
ocean carbon fluxes and stocks, as well as studying the ocean carbon cycle. Additionally, these
data serve as a motivating factor for advancing the application of remote sensing of ocean color
in the study of the ocean carbon cycle. Currently, there are significant uncertainties and
challenges in estimating the ocean carbon sink based on actual measurements. The
OI-SwinUnet deep learning reconstruction model and high-precision remote sensing
reconstruction products are crucial in studying the spatial and temporal distribution pattern of
carbon parameters in response to global changes. They also help reduce uncertainties in
estimating carbon fluxes and stocks.”

We appreciate for Editors/Reviewers’ warm work earnestly, and hope that the correction will meet
with approval.

Once again, thank you very much for your comments and suggestions.

Yours sincerely,

Shilin Tang
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