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Abstract. An improved fine-scale soil moisture (SM) dataset at 1-km grid spacing, covering much of the eastern continental 

U.S., was generated by assimilating 9-km SMAP SM data into the v4.0.1 Noah-MP land surface model. The assimilation, 

conducted using the Ensemble Kalman Filter algorithm within NASA’s Land Information System, involved 12 ensemble 

members. The SM analysis for 2016 was fully validated against in-situ observations from four different networks and compared 10 

with four other existing datasets. Results indicate that this SM analysis surpasses other datasets in top-layer SM distribution, 

including a machine learning-based product, despite all SM estimates being less heterogeneous than observed. The analysis of 

anomalous errors suggests that large similarity in intrinsic errors is likely due to overlapping data sources among the selected 

SM datasets. By assessing the product using the ARM SGP data, we show that soil temperature and surface heat fluxes are 

concurrently simulated in good accuracy. A specific investigation into the 2016 southeastern U.S. drought response further 15 

indicates drier conditions and higher evapotranspiration estimates compared to GLEAMv4.1. Notably, large errors are 

associated with grids having clay soil textures, highlighting the need for refined model treatments for specific soil types to 

further improve SM estimates. 

1 Introduction 

Soil moisture (SM) is a critical component in the complex interactions between the land surface and the atmosphere, 20 

influencing a range of processes that are vital for weather and climate dynamics. More specifically, it plays a significant role 

in regulating surface energy fluxes by controlling the partitioning of incoming solar radiation into sensible and latent heat 

fluxes, thereby impacting atmospheric stability, boundary layer dynamics, and the initiation of convective systems (Dirmeyer 

et al. 2016; Ek and Holtslag 2004; Betts 2002; Taylor et al. 2011). 

In addition to groundwater, precipitation falling onto ground surface contributes to the SM availability. Conversely, 25 

variations in SM heterogeneity can also influence the spatial and temporal distribution of precipitation through its effects on 

evapotranspiration rates and the atmospheric moisture and energy budgets (Katul et al. 2012; Hsu and Dirmeyer 2023). Hence, 

the feedback loop between SM and precipitation is crucial for understanding and predicting regional hydrological cycles, 

droughts, and flood events (Koster et al. 2004; Dirmeyer et al. 2016). Furthermore, SM conditions can impact weather extremes 
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such as heatwaves by modulating the surface energy balance and the efficiency of heat exchange between the land surface and 30 

the atmosphere (Seneviratne et al. 2010). These interactions occur across various spatial and temporal scales, underscoring the 

need for accurately capturing the spatial and temporal variabilities of SM distribution.  

A variety of sensors such as TDR (Time Domain Reflectometry), capacitance probes, and neutron probes have been used 

in in-situ (ground-based) SM measurements. These measurements provide direct assessments of SM content at specific 

locations with high temporal resolution and accuracy in the soil column and are most useful for validating remote sensing data 35 

and calibrating hydrological models (Robock et al. 2000; Rasheed et al. 2022). However, their relatively sparse distribution 

hinders their applicability in providing realistic local-to-regional SM variability in broader regions despite efforts made in 

expanding soil moisture observation networks (Diamond et al. 2013; Schaefer et al. 2007; Hawdon et al. 2014; Dorigo et al. 

2021; McPherson et al. 2007; Wang et al. 2023). Conversely, remote sensing satellites such as the Soil Moisture Active Passive 

(SMAP) mission, Advanced Microwave Scanning Radiometer-EOS (AMSR-E), Soil Moisture and Ocean Salinity (SMOS), 40 

and Sentinel-1 (Entekhabi et al. 2010; Njoku et al. 2003; Kerr et al. 2001; Torres et al. 2012), provide nearly global coverage 

of soil moisture estimates measured by passive and active microwave sensors. Passive microwave sensors measure soil 

moisture based on microwave emissions from the Earth's surface, while active radar sensors use backscatter measurements to 

infer soil moisture levels (e.g., Kerr et al. 2001; Wagner et al. 2013). These satellite-based retrievals offer spatially extensive 

coverage and reasonable revisit times (1 - 3 days), contributing to large-scale hydrological and climate studies. Nevertheless, 45 

known uncertainties of satellite SM retrievals such as relatively coarse resolution (O (10 km)), limited accuracy (affected by 

vegetation, surface roughness, and temperature), shallow depth (only in depth of 0-5 cm is measured), and environmental 

interference by rain, cloud, and snow cover have posed challenges on their contributions to represent local-to-regional scale 

SM distribution (e.g., Colliander et al. 2017). 

Land Surface Models (LSMs) can simulate soil moisture conditions for any region by representing the interactions among 50 

the atmosphere, vegetation, and the ground (Niu et al. 2011; Lawrence et al. 2019; Liang et al. 1994). The key processes such 

as precipitation, infiltration, lateral flow, evaporation, and plant transpiration, and groundwater table variations are 

parameterized in the LSMs. When precipitation occurs, water can infiltrate into the soil, accumulate, or run off, depending on 

soil characteristics and the rate of rainfall. Evaporation from the soil and transpiration from plants (collectively called 

evapotranspiration) reduce soil moisture, while infiltration and percolation move water downward through the soil profile. 55 

LSMs typically predict these processes to provide estimates of soil moisture at different depths over time. Various depths of 

soil layers can be configured to model the water movement between these layers in the soil column. A retrospective LSM 

simulation forced by observation-constrained surface atmospheric conditions (rainfall, temperature, wind, humidity, and 

radiation, etc.), land and soil properties (leaf area index (LAI), albedo, land cover, soil texture, and permeability, etc.) is 

commonly used to reproduce the soil conditions. Despite the advantages, state-of-the-art LSMs still contain uncertain, 60 

incomplete, and/or unresolved physical processes that may introduce biases into the simulated land surface properties. 
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As a way to mitigate such modelling issues, data assimilation (DA) techniques such as ensemble Kalman filter (EnKF), 

variational methods (e.g., 3DVar and 4DVar), and Bayesian approaches have been used to merge multiple sources of 

observational data (in-situ measurements and satellite retrievals) with LSM simulations to optimize soil moisture simulations 

through improving initial conditions and parameter estimates, enhancing the accuracy of soil moisture predictions and 65 

hydrological forecasts (e.g., Reichle et al. 2002; Crow and Wood 2003; Kumar et al. 2008; Chao et al. 2022; Martens et al. 

2017). In any DA approach, the assimilation scheme must be coupled with an LSM. As such, the generated analysis consists 

of model states which are always physically balanced and can be directly used as the initial conditions of LSM.  Some 

additional advantages of utilizing DA in generating high-resolution SM data include their flexibility in data resolution (output 

frequency, horizontal grid spacing, and vertical layers) and domain coverage, the possibility to incorporate any improvements 70 

in the coupled models and/or new observables, and the availability of the full suite of land surface properties relevant for 

studies of atmospheric boundary layer and hydraulic processes.  

Earlier studies have explored the impact of SMAP soil moisture data assimilation soil moisture estimates, hydrological 

modelling, and drought monitoring across different regions of the globe. For example, studies have shown promising results 

by assimilating SMAP soil moisture data into the Noah-MP land surface model (e.g., Rouf et al. 2021; Ahmad et al. 2022). 75 

Research by Rouf et al. (2021) discussed how the spatial resolution of SMAP SM data (36-km versus 9-km) and the grid 

spacing of analysis (12.5 and 0.5 km) would impact SM estimation over Oklahoma using the framework of NASA's Land 

Information System (LIS). They showed the accuracy in SM analysis is enhanced when assimilating the 9-km SMAP data 

with 0.5 km LSM grid spacing. Likewise, Yin and Zhan (2020) showed positive influence of soil moisture data assimilation 

coupled with Noah-MP simulations in the continental U.S. (CONUS) and underscores the needs of fine-scale soil moisture 80 

data in achieving optimal result. Ahmad et al. (2022) further demonstrated the positive impact of SMAP DA on soil moisture 

estimate in South Asia along with its sensitivity to SMAP data bias correction settings. In Chakraborty et al. (2024), the 

improved soil moisture distribution over India was carried out by incorporating SMAP soil moisture into the Indian Land Data 

Assimilation System (ILDAS). Building upon these studies, we aim to improve local-to-regional soil moisture distributions 

over much of the east CONUS region by assimilating SMAP Level 3 (L3) 9-km soil moisture product into the Noah-MP LSM 85 

using a grid spacing of 1 km with optimized precipitation forcing. The goal of this study is to demonstrate the creation of a 

year-long soil moisture data set for the eastern U.S., which allows us to look at the importance of DA for improving soil 

moisture estimates on both seasonal and regional bases. We assess the performance of our data set over the full study domain, 

but also explore key regions in additional detail. Specifically, we evaluate the performance of our data set in a known “hotspot” 

of land-atmosphere coupling using the dense in-situ observations collected by the Oklahoma Mesonet and DOE’s Atmospheric 90 

Radiation Measurement (ARM) facility in Southern Great Plains (SGP), which were also used in the study of Rouf et al. 

(2021). Moreover, we examine our datasets characterization of the extreme drought conditions affecting the southeast U.S. 

over the fall and winter of 2016. Comparisons are made to alternative SM data sets, including datasets generated through 

machine learning approaches, to better understand the value of DA incorporated with an LSM. 
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The remaining parts of this manuscript are organized as follows: the analysis domain and period are described in Section 95 

2. The methodologies and datasets employed in this study are detailed in Section 3. The results of the impact of SM data 

assimilation and the evaluations of the generated SM estimate along with the other existing SM datasets are discussed in 

Section 4. Lastly, the summary and discussion are provided in Section 5. 

2 Analysis domain and period 

Our study domain encompasses a wide swath of the central and eastern CONUS (Figure 1). The time period for the 100 

analysis covers the entire year of 2016 from January 1 through December 31, 2016. This analysis period was selected in order 

to complement land-atmosphere coupled simulations associated with the 2016 Holistic Interactions of Shallow Clouds, 

Aerosols, and Land-Ecosystems (HI-SCALE) field campaign. The locations of in-situ measurements from the networks of 

United Sates Climate Reference Network (USCRN), Soil Climate Analysis Network (SCAN), Oklahoma Mesonet (OKMet), 

and ARM SGP are overlaid on the map in Figure 1a. The soil texture and land cover maps are given in Figure 1b and 1c, 105 

respectively. Table 1 summarizes the grid numbers and their percentages over the study domain, for each classified type of 

soil texture and land cover. The top three soil types (besides water) are silt loam (24.02%), loam (18.88%), and sandy loam 

(15.7%), whereas grassland, cropland, cropland/natural vegetation mosaics are top three land cover types with percentages of 

22.2, 19.64, and 10.2%. 
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 110 
Figure 1 Maps illustrating the study domain over eastern CONUS. The yellow, magenta, and cyan triangles denote the stations 

of SCAN, USCRN, OKMet observational networks, respectively. The white circles mark the locations of selected ARM SGP 

sites. The domain soil texture was categorized into 14 soil types (c) according to the NCEP/STATSGO+FAO classification. 

The domain land cover comprised 18 main types based on the MODIS-derived IGBP classification. The subdomain AL is 

represented by the orange box (dashed line) in (a).  115 

 

Table 1 Summary of grid number and percentage of total grids for the soil texture/land cover types. 

Soil texture Land cover 

Class # of grids Percentage of 

total grids [%] 

Class # of grids Percentage of total 

grids [%] 

Sand 370,227 7.12 Evergreen needleleaf 

forests 

120,816 2.32 
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Loamy sand 140,072 2.69 Evergreen broadleaf 

forests 

66,193 1.27 

Sandy loam 816,849 15.70 Deciduous needleleaf 

forests 

344 0.007 

Silt loam 1249,730 24.02 Deciduous broadleaf 

forests 

373,716 7.18 

Loam 982,206 18.88 Mixed forests 332,114 6.38 

Sandy clay loam 41,522 0.80 Closed shrublands 23,319 0.45 

Silty clay loam 240,916 4.63 Open shrubs 514,667 9.89 

Clay loam 187,450 3.60 Woody savannahs 100,390 1.93 

Silty clay 63,818 1.23 Savannahs 27,746 0.53 

Clay 205,676 3.95 Grasslands 1154,805 22.20 

Organic 

materials 

39,598 0.76 Permanent wetlands 9,591 0.18 

Water 842,008 16.19 Cropland 1021,681 19.64 

Other 22,069 0.42 Urban 64,997 1.25 

   Cropland/Natural 

vegetation mosaics 

521,029 10.02 

   Snow and ice 33 0.0006 

   Barren desert 28692 0.55 

   Water bodies 842,008 16.19 

3 Methodology and datasets 

3.1 NASA Land Information System and Noah-MP land surface model 

The NASA Land Information System (LIS) is an advanced modelling and data assimilation framework designed to better 120 

simulate land surface processes and improve our understanding of terrestrial hydrology, biogeochemistry, and climate 

interactions (Kumar et al. 2006; Peters-Lidard et al. 2007). LIS incorporates multiple hydrological and LSMs and data 

assimilation techniques to optimize the representation of land surface processes. This model-observation integration enhances 

the accuracy and reliability of simulations by leveraging the strengths of different models and observational datasets. It is 

functionable in assimilating satellite-derived observations of soil moisture, vegetation dynamics, and other land surface 125 

variables to improve the initialization and calibration of model simulations. Its versatility and scalability make it suitable for 
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both research and operational uses. Given the above, LIS is primarily used in this study to generate realistic representation in 

soil states through assimilation of SMAP soil moisture retrievals into Noah-MP land surface model. 

The version 4.0.1 Noah-MP LSM (Ek et al. 2003; Niu et al. 2011; Yang et al. 2011) was run within LIS to simulate the 

relevant land surface processes across the study domain. The Noah-MP model was run with a 0.01° by 0.01° horizontal grid 130 

spacing and using a 15-min time step. The specific model configurations utilized are detailed in Table 2. Each soil column 

within the study region is represented by four layers with depths of 10, 30, 60, and 100 cm below the ground surface. The 

surface soil moisture updates are transmitted to deeper layers according to model formulations in water diffusivity and 

hydraulic conductivity. More specifically, while moisture fluxes between successive layers controls how water moves within 

each soil column, excess water above saturation in any layer will be transferred to the next unsaturated layer downward. The 135 

Noah-MP LSM can be driven by many sources of meteorological forcing data as desired. Note that external irrigation and 

groundwater extraction were not explicitly simulated in Noah-MP and these processes might be important for certain locations 

(Yang et al. 2020, 2021). 

 

Table 2 Selected parameters, parameterizations, and forcing data used in the configured Noah-MP LSM. 140 

LSM parameter/parameterization/forcing data 

Land cover MODIS (IGBP-NCEP) (Friedl et al. 2002) 

Elevation, slope, and aspect SRTM30-v2.0 (Farr et al. 2007)  

Greenness 
National Center for Environmental Prediction (Gutman and 

Ignatov 1998) 

Vegetation Dynamic vegetation option 

Maximum albedo 
National Center for Environmental Prediction (Robinson and 

Kukla 1985) 

Canopy stomatal resistance Ball-Berry method (Ball et al. 1987) 

Snow surface albedo Canadian land surface scheme (Verseghy 1991)  

Runoff and groundwater Simple groundwater model, SIMGM (Niu et al. 2007) 

Surface-layer drag coefficient General Monin-Obukov similarity theory (Brutsaert 1982) 

Snow and soil temperature Semi-implicit option 

Partitioning of rain and snowfall Jordan91(Jordan 1991) 

Lower boundary of soil temperature Noah native option 

Supercooled liquid water and frozen soil 

permeability 
NY06 (Niu et al. 2007) 

Surface meteorological forcing NLDAS-2 and Stage IV QPE (precipitation) 
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3.2 Datasets 

The datasets employed in this study include the forcing data that drive the Noah-MP LSM (section 3.2.1 - 3.2.3), multiple 

in-situ observations (section 3.2.4) used as the benchmarks for intercomparison among our SM estimate and the other existing 

SM datasets (section 3.2.5 - 3.2.7). 

3.2.1 Enhanced SMAP Level 3 soil moisture data 145 

The Soil Moisture Active-Passive (SMAP) uses passive (radiometer) L-band microwave remote sensing to estimate land 

surface soil moisture and freeze/thaw state (O'Neill et al., 2014). The L-band radiometry offers all-weather, diurnal sensing of 

the surface dielectric properties which are a function of the near-surface soil moisture. The SMAP has a 2- to 3- day revisit 

frequency and two overpasses (morning and afternoon) at local time 6 a.m. and 6 p.m., respectively. One of the SMAP 

products, the enhanced SMAP Level 3 soil moisture product (SPL3SMP_E; O’Neill et al., 2020), is primarily used for 150 

assimilation in this study. It consists of daily estimates of global soil moisture within the top soil layer 	(~	5 cm depth) on a 

cylindrical 9-km Equal-Area Scalable Earth Grid (https://nsidc.org/data/spl3smp_e/versions/6), spanning from 31 March 2015 

to present. 

3.2.2 North America Land Data Assimilation System Phase 2 (NLDAS-2) 

The NLDAS-2 (Xia et al. 2012) aims to provide high-resolution, near-real-time and retrospective datasets that integrate 155 

land surface model outputs with observations to monitor and simulate land surface conditions across North America. It is 

available at hourly intervals and on a 12.5-km spatial grid from January 1979 to present. A wide range of land surface variables 

such as soil moisture, soil temperature, snow cover, evapotranspiration, and runoff are provided. Meteorological forcing 

variables such as precipitation, temperature, wind speed, and solar radiation are also included. The NLDAS-2 is used in this 

study as the meteorological forcing data to drive the Noah-MP LSM. 160 

3.2.3 NCEP Stage IV Quantitative Precipitation Estimate  

The NCEP Stage IV Quantitative Precipitation Estimate (QPE) (Lin and Mitchell (2005)) is a high-resolution, quality-

controlled dataset produced by the National Centers for Environmental Prediction (NCEP). It integrates precipitation data from 

multiple sources, including NEXRAD radar, rain gauges, and satellite observations, to provide accurate and detailed 

precipitation estimates across the contiguous United States. With a grid spacing of 4 km at hourly intervals, Stage IV QPE is 165 

widely used in meteorology, hydrology, and climate research for tasks such as weather forecasting, flood modelling, and 

studying precipitation trends. We replace the precipitation data in the NLDAS-2 by the Stage IV QPE data as it provides a 

higher-resolution and more realistic precipitation forcing over the CONUS region. 
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3.2.4 In-situ measurements 

In-situ soil moisture observations used in this study were obtained from the 1) U.S. Climate Reference Network (USCRN); 170 

2) Soil Climate Analysis Network (SCAN); 3) Oklahoma Mesonet (OKMet, McPherson et al. 2007); 4) ARM SGP (Sisterson 

et al. 2016). The USCRN and SCAN data are acquired from the International Soil Moisture Network (Dorigo et al. 2021). The 

four networks are selected as the benchmarks of our SM analysis due to either their relatively wide spatial coverages or 

preferred site locations. Besides atmospheric and environmental parameters such as air temperature, humidity, and wind 

conditions, both SCAN and USCRN stations are equipped with sensors that measure critical soil parameters, including soil 175 

moisture and temperature at the depths of 5, 10, 20, 50, and 100 cm. The USCRN and SCAN are superior among available 

soil moisture networks as many of their stations (112 and 91 sites from USCRN and SCAN, respectively) are uniformly 

distributed over the study domain (Figure 1). They are used to evaluate our SM analysis along with other existing SM datasets 

(Table 3). The OKMet and ARM SGP observations are adopted as their site locations are densely distributed (average distance 

between any two stations is shorter than 30 km) over a portion of the Southern Great Plains (SGP) region which is one of the 180 

hotspots with strong land-atmosphere coupling (e.g., Fast et al. 2018; Sakaguchi et al. 2022). In addition to SM, the soil 

temperature observations and the latent and sensible heat fluxes measured by the Soil Temperature and Moisture Profiles 

(STAMP) and Eddy Correlation Flux Measurement System (ECOR) deployed by the ARM SGP facility, are also used to 

concurrently assess the simulated soil properties and surface heat fluxes. Note soil moisture (temperature) measured at a depth 

of 5 cm below ground surface was primarily used to compare with the model-estimated surface soil moisture (soil layer depth = 185 

0 to 10 cm).  

3.2.5 ERA5-Land reanalysis 

The ERA5-Land (Muñoz-Sabater et al. 2021) is a global reanalysis dataset that provides essential land variables with a 

grid spacing of 0.1 degree and is valid at hourly frequency, spanning from January 1950 to present. It is continuously produced 

by rerunning the land component (Tiled ECMWF Scheme for Surface Exchanges over Land incorporating land surface 190 

hydrology (H-TESSEL)) of the ECMWF ERA5 climate reanalysis that sequentially assimilates available meteorological 

observations (Hersbach et al. 2020). Despite model uncertainties due in part to imperfect atmospheric forcing, unresolved 

physical processes, and lack of observational constraint, the spatiotemporal coverages of ERA5-Land dataset have been 

advantageous in many land surface applications including flood or drought monitoring and forecasting. It is thus employed in 

this study as one of the SM reference data, providing more insights though the comparison. 195 

3.2.6 Global Land Surface Satellite soil moisture (GLASS SM)  

The global, daily 1-km GLASS soil moisture product (GLASS SM; Zhang et al. 2023) was derived using an ensemble 

learning model (eXtreme Gradient Boosting – XGBoost) that integrates multiple datasets as the machine learning (ML) 
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model’s inputs, including the remotely sensed Global Land Surface Satellite (GLASS) products (Liang et al. 2021), ERA5-

Land reanalysis products (Muñoz-Sabater et al. 2021), and static auxiliary datasets (e.g., Multi-Error-Removed Improved-200 

Terrain (MERIT) and Global gridded soil information (SoilGrids; Poggio et al. 2021). The ground-based soil moisture archived 

by the International Soil Moisture Network (ISMN) and the 0.25 deg grid spacing combined soil moisture data of European 

Space Agency’s Climate Change Initiative (ESA CCI; Dorigo et al. (2017)) are collectively used as the target data of training 

in ML. The validations carried out for the GLASS SM product in Zhang et al. (2023) demonstrated its capability in capturing 

temporal dynamics of measured soil moisture. Hence, given its novelty in the methodology and high spatial resolution (1km), 205 

the GLASS SM data is used as one of the benchmarks in this study.  

3.2.7 Global Land Evaporation Amsterdam Model (GLEAM) 

The GLEAM (Global Land Evaporation Amsterdam Model; Miralles et al., 2011) is a state-of-the-art dataset that provides 

global estimates of soil moisture, terrestrial evaporation (or evapotranspiration), and related hydrological components. 

GLEAM soil moisture data is derived from satellite observations and model simulations. It integrates a variety of satellite 210 

observations and meteorological data, such as soil moisture from microwave remote sensing, vegetation indices, and 

meteorological data of precipitation, air temperature, and radiation. The version 4.1 of GLEAM (Miralles et al., in review) is 

used in our analysis, which is available at 0.1-degree resolution between the period of 1980 to 2023.  

 

Table 3 Soil moisture estimates analyzed in this study. 215 

 

Soil moisture 

product 

Grid 

spacing 

Spatial 

coverage 

Temporal 

resolution 

Temporal 

coverage 
References 

SPL3SMP_E 9 km Global Daily 31 March 

2015 - present 

O'Neill et al. (2020) 

ERA5-Land 0.1° Global Hourly 1950 - present Muñoz-Sabater et al. (2021)  

GLASS SM 1 km Global Daily 2000 - 2020 Zhang et al. (2023) 

GLEAM v4.1 0.1° Global Daily 1980 - 2023 Miralles, D.G., Koppa, A., Baez-Villanueva, 

O.M., Tronquo, E., Bonte, O., Zhong, F., 

Beck, H.E., Hulsman, P., Haghdoost, S., 

Dorigo, W.A. GLEAM4: global evaporation 

and soil moisture datasets at 0.1° resolution 

from 1980 to near present, in review 

SMAPDA 1 km  East CONUS Hourly 2016 - 
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3.3 Data Assimilation (DA) simulation 

Since the SMAP SM data is only available from March 31, 2015 onwards, the DA simulation started on 00 UTC of April 1, 

2015 and ended on 00 UTC of January 1, 2017. The ensemble Kalman filter (EnKF) assimilation algorithm implemented in 

the LIS is utilized to assimilate the SMAP SM retrievals into the Noah-MP-modelled estimates. The EnKF’s sequential 220 

assimilation algorithms including two main steps (model propagation and data assimilation update) are coupled with model 

integration and executed recursively. Here, the Noah-MP is the nonlinear forward model to advance the propagation step and 

generate the prognostic state vector forward in time. The update step occurs whenever any observations are valid, and the 

update of prognostic state variable can be described by the equation below: 

𝑥%!"#$ 	= 𝑥%!"#% +𝐾 (𝑦!"# −	𝐻!"#,𝑥%!"#% -.. (1) 

Where 𝑥%!"#$  stands for analyzed (updated) state of variable 𝑥 at time step 𝑘 + 1. 𝑥%!"#%  represents the background state of 225 

variable 𝑥  integrated from time step k. The Kalman gain matrix 𝐾  and the innovation vector (𝑦!"# −	𝐻!"#,𝑥%!"#% -. are 

required when updating the background state. Here, the 𝑦!"# denotes the observations valid at time step 𝑘 + 1 and 𝐻!"# is the 

observation operator that applies conversion and interpolation in time and space to the model state variable in order to conform 

with the observable. 

The ensemble simulations are required at each propagation step to provide an estimate on the model spread (uncertainty). 230 

Here, the NASA Land Data Toolkit (LDT; Arsenault et al. (2018)) is used to initialize the ensemble simulations based on the 

open loop (OL) simulation restart output file at 2345 UTC on March 31, 2015. The open loop (OL) simulation starts from 

January 1, 2015 and refers to the integration of Noah-MP land surface model without any assimilation of external observations. 

The initial conditions of those ensemble members are obtained by perturbing atmospheric forcing variables as listed in Table 4. 

Perturbation type is grouped as either multiplicative (M), sampled from a log-normal distribution or additive (A) which is 235 

sampled from a normal distribution. 

 

Table 4 Description of parameters used in meteorological forcing perturbations for the ensemble simulations 

Perturbed meteorological forcing 
Perturbation 

type 

Standard 

deviation 

Cross-correlations with perturbations 

SW LW P Tair 

Shortwave radiation (SW) M 0.2 W m-2 1.0 -0.3 -0.5 0.3 

Longwave radiation (LW) A 30 W m-2 -0.3 1.0 0.5 0.6 

Precipitation (P) M 0.5 mm -0.5 0.5 1.0 -0.1 

Near-surface air temperature (Tair) A 0.5 K 0.3 -0.6 -0.1 1.0 

According to the sensitivity study regarding the impact of ensemble size in Ahmad et al. (2022), the ensemble spread 

(measured by standard deviation across all members) may be flattened when the number of replicates increases beyond 15. 240 
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We experimented with 12 and 24 ensemble members, and the result suggested minor difference is demonstrated in terms of 

soil moisture representation. Hence, the DA experiment we show in the study has an ensemble size of 12. The model and 

SMAP soil moisture retrieval error standard deviations are set as 0.04 m3 m−3. Due to the existence of relative systematic 

difference between SMAP and modelled SM, the cumulative distribution function (CDF) matching technique (Reichle and 

Koster 2004) is used for bias correction of the SMAP soil moisture retrievals using Noah-MP model data as the reference. 245 

Monthly CDFs of the SMAP soil moisture retrievals and the Noah-MP-simulated soil moisture were both generated using the 

NASA LDT and used to map the SMAP SM retrievals into the Noah-MP-modelled soil moisture space prior to assimilation. 

Since the SMAP SM data is representative of the top soil layer (∼5 cm deep from surface), the topmost soil layer soil moisture 

is employed as the model state variable during assimilation. The DA simulation as well as its SM data are abbreviated as 

“SMAPDA” hereafter. More detailed discussion regarding its performance in estimated SM is covered in the Section 4. 250 

3.4 Metrics for DA impact measuring and evaluation  

3.4.1. Soil moisture analysis increment 

To assess the impact of the SMAP SM data assimilation on the soil moisture estimates, we analyze the soil moisture 

analysis increments generated from the DA experiment (SMAPDA). The analysis increment refers to the difference between 

the analysis (optimized estimate of the state after DA) and the background forecast (model state before DA). It is a measure of 255 

how much the model state has been corrected (updated) by incorporating new observations, which is not only related to the 

deviation from model background to observation, but also modulated by observation and model errors. In the EnKF approach, 

the model error varies in time and space and is estimated using the ensemble spread (standard deviation of ensemble 

simulations). We use the cumulative number and temporal mean of soil moisture analysis increments to indicate the spatial 

distribution of observational constraint by the SMAP_L3_E data and highlight the areas that experience an overall wetting or 260 

drying due to the cycling of assimilation. Note the SMAP_L3_E data was processed into hourly subset and assimilated when 

it matches the model time step.   

3.4.2. Evaluation against in-situ measurements 

The soil moisture estimates generated through different approaches are evaluated against in-situ measurements using the 

metrics of correlation coefficient (CC), root-mean-square error (RMSE), and Bias defined as follows:  265 

CC = 	
∑ (𝑃! − 𝑃()(𝑀! −𝑀+)"
!#$

,∑ (𝑃! − 𝑃()%∑ (𝑀! −𝑀+)%"
!#$

"
!#$

 (2) 

RMSE =	7
1
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Bias =
1
𝑁9

(𝑃& −𝑀&)
(

&)#

 (4) 

Where 𝑃 represents the estimated top layer soil moisture, and 𝑀 stands for in-situ soil moisture measurement. 𝑁 is the total 

number of samples. The 𝐶𝐶, ranging from -1 to 1, is essentially computed as the Pearson correlation coefficient using the 

modeled and in situ soil moisture time series in each location. It mainly quantifies the skill in capturing soil moisture temporal 

variations across all time scales. While RMSE is used to measure the mean difference between the modeled and in-situ SM, 

Bias is computed as the overall deviation (including the signs) of the modeled SM from in-situ SM observations. In addition, 270 

the standard deviation (STD) is also calculated for each SM dataset to quantify the spatial heterogeneity in SM across the given 

sites at different locations: 

STD = 7
1
𝑁9

(𝑆& − �̅�)
(

&)#

 (5) 

Here, 𝑆& refers to individual SM data points and 𝑆̅ stands for mean over the entire dataset. 

4 Results 

4.1 Impact of SMAP soil moisture data assimilation 275 

To gauge how much observational information was effectively assimilated into the model, we examined the outputs of 

SM analysis increments at the top layer (5-cm depth). Figure 2 illustrates the maps of cumulative number (hours) of SM 

analysis increment over each of the three-month long periods. Overall, the SMAP SM data assimilation is more effective in 

spring, summer, and fall (Figures 2b, 2c, and 2d) as opposed to winter (Jan-Feb-Mar; Figures 2a). The relatively small number 

of analysis increment shown in the Jan-Feb-Mar period (Figure 2a) is likely due to the increased uncertainty in L-band 280 

microwave radiometer SM retrieval as a result of snow cover and frozen ground in the cold season (e.g., Liu et al. 2021). While 

analysis increments are distributed over the majority of domain, there are grids received zero update, especially in the eastern 

part of the domain. Nevertheless, despite generally less effective assimilation over this region, a few spots in Florida and 

partially Georgia and South Carolina show most frequent updates from DA across the entire domain.   

Figure 3 demonstrates the spatial distribution of mean SM analysis increments over the four seasons. The calculation of 285 

mean increment only includes samples with non-zero increments. While consistently positive increments are shown in Texas 

and northern Mexico throughout the year, seasonal variations are evident in portions of the Great Plains. For instance, in 

Kansas, more negative (positive) increments are seen for Jan-Feb-Mar/Apr-May-Jun (Figures 3a and 3b) and Jul-Aug-Sep/Oct-

Nov-Dec (Figures 3c and 3d), respectively. This suggests that compared to SMAP observations, the model most likely has a 
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consistent dry bias over part of Texas and the adjacent Mexican territory, and the biases are more variable temporally in other 290 

parts of the domain including the northern SGP.  

 
Figure 2 Maps of cumulative number of DA SM increments computed for the periods of (a) Jan-Feb-Mar, (b) Apr-May-Jun, 

(c) Jul-Aug-Sep, and (d) Oct-Nov-Dec in 2016. 

https://doi.org/10.5194/essd-2024-599
Preprint. Discussion started: 28 January 2025
c© Author(s) 2025. CC BY 4.0 License.



15 
 

 295 
Figure 3 Similar to Figure 2, but for mean SM increments. 

 

 

4.2 Comparison with existing surface SM datasets  

To assess the performance of our SM analysis (SMAPDA) along with other existing SM products, we conduct a 300 

comprehensive intercomparison among all derived datasets (Table 3) against a collection of in-situ measurements from four 

observational networks (USCRN, SCAN, OKMet, and ARM SGP). Note the assessments were conducted separately against 

the USCRN and the SCAN datasets despite both have well-distributed site locations over the study domain. This was carried 

out purposely in order to verify whether any inconsistency between their instruments and/or measurements may alternatively 

bias the validation results. The following sub-sections discuss the evaluation results referenced by using the observations from 305 

each network. 

4.2.1 Evaluation using USCRN soil moisture observations 

SM estimates from SMAPDA, GLASS SM, ERA5-Land, GLEAMv4.1, and SMAP AM (the morning overpass of 

SMAP_L3_E) are first evaluated using the in-situ observations from the USCRN (Figure 1). The metrics described in Section 

3.4.2 are computed accordingly. Since only SMAPDA and ERA5-Land consist of SM representations through the entire soil 310 

column, surface (top-layer) SM representations are primarily assessed here. To perform one-to-one comparisons with in-situ 

data, for each SM product, the daily SM timeseries data at the grid cells closest to the observational site locations are extracted. 
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The 2-D histograms as given in Figure 4 are illustrated to visualize the differences between the observation and the estimates 

and depict the contrasts among the datasets. All scatter points are grouped by 50 bins (2-D pixels) and the contours are 

smoothed using the gaussian filter for an improved visualization. The more samples concentrated along the diagonal line, the 315 

better estimate it would be considered.  

The results indicate SMAPDA has the highest correlation coefficient (~ 0.8) among all estimates, but its RMSE and Bias 

(0.085 and -0.005 m3 m-3) are slightly larger than what GLASS SM has (0.083 and 0.004 m3 m-3). Since the GLASS SM uses 

in-situ data including those from USCRN as the target when training the ML model (i.e., not independent), it is not surprising 

the GLASS SM magnitudes better align with the USCRN data in general. The SMAPDA estimate tends to produce slightly 320 

smaller (larger) SM when observed SM is less than (above) 0.3 m3m-3. However, it also shows GLASS SM has more off-

diagonal samples than SMAPDA, which degrades its overall performance. These two 1-km grid spacing products significantly 

outperform others. Constructed in 0.1-degree grid spacing, both ERA5-Land and GLEAMv4.1 may partially suffer from a 

relative coarser resolution. The SMAP AM has even worse skill in SM estimation given its highly scattered samples in the 2-

D histogram despite relatively low bias. As a result, their CCs lie in a range from ~0.49 to ~0.66, and RMSEs are all greater 325 

than 0.1 m3 m-3. Meanwhile, relatively larger biases are also computed (0.017 and -0.006 m3 m-3). 

From Figure 4, we also notice the cut-in (smallest) values of surface SM vary notably across the SM products. For example, 

the GLEAMv4.1 and SMAPDA have relative larger cut-in values of ~0.05 to 0.06 m3m-3. Whereas the ERA5-Land and SMAP 

AM are valid above approximately 0.02 m3 m-3. The GLASS SM has negligible limit on the smallest SM value. The differences 

in these cut-in SM values may be associated with either the formulations of land surface models or the observational 330 

sensitivities and could at least partially affect how good each estimate agrees with the observations. 
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Figure 4 2-D histograms summarizing the evaluation results using the observational data measured by the USCRN network. 

Panels (a) to (e) represent results of SMAPDA, ERA5-Land, GLASS SM, SMAP AM, and GLEAMv4.1. 50 bins are used to 335 

generate the 2D histograms. Correlation coefficient (CC), RMSE, and Bias are given in the upper left corner of each panel. 

Figure 5 illustrates the disaggregated RMSEs at each USCRN site. While SMAPDA and GLASS SM have much smaller 

RMSEs (~ 0.08 m3 m-3) compared to other estimates in general (> 0.1 m3 m-3), SMAPDA has slightly smaller standard deviation 

of RMSEs than GLASS SM (0.035 versus 0.038 m3 m-3). This implies that SMAPDA performs more consistently across all 

USCRN sites than GLASS SM. Conversely, GLEAMv4.1, ERA5-Land, and SMAP AM estimates have much larger errors 340 

especially for those sites in the southeast U.S., and coastal sites in Florida and Texas.  
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Figure 5 Site-wise RMSE computed using observations from the USCRN observations. Results for (a) SMAPDA, (b) ERA5-

Land, (c) GLASS SM, (d) SMAP AM, and (e) GLEAMv4.1 are illustrated. 

Likewise, the biases are displayed in Figure 6. In all SM datasets, wet bias is more evident in the southeastern U.S. sites 345 

than others, whereas dry bias is distinct across many sites in the northern and eastern Great Plains despite variability in their 

magnitudes. This consistent bias pattern implies that duplicate sources from observational data and/or treatments in the models 

may exist among those SM estimates. 
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Figure 6 Similar to Figure 5, but for illustrations of Bias. 350 

To further examine the potential errors in common among the five SM estimates, we calculated the RMSE anomaly for 

each dataset. The RMSE anomaly is obtained by subtracting annual mean RMSE (as shown in the panels of Figure 5) from 

the daily timeseries of each estimate. It extracts intrinsic variation in SM errors from the original SM timeseries and thus 

facilitate bias-free intercomparison. A diverse variation among the datasets is shown in Figure 7. Despite relatively large day-

to-day variability in SMAP AM timeseries than other datasets, the multiday variability in SMAP AM is similar to GLEAMv4.1. 355 

For example, both of them show much larger SM errors from January to April and relatively smaller errors present in late 

spring and summer. The errors climb when it transitions into late fall and early winter. There is also much similarity between 

the ERA5-Land and GLASS SM timeseries. Despite minor discrepancies, compared to other datasets, they both show relatively 

smaller variation over the one-year period with slightly larger errors in April, June, and July. These results are not surprising 

as SMAP data is one of the ingredients of GLEAMv4.1 (Miralles et al., in review), whereas GLASS SM adopts ERA5-Land 360 

soil moisture as the SM input data in their ML model (Zhang et al. 2023). Figure 7 also indicates that SMAPDA demonstrates 

a unique trend with the smallest errors before June and peak errors occur in early July and late November.       

https://doi.org/10.5194/essd-2024-599
Preprint. Discussion started: 28 January 2025
c© Author(s) 2025. CC BY 4.0 License.



20 
 

 
Figure 7 The SM RMSE anomaly timeseries computed against USCRN observations during 2016. Results of SMAP AM, 

ERA5-Land, SMAPDA, GLEAMv4.1, and GLASS SM are denoted by colored lines as indicated in the legend.   365 

4.2.2 Evaluation using SCAN soil moisture observations 

Along the same line as discussed in Section 4.2.1, we examined the SM 2-D histograms as referenced by the SCAN 

observations (Figure S1). Overall, similar conclusions can be drawn from the comparisons, implying that the evaluation is 

robust with very little dependence on target observations. For example, SMAPDA and GLASS SM remain the top two 

performers among the SM products. The CC, RMSE, and Bias for SMAPDA (GLASS SM) are 0.727 (0.687), 0.091 (0.095) 370 

m3 m-3, and -0.002 (0.005) m3 m-3. Again, despite better alignment with the diagonal in general, GLASS SM has more off-

diagonal samples than the SMAPDA. Those samples are relatively fewer but carry large errors, therefore the skill scores for 

GLASS SM turn out to be slightly worse than SMAPDA. This is likely due in part to that GLASS SM uses ERA5-Land as the 

initial guess of SM. Since ERA5-Land has relatively scattered samples in the 2-D histogram (Figure S1) and ML algorithm 

does not overfit by design (Zhang et al. 2023), some pixels may receive less correction than others. The estimate from 375 

GLEAMv4.1 suffers from generally smaller SM estimates (capped around ~ 0.38 m3 m-3), which potentially causes severe 

underestimation. SMAP AM has the least bias among all estimates. However, it also owns many samples far off the diagonal, 

which lower the overall skill scores. As a result, the CCs for ERA5-Land, GLEAMv4.1, and SMAP_AM do not exceed 0.6. 

Moreover, their RMSEs are all greater than 0.11 m3 m-3, which is about 20% more than what is computed for SMAPDA. 

 380 

The site-wise RMSEs given in Figure S2 confirm that SMAPDA is the top performer among the SM estimates in general 

as it shows consistency in producing small error across the SCAN sites. Specifically, the RMSEs of SMAPDA at all sites are 

below 0.15 m3 m-3, whereas that RMSE value is exceeded somewhere in all the other datasets. Excessive SM errors are found 

at several sites in the southeastern U.S. when evaluating the ERA5-Land and SMAP AM. Despite small contrast in RMSEs 

across the SCAN sites, the estimates from GLEAMv4.1 show extensively larger errors at more locations, leading to non-trivial 385 
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mean RMSE of 0.11 m3 m-3. Figure S3 shows that, regardless of the in-situ observations, the mean bias and bias pattern of 

each SM estimate resembles those given in Figure 6, suggesting that the analyzed biases should be robust and representative.  

Figure S4 shows that the SM RMSE anomaly of SMAPDA is very similar to what are obtained using GLASS SM and 

even SMAP AM (light gray) when assessed using the SCAN data. The ERA5-Land and GLEAMv4.1 exhibit trends partially 

different from the other three estimates. Specifically, ERA5-Land (GLEAMv4.1) has relatively smaller (larger) errors than the 390 

other three estimates from January to April and tends to produce rather larger (smaller) errors from October to December. 

Despite the results are not entirely identical with the comparison against USCRN (Figure 7), it remains clear that large 

similarity in RMSE anomalies is analyses. This is most likely due to duplicate of SM data source in different SM estimates 

even through different methods are employed. 

4.2.3 Regional assessment over the Southern Great Plains 395 

The Southern Great Plains (SGP), including Oklahoma, has been recognized as one of the hotspots for strong land-

atmosphere coupling (LAC; Santanello et al. (2009); Tao et al. (2019)). Earlier studies revealed the key physical processes 

modulate the LAC strength and how it influences the lifecycle of convective clouds using the model and observational datasets 

generated for this region. For instance, Fast et al. (2018) investigated the impact of SM spatial heterogeneity on simulated 

convective clouds near the ARM SGP site using a Large-Eddy Simulation model for a selected event during the 2016 HI-400 

SCALE field campaign. They found that the scales of SM gradient in the model can significantly affect the presence of 

simulated cloud populations even with identical atmospheric conditions. Sakaguchi et al. (2022) further analyzed the LES 

model data produced by Fast et al. (2019) using the spectrum analysis and demonstrated the SM spatial heterogeneity may 

strengthen secondary circulations and extend their spatial scales. Both studies concluded that a more realistic and high-

resolution representation of SM is desired to better understand LAC at local-to-regional scales (~1 km and greater). This 405 

motivates us to examine how SMAPDA SM estimate perform in this region in comparison to other datasets and the evaluations 

are carried out by leveraging highly concentrated observations measured by the OKMet (Figure 1). 

As shown in Figure 8, the performance of GLASS SM degrades when evaluated by the OKMet data. The 2D histogram 

shows most samples occur in the bins above the diagonal, meaning that GLASS SM generally underestimates SM (mean Bias: 

-0.039 m3 m-3). Whereas when comparing with data from USCRN and SCAN (Figures 4 and S1), GLASS SM has much better 410 

agreement with the observations. This is most likely due to the exclusion of OKMet data in their ML training process. Using 

a fully data-driven approach, the skill of ML-based SM estimate highly depends on the availability of in-situ observations. 

Conversely, SMAPDA exhibits the lowest annual mean RMSE (0.087 m3 m-3) in general in comparison to the other four 

datasets (0.105, 0.107, 0.103, and 0.112 m3 m-3 for ERA5-Land, GLASS SM, SMAP_AM, and GLEAMv4.1, respectively). 

The annual mean RMSE stays close to the RMSEs obtained when comparing against the USCRN and SCAN observations 415 
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(0.085 and 0.091 m3 m-3, respectively). This demonstrates that a physically constrained model may perform more consistent 

and better mitigate biased soil moisture estimates despite uncertain and unresolved physical processes. 

 
Figure 8 Similar to Figures 4 and S1, but for results computed against the OKMet observations. 

 420 

The relatively dense spatial distribution of the OKMet sites enables further investigation into the realism of estimated SM 

spatial heterogeneity. We computed daily standard deviation (STD) across all OKMet sites for each SM estimate as a way to 

quantify the spatial SM heterogeneity (meaning how spread the SM values are in space). Figure 9 shows that observed STD 

(magenta) is mostly larger than what is estimated by any of the derived SM approaches over the year despite notable day-to-

day variations. Even though SMAPDA and GLASS SM top the others in SM estimates based on the evaluations shown earlier, 425 

they both underestimate the SM spatial heterogeneity with an averaged STD ~ 0.6 m3 m-3, which is about 25% less than 

observed. GLEAMv4.1 and SMAP AM have even smaller STDs over the period. While ERA5-Land tends to have larger and 

more comparable variances as observed, it does not accurately distribute those SM values in space (Figure S5).  
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Figure 9 Daily timeseries of SM standard deviation across OKMet sites computed for each SM estimate.  430 

In addition to soil moisture, the ARM SGP facility (through instruments of STAMP and ECOR) has collected soil 

temperature, surface heat fluxes (latent and sensible) that are critical for land-atmosphere coupling research and directly 

modulate the strength of turbulent mixing in the atmospheric boundary layer. Here we primarily assess how SMAPDA 

represents SM, soil temperature (ST), latent heat flux (LHF), and sensible heat flux (SHF) using the concurrent measurements 

collected across six ARM SGP sites (E31, E33, E37, E38, E39, and E41) as denoted in Figure1a. Note SM and ST data from 435 

the STAMP are not valid in January. 

Results show that SMAPDA reproduces the observed monthly trends in SM and slightly overestimates SM (annual mean 

model-observation difference of + 0.04 m3 m-3) with larger positive biases in winter months (Figure 10a). The annual mean 

ST is warmer in SMAPDA than observed (difference: + 0.84 K) which can be attributed to relatively distinct warm bias in 

summer months (June - September) (Figure 10b). While LHF has an annual mean difference of -12.14 W m-2 when compared 440 

to the observations (Figure 10c), it is considered minor as annual LSM error can be ~ - 20 W m-2 based on earlier studies (ARM 

2014). Whereas in the case of SHF, SMAPDA tends to overestimate for most of the months (Figure 10d). This is likely due to 

consistent wet bias in SM throughout the year (Figure 10a), leading to increased energy partition in latent heat and alternatively 

reduces the component of sensible heat. Distinct positive biases even appear over summer months (June and July) despite 

higher ST is simulated (Figure 10b).  445 
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Figure 10 Timeseries of monthly mean of (a) SM, (b) ST, (c) LHF, and (d) SHF. Blue (red) line with circle represent results 

obtained from SMAPDA simulations (ARM SGP observations [STAMP/ECOR]) as computed across six ARM SGP sites 

(Figure 1a) 

4.2.4 Regional analysis associated with 2016 drought in the Southeastern U.S.  450 

The southeastern U.S. experienced one of the most significant drought events in the region during the fall of 2016 (peaked 

in October and November) based on historical record (Park Williams et al. 2017). It primarily affected parts of Georgia, 

Alabama, Tennessee, and the Carolinas. The drought reached extreme and exceptional levels, especially in northern Georgia 

and Alabama, where some areas experienced their driest conditions in history. A combination of factors, including below-

average rainfall during the spring and summer months and unusually high temperatures led to the increased evaporation and 455 

reduced soil moisture and thereby the drought conditions in fall. The drought severely impacted agriculture, leading to reduced 

crop yields, and contributed to widespread wildfires in the Appalachian region. The strained water resources also posed a great 

challenge on water availability for communities and industries. Hence, we aim to explore the representativeness of the 

SMAPDA SM estimate under the extreme drought conditions in the southeastern U.S.  

A subdomain “AL” which covers Alabama (as denoted in Figure 1a) was chosen for conducting the following analyses 460 

since the in-situ measurements from USCRN and SCAN are relatively denser in Alabama than in other areas in the southeastern 

U.S. (Figure 1a). In addition to the spatial variability of soil types (Figure 11a), the forest (Figure 11b) can further complicate 

how soil moisture is distributed through hydraulic processes such as evapotranspiration (ET), interception, infiltration, runoff, 

groundwater recharge, and hydraulic redistribution due to the presence of root systems and tree canopies. Here, we selectively 
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examine the relationship between SM and ET under the drought conditions by comparing the SMAPDA output with the 465 

GLEAMv4.1 data.  

 Both SMAPDA and GLEAMv4.1 exhibit a decreasing trend in SM over the summer months (JJA) as well as a steeper 

decline in fall (SON) over the AL subdomain (Figure 12a).  Except in winter months (DJF) where the SM estimate is slightly 

larger in SMAPDA than in GLEAMv4.1, soil conditions produced by SMAPDA are consistently drier than GLEAMv4.1. 

Both datasets suggest increases in ET before June with similar magnitudes (Figure 12c), mostly due to the seasonal increase 470 

in the solar insolation as well as the leaf area. However, in summer (JJA), SMAPDA produces much larger ET than 

GLEAMv4.1 does, which leads to much drier soil conditions concurrently. This then facilitates the intensification of drought 

conditions in the fall, leading to further reduction in water availability through the soil columns which significantly limits the 

amount of ET as opposed to GLEAMv4.1.  

Although in-situ ET observations are not available through the USCRN and SCAN measurements, the SM observations 475 

(Figure 12b) suggest while SMAPDA overall captures how SM evolves over time, GLEAMv4.1 gives much weaker responses 

to the SM drying process than SMAPDA. This ultimately produces overall much larger wet bias in SM than SMAPDA in the 

fall. Whether data from all grid cells in the AL subdomain (Figures 12a and 12c) or only the 17 grid cells nearest to the in-situ 

measurements (Figures 12b and 12d) are used, the trends in both SM and ET are very similar. This suggests that the evaluation 

illustrated in Figures 12b and 12d are representative for the subdomain. As we investigate in more detail through comparison 480 

at each individual site (Figure 13), we find most of the large errors in SMAPDA’s SM estimate can be attributed to sites’ soil 

properties (Figure 13), specifically where the clay soil types are present (site #3 and 5: Clay; site# 7: Silty clay). At those sites, 

the enhanced temporal variability in SM is distinct but underestimated by both SMAPDA and GLEAMv4.1 estimates. This 

suggests both approaches are unable to capture the drastic changes in SM, likely due in part to the nature of clay soil texture. 

Similar to what was reported in Colliander et al. (2022), further model refinements may be needed to improve treatments in 485 

resolving hydraulic processes for the variants of clay soil.       
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Figure 11 The zoomed-in maps of (a) soil and (b) land cover types over the AL subdomain as marked in Figure 1a. The 

locations of 17 valid observational sites from USCRN and SCAN are denoted by the white circles with numbers overlaid in 490 

correspondence of panels in Figure 13. 

 
Figure 12 Monthly mean and standard deviation (denoted by error bars) of SM (a, b) and ET (c, d) over the AL subdomain 

and among 17 in-situ observation locations as denoted in Figure 11. The mean rain rate represented by green bars in (a) and 

(b) are computed from SMAPDA correspondingly.  495 
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Figure 13 SM daily timeseries comparison at each in-situ observation location. The numbers given in the title above each 

panel correspond to the locations as marked by the numbered white circles in Figure 11. The site names and the corresponding 

observational networks (as indicated by either U (USCRN) or S (SCAN) in the parenthesis) are readable from the titles. Soil 

texture type is indicated by green texts in the top right corner of each panel. 500 

 

5. Summary and discussion 

To facilitate an improved representation of local-to-regional scale SM distribution, we generated a high-resolution SM 

dataset at a 1-km grid spacing by assimilating the 9-km SMAP SM data into the Noah-MP land surface model. The dataset has 

a spatial coverage over the east CONUS and has frequency of 6 hours for the entire 2016. The SMAP SM data assimilation is 505 

accomplished under the framework of NASA’s Land Information System using the EnKF algorithm. In the DA simulation, 12 

ensemble members were initialized by perturbing the selected variables in meteorological forcing data (NLDAS-2 and Stage 

IV). The subset of daily SMAP SM overpasses is assimilated hourly when applicable. The generated SM estimate is 

comprehensively assessed by using the in-situ SM observations collected in the networks of USCRN, SCAN, OKMet, and 
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ARM SGP and compared with the performance of other existing SM datasets such as the morning overpass of SMAP 510 

(SPL3SMP_E) data, ERA5-Land, GLASS SM, and GLEAMv4.1.  

Overall, the evaluation result suggests the resulting soil moisture estimate, which we refer to as SMAPDA, exhibits the 

top performance among the examined datasets. While the SMAPDA and GLASS SM are considered the top two SM estimates 

based on the skill metrics computed against USCRN and SCAN observations (e.g., CCs are ~0.8 and ~0.7 and RMSEs are 

~0.08 and ~0.09 m3 m-3, respectively), SMAPDA surpasses GLASS SM when validated against OKMet data (independent 515 

observations for both SMAPDA and GLASS SM). Being a fully data-driven ML product, the GLASS SM achieves a better 

one-to-one alignment with the observations than SMAPDA when evaluated by the in-situ data that used in its training process 

(USCRN and SCAN). However, the relative accuracy of GLASS SM and SMAPDA reverses when compared with the 

independent observations from OKMet, which implies the inclusion of physical constraints could be vital for a more consistent 

performance in SM estimate using the ML approach. From the analysis in anomalous errors, we show similar intrinsic errors 520 

among the selected SM datasets in some cases, which is most likely driven by overlapping data sources. Referenced by the 

OKMet observations, an investigation on the realism of estimated SM spatial heterogeneity indicates all SM estimates, 

including the SMAPDA and GLASS SM, persistently underestimate the observed variances (~ 25% less) across the sites over 

the study period. While the ERA5-Land estimate shows larger and more comparable variances as observed, it does not 

accurately represent those SM values individually.  525 

In addition to SM data, we showed that SMAPDA data reasonably represent ST and even surface heat fluxes when 

compared against the observations measured in ARM SGP sites. This suggests the suite of SMAPDA dataset is useful in 

characterizing land-atmosphere interactions. Moreover, it is also analyzed with respect to the response to a drought that 

occurred over the southeastern U.S. during the fall of 2016. As one of the key components contributing to the drought, the 

reduction in SM is usually accompanied by increased evaporation in the water-limited scenario, which may potentially amplify 530 

and increase wildfire activity and stresses on agricultural production until new precipitation. We explored the relationships 

between SM and ET with a focus on Alabama quantitatively, utilizing concurrent GLEAMv4.1 data as the reference. Results 

indicate both datasets showed declined SM in summer and fall, with SMAPDA consistently displaying drier soil conditions 

compared to GLEAMv4.1. ET trends from both datasets were relatively close til June but diverged in summer, with SMAPDA 

estimating higher ET, exacerbating the drought conditions. Data also highlighted that model discrepancies, particularly in clay-535 

rich soils, suggest the need for refined treatments of hydraulic process in models for accurate SM estimates. 

A few uncertainties in our analysis are worth noting. For example, the evaluation result is most likely dependent on the 

data resolutions.  Coarse resolution SM estimates such as ERA5-Land, GLEAMv4.1, and SMAP AM suffer from insufficient 

representativeness of subgrid SM variability, underscoring the necessity of high resolution to better characterize highly 

heterogeneous SM distributions. In addition, unresolved natural and anthropogenic processes such as surface and subsurface 540 

lateral flow (e.g, Yang et al. 2021), root water uptake and redistribution (e.g., Zeng 2001), dynamic groundwater water table 

and capillary rise (e.g., Miguez-Macho and Fan 2012), and irrigation (e.g., Yang et al. 2020) can potentially shift the SM 
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estimates under various conditions. While our SM dataset encompassing much of the eastern CONUS is restricted to a one-

year period (2016), our results demonstrate a promising approach that can be applied to any local domain of interest with 

potentially longer analysis periods. This dataset could be used as lower boundary conditions to drive other meteorological 545 

model experiments that investigate the impact of land-atmosphere coupling on boundary layer properties and clouds. Lastly, 

there are many more ML algorithms, such as neural networks, random forests, and support vector machines, have been applied 

to enhance the spatial and temporal resolution of soil moisture datasets and further improve accuracy in data-sparse regions  

(e.g., O. and Orth 2021; Han et al. 2023; Lei et al. 2022; Zhang et al. 2023). However, such approaches lack the inherent 

physical constraints of a data-assimilation approach.  Future studies may include more ML-based products in the assessment 550 

and discuss the impacts of physical constraint on estimated SM as suggested in this study.  
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