
General comment: 

This study assimilates the SMAP surface soil moisture product into the Noah-MP land surface model 
over the eastern continental U.S. for 2016 and evaluates its performance using multiple reference 
datasets, including model-driven products and in situ observations. The authors report strong overall 
performance of SMAP assimilation while noting that regions with higher errors tend to be associated 
clay soil types, highlighting directions for future improvements. The manuscript is well-structured and 
clearly written. However, there are two main weaknesses: 1) a lack of novelty in advancing soil 
moisture data assimilation research and 2) a lack of consideration on the spatial scale mismatch 
between model-derived products and in-situ observations. Please see my detailed comments below and 
I hope those will help enhance the manuscript. 

We sincerely thank the reviewer for the thoughtful and constructive comments. The detailed feedback 
has been instrumental in improving the clarity, rigor, and overall quality of the manuscript. Our 
responses to each comment are provided below, directly following each bullet point. 

Specific comments: 

1. Introduction: The literature review primarily focuses on studies that assimilate SMAP into Noah-
MP. However, it would be beneficial to broaden the discussion to include studies that 1) assimilate 
different soil moisture products and 2) employ DA with other land surface models, providing a more 
comprehensive overview of the benefits, limitations, and current challenges. And then clearly state 
the major contribution of this study to the soil moisture DA field. For instance, SMAP has a 
relatively coarse resolution, whereas other satellite-based soil moisture products such as Sentinel-
based ones offer finer spatial scale. Why the authors choose to use SMAP for a 1-km assimilation 
set up? The introduction could be benefited from discussing how assimilating higher-resolution soil 
moisture products affects soil moisture estimation and how the assimilation of coarser SMAP data 
compares to these alternatives. Overall, the study’s novelty and unique contributions relative to 
existing literature should be explicitly articulated. 

Reply: Thank you for the constructive comments regarding the revisions for the introduction. The 
discussions have been extended accordingly on top of original texts to facilitate more inclusive 
descriptions. The revisions in response to the comments are detailed below: 

• Include studies that 1) assimilate different soil moisture products and 2) employ DA with other 
land surface models: 

Ans: We acknowledge the prior efforts in the field of satellite soil moisture assimilation had used a 
range of combinations in soil moisture retrievals and land surface models. We have included 
additional discussions to cover some of the great works in the paragraph from L73 to L80. A couple 
of sentences were also added in the paragraph from L84 to L89 for the justification of using Noah-
MP as the core land surface model. 

• Discussing how assimilating higher-resolution soil moisture products affects soil moisture 
estimation and how the assimilation of coarser SMAP data compares to these alternatives. 
  

Ans: The existing SMAP-based 1-km soil moisture dataset (Lakashimi and Fang, 2023) could 
potentially provide finer-scale soil moisture info and may be incorporated into the assimilation 



process. However, as demonstrated in Fang et al. (2022), the spatial coverage and availability of the 
1-km downscaled dataset is notably reduced compared to the 9-km dataset (please refer to Fig. 5 in 
Fang et al. (2022)). 

Regarding the applications of Sentinel-1 based high-resolution (1-km) soil moisture datasets for 
data assimilation, there are multiple demonstrations such as those documented in Brocca et al. 
(2024), Filippucci et al. (2021), Foucras et al. (2020), Gao et al. (2017), and also the one jointly use 
SMAP and Sentinel-1 from Meyer et al. (2022). However, despite promising results, most of them 
were performed in a much smaller and local domain as opposed to those SMAP-relevant studies. 
This is primarily due to the contrasts in sensor characteristics between these two satellites (shown 
in the table below): 

Feature SMAP Sentinel-1 

Platform NASA ESA (Copernicus) 
Sensor 
Type 

Radiometer (passive) + Radar 
(active – failed in 2015) 

Synthetic Aperture Radar (SAR, active) 

Frequency L-band (1.41 GHz) C-band (5.4 GHz) 
Resolution ~36 km (radiometer), ~9 km 

(discontinued radar) 
~1 km (can be resampled to ~100 m) 

Revisit 
Time 

~2-3 days 6–12 days (depends on latitude and orbit) 

While Sentinel-1 has higher spatial resolution (~1 km) than SMAP (~9 km), it has relatively lower 
radiometry sensitivity and much longer revisit time (approximately 3 to 4 times longer), and notably 
it requires more complex preprocessing. That means, Sentinel-1 is most likely less sensitive to subtle 
differences in soil moisture content than SMAP and would be hardly capture some day-to day 
variability. Hence in general, SMAP is more suitable for regional/global scale applications, whereas 
Sentinel-1has more potential in local-scale monitoring. We summarize the discussions here in the 
revised manuscript from L98 to L109. 

Reference: 
Fang, B., Lakshmi, V., Cosh, M., Liu, P.-W., Bindlish, R., & Jackson, T. J (2022). A global 1-km 
downscaled SMAP soil moisture product based on thermal inertia theory. Vadose Zone Journal, 21, 
e20182. https://doi.org/10.1002/vzj2.20182 
 
Lakshmi, V. and B. Fang. 2023. SMAP-Derived 1-km Downscaled Surface Soil Moisture Product, 
Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active 
Archive Center. https://doi.org/10.5067/U8QZ2AXE5V7B. 
 
Brocca, L., and Coauthors, 2024: Exploring the actual spatial resolution of 1 km satellite soil 
moisture products. Science of The Total Environment, 945, 174087, 
https://doi.org/10.1016/j.scitotenv.2024.174087. 
 
Gao, Q., M. Zribi, M. J. Escorihuela, and N. Baghdadi, 2017: Synergetic Use of Sentinel-1 and 
Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution. Sensors, 17, 1966, 
https://doi.org/10.3390/s17091966. 
 



Meyer, R., W. Zhang, S. J. Kragh, M. Andreasen, K. H. Jensen, R. Fensholt, S. Stisen, and M. C. 
Looms, 2022: Exploring the combined use of SMAP and Sentinel-1 data for downscaling soil 
moisture beyond the 1-km scale. Hydrology and Earth System Sciences, 26, 3337–3357, 
https://doi.org/10.5194/hess-26-3337-2022. 
 
Filippucci, P., L. Brocca, R. Quast, L. Ciabatta, C. Saltalippi, W. Wagner, and A. Tarpanelli, 2022: 
High-resolution (1-km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1: Po River 
basin as a case study. Hydrology and Earth System Sciences, 26, 2481–2497, 
https://doi.org/10.5194/hess-26-2481-2022. 
 
Foucras, M., M. Zribi, C. Albergel, N. Baghdadi, J.-C. Calvet, and T. Pellarin, 2020: Estimating 
500-m Resolution Soil Moisture Using Sentinel-1 and Optical Data Synergy. Water, 12, 866, 
https://doi.org/10.3390/w12030866. 

2. Analysis domain and period: Since SMAP has been available from March 2015 onward, why was 
data assimilation performed for only a single year? A longer assimilation period could provide 
insights into the model’s ability to represent interannual variability and extreme events such as 
drought. Since the authors did have a section discussing drought, I think it is not sufficient to discuss 
drought without referring to a long-term reference period. Please see my comment #12 in more 
detail. 

Reply: The study period was selected mainly due to the immediate modeling applications during 
the 2016 HI-SCALE field campaign as mentioned in Section 2. As mentioned in the summary and 
conclusion, the framework can be directly applied to any local region and produce long-term 
statistics over the area. In response to the comment #12, we use the approach suggested by the 
reviewer, which leverages the 5-year (2012 to 2016) long dataset from OL simulation in computing 
the reference climatology at each pixel over the AL (Alabama) subdomain. The corresponding 
analysis with respect to the 2016 drought event in Section 4.2.4 has also been revised based on the 
multi-year statistics. More details please refer to the reply for the comment #12 below. 

3. L167-168: Is there a reference to support this claim, in particular reference that supports the 
evidence of Stage IV QPE being better than NLDAS-2 for the study period. 

Reply: Instead of citing a reference, we’d like to mention we carried out sensitivity experiments 
before applying to simulation for the entire study period. We examined the changes in soil moisture 
estimates due to the replacement in precipitation forcing data during the two intensive observation 
periods (IOPs) of HI-SCALE field campaign (Fast et al. 2018).  

The RMSEs were computed against several in-situ data collected by the Oklahoma Mesonet in a 
domain covering the ARM SGP site and adjacent area. The results in Fig. 1 and Fig. 2 demonstrate 
that soil moisture simulated by the OL simulation further improves after replacing the NLDAS-2 
precipitation data as forcing. The comparison of instantaneous rain rate obtained from NLDAS-2 
and Stage IV (ST4) precipitation at 00 UTC of August 30, 2016 (Fig. 3) also clearly shows that the 
Stage IV provides more heterogeneous precipitation distribution over the study domain. 



  
Fig. 1 Root-mean-square error (RMSE) of soil moisture computed simulated by the open loop 
simulations using NLDAS-2 and Stage IV precipitation during the HI-SCALE IOP1 (April 24 − 
May 20, 2016).  

 
Fig. 2 Similar to Fig. 1 but for HI-SCLAE IO2 (Aug. 28 − Sep. 23, 2016). 

 
Fig. 3 Precipitation rate (unit: mm day-1) maps extracted from NLDAS-2 (NLDAS2, left panel) and 
Stage IV (ST4, right panel) at 00 UTC on August 30, 2016. 

Reference: 



Fast, J. D., and Coauthors, 2018: Overview of the HI-SCALE Field Campaign: A New Perspective 
on Shallow Convective Clouds. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-18-
0030.1. 

4. Section 3.3: Some methodological details are unclear or missing: 1) Is there any spin-up process for 
the OL simulation, and does it reach equilibrium before applying the restart file for DA? 2) What is 
the reference period used for the monthly CDF matching? 3) Why use CDF-matching strategy? 
Does the CDF-matching strategy risk distorting real signals in SMAP data by adjusting them to fit 
the model-derived distribution? How do the CDF profiles compare to model-based CDF before and 
after CDF-matching? Some studies favor anomaly scaling over CDF matching to better preserve 
variability in satellite-based observations – additional analysis may be required to justify the choice 
of CDF matching. 

Reply: Thanks for the comments regarding the DA strategies/methods. The answers to the bullets 
above are given below: 

 
1) Is there any spin-up process for the OL simulation, and does it reach equilibrium before 
applying the restart file for DA? 
 
Ans: Yes, the OL simulation was performed with an over 4-year spin-up period from January 1, 
2011, through March 31, 2015. The restart file generated at 2345 UTC on Mar. 31 was used for the 
DA simulation. The description of OL simulation is added in Section 3.3 from L245 to L248. 

 
2) What is the reference period used for the monthly CDF matching? 
 
Ans: The reference period used for the monthly CDF matching is two years in total, ranging from 
Jan. 1, 2015, to Dec. 31, 2016. The relevant description has been added in the texts in L278.  
 
3) Why use CDF-matching strategy? Does the CDF-matching strategy risk distorting real signals 
in SMAP data by adjusting them to fit the model-derived distribution? How do the CDF profiles 
compare to model-based CDF before and after CDF-matching? Some studies favor anomaly scaling 
over CDF matching to better preserve variability in satellite-based observations – additional analysis 
may be required to justify the choice of CDF matching. 
 
Ans: Anomaly matching involves assimilating the deviations from a long-term mean (e.g., SMAP 
anomaly vs. model anomaly), under the assumption that both datasets are centered, and variability 
is the key interest. It avoids altering the raw values of observations and thus preserves physical 
signals better. There are potential benefits when using the anomaly matching as opposed to CDF 
matching, including 1) better preserve actual observed event magnitudes and 2) avoid imposing 
model biases on observations. However, the implicit assumption of anomaly matching in neglecting 
the shifting between observational and model datasets is unlikely valid based on our analysis (annual 
mean values are notably different between raw SMAP data and SMAPDA). In general, the anomaly 
matching is more appropriate if the primary goal is to capture dynamics rather than absolute values. 
We also examined the sensitivity of CDF matching and found out the distortion wasn’t an issue in 
our case. Hence, we decided to apply the CDF matching (Kumar et al. (2012) and Yang et al. (2020)) 
to the DA process in this study. 
 
Reference: 



Kumar, S. V., R. H. Reichle, K. W. Harrison, C. D. Peters-Lidard, S. Yatheendradas, and J. A. 
Santanello (2012), A comparison of methods for a priori bias correction in soil moisture data 
assimilation, Water Resour. Res., 48, W03515, doi:10.1029/2010WR010261. 
 
Yang Y, Turner R, Carey-Smith T, Uddstrom M. A comparison of three model output statistics 
approaches for the bias correction of simulated soil moisture. Meteorol 
Appl. 2020; 27:e1970. https://doi.org/10.1002/met.1970 

5. Evaluation: does the authors consider the correlation for anomalies by removing the monthly mean? 
Analyzing anomaly correlations could provide additional insight into performance, as seasonal 
cycles may dominate raw correlations. Besides, since monthly CDF matching is used, it might be 
also beneficial to compare OL against the reference datasets as correlation may be largely dominated 
by the seasonal variation from OL. Comparing OL vs. DA would help distinguish the improvement 
from DA. 

Reply: Thanks for the suggestion on the inclusion of anomaly correlation coefficient (ACC) as an 
additional metric to help distinguish the improvement of DA from OL. Following the algorithm 
used in Kumar et al. (2009), we subtract the monthly-mean climatology of each dataset from the 
corresponding daily mean value. In this case, the anomalies represent the daily deviations from the 
mean seasonal cycle. Result shows robust improvement in anomaly correlation is found in most of 
the USCRN and SCAN sites (Fig. 4). The mean ACC across all sites from both observational 
networks increases approximately 0.05. The Section 3.4.1 and 4.2.1 have been significantly revised 
correspondingly. 
 

 
Fig. 4 The difference of anomaly correlation coefficients (ACCs) computed between OL and 
SMAPDA experiments at site level by using USCRN (left) and SCAN (right) observations.  
 
Reference: 
Kumar, S. V., R. H. Reichle, R. D. Koster, W. T. Crow, and C. D. Peters-Lidard, 2009: Role of 
Subsurface Physics in the Assimilation of Surface Soil Moisture Observations. J. Hydrometeor., 10, 
1534–1547, https://doi.org/10.1175/2009JHM1134.1. 

6. L281-284 "...there are grids received zero updates, especially in the eastern part of the domain..." 
This needs clarification. Is this due to missing raw data, quality control procedures in SMAPDA, 
or another factor? 



Reply: Great question. Based on the user guide (O’Neill et al., 2021), the SMAP Enhanced L3 
Radiometer Global Daily 9-km EASE-Grid Soil Moisture (SPL3SMP_E) data are stored along with 
“retrieval quality flag” that tags quality of the soil moisture retrievals on each data sample. For 
example: 0: Retrieval successful; 1: Retrieval not attempted due to precipitation; 2: Retrieval not 
attempted due to dense vegetation; 3: Retrieval failed due to other reasons. Another “surface flag” 
provides information about the given surface conditions that may affect retrieval quality, which 
including presence of snow (ice), urban areas, frozen ground, and water bodies. The Land 
Information System (LIS) utilizes “retrieval quality flag” to determine if the SMAP soil moisture 
retrieval will be accepted for assimilation. Essentially, the LIS would assimilate observations where 
retrieval quality flag = 0 and reject observations with non-zero flags as those may denote issues 
such as precipitation, dense vegetation, or retrieval failure, ensuring only high-quality data are 
assimilated in the model.  
 
The above descriptions are summarized and documented in the revised paragraph from L318 to 
L320. 
 
Reference: 
O'Neill, P. E., S. Chan, E. G. Njoku, T. Jackson, R. Bindlish, J. Chaubell, and A. Colliander. 2021. 
SMAP Enhanced L3 Radiometer Global and Polar Grid Daily 9 km EASE-Grid Soil Moisture, 
Version 5. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active 
Archive Center. https://doi.org/10.5067/4DQ54OUIJ9DL.  
 
L 285-291: It would be beneficial if the authors can elaborate the discussion on what might be 
causing the seasonal patterns of the increments. For instance, what processes might be captured by 
SMAP but not represented in the model? Does SMAP assimilation primarily correct model soil 
moisture errors originating from forcing uncertainties, or does it capture external influences such as 
irrigation, which are absent in the model? A deeper discussion of these factors with supported 
reference would strengthen the manuscript. 
 
Reply: In general, the seasonal patterns of increments can be driven by: 
 
1) Model deficiencies and missing physical processes:  

 
These are often associated with the unrepresented surface processes. For example, while SMAP 
detects increased soil moisture due to irrigation, the Noah-MP LSM used in this study do not 
explicitly simulate irrigation (e.g., Felfelani et al. (2018) and Lawston et al. (2017)). In addition, 
practices like tilling or cover cropping affect surface moisture and are likely not captured by the 
model physics.  
 
SMAP can also observe the effects of standing water or saturation from intense precipitation, which 
may not be realistically represented in models with simplified runoff schemes. In areas with a high 
water table, upward capillary rise can maintain higher surface soil moisture. If the model lacks a 
dynamic groundwater component, this influence is missed. 
 
SMAP retrieval algorithms include corrections based on microwave interactions with vegetation. If 
the model uses outdated or static vegetation parameters (e.g., fixed LAI or land cover), that 
mismatch may show seasonally, especially during the green-up and senescence periods. Lastly, 
model could also under-resolve the influences of dynamic root as the root system is basically static 
over time.  



 
2) Errors in meteorological forcing:  
 
There are most likely biases in radiation, temperature, and wind biases affect evapotranspiration 
estimates and thus soil moisture. Assimilation of SMAP data often compensates for these errors, 
especially after dry spells or in transition seasons (spring and fall). 

 
Based on the above, we revised the paragraph from L329 to L336 in response to the comment. 
 
Reference: 
Felfelani, F., Pokhrel, Y., Guan, K., & Lawrence, D. M. (2018). Utilizing SMAP soil moisture data 
to constrain irrigation in the Community Land Model. Geophysical Research Letters, 45, 12,892–
12,902. https://doi.org/10.1029/2018GL080870 
 
Lawston, P. M., Santanello, J. A., Jr, & Kumar, S. V. (2017). Irrigation signals detected from 
SMAP soil moisture retrievals. Geophysical Research Letters, 44, 11,860–
11,867. https://doi.org/10.1002/2017GL075733 

7. Section 4.2: The authors acknowledge to some extent that scale mismatch between SMAP (9 km 
resolution) and in situ observations could degrade evaluation metrics. Would it be possible to 
aggregate the relatively densely distributed OKMet or SCAN data to a resolution comparable to the 
model-based reference products and raw SMAP and reassess the metrics? For instance, how does 
the metrics change if evaluating at the ERA5-land or raw SMAP resolution? Addressing the scale 
mismatch explicitly would improve the fairness of the comparison and strengthen the conclusions. 

Reply: The issue of scale compatibility in the intercomparison among in-situ (point) measurement, 
satellite footprint, and gridded land surface model output has been actively discussed in numerous 
literatures including those of Crow et al. (2012), Gruber et al. (2019), and Quiring et al. (2017). 
Basically, they demonstrated spatial resolution mismatch among different data sources indeed 
introduce uncertainty into evaluation/comparison. Nonetheless, as described in Crow et al. (2013), 
factors such as meteorological forcing, landcover patterns, topographic features, and soil textures 
could jointly contribute to the uncertainties when attempting to upscale from point-scale data to 
field, watershed, and regional scales (see Fig. 5). Since point (in-situ) observations do not evenly 
distribute in space, a simple average may also distort the result, thus weighting for each sample must 
be decided when upscaling (Fig. 6). However, the representativeness of each observation could vary 
from time to time as meteorology/precipitation is rather dynamic. Therefore, the upscaling 
procedure itself most likely would introduce another layer of uncertainty to the soil moisture field. 
Given the above, we decide to leave the evaluation result as is but emphasizing the importance and 
challenge in the upscale approach for assessment in Section 5 from L633 to L635.  



 

Fig. 5 Dominant physical controls on soil moisture spatial variability as a function of scale. The 
gray shading of bars reflects the relative importance of each control at various scales with increasing 
intensity according to importance.  

 

Fig. 6 Schematic for the configuration of the upscaling problem with respect to point measurements 
and a satellite footprint. The upscaling function F↑ is used to link a set of N = 4 point-scale ground 
observations to a spatial mean corresponding to the footprint scale of a satellite-based surface soil 
moisture retrieval. (Adopted from Figure 5 in Crow et al. (2012)) 

Reference: 

Crow, W. T., A. A. Berg, M. H. Cosh, A. Loew, B. P. Mohanty, R. Panciera, P. deRosnay, D. Ryu, 
and J. P. Walker (2012), Upscaling sparse ground-based soil moisture observations for the 
validation of coarse-resolution satellite soil moisture products, Rev. Geophys., 50, RG2002, 
doi:10.1029/2011RG000372. 

A. Gruber, G. De Lannoy, C. Albergel, A. Al-Yaari, L. Brocca, J.-C. Calvet, A. Colliander, M. Cosh, 
W. Crow, W. Dorigo, C. Draper, M. Hirschi, Y. Kerr, A. Konings, W. Lahoz, K. McColl, C. 



Montzka, J. Muñoz-Sabater, J. Peng, R. Reichle, P. Richaume, C. Rüdiger, T. Scanlon, R. van der 
Schalie, J.-P. Wigneron, W. Wagner, Validation practices for satellite soil moisture retrievals: What 
are (the) errors?, Remote Sensing of Environment, Volume 244, 2020, 111806, ISSN 0034-4257, 
https://doi.org/10.1016/j.rse.2020.111806. 

Quiring, S. M., T. W. Ford, J. K. Wang, A. Khong, E. Harris, T. Lindgren, D. W. Goldberg, and Z. 
Li, 2016: The North American Soil Moisture Database: Development and Applications. Bull. Amer. 
Meteor. Soc., 97, 1441–1459, https://doi.org/10.1175/BAMS-D-13-00263.1. 

8. Figure 5 and 6: It is hard to visually distinguish the difference across the comparisons. Please 
consider keep the RMSE and Bias plot for SMAPDA vs. USCRN to illustrate the spatial pattern of 
the metrics while plot the RMSE and Bias differences for other four comparisons against that of 
SMAPDA vs. USCRN. This would help the audience better see locations where other datasets 
perform better or worse compared to SMAPDA. The same suggestions apply to the supplementary 
figures. 

Reply: Thanks for the suggestion on the visualization. We revised and reorganized figures as 
mentioned in the comments. Please see the changes of figures in the revised manuscript. Note that 
figure numbers are also changed, correspondingly. 

9. Figure 9: The smaller STD in SMAP AM could be a consequence of the coarse spatial resolution. 
To ensure a fair comparison, it is better to scale OKMet to a comparable resolution before computing 
STD. Alternatively, the manuscript could discuss about the sensitivity of STD estimates at different 
spatial scales. 

Reply: Surface heterogeneity is one of the important metrics to infer the potential strength of land-
atmosphere coupling, which motivated us to compute STD spatially. Indeed, different resolutions 
could affect how STD is computed. For instance, aggregation of soil moisture data tends to smooth 
out heterogeneity, potentially masking small-scale processes. On the other hand, scaling down from 
coarse to fine resolutions can introduce uncertainty and errors due to assumptions in spatial 
interpolation or downscaling algorithms. We aimed to keep the intercomparison in each of their 
own native grids, which provides insights into the raw performance of each estimate. Our analysis 
showed that model resolution may not be the primary factor that drives the overall STD. Even the 
coarser-resolution soil moisture analysis (e.g., ERA5-Land) can give you a larger STD than the fine-
solution estimate (e.g., GLASS SM). Those can be attributed to differences in topography, soil 
texture, vegetation, land use, and meteorological forcing as well as model’s physical processes. 
We’ve updated the texts in Section 5 (summary and discussion) from L633 to L635 to address this 
comment along with comment #7. 

10. When assessing ST, LHF, and SHF, how does OL compare to SMAPDA? Since these variables are 
indirectly influenced by SMAPDA, it would be informative to first demonstrate the OL simulation 
performance to better understand the extent to which SMAP assimilation modifies these variables. 

Reply: We found the differences between OL and SMAPDA in these variables are rather marginal 
in absolute values. This is likely due to relatively small sample number within the confined area. 
Given that more general comparison between OL and SMAPDA has been covered in other parts of 
the revised manuscript, we decided to highlight the SMAPDA results as compared to the 
observations.  



11. Section 4.2.4: A single year of data is insufficient to robustly assess drought conditions, as drought 
classification typically relies on long-term climatological baselines. Do the authors have a longer-
term OL simulation with sufficient spin-up? Instead of relying solely on trends within a year, it 
would be more appropriate to rank the 2016 conditions relative to a multi-year climatology and 
analyze its deviation from historical conditions. 

Reply: Thanks for the constructive suggestion. To obtain the reference climatology, we first use the 
5-year (from 2012 through 2016) OL simulation results to provide the monthly climatological mean 
(𝑆𝑀$$$$!) and standard deviation (𝜎"#,!) for each pixel in the AL subdomain: 

𝑆𝑀$$$$! =	
1
5*𝑆𝑀!
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Then, we computed the standardized soil moisture anomaly (𝑆𝑀𝐴!) which helps the severity of 
drought at given time and space: 
 

𝑆𝑀𝐴! =
𝑆𝑀! −	𝑆𝑀$$$$!	

𝜎"#,!
 

 
The calculations are also applied to GLEAMv4.1 and the parallel comparison between SMAPDA 
and GLEAMv4.1 is given below. According to former studies such as Ontel et al. (2021), Jiménez-
Donaire et al. (2020), and Tian et al. (2022), when SMA is between 0 and -1, the drought is 
considered mild; moderate drought if SMA lies between -1 and -2. Lastly, it is defined as severe 
drought when SMA below -2. It shows both SMAPDA and GLEAMv4.1 suggest moderate to severe 
drought conditions occurred in this region during the months of September, October, November 
(Fig. 7). Due to the contrast in sample size, SMAPDA demonstrates more spatial heterogeneity in 
SMA compared to GLEAMv4.1. This analysis reconfirms the drought period as defined in other 
relevant studies. The description for the additional analysis can be found in the paragraph from L541 
to L549.  



 
Fig. 7 Box and whisker plot for monthly standardized SM anomaly (SSA) computed for SMAPDA 
and GLEAMv4.1 data in 2016 using their own climatology (2012 - 2016) as references. Dashed lines 
denote the thresholds for the defined drought conditions. 

 


