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Abstract. This paper presents a global-to-local fusion approach combining spaceborne Synthetic Aperture Radar (SAR) 

Interferometry (InSAR) and LiDAR to create large-scale mosaics of forest stand height. The forest height estimates are derived 

based on a semi-empirical InSAR scattering model, which links the forest height to repeat-pass InSAR coherence magnitudes. 15 

The sparsely yet extensively distributed LiDAR samples provided by Global Ecosystem Dynamics Investigation (GEDI) 

mission enableenables the parametrizationparameterization of signal model at a finer spatial scale. The proposed global-to-

local fitting strategy allows for the efficient use of LiDAR samples to determine adaptive model at reginala regional scale, 

leading to improved forest height estimates by integrating InSAR-LiDAR under nearly concurrent acquisition 

conditionconditions. This is supported by fusing the ALOS-2 and GEDI data at several representative forest sites. This 20 

approach is further applied to the open-access ALOS InSAR data to evaluate its large-scale mapping capabilities. To address 

temporal mismatch between the GEDI and ALOS acquisitions, the forest disturbances orsuch as deforestation areas are first 

identified by integrating ALOS-2 backscatter products and GEDI data. Further, aA modified signal model is further developed 

and analysed accountingto account for natural forest growth over temperate forest regions where the intact forest landscape 

along with forest height remainremains quite stable and only change slightly as trees grow. In the absence of detailed statistical 25 

data on forest growth, the modified signal model can be well approximated using the original model at regional scale via local 

fitting. To validate this, two forest height mosaic maps based on the open-access ALOS-1 data were generated for the entire 

northeastern regions of the U.S. and China with total area of 18 million and 152 million hectares, respectively. The validation 

of the forest height estimates demonstrates improved accuracy achieved by the proposed approach compared to the previous 

efforts i.e., reducing from a 4.4 m RMSE on the order of 3-6-ha aggregated pixel size to 3.8 m RMSE at 0.8-ha pixel size. This 30 

updated fusion approach not only fills in the sparse spatial sampling of individual GEDI footprints, but also improves the 

accuracy of forest height estimates by 20% compared to the interpolated GEDI maps. Extensive evaluation of forest height 



 

2 

 

inversion against LVIS LiDAR data indicates an accuracy of 3-4 m over flat areas and 4-5 m over hilly areas in the New 

England region, whereas the forest height estimates over the northeastern China are best compared with small footprint LiDAR 

validation data even at an accuracy of below 3.5 m and with a coefficient of determination, R2, mostly above 0.6. Given the 35 

achieved accuracy for forest height estimates, this fusion prototype offers as a cost-effective solution for public users to obtain 

wall-to-wall forest height maps at a large scale using freely accessible spaceborne repeat-pass L-band InSAR (e.g.., 

forthcoming NISAR) and spaceborne LiDAR (e.g.., GEDI) data. 

1 Introduction 

Forests play a crucial role in the terrestrial ecosystem as they serve as one of the largest terrestrial carbon pool (Pan et al., 40 

2011). As identified by IPCC v6 (Masson-Delmotte et al., 2021) and international forest monitoring efforts such as United 

Nation’s REDD+ programme (Angelsen, 2009), large-scale (e.g., state, continental, and global) forest height products are 

desired to quantify carbon storage in forested resources due to their close relationship to aboveground biomass (AGB). These 

products also help to determine forests' roles in climate change mitigation and biodiversity conservation (Houghton, Hall et al. 

2009).(Houghton et al., 2009). In this work, “forest height” or “forest stand height” (FSH) are referred to as the large medium-45 

footprint (25 m) LiDAR-determined relative height at the 98th percentile (rh98) as measured by NASA’s GEDI LiDAR 

mission onboard the International Space Station (ISS). 

 

Satellite-based remote sensing represents a cost-effective method to investigate biophysical parameters of forests. Commonly 

used remote sensing methods include optical and microwave imaging observations, such as passive optical sensors including 50 

Landsat series (Loveland and Dwyer, 2012), LiDAR missions including ICESat-1/2 (Schutz et al., 2005; Abdalati et al., 2010)  

and GEDI (Dubayah et al., 2020) missions, and SAR systems such as JAXA’s ALOS/ALOS--1/2 (Rosenqvist et al., 2007; 

Rosenqvist et al., 2014), Sentinel-1 (Torres et al., 2012), TanDEM-X  (Krieger et al., 2007). LiDAR and SAR are promising 

tofor capturing the internal vertical structure of forests: LiDAR is fundamentally sensitive to structurestructural details, while 

radar is sensitive to the sensitive todetects the three-dimensional distribution of vegetation elements (Ulaby et al., 1990).  The 55 

backscatter information from a single SAR imageryimage can be used for inferring the above-ground biomassAGB (Santoro 

et al., 2021), despite the fact that the actual vertical information remains undetermined. As an extension of SAR backscatter 

observation, SAR interferometry provide(InSAR) provides direct information related to the vertical forest structure (Treuhaft 

and Siqueira, 2000). Spaceborne InSAR can operate either by single-pass interferometric measurements in a bistatic 

configurationinterferometer (e.g., TanDEM-X missions (Krieger et al., 2007)), or by repeat-pass InSAR (e.g.., ALOS-1/2 L-60 

band, Sentinel-1 C-band missions). The short wavelength operated in former satellites may restrict its sensing capabilities over 

dense forests, while temporal decorrelation affects repeat-pass InSAR performance (Zebker and Villasenor, 1992; Monti-

Guarnieri et al., 2020; Lavalle et al., 2012; Ahmed et al., 2011). LiDAR has been widely used for characterizing the forest 

vertical structure at a regional scale, and can also be consideredserve as the referencea benchmark for calibrating and validating 
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other forest height inversion models as well as radar-derivedand forest height estimates (Choi et al., 2023; Askne et al., 2013). 65 

Spaceborne LiDAR (Schutz et al., 2005) havehas been further developed for globallyglobal ecosystem monitoring of 

ecosystems.. Because of observational constraints, these measurements have been acquired based on such a spatial sampling 

technique that only sparselycollect sparse yet extensively distributedextensive measurements can be collected. 

 

For instance, the NASA’s GEDI mission (Dubayah et al., 2020a) is the first spaceborne LiDAR instrument designed to study 70 

ecosystems. Since 2019, GEDI has provided extensively distributed LiDAR waveform measurements for thecovering nearly 

all global forests. These waveform observations allow for the extraction of various biophysical parameters, such as canopy 

height and canopy leaf area index. However, GEDI collects only discrete pointfootprint measurements, spaced approximately 

60 meters apart in the along-track direction and 600 meters apart in the cross-track direction. To overcome this limitation and 

extend GEDI’s measurements into continuous datasets, several fusion studies have been conducted. Notable examples include 75 

efforts that incorporate radiometric information from optical sensors, such as NASA’s Landsat (Potapov et al., 2021) and 

ESA’s Sentinel-2 (Lang et al., 2022), as well as from SAR backscatter signals (Shendryk, 2022).(Shendryk, 2022). However, 

relying solely on radiometric information to expand LiDAR observations has proven suboptimal, particularly in high-biomass 

regions where signal saturation occurs (Kalacska et al., 2007, Imhoff, 1995, Ho Tong Minh et al., 2016).(Kalacska et al., 2007; 

Imhoff, 1995; Dinh Ho Tong Minh et al., 2014). 80 

 

In contrast, because of its fundamental sensitivity to height and/or variations in height, the fusion of SAR interferometry and 

GEDI has gained much interests. For example, making joint use of TanDEM-X and GEDI data has been assessed and 

demonstrated for achieving wall-to-wall forest height and AGB mapping (Qi and Dubayah, 2016,; Choi et al., 2023,; Guliaev 

et al., 2021,; Qi et al., 2019). Without the effects of temporal decorrelation effects, TanDEM-X data offer opportunities to 85 

leverage very-high-resolution observations for addressing spatially heterogeneous landscapes. However, the forest height was 

inverted in these studies based on the Random Volume Over Ground (RVoG) model (Treuhaft and Siqueira, 2000, Cloude and 

Papathanassiou, 1998) and an external constraint induced by GEDI waveform information. That is, only the mean waveform 

information across the scene in these studies was used for model-based inversion, implying an underlying assumption that the 

forest objects over the scene share a similar vertical structure. This may lead to a degraded performance when dealing with 90 

spatially heterogenous forests.heterogeneous forests. To address this, (Qi et al., 2025) proposed a regional post-processing 

correction model to refine suboptimal height estimates, while  (Hu et al., 2024) exploited local ICESat-2 LiDAR information, 

using regional polynomials and an adaptive window, to estimate equivalent forest phase centers under homogeneous forest 

and terrain conditions. Additionally, a potential limitation of TanDEM-X observations is the insufficient penetration capability 

over dense forests due to the short wavelength of the X-band (~3.1 cm) (Kugler et al., 2014). This underlines the need for 95 

longer-wavelength SAR systems (e.g., L-band) to enhance sensitivity in dense forest environments.  
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An alternative Temporal decorrelation has been a widely studied topic in InSAR research (Rocca, 2007; Ahmed et al., 2011; 

Bhogapurapu et al., 2024). (Zebker and Villasenor, 1992) proposed a Gaussian model to these approaches is to useanalyze 

oceanic scenarios, while (Monti-Guarnieri et al., 2020) summarized the signal models tailored for vegetated scenarios. (Askne 100 

et al., 1997) introduced a coordinate-dependence of the vertical motion profile to analyse InSAR temporal decorrelation itself 

(Lei et al., 2017) with negligible spatial baselines. effects caused by wind. Building upon the well-known RVoG model, several 

signal models have been developed to explicitly incorporate temporal decorrelation effects (Lavalle et al., 2012; 

Papathanassiou and Cloude, 2003; Lei et al., 2017a). 

 105 

This method was initiallystudy employs the RVoG-based temporal decorrelation model (Lei et al., 2017a) to invert forest 

height. The model-based inversion was first demonstrated by using a relatively small strip of airborne LiDAR data as the 

reference strip to creategenerate a forest height mosaic over a two-state region in the northeastern U.S. (Lei et al., 2018). Given 

the limited availability of LiDAR datasets at that time, scene-wide constant model parameters for the relationship between the 

InSAR temporal decorrelation and LiDAR observations were assumed and the overlapping area between InSAR scenes were 110 

used to propagate the LiDAR information throughout the adjacent InSAR scenes. With the successful launch of the The advent 

of NASA’s Global Ecosystem Dynamics Investigation (GEDI, the introduction of) mission has since enhanced this 

methodology by integrating local GEDI samples directly into the model inversion was achieved in a preliminary effort (Lei 

and Siqueira, 2022).inversion framework (Lei and Siqueira, 2022; Yu et al., 2023). This integration enables spatially adaptive 

calibration of model parameters, overcoming prior limitations of constant parameter assumptions and improving inversion 115 

accuracy in heterogeneous forest landcovers.  

 

This paper further removes the assumption of spatially constant temporal change model that were made in the previous efforts, 

and develops a new inversion approach based on a two-stage (global-to-local) inversion algorithmstrategy. By efficiently 

leveraging regional GEDI samples, this approach enablescalibrates a semi-empirical, semi-physical repeat-pass InSAR model 120 

at a finer- spatial scale characterization of, substantially improving forest height inversion accuracy. The method assumes that 

the temporal decorrelation patterns, resultingmodel remains spatially invariant at the regional scale, while permitting variability 

in much improved accuracy in forest height inversionobservations within those regions. This approach is validated by fusing 

ALOS-2 InSAR and GEDI data acquired under nearly concurrent conditions. Furthermore, the approach is applied to the open-

access ALOS InSAR data for evaluating its large-scale mapping capability. To address the temporal mismatch between the 125 

ALOS and GEDI acquisition, forest disturbance can be detected by fusing SAR backscatter and LiDAR data under nearly 

concurrent condition. Furthermore, a modified model is developed to account for the natural growth of forests over temperate 

forest regions where the Intact Forest Landscape (IFL) exhibitexhibits slow changes in height. Without available forest growth 

data, the modified signal model can be well approximated using the original signal model at regional scale through local fitting. 

Two 30 m gridded forest height mosaics were generated for the northeastern regions of U.S. and China. Validation of the 130 

generated forest height mosaics against extensive airborne LiDAR observations demonstrate enhanced inversion accuracy at 
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sub-hectare pixel size. The key contribution of this paper lies in the efficient use of local GEDI information for radarRadar-

LiDAR data fusion, enabling more accurate large-scale and efficient forest height estimatesmapping using open-access 

spaceborne data, such as GEDI and forthcoming NiSARNISAR (Siqueira et al., 2024; Kellogg et al., 2020) data. 

 135 

This paper is structured as follows:  Section 2 reviews the theoretical background, followed by the proposed methodology. 

Section 3 introducesdescribes the study areaareas and available experimentalremote sensing datasets.; Section 3 details the 

proposed inversion framework; Section 4 validates the forest height estimates over a variety ofacross diverse forest sites in the 

northeastern U.S. and China. Conclusions and discussion are provided in Section 5. 

2 Signal model discusses the implications and limitations of the methodology, and inversion frameworkSection 6 concludes 140 

the study. 

2 Study area and datasets 

2.1 Study area 

This paper focuses on the northeastern regions of the U.S. and China. These regions contain transitional forests composed of 

both coniferous and broad-leaved species. As shown in Figure 1, the New England region in the northeastern U.S. (including 145 

the states of Maine, New Hampshire, Vermont, Massachusetts, Connecticut, and Rhode Island) is selected for the generation 

and validation of the large-scale mosaic of forest height (covering a total area of 18 million hectares) due to the availability of 

ample airborne LiDAR datasets. Forests in this area are primarily dominated by coniferous forests (Red Pine, Balsam Fir, 

Hemlock etc.) and northern hardwoods (Maple, Oak, Beech, etc.). These forests exhibit stable intact forest landscapes (IFL) 

and canopy heights, with changes driven primarily by natural growth rather than anthropogenic disturbance (Riofrío et al., 150 

2023). 
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Figure 1: Study area and validation sites for the New England region in the U.S. The generated forest height mosaic map covers the 

states of Maine, New Hampshire, Massachusetts, Vermont, Connecticut, and Rhode Island. The inversion results are validated 155 
against the large-footprint (25 m) LVIS data acquired either in 2009 or in 2021 over the validation sites (denoted by red dot markers). 

At the White Mountain National Forest (WMNF) site, small footprint GRANIT LiDAR data are also used for validation after 

reprocessing into equivalent RH98 metric maps. The features of the validation sites are summarized in Table 1. 

 

Another large-scale forest height mosaic is also generated over the northeast of China with a total area of 152 million hectares. 160 

As shown in Figure 2, the forest height mosaic for China covers five provinces: Hebei, Jilin, Liaoning, Inner Mongolia and 

Heilongjiang. Note that Jilin and Inner Mongolia provinces were not fully covered as only forested areas within the GEDI 

observation coverage (<51.6° N) are addressed. The forests in northeastern China can be primarily grouped into four primary 

regions: 1) deciduous coniferous forest region located at the northernmost parts of Inner Mongolia and Heilongjiang provinces; 

2) temperate mixed-forest region (comprising evergreen coniferous and deciduous broad-leaved species) primarily distributed 165 

in Heilongjiang and Jilin provinces; 3) northern temperate mixed-forest subregion situated in Liaoning province; and 4) 

temperate steppe region located partly in Hebei province and partly in Inner Mongolia province. 
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Figure 2: Study area and validation sites in northeastern China. Five provinces are covered in the generated forest height mosaic: 

Jilin, Liaoning, Hebei, Heilongjiang, and Inner Mongolia. The performance of the forest height inversion is assessed by comparison 170 
with small-footprint (0.5-1 m) LiDAR data at the validation forest sites (indicated by the red diamond markers) in each province. 

The features of the validation sites are summarized in Table 2. 

 

The northeastern regions of the U.S. and China were selected as study areas for two key reasons. First, both regions provide 

access to extensive airborne LiDAR datasets: NASA’s Land, Vegetation, and Ice Sensor (LVIS) (Blair et al., 1999) in the U.S., 175 

and small-footprint airborne LiDAR data in China. Second, the performance of forest height inversion can be assessed in a 

unique way: the New England region offers abundant GEDI calibration sites, while the northeastern part of China is situated at 

a comparable region at a similar latitude but without dedicated GEDI calibration sites. 

 

Several experimental and validation sites are selected across the northeastern regions of the U.S. and China, with their relevant 180 

information summarized in Table 1 and Table 2, respectively.  In the New England region, validation is conducted at various 

sites including the Howland Forest site in Maine, Harvard Forest site in Massachusetts, the White Mountain National Forest 

(WMNF) site in New Hampshire, the Green Mountain National Forest (GMNF) site in Vermont, and the Naugatuck State 

Forest (NSF) site in Connecticut. These forest validation sites are covered by medium footprint (25 m) LVIS data acquired 

either in 2009 or in 2021. Particularly, the forest height inversion over the WMNF site was evaluated using GRANIT airborne 185 

laser scanning (ALS) data acquired in 2011 (Haans et al., 2009), with the canopy height product extracted from the waveform 

data at a raster sampling spacing of 2 m. 
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Table 1 The forest validation sites covered by the airborne LiDAR observation in the New England, U.S 

Validation 

sites 
Location Dominated tree species 

LiDAR data 

acquisition 

year 

Slope statistics 
ALS validation 

area (ha) 

Howland Forest 
68°44′ W,  
45°12′N 

Red spruce (Picea rubens Sarg.) 

and eastern hemlock  
2009 

Mean: 2.3° 

STD: 5.3 
4.77× 104 

Harvard Forest 
72°11′W, 
42°31′N 

Red oak, Red maple, Black birch, 

White pine, Eastern hemlocc 
2021 

Mean: 5.5° 

STD: 4.6° 

4.87× 104 

 

White Mountain 

National Forest 

71°18′W,  
44°6′N 

Red Spruce, Eastern Hemlock, 

American Beech, and Red Maple, 
2011 

Mean: 9.7° 

STD: 8.6° 
1.20× 104 

Green Mountain 

National Forest 

73°04′W, 
43°57′N 

Sugar maple, American beech, red 

maple, yellow and paper birch 
2021 

Mean: 10.4° 

STD: 7.6° 
8.91× 104 

Naugatuck State 

Forest 

73°00′W 

41°27′N 

Northern red oak, Mixed upland 

hardwoods, Yellow-poplar 
2021 

Mean: 5.2° 

STD: 4.5° 
3.58× 104 

 190 

 

Regarding northeastern China, evaluation was performed at one forest site in each province: the Mengjiagang Forest site in 

Heilongjiang province, the Dagujia Forest site in Liaoning province, the Saihanba Forest site in Hebei province, the Hubao 

National Park in Jilin province, and the Genhe Forest Bureau in Inner Mongolia province. Validation of the forest height 

product across all the forest validation sites in China was done by comparisons with the small footprint (0.5-1 m) ALS data. 195 

 

To provide a preliminary assessment of forest disturbances in these two regions, forest disturbance maps derived from global 

forest change products (Hansen et al., 2013) are shown in Figure 3 and Figure 4.  

 

 200 

 

Table 2 The forest validation sites covered by the ALS validation data in northeastern China 

Validation 

sites 
Location Dominated tree species 

LiDAR data 

acquisition year 
Slope statistics 

ALS validation 

area (ha) 

Mengjiagang 

Forest site  
130°42′E,  
46°25′N 

Coniferous plantations (Larix 

gmelinii and Pinus syvestris) 
2017 

Mean: 6.6° 

STD: 5.6° 
3.78× 104 

Dagujia Forest 

site  

125°00′E,  
43°21′N 

Coniferous plantations (Larix 

kaempferi, Pinus koraiensis, etc) 
2018 

Mean: 13.5° 

STD: 7.4° 
3.66× 104 
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Saihanba Forest 

site  

117°18′E,  
42°24′N  

Larix principis-rupprechtii, Pinus 

syvestris, and Betula 
2018 

Mean: 8.7° 

STD: 7.3° 
2.98× 104 

Genhe Forest 

bureau 

121°32′E,  
50°47′N  

Larix gmelinii, Betula 

platyphylla, Populus davidiana 
2022 

Mean: 7.0° 

STD: 5.4° 
1.09× 105 

Hubao Forest 

site 

130°12′E,  
43°28′N  

Mongolian oak, Basswood, 

Betula platyphylla 
2018 

Mean: 8.7° 

STD: 7.4° 
3.99× 105 

 

 
Figure 3: Forest disturbance map of the New England region (2007–2023) derived from the Global Forest Change dataset (Hansen 205 
et al., 2013). The binary classification distinguishes undisturbed areas (0) from disturbed areas (1) within the period. 
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Figure 4: Forest disturbance map of northeastern China (2007–2023) derived from the Global Forest Change dataset (Hansen et 

al., 2013). The binary classification distinguishes undisturbed areas (0) from disturbed areas (1) within the period. Province names 

are shown in green on the central map. 210 

 

 2.2 Spaceborne and Airborne Remote Sensing datasets 

The freely accessible L-band InSAR data from Japanese Aerospace Exploration Agency (JAXA)’s Advanced Land Observing 

Satellite (ALOS) mission were used for generating the InSAR correlation observations. In addition, a few radar data from 

ALOS-2 (a follow-up mission of ALOS-1) were also employed as case studies for validating the fusion of Radar-LiDAR under 215 

concurrent conditions. Furthermore, the spaceborne LiDAR waveform-based metrics (rh98 as a proxy of forest height) from 

GEDI mission were used for parameterizing the temporal decorrelation model.   

2.2.1 Spaceborne InSAR Datasets 

Global Fine Beam Dual-polarization (FBD) SAR images with spatial grid of (10 × 3 m for range and azimuth directions) were 

collected by ALOS satellite from 2007 to 2010, with a repeat cycle of 46 days. To generate forest height mosaic, 100 cross-220 

polarized ALOS-1 InSAR scenes (identified by one pair of frame and orbit numbers) were processed to cover the New England 

region in the U.S., whereas more than 600 InSAR scenes were processed for covering the northeast of China. The InSAR 
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preprocessing was done by Jet Propulsion Laboratory (JPL)’s InSAR Scientific Computing Software (ISCE) software (Rosen 

et al., 2012). It was reported by (Lei and Siqueira, 2014) that the ALOS-1 InSAR observations acquired during the summer/fall 

time frame of 2007 and 2010 tended to have higher InSAR coherence. In the practical processing, multiple cross-polarized 225 

interferograms during the lifetime of ALOS-1 (2007-2011) were formed and processed for each scene based on different 

combinations of acquisition dates, allowing for the identification of the best InSAR pair for each ALOS-1 observation scene. 

 

As a follow-on mission to ALOS-1, ALOS-2 had a shorter revisiting period (14 days), resulting in a better InSAR correlation 

behavior. The acquisition started from 2016, allowing for a nearly concurrent observations with respect to GEDI samples.  230 

However, the acquisition strategy and limited access to the high-resolution dual-polarized strip-map data have made it more 

difficult to form proper InSAR pairs and perform large-scale mapping. The grid of ALOS-2 image in FBD mode is at a grid 

of 8 × 4 m for range and azimuth directions. A windows size of 4 × 8 looks is used for the coherence estimation, resulting in 

an averaged pixel size of 30 m. 

 235 

In this study, the use of limited ALOS-2 data is devoted to demonstrating the proposed approach under ideal case. The large-

scale mapping capabilities were demonstrated using free-access ALOS data over the temperate forest regions. It is also noted 

that there is time discrepancy between the acquisition dates of ALOS and GEDI. This discrepancy is addressed using the 

twofold solution as detailed in Subsection 3.3. As for the abrupt discrepancy due to forest disturbance (e.g. logging, 

deforestation, and fire) that usually results in no/short vegetation with small backscatter values, replacing the InSAR inverted 240 

forest estimates with those derived from the appropriate ALOS-2 backscatter mosaic map for short vegetation (as shown in 

subsection 3.1) can detect the disturbed forest areas. And the study area is mainly concentrated on temperate and boreal forests, 

the heights of mature temperate forests (intact forest landscape) remain almost stable with slight change. Nevertheless, a 

simulation in Subsection 3.4.3 shows the approach of this study can approximate the height of the forests subject to natural 

growth at regional scale. In other words, all the InSAR based height inversions are calibrated to the acquisition time of GEDI, 245 

and thus best compared with the concurrent airborne LiDAR validation data.  

 

2.2.2 Spaceborne LiDAR Datasets 

As the first spaceborne LiDAR mission to characterize ecosystem structure and its dynamic, the NASA’s GEDI mission was 

launched in December 2018. GEDI provides near-global measurements of forest structure metrics from 51.6° S to 51.6° N 250 

until 2024. With three lasers mounted, eight parallel tracks of samples at a footprint of 25 m are simultaneously collected. The 

spatial separation between samples during one datatake is 60 m in the along-track direction and 600 m in cross-track direction. 

The GEDI rh98 metric is selected as an appropriate proxy for indicating forest canopy height within each footprint because it 

has less sensitivity to errors as compared to the rh100 metric (Hofton et al., 2020). After filtering out GEDI samples with less 
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penetration sensitivities (e.g., 95% sensitivity, 50 m maximum elevation difference between GEDI and TanDEM-X 255 

measurements), the remaining L2A version 2 GEDI samples are used for calibrating the inversion model. 

 

2.2.3 Airborne LiDAR data 

2.2.3.1 Medium-footprint LiDAR data  

A significant amount of airborne full-waveform LiDAR data was collected across the U.S. using LVIS sensor. The LiDAR 260 

data were processed into rh98 maps at 25 m grid. Specifically, LiDAR data over the Howland Forest site in Maine were 

obtained in 2009. LVIS data acquired in 2021 for GEDI calibration cover all the other forest sites in the New England region, 

which were classified into four parts based on the state boundaries of New Hampshire, Vermont, Massachusetts, and 

Connecticut. 

 265 

2.2.3.2 Small footprint LiDAR data  

In some sites, small footprint LiDAR data have to be used for validation. The validation at the WNMF site utilized GRANIT 

LiDAR data, which has a 2 m footprint and was acquired in 2011. All the forest heights in the northeastern China were validated 

using small footprint LiDAR data. The airborne LiDAR data, with an average point density of 6 pts/m² over Hubao National 

Park, were acquired using an airborne LiDAR system owned by the Chinese Academy of Forest Inventory and Planning. The 270 

observations covering all other forest sites in the northeastern China were acquired during 2017-2022 using the airborne remote 

sensing system developed by the Chinese Academy of Forestry (Pang et al., 2016), which has an average point density of 12 

pts/m². It should be noted that validating the forest height estimates against airborne LVIS observations is not straightforward, 

as the footprint of these airborne data is much smaller than the footprint of GEDI. To address this footprint difference, an 

equivalent RH98 metric (referred to as ERH98 hereafter) needs to be extracted at the position of the 98th percentile of the 275 

LiDAR waveform or from the histogram formed by high-resolution CHM estimates within a 25 m footprint. Following this 

procedure, all small-footprint LiDAR data were reprocessed to generate forest height estimates based on the ERH98 metric 

with the same footprint size.  

 

2.2.4 Forest and Non-Forest Maps 280 

 Non-forest areas including water bodies and urban areas were masked out using the 2021 National Land Cover Database 

(Homer et al., 2015) and the 2021 ESRI Global Land Cover Map (Karra et al., 2021). 
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2.2.5 Backscatter mosaic map 

This study used the global radar backscatter products generated by JAXA using ALOS-1/2 FBD images (Shimada et al., 2016) 285 

after radiometric and geometric calibration (including slope effects correction). Specifically, the global cross-polarized 

backscatter products from 2019 and 2020 over the northeast of the U.S. and China were utilized to obtain height estimates of 

short vegetation. 2These two-year products were used to account for missing data gaps, backscatter calibration inconsistencies, 

and to best match the acquisition time of the validation airborne LiDAR data. 

3 Methodology 290 

This section first outlines the processing workflow and implementation steps, then provides a detailed analysis of the 

methodological principles. 

3.1 Processing workflow 

The entire processing workflow is illustrated in Figure 5. Figure 6 provides ana zoomed-in example of global-to-local forest 

height inversion over the Howland Forest site. The standard interferometric preprocessing (including coregistration, 295 

topographic phase compensation, interferometric formation, and geocoding steps) for multiple ALOS-1 InSAR pairs is 

performed by using JPL’s InSAR Scientific Computing Software (ISCE) software (Rosen et al., 2012),, in which the parallel 

computing capabilities of graphic processing unitsGraphic Processing Units (GPUs) is utilized to enhance the processing 

efficiency (see, generating the InSAR coherence map as shown in Figure 6 (a)).). After matching the GEDI samples intoonto 

the grid of each InSAR scene (the collocated GEDI rh98 samples are shown in Figure 6 (b)), the global-to-local inversion for 300 

each scene is carried out as follows: 

1. Global Fitting: As illustrated in subsection 2.13.3, a global fitting is first performed for obtaining an initial guess 

of temporal parameters (𝑆0, 𝐶0) (see Equation (3)) using all the available GEDI rh98 samples and corresponding 

InSAR observations over each InSAR scene. As noted earlier that a moderate forest disturbance may result in an 

overestimation of forest height for global fitting (Lei et al., 2017)(Lei et al., 2017b), a re-weighted iterative global 305 

fitting is instead used to remove the gross errors induced by forest disturbances after the first iteration. 

2. Local Fittingfitting: A local fitting is then conducted around each GEDI sample within a local boxcar window with 

a constraint of smaller searching range in the vicinity of the initial estimates, i.e., (𝑆 ∈ [𝑆0 − 𝑟𝑠, 𝑆0 + 𝑟𝑠], 𝐶 ∈

[𝐶0 − 𝑟𝐶 , 𝐶0 + 𝑟𝐶]).(𝑆 ∈ [𝑆0 − 𝑟𝑆, 𝑆0 + 𝑟𝑆], 𝐶 ∈ [𝐶0 − 𝑟𝐶 , 𝐶0 + 𝑟𝐶]) where 𝑟𝑆  and 𝑟𝐶  represent the searching region 

for two parameters, respectively. Spatial distance -based or adaptive weights (e.g., Figure 7) are preferred in local 310 

fitting for avoiding much heterogeneouspreserving detailed information involvedand ensuring the robust inversion 

over large-scale application. An expensive computational burden is implied for the local fitting so that a GPU-based 

implementation (Yu et al., 2019) is developed for enhancing processing efficiency. 
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3. Interpolation and Inversioninversion: the irregularly distributed temporal decorrelation parameters i.e., 

{𝑆(𝑖, 𝑗), 𝐶(𝑖, 𝑗)} with 𝑖, 𝑗 denoting the latitude and longitude for each GEDI sample, are interpolated into the regular 315 

grid of InSAR coherence magnitude map based on the Delaunay-triangulation based natural neighborhood 

interpolation. The forest height is then inverted on a pixel-by-pixel basis using the InSAR coherence observation 

and the inversion model (resulting ingenerating wall-to-wall forest height mapping as shown in Figure 6 (c)). 

4. Backscatter-based Estimatesestimates: The forest height estimates of short vegetation in the previous 

inversionsinversion are replaced by the corresponding backscatter-based estimates (see Figure 6 (d)): the GEDI rh98 320 

samples over bare ground and short vegetation landcovers (e.g., 0 ≤ 𝑟ℎ98 ≤ 10 m) along with the corresponding 

backscatter information are fitted using an exponential model, which is then used to obtain backscatter-to-height 

estimates (Lei et al., 2018). As a rule of thumb, the short trees are identified in this processing via the following 

criterion i.e., if the backscatter-based forest height inversion is less than 10 m. 

4.  (d)): the GEDI rh98 samples over bare ground and short vegetation landcovers (i.e., 0 ≤ 𝑟ℎ98 ≤ 10 m) along with 325 

the corresponding backscatter information are fitted using an exponential model, which is then used to obtain 

backscatter-to-height estimates (Lei et al., 2019). Short trees are identified using a criterion where backscatter-

derived forest height estimates fall below 10 meters, based on the maximum height of shrubs (Lawrence, 2013; 

Allaby, 2012) and empirical studies  (Lei et al., 2019). 

5. Mosaicking: a selection based mosaicking approach is finally carried out to pick up the best InSAR pairs based on 330 

the pre-inversion metric and mosaicking the overlapping area using the pixels with better goodness of fit as discussed 

in subsection 2.3Subsection 3.5. 
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 335 

Figure 5: Block diagram of the workflow for generating forest height mosaicmosaics. 
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Figure 6 An illustrative example of the processing steps at the Howland Forest site: (a) the input ALOS-1 coherence magnitude map; 340 
(b) the GEDI rh98 samples; (c) the forest height estimates based on InSAR coherence information; (d) the backscatter based height 

estimates; (e) the final forest height map after replacing the estimates of short trees in (c) with the collocated pixels in (d); (f) is the 

airborne LVIS LiDAR data for validation data. 

 

3.2.2 Basic Signal Sinc Inversion model 345 

After standard InSAR preprocessing (including coregistration, and topographic phase compensation, etc), a complex InSAR 

correlation observation between two SAR images can be derived by: 

γ =
〈𝐼1 ⋅ 𝐼2

∗〉𝐿

√〈𝐼1 ⋅ 𝐼1
∗〉𝐿〈𝐼2 ⋅ 𝐼2

∗〉𝐿

 (1) 
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where 𝐼1  and 𝐼2 represent two SAR images from the 1st and 2nd acquisition, respectively, the operator 〈⋅〉𝐿 is used for spatial 

averaging of L looks, . As a metric to measure similarity, the complex InSAR correlation accounts for various forms of 

decorrelation (Zebker and Villasenor, 1992; Gatelli et al., 1994; Treuhaft and Siqueira, 2000). If we consider a pair of SAR 350 

images with short spatial separation over forested area, InSAR coherence can be expressed as: 

|𝛾| = |𝛾𝑆𝑁𝑅| ⋅ |𝛾𝑔𝑒𝑜| ⋅ |𝛾𝑣&𝑡|  (2) 

where 𝛾𝑆𝑁𝑅 represents the decorrelation induced by the radar-return signal -to -noise ratio, and 𝛾𝑔𝑒𝑜 denotes the geometric 

decorrelation due to the difference between two look angles. After accounting for SNR decorrelation and performing common 

band filtering (Gatelli et al., 1994), the remaining component of correlation, 𝛾𝑣&𝑡, is only related to temporal changes and the 

distribution of scatterers in the vertical direction. The spatial separation for one InSAR pair is usually indicated by the 355 

interferometric vertical wavenumber 𝜅𝑧 (unit rad/m)) (Bamler and Hartl, 1998). A small value of 𝜅𝑧 (less than 0.05 rad/m) is 

usually suggested by the analysis in (Lei and Siqueira, 2014). 

 

For moderate and large temporal baselines, moisture-induced dielectric fluctuations and wind-induced random motion are 

identified as the primary factors influencing temporal decorrelation (Lavalle et al., 2012; Askne et al., 1997). (Lei et al., 360 

2017)(Lei et al., 2017b) introduced a modified Random Volume over Ground (RVoG) model that accounts for the coupled 

effects of dielectric changes and random motion in spaceborne ALOS-1/2 observations. The model is further simplified by 

assuming negligible ground scattering under cross-polarized (HV) observations and short spatial baselines,  and establishes a 

semi-empirical formula linking cross-polarized InSAR coherence magnitude (𝛾𝑣&𝑡
𝐻𝑉 ) to forest height (ℎ𝑣): 

|𝛾𝑣&𝑡
𝐻𝑉 | = 𝑆 ⋅ sinc (

ℎ𝑣

𝐶
) , with 0 ≤ ℎ𝑣 ≤ 𝜋𝐶 (3) 

where 𝑆 (ranging from 0 to 1; unitless) is a parameter primarily connected to moisture-induced dielectric changes in the target, 365 

and 𝐶 (a positive value that has units of meters) relates to the wind-induced random motion. In practice, ground scattering 

remains present in cross-polarized signals, particularly for low-frequency SAR observations. However, it is typically minimal, 

with a ground-to-volume ratio generally less than 0.1. This residual ground scattering can bias forest height estimates, 

particularly for short or very tall forest stands. It is also important to note that this formula is valid when the interferometric 

vertical wavenumber is below 0.15 rad/m and is most reliable when smaller than 0.05 rad/m (Lei and Siqueira, 2014), which 370 

is consistent with the acquisition geometry of ALOS1-ALOS-1/2 InSAR acquisition. Otherwise, the presence of volumetric 

decorrelation will result in a compromised inversion performance. 

 

23.3 Fusing concurrent radar-lidar acuqisitionsacquisitions by a global-to-local inversion approach 

Determination of the above temporal decorrelation model (3) has to resort to ancillary forest height data e.g., field inventory 375 

data, LiDAR measurements, and etc. A global-to-local procedure is used for determination, since the regional forests are 
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usually relatively homogenoushomogeneous, leading to the construction of ill-conditioned observations for model 

determination. A global initial guess is firstly needed for constraining the solution space for subsequent fitting.  

 

For one InSAR scene, a constant scene-wide behaviourbehavior of the temporal change parameters is firstly assumed, e.g.,  380 

(𝑆𝑠𝑐𝑒𝑛𝑒 , 𝐶𝑠𝑐𝑒𝑛𝑒). To one candidate pair of these parameters, forest height estimates ℎ𝑣̂ are derived by solving the model (3) 

based on InSAR coherence magnitude. A covariance matrix between ℎ𝑣̂ and the ancillary forest height ℎ𝑎 from LiDAR and 

its eigen-decomposition are expressed by: 

Σ = [
cov(ℎ𝑣̂, ℎ𝑣̂) cov(ℎ𝑣̂, ℎ𝑎)

cov(ℎ𝑣̂, ℎ𝑎) cov(ℎ𝑎, ℎ𝑎)
] = 𝑄Λ𝑄−1 (4) 

where the 2×2 matrix 𝑄 contains the eigen vectors, the 2×2 diagonal matrix 𝛬 comprises the eigen values. The function 

cov(𝐴, 𝐵) denotes the covariance between the two vectors 𝐴 and B: 385 

cov(𝐴, 𝐵) =
1

𝑁 − 1
∑ (𝐴 − 𝜇𝐴) ⋅ (𝐵 − 𝜇𝐵)

𝑁

𝑖=1
 (5) 

with 𝜇𝐴 and 𝜇𝐵 being the mean values of two input vectors. Two fitting metrics e.g., slope 𝑘 and bias 𝑏 can be extracted out 

of the constructed covariance matrix: 

𝑘 =
𝑄21

𝑄11

 (6) 

𝑏 = 2
𝜇ℎ𝑣̂

− 𝜇h𝑎

𝜇ℎ𝑣̂
+ 𝜇h𝑎

 (7) 

By defining a figure of merit i.e. approaching zero bias and unity slope (i.e. the 1:1 line), a pair of temporal parameters are 

determined by minimizing the objective function: 

{𝑆𝑠𝑐𝑒𝑛𝑒 , 𝐶𝑠𝑐𝑒𝑛𝑒} = arg min
𝑆,𝐶

(𝑏2 + (𝑘 − 1)2) (8) 

Resolving model parameters (𝑆𝑠𝑐𝑒𝑛𝑒 , 𝐶𝑠𝑐𝑒𝑛𝑒) is referred to as global fitting strategy. The effectiveness of this approach was 390 

demonstrated over the northeastern U.S. (Lei et al., 2018) if well-constructed observation vectors including sufficient samples 

ranging from low trees to tall trees1.  

 

Because temporal change factors tend to be spacing-varying with respect to vegetation types and weather/climate conditions, 

inversion performance for solely global fitting as described above is expected to deteriorate when applied for large-scale 395 

inversion. With the availability of GEDI data, a substantial improvement is expected by expressing decorrelation model at a 

finer spatial scale. AnA preliminary effort was made in (Lei and Siqueira, 2022) where the determination of (𝑆, 𝐶) is carried 

out on each GEDI LiDAR sample ℎ𝑔𝑒𝑑𝑖(𝑖, 𝑗) to obtain 𝑆(𝑖, 𝑗) and 𝐶(𝑖, 𝑗), where 𝑖 and 𝑗 represent latitude and longitude for 

 
1 This fitting metric has proven to be more robust than the Euclidean norm for a data cloud with large measurement uncertainty (Lei and Siqueira, 2014). 
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each GEDI sample. As only one sample cannot provide sufficient observations to resolve two unknowns so that an external 

constraint on the ratio of 𝑆(𝑖, 𝑗)/𝐶(𝑖, 𝑗) was introduced. 400 

 

Each individual GEDI measurement is subject to errors caused by artifacts such as terrain slopes (Wang et al., 2019) and 

systematic geo-location inaccuracies (ranging from several meters to tens of meters) (Tang et al., 2023). Additionally, the 

penetration of the LiDAR signal is sometimes limited within GEDI’s coverage beams (Dubayah et al., 2020b).. InSAR 

coherence estimates also experience measurement uncertainty (Rodriguez and Martin, 1992; Touzi et al., 1999). To address 405 

these challenges, spatial averaging is commonly used to reduce errors for both coherence and GEDI measurements. 

 

In this context, a local fitting step is introduced to acquire temporal change factors at a finer spatial scale using extensive GEDI 

information: a circular window (32 pixels, 960 m wide) is set for each GEDI sample to collect regional samples and their 

corresponding InSAR coherence magnitude observations. A Euclidean norm-based fitting is used since a local window tends 410 

to encompass homogeneous vegetation with similar heights so that the global k-b fitting metric is no longer robust. Assuming 

consistent temporal change factors within each local window, the factors can be determined by: 

 {𝑆(𝑖, 𝑗), 𝐶(𝑖, 𝑗)} = arg min
𝑆,𝐶

∑ (ℎ𝑣̂(𝑖 + 𝑟, 𝑗 + 𝑐) − ℎ𝑔𝑒𝑑𝑖(𝑖 + 𝑟, 𝑗 + 𝑐))
2

(𝑟,𝑐)𝜖𝑊

 (9) 

{𝑆(𝑖, 𝑗), 𝐶(𝑖, 𝑗)} = arg min
𝑆,𝐶

∑ (ℎ𝑣̂(𝑖 + 𝑟, 𝑗 + 𝑐) − ℎ𝑔𝑒𝑑𝑖(𝑖 + 𝑟, 𝑗 + 𝑐))
2

(𝑟,𝑐)𝜖𝑊               (9) 

where 𝑊 is the local searching window in geographic coordinate system with 𝑟 and 𝑐 being local indices along the latitude 

and longitude direction within the local window. To preserve detailed information, weighting factors based on distance or 415 

similarity metric are used in local fitting, as in: 

 

{𝑆(𝑖, 𝑗), 𝐶(𝑖, 𝑗)} = arg min
𝑆,𝐶

∑ [𝑤(𝑟, 𝑐) (ℎ𝑣̂(𝑖 + 𝑟, 𝑗 + 𝑐) − ℎ𝑔𝑒𝑑𝑖(𝑖 + 𝑟, 𝑗 + 𝑐))](𝑟,𝑐)𝜖𝑊

2

∑ 𝑤(𝑟, 𝑐)2
(𝑟,𝑐)𝜖𝑊

 (10) 

{𝑆(𝑖, 𝑗), 𝐶(𝑖, 𝑗)} = arg min
𝑆,𝐶

∑ [𝑤(𝑟,𝑐)(ℎ𝑣̂(𝑖+𝑟,𝑗+𝑐)−ℎ𝑔𝑒𝑑𝑖(𝑖+𝑟,𝑗+𝑐))](𝑟,𝑐)𝜖𝑊

2

∑ 𝑤(𝑟,𝑐)2
(𝑟,𝑐)𝜖𝑊

                           (10) 

where the weights can be set based on spatial distances between neighboring pixels and the central pixel within the local 

window, or adapted depending on land-cover type (Deledalle et al., 2014). For simplicitycomputational efficiency and 

versatility, the spatial distance-based weight setting, as exemplified in Figure 7, has been used for inversion in this work., has 420 

been used for inversion in this work. The optimal local window size is determined by minimizing the root mean square error 

(RMSE) of forest height estimates for moderate-to-tall trees (>10 m) across diverse window size configurations, validated 

against independent LiDAR datasets. The selection of window size is always a compromise between smooth and detailed 

information. This window size is selected here for including enough samples for model fitting while maintaining local detailed 

information. As the parameters were determined on the grid of GEDI samples, a post-interpolation is needed to obtain gridded  425 

temporal parameters for matching the InSAR scene.   
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It should be noted that this physical scattering model (3) is established for forested areas, meaning it does not adequately 

address other land-cover types, such as water bodies and urban areas. Furthermore, actively managed regions (e.g., cropland) 

are subject to additional decorrelation effects induced by human activities. It was suggested to use L-band backscatter-based 430 

height estimates to improve the inversion in these instances. The backscatter-based inversion are derived based on an 

exponential model (Yu and Saatchi, 2016; Lucas et al., 2006) which can be determined using the similar global-to-local routine 

as the proposed approach. In practice, only global fitting strategy is used for model parametrizationparameterization as it 

provides accurate estimates as compared to global-to-local fitting (slightly worse) while maintains an affordable computational 

expense. After that, the estimates of active land management areas in coherence-based inversion are replaced by the 435 

corresponding backscatter-based estimates. 

 

Figure 7: An illustrated example of distance-based weight setting for a 0.96 km (32 by 32 pixels) wide moving boxcar window. The 

selection of window size is a compromise between smooth and detailed information. This window size is selected here for including 

enough samples for model fitting while maintaining local homogenous.  440 

 

23.4 Fusing non-concurrent radar-lidarRadar-LiDAR data 

23.4.1 Addressing Forest disturbance or Deforestation 

The acquisition times between repeat-pass InSAR and spaceborne LiDAR usually do not overlap in practice. For example, the 

ALOS-2 InSAR acquisitions would match those of GEDI ideally; however, there are not many ALOS-2 InSAR pairs available 445 

in the data archive that isare freely accessible. In contrast, ALOS InSAR pairs are consistently available covering the study 

regions; however, there is an approximate 10-year time gap. To address this issue, a two-foldtwofold solution is provided in 
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the following sectionsSection 3. The temporal evolution of forests is primarily influenced by two factors: forest disturbance 

(including deforestation) and natural growth. Forest disturbance or deforestation leads to forest loss and, in some cases, 

conversion to other land uses, such as bare ground. This change is poorly characterized by the signal model (3) and must be 450 

addressed in advance. 

 

The height of bare ground and short vegetation (≤ 10 𝑚) is better inverted by jointly using the SAR backscatter and spaceborne 

LiDAR information with respect to the inversion based on the InSAR correlationThe height of bare ground and short vegetation 

(≤ 10 𝑚) (Lawrence, 2013; Allaby, 2012) is better inverted by jointly using the SAR backscatter and spaceborne LiDAR data 455 

compared to the InSAR correlation-based approach (Lei, 2016). Moreover, annual global backscatter products are available 

from the archive of JAXA, enabling the fusion of the ALOS-2 SAR backscatter information and spaceborne LiDAR under 

nearly concurrent acquisition conditions. Figure 8 presents an example of how thedemonstrates forest loss is detecteddetection 

by SAR backscatter-based inversion within the New England region: the majority of forest disturbance areas as defined by the 

global forest change products (Hansen et al., 2013) were detected by the backscatter-based estimates. Based on the statistics 460 

over the New England region, 72% of disturbed areas have been detected using the backscatter-based estimates.  

 

Short forests undergoing rapid temporal height variations within short intervals cannot be adequately captured by current 

ALOS-1/2 datasets. These dynamic changes can be better resolved using dense time-series data from TanDEM-X (Treuhaft et 

al., 2017; Lei et al., 2018), Sentinel-1 (Bhogapurapu et al., 2024), and the forthcoming NISAR mission. 465 
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Figure 8: Example of fusing the ALOS-2 backscatter products and GEDI to detect forest disturbances as defined by Forest Change 

products (Hansen et al., 2013) over a representative region in the new England region. Yellow pixels represent forest disturbance 

areas detected by backscatter-based estimates, while red pixels indicate disturbed areas as not identified by these estimates. 470 

23.4.2 A modified model considering the natural forest growth 

The natural growth of forests remains another concern. In temperate forest regions, the Intact Forest Landscape (IFL) along 

with forest height maintain quite stable and only change slightly as trees grow (Potapov et al., 2008; Riofrío et al., 2023). In 

the New England region, the growth rate was found to be inversely proportional to forest height. This finding iis based on a 

comparison between ICESat-1 or LVIS LiDAR data acquired before 2009 with LVIS LiDAR data collected in 2021. Using 475 

these datasets, the temporal evolution of forest height at two epochs is modelled as follows: 

ℎ𝑣(𝑡2) = ℎ𝑣(𝑡1) + 𝐺 ⋅ (𝑡2 − 𝑡1) (11) 

with the growth rate (G) being expressed as: 

where ℎ𝑣 represents the time-dependent forest height, 𝑡1, 𝑡2 denote the initial and subsequent epochs, respectively. Although 

the forest growth rate is derived by comparing pre- and post-growth states, it can be modelled based only on forest height data 

from either epoch, for example, using the initial forest height ℎ𝑣(𝑡1): 480 

𝐺 = 𝑎 ⋅ ℎ𝑣(𝑡1) + 𝑏 (12) 

Where 𝑎 and 𝑏 are linear coefficients. If a dense time -series of forest height data over certain forest land cover is provided, 

the above equation can be constructed in a differential form as: 
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𝜕ℎ𝑣

𝜕𝑡
= 𝑎 ⋅ ℎ𝑣 + 𝑏 (13) 

This ordinary differential equation yields the following expression: 

𝐻(𝑡1) = (
𝑏

𝑎
+ 𝐻(𝑡2)) 𝑒−𝑎(𝑡2−𝑡1) −

𝑏

𝑎
 (14) 

This expression aligns with the Hossfeld model. However, it requires statistical data on annual growth rates, which is often 

unavailable on a large scale in practice. When the parameter 𝑎 is small, Eq. (14) simplifies to the form presented in Eq. (12). 485 

Evaluation in the New England region indicates the absolute value of 𝑎 is less than 0.02. By substituting Equation (12) into 

the signal model, the following expressionmodified model is obtained 

𝛾𝑡&𝑣
𝐻𝑉 (𝑡1)|𝛾𝑡&𝑣

𝐻𝑉 (𝑡1)|

= 𝑆(𝑡1) ⋅ sinc (
ℎ𝑣(𝑡2) − 𝑏 ⋅ 𝑑𝑡

(1 − 𝑎 ⋅ 𝑑𝑡) ⋅ 𝐶(𝑡1)
) (

ℎ𝑣(𝑡2) − 𝑏 ⋅ 𝑑𝑡

(1 − 𝑎 ⋅ 𝑑𝑡) ⋅ 𝐶(𝑡1)
)  

(15) 

Itwhere |𝛾𝑡&𝑣
𝐻𝑉 (𝑡1)| represents the InSAR coherence at initial time 𝑡1, it follows the model is shifted and scaled with respect to 

the original model (3)., 𝑑𝑡 = 𝑡2 − 𝑡1. 

 490 

As a representative example, Figure 9 illustrates the fitted forest growth rate (𝛼𝐺 = −0.0134 ⋅ ℎ𝑣(𝑡1) + 0.464; unit: 𝑚/𝑦𝑒𝑎𝑟)  

for the forest height interval with the highest density at the Harvard Forest site in Massachusetts. This analysis compares LVIS 

LiDAR data acquired in 2009 and 2021, after filtering out disturbed forests areas (𝛼𝐺 ≤ −0.1 𝑚/𝑦𝑒𝑎𝑟) and short vegetation 

(ℎ𝑣 ≤ 10 𝑚). To illustrate how the InSAR correlation observations from ALOS data are linked to GEDI forest estimates (with 

time gap of around 10 years), a simulation can be performed by inserting the fitted growth rate into the model (15) and setting 495 

𝑆(𝑡1) = 0.9 and 𝐶(𝑡1) = 11. Figure 10 presents the simulated results of original sinc model and its modified version. It follows 

that the forest height below 𝑏 ⋅ 𝑑𝑡 cannot be well characterized. This value usually ranges from 8 to 15 in the investigation 

over the New England region. This finding also highlights the importance of utilizing backscatter information to estimate the 

heights of short forests in this case. We remark that natural growth functions are highly species-specific.  From a practical 

inversion perspective, the application of the modified model requires precise detailed statistics of natural growth across various 500 

forest types on a large scale. However, such data are currently unavailable, as existing spaceborne LiDAR datasets lack 

collocated measurements from two distinct time periods. In the absence of comprehensive forest growth data, this model is 

not yet recommended for direct large-scale use. Instead, it can be integrated into the framework of the original model by 

adjusting temporal parameters. The following subsection provides simulation examples to demonstrate this adaptation. 

  505 
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Figure 9: (a) Scatterplot of forest height growth rate versus forest height, derived from a comparison of LVIS forest height estimates 510 
between 2009 and 2021 at the Harvard Forest site, Massachusetts. The red line represents the fitted growth rate function of forest 

height in 2009 over the high-density region. (b) the fitted forest height growth rate functions at typical forest sites of other states in 

the New England region. 
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 515 
Figure 10: Simulation results comparing the original sinc model and its modified version incorporating natural forest growth at the 

Harvard Forest site (with forest growth rate function of 𝜶𝑮 = −𝟎. 𝟎𝟏𝟑𝟒 ⋅ 𝒉𝒗(𝒕𝟏) + 𝟎. 𝟒𝟔𝟒). The blue line represents the original sinc 

model with established temporal parameters, while the red line shows the modified model accounting for forest height growth. The 

dashed orange line highlights the region that cannot be characterized by the modified model. The y-axis represents the coherence 

magnitude estimated from Equation (3) and (15). 520 

23.4.3 Approximating the modified model with the original model in the absence of natural growth data  

The application of the modified model requires precise Without detailed forest growth statistics of natural growth across 

various forest types on a large scale. However, this is not available at present, as existing spaceborne LiDAR datasets cannot 

provide collocated measurements at two different epochs. To maintain consistency with the model under concurrent acquisition 
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condition,subsection demonstrates the modified sinc model iscan be well approximated in the framework of the original sinc 525 

model but with updated parameters (𝑆′, 𝐶′) .using simulation. This enables large-scale application achieved in the framework 

of original model without detailed growth statistics. 

 

 It is almost impossible to derive 𝑆′and 𝐶′based on a direct one-to-one analytical transformation between the models (15) 

and (3). Instead, such parameters can be determined by aligning the original model and modified model at two fixed points. 530 

For example, Figure 11 presents the resolved parameters when the alignment is performed for two points at 10 and 30 m for 

simulating a global fitting case at three typical forest sites,  (e.g., addressing the whole scenescenes with a large dynamic range 

of forest heights.height ranges). The best approximation is observed at the Howland Forest site where the forest height changes 

slowly. Model mismatches are observed at 20 m at other two Forest sites. This can be addressed by aligning two models for 

each short interval. Figure 12 presents the behavior of newly fitted parameters when aligning either a short forest interval (e.g., 535 

10–11515 m) or a tall forest interval (e.g., 25–-30 m). The results suggest that the modified sinc model is better approximated 

through piecewise fitting, emphasizing the importance of local fitting to accurately representapproximate modified models for 

a short height range within relatively homogenous forest areas. The 𝑆′parameter increaseNotably, 𝑆′ increases and even 

exceedexceeds 1, particularly for taller trees, suggesting that thedeviating from its original physical definition of 𝑆′ ≤ 1 (e.g. 

only due to moisture-induced dielectric decorrelation in the original model) does not hold any longer.). As seen in the behavior 540 

of the fitted parameters for each short interval [𝑥 𝑥 + 5] in Figure 13, the 𝐶′parameters areparameter is larger than the 

original parameter C for short vegetation but approach C as vegetation height increase. While the 𝑆′parameter is close to the 

original S parameter for short trees and becomebecomes biased for tall trees.  For the three forest sites analysed, the White 

Mountain National Forest shows a larger forest height change rate, leading to a greater deviation between the fitted parameters 

(𝑆′, 𝐶′) and the original parameters (𝑆, 𝐶).   545 
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Figure 11: Approximating the modified sinc model with the original model by aligning two points at 10 and 30 m: the newly fitted 

parameters at (a) Harvard Forest sites; (b) the forest site in Vermont; (c) Howland Forest site. The y-axis represents the coherence 550 
magnitude estimated from Equation (3) and (15). 
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Figure 12: Approximating the modified sinc model with the original model by aligning two points either at 10 and 15 m or at 25 and 

30 m: the newly fitted parameters at (a) the Harvard Forest site; (b) the White Mountain National Forest site; (c) the Howland 555 
Forest site. The y-axis represents the coherence magnitude estimated from Equation (3) and (15). 
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Figure 13: illustration of the dynamic behavior of fitted (𝑺, 𝑪) parameters for three representative forest sites when approximating 

the modified sinc model with original model by local-fitting at fixing points at each forest height interval [𝒙, 𝒙 + 𝟓]. 560 

23.5 The selection of proper InSAR pairs and mosaicking 

Due to several decorrelation factors (induced by precipitation, human activities, etc.), the temporal decorrelation behavior over 

forested scenarios is complicated in the context of repeat-pass InSAR. For example, total decorrelation is possible to occur for 

ALOS-1 InSAR pairs with a temporal span larger than two months during the monsoon season. In this case, the InSAR 

correlation behavior is dominated by additional decorrelation sources and hence would no longer be well-suited for forest 565 

height inversion. 
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In this context, a pre-inversion metric and a post-inversion error assessment need to be defined when multiple InSAR pairs are 

available, to eliminate those scenes that would not work well for forest height inversion. 

 570 

An example of this evaluation is illustrated in Figure 14 and Table 3 below.  Here, the fitness of the temporal change model 

(3) for a given InSAR scene can be evaluated by testing the underlying assumption of the physical scattering model. 

Specifically, taller trees are more easily decorrelated over time due to the larger deviation of random motions compared to the 

short ones. A simple yet effective pre-evaluation metric can be attained by linear regression between the GEDI rh98 samples 

(only keeping forested landcoversland cover) and the coherence magnitude observations. Negative slope in the linear 575 

regression usually indicates a relevant validity of the inversion model. As shown in Figure 14 and Table 1,Table 3, InSAR 

pairs with a negative slope tend to yield more accurate estimates (e.g., the image pair with slope of -4.8676 gives better 

estimates with respect to the image pairs with of slopeslopes higher than -3). Note that while InSAR pairs with short temporal 

baselines may present higher correlation values, they may occasionally not be well-suited tofor the temporal decorrelation 

model due to regional precipitation.  580 
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Figure 14: Density scatterplot illustration of relation between repeat-pass ALOS-1 InSAR coherence (3*×10 window at 30 m grid) 

and GEDI rh98, and a red dashed fitted line with the slope as the pre-inversion metric.     585 
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Table 3: An example to illustrate the pre-inversion metric (slope) and their inversion performance (Root Mean Square Error (RMSE) 

and coefficient of determination (R2) are used here))) for the available InSAR pairs in 2007 at the Howland Forest site in Maine, 

U.S.   590 

InSAR pairs (time vs time) Slope RMSE R2 

20070710-20070825 -2.82 4.09 0.45 

20070825-20071010 -2.57 4.14 0.45 

20070710-20071010 -4.76  3.8 0.47 

 

The post-inversion metric is defined by using the figure of merit during the local fitting (10):(see Equation (10)): once one pair 

of temporal parameters ({𝑆(𝑖, 𝑗), 𝐶(𝑖, 𝑗)}) is determined, a weighted squared summation of the differences between inverted 

height estimates and GEDI measurements over a regional window is given by: 

 

𝜀(𝑖, 𝑗) =
∑ [𝑤(𝑟, 𝑐) (ℎ𝑣̂(𝑖 + 𝑟, 𝑗 + 𝑐) − ℎ𝑔𝑒𝑑𝑖(𝑖 + 𝑟, 𝑗 + 𝑐))](𝑟,𝑐)𝜖𝑊

2

∑ 𝑤(𝑟, 𝑐)2
(𝑟,𝑐)𝜖𝑊

 
(16) 

𝜀(𝑖, 𝑗) =
∑ [𝑤(𝑟,𝑐)(ℎ̂𝑣(𝑖+𝑟,𝑗+𝑐)−ℎ𝑔𝑒𝑑𝑖(𝑖+𝑟,𝑗+𝑐))](𝑟,𝑐)𝜖𝑊

2

∑ 𝑤(𝑟,𝑐)2
(𝑟,𝑐)𝜖𝑊

                                         (16) 595 

It can be noted that the derived post-inversion metric 𝜀(𝑖, 𝑗) is also in the same coordinate system as GEDI samples. A 

Delaunay-triangulation based natural neighborhood interpolation (Park et al., 2006) can be used afterwards to attain pixel-by-

pixel evaluation. Such pixel-level evaluation can be used for This assessment serves to guide the mosaicking theof overlapping 

areasregions between consecutive InSAR scenes where overlappingby preserving estimates with lower 𝜀(𝑖, 𝑗) are preserved 

for final map.. 600 

 

It should also be noted that since there are not enough InSAR pairs each year fromfor ALOS-1 due to its 46-day repeat cycledata, 

in this work, we only use the above-mentioned pre- and post-inversion metrics to pick outselect the best InSAR pair. However, 

if there are sufficient pairs from more recent spaceborne repeat-pass InSAR missions (such as 12 days for NISAR, 14 days for 

ALOS-4, and 4-8 days for LutanLuTan-1), a synthetic InSAR coherence map can be generated by applying the monthly, 605 

seasonal median, or maximum operationoperations (Kellndorfer et al., 2022). 
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3 Study area and datasets 

3.1 Study area 

This paper focuses on the northeastern regions of the U.S. and China. These regions contain transitional forests composed of 

both coniferous and broad-leaved species. As shown in Table 5, the New England region in the northeastern U.S. (including 610 

the states of Maine, New Hampshire, Vermont, Massachusetts, Connecticut, and Rhode Island) is selected for the generation 

and validation of the large-scale mosaic of forest height (covering a total area of 18 million hectares) due to the availability of 

ample airborne LiDAR datasets. Forests in this area are primarily dominated by coniferous forests (Red Pine, Balsam Fir, 

Hemlock etc.) and northern hardwoods (Maple, Oak, Beech, etc.). Importantly, the IFL and forest height in these regions 

maintain stable only with only natural forest growth (Riofrío et al., 2023). 615 

 

Another large-scale forest height mosaic is also generated over the northeast of China with a total area of 152 million hectares. 

As shown in Figure 12, the forest height mosaic for China covers five provinces: Hebei, Jilin, Liaoning, Inner Mongolia and 

Heilongjiang. Note that Jilin and Inner Mongolia provinces were not fully covered as only forested area within the GEDI 

observation coverage (<51.6° N) are addressed. The forests in the northeastern China can be primarily classified into four 620 

regions: 1) deciduous coniferous forest region located at the northmost parts of Inner Mongolia and Heilongjiang provinces; 

2) temperate mixed-forest region (comprising evergreen coniferous and deciduous broad-leaved species) primarily distributed 

in Heilongjiang and Jilin provinces; 3) northern temperate mixed-forest subregion situated in Liaoning province; and 4) 

temperate steppe region located partly in Hebei province and partly in Inner Mongolia province. 

 625 

One reason for selecting the northeastern U.S. and China as the study areas is the availability of extensive airborne LiDAR 

measurements, including NASA's Land, Vegetation, and Ice Sensor (LVIS) datasets in the U.S. and small-footprint photon-

counting LiDAR in China. Another objective for choosing these two regions is to evaluate the performance of forest height 

inversion in a more comprehensive manner: the New England region of the U.S. was selected for its abundance of GEDI 

calibration sites, while the northeastern part of China was chosen as a comparable region at a similar latitude but without 630 

dedicated GEDI calibration sites. 
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Figure 11: Study area and validation sites for the New England region in the U.S. The generated forest height mosaic map covers 

the states of Maine, New Hampshire, Massachusetts, Vermont, Connecticut, Rhode Island. The inversion results are validated 

against the large footprint (25-m) LVIS data acquired either in 2009 or in 2021 over the validation sites (denoted by red dot marker). 635 
At White Mountain National Forest site, small footprint GRANIT LiDAR data are also used for validation after reprocessing into 

equivalent RH98 metric map. The features of the validation sites are summarized in Table 2. 

 

Several experimental and validation sites are selected across the northeastern regions of the U.S. and China, with their relevant 

information summarized in Table 2 and Table 3, respectively.  In the New England region, validation is conducted at various 640 

sites including the Howland Forest site in Maine, Harvard Forest site in Massachusetts, the White Mountain National Forest 

(WMNF) site in New Hampshire, the Green Mountain National Forest (GMNF) site in Vermont, and the Naugatuck state 

forest site in Connecticut. These forest validation sites are covered by medium footprint (25 m) LVIS data acquired either in 

2009 or in 2021. Additionally, the forest height inversion over the WMNF site was evaluated using GRANIT airborne laser 

scanning (ALS) data acquired in 2011 (Haans et al., 2009), with the canopy height product extracted from the waveform data 645 

at a raster sampling spacing of 2 m. 

 

Regarding the northeastern region of China, evaluation was performed at one forest site in each province: the Mengjiagang 

Forest site in Heilongjiang province, the Dagujia Forest site in Jilin province, the Saihanba Forest site in Hebei province, the 

Hubao national park in Jilin province, and the Genhe Forest Bureau in Inner Mongolia province. Validation of the forest height 650 

product across all the forest validation sites in China was done by comparing against the small footprint (0.5 to 1 m) ALS data. 
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To provide a preliminary assessment of forest change in these two regions, forest loss maps derived from global forest change 

products (Hansen et al., 2013) are shown in Figures 13 and 14.  

  655 
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Figure 12: Study area and validation sites in the northeastern China. Five provinces are covered in the generated forest height 

mosaic: Jilin, Liaoning, Hebei, Heilongjiang, Inner Mongolia. The performance of the forest height inversion is assessed by 

comparing against small footprint (0.5-m to 1-m) LiDAR data at the validation forest sites (as indicated by the red diamond 660 
markers) in each province. The features of the validation sites are summarized in Table 3. 

Table 2 Forest validation sites covered by the airborne LiDAR observation in the New England, U.S 

Validation sites Location Dominated tree species 
LiDAR data 

acquisition year 
Slope statistics 

Howland Forest  
68°44′ W,  

45°12′N 

Red spruce (Picea rubens Sarg.) and 

eastern hemlock  
2009 

Mean: 2.3° 

STD: 5.3 

Harvard Forest 
72°11′W, 
42°31′N 

Red oak, Red maple, Black birch, 

White pine, Eastern hemlocc 
2021 

Mean: 5.5° 

STD: 4.6° 

White Mountain 

National Forest 

71°18′W,  
44°6′N 

Red Spruce, Eastern Hemlock, 

American Beech, and Red Maple, 
2011 

Mean: 9.7° 

STD: 8.6° 

Green Mountain 

National Forest 

73°04′W, 
43°57′N 

Sugar maple, American beech, red 

maple, yellow and paper birch 
2021 

Mean: 10.4° 

STD: 7.6° 

Naugatuck State 

Forest 

73°00′W 

41°27′N 

Northern red oak, Mixed upland 

hardwoods, Yellow-poplar 
2021 

Mean: 5.2° 

STD: 4.5° 
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Table 3 The forest validation sites covered by the ALS validation data in the northeastern China 

Validation sites Location Dominated tree species 
LiDAR data 

acquisition year 
Slope statistics 

Mengjiagang forest  
130°42′E,  
46°25′N 

Coniferous plantations (Larix 

gmelinii and Pinus syvestris) 
2017 

Mean: 6.6° 

STD: 5.6° 

Dagujia forest  
125°00′E,  
43°21′N 

Coniferous plantations (Larix 

kaempferi, Pinus koraiensis, etc) 
2018 

Mean: 13.5° 

STD: 7.4° 

Saihanba forest 

site 

117°18′E,  
42°24′N  

Larix principis-rupprechtii, Pinus 

syvestris, and Betula 
2018 

Mean: 8.7° 

STD: 7.3° 

Genhe forest site 
121°32′E,  
50°47′N  

Larix gmelinii, Betula platyphylla, 

Populus davidiana 
2022 

Mean: 7.0° 

STD: 5.4° 

Hubao forest site 
130°12′E,  
43°28′N  

Mongolian oak, Basswood, Betula 

platyphylla 
2018 

Mean: 8.7° 

STD: 7.4° 

 665 

 

Figure 13 The map of forest loss occurred from 2007 to 2023 within the New England region based on the global forest change 

product (Hansen et al., 2013). 
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Figure 14 The forest loss occurred from 2007 to 2023 within the northeastern China based on the global forest change 670 
products(Hansen et al., 2013) 

 3.2 Spaceborne and Airborne Remote Sensing datasets 

3.2.1 Spaceborne InSAR Datasets 

The freely accessible L-band InSAR data from Japanese Aerospace Exploration Agency (JAXA)’s Advanced Land Observing 

Satellite (ALOS) mission were used for generating the InSAR correlation observations. In addition, a few radar data from 675 

ALOS-2 (a follow-up mission of ALOS-1) were also employed as case studies for validating the fusion of radar-lidar under 

concurrent condition. Furthermore, the spaceborne LiDAR waveform-based metrics (rh98 as a proxy of forest height) from 

GEDI mission were used for parameterizing the temporal decorrelation model.   

 

Global Fine Beam Dual-polarization (FBD) SAR images with spatial grid of (10 × 3 m for range and azimuth directions) were 680 

collected by ALOS satellite from 2007 to 2010, with a repeat cycle of 46 days. To generate forest height mosaic, 100 cross-

polarized ALOS-1 InSAR scenes (identified by one pair of frame and orbit numbers) were processed to cover the New England 

region in the U.S., whereas more than 600 InSAR scenes were processed for covering the northeast of China. The InSAR 

preprocessing was done by JPL’s ISCE software. It was reported by (Lei and Siqueira, 2014) that the ALOS-1 InSAR 

observations acquired during the summer/fall time frame of 2007 and 2010 tended to have higher InSAR coherence. In the 685 
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practical processing, multiple cross-polarized interferograms during the lifetime of ALOS-1 (2007-2011) were formed and 

processed for each scene based on different combinations of acquisition dates, allowing for the identification of the best InSAR 

pair for each ALOS-1 observation scene. 

 

As a follow-on mission to ALOS-1, ALOS-2 had a shorter revisiting period (14 days), resulting in a better InSAR correlation 690 

behavior. The acquisition started from 2016, allowing for a nearly concurrent observations with respect to GEDI samples.  

However, the acquisition strategy and limited access to the high-resolution dual-polarized strip-map data have made it more 

difficult to form proper InSAR pairs and perform large-scale mapping. The grid of ALOS-2 image in FBD mode is at a grid 

of 8 × 4 m for range and azimuth directions. A windows size of 4 × 8 looks is used for the coherence estimation, resulting in 

an averaged pixel size of 30 m. 695 

 

In this study, the use of limited ALOS-2 data is devoted for demonstrating the proposed approach under ideal case. The large-

scale mapping capabilities were demonstrated using free-access ALOS data over the temperate forest regions. It is also noted 

that there is time discrepancy between the acquisition dates of ALOS and GEDI. This discrepancy is addressed using the two-

fold solution as detailed in Section 2.2. As for the abrupt discrepancy due to forest disturbance (e.g. logging, deforestation, 700 

and fire) that usually results in no/short vegetation with small backscatter values, replacing the InSAR inverted forest estimates 

with those derived from the appropriate ALOS-2 backscatter mosaic map for short vegetation (as shown in subsection 2.2.1) 

can detect the disturbed forest areas. And the study area is mainly concentrated on temperate and boreal forests, the heights of 

mature temperate forests (intact forest landscape) remain almost stable with slight change. Nevertheless, a simulation in 

subsection 2.2.3 shows the approach of this study can approximate the height of the forests subject to natural growth at regional 705 

scale. In other words, all the InSAR based height inversions are calibrated to the acquisition time of GEDI, and thus best 

compared with the concurrent airborne LiDAR validation data.  

 

3.2.2 Spaceborne LiDAR Datasets 

As the first spaceborne LiDAR mission to characterize ecosystem structure and its dynamic, the NASA’s GEDI mission was 710 

launched in December 2018. GEDI provides near-global measurements of forest structure metrics from 51.6° S to 51.6° N 

until 2024. With three lasers mounted, eight parallel tracks of samples at a footprint of 25 m are simultaneously collected. The 

spatial separation between samples during one datatake is 60 m in the along-track direction and 600 m in cross-track direction. 

The GEDI rh98 metric is selected as an appropriate proxy for indicating forest canopy height within each footprint because it 

has less sensitivity to errors as compared to the rh100 metric (Hofton et al., 2020). After filtering out GEDI samples with less 715 

penetration sensitivities (e.g., 95% sensitivity, 50 m maximum elevation difference between GEDI and TanDEM-X 

measurements), the remaining L2A version 2 GEDI samples are used for calibrating the inversion model. 
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3.2.3 Airborne LiDAR data 

3.2.3.1 Medium-footprint LiDAR data  720 

A significant amount of airborne full-waveform LiDAR data was collected across the U.S. using LVIS sensor. The LiDAR 

data were processed into rh98 maps at 25 m grid. Specifically, LiDAR data over the Howland Forest site in Maine were 

obtained in 2009. LVIS data acquired in 2021 for GEDI calibration cover all the other forest sites in the New England region, 

which were classified into four parts based on the state boundaries of New Hampshire, Vermont, Massachusetts, and 

Connecticut. 725 

 

3.2.3.2 Small footprint LiDAR data  

In some cases, small footprint LiDAR data have to be used for validating the inversion. The validation at the WNMF site 

utilized GRANIT LiDAR data, which has a 2 m footprint and was acquired in 2011. All the forest heights in the northeastern 

China were validated using small footprint LiDAR data. The airborne LiDAR data, with an average point density of 6 pts/m² 730 

over Hubao National Park, were acquired using an airborne LiDAR system owned by the Chinese Academy of Forest Inventory 

and Planning. The observations covering all other forest sites in the northeastern China were acquired during 2017-2022 using 

the airborne remote sensing system developed by the Chinese Academy of Forestry (Pang et al., 2016), which has an average 

point density of 12 pts/m². It should be noted that validating the forest height estimates against airborne LVIS observations is 

not straightforward, as the footprint of these airborne data is much smaller than the footprint of GEDI. To address this footprint 735 

difference, an equivalent RH98 metric (referred to as ERH98 hereafter) needs to be extracted at the position of the 98th 

percentile of the LiDAR waveform or from the histogram formed by high-resolution CHM estimates within a 25 m footprint. 

Following this procedure, all small-footprint LiDAR data were reprocessed to generate forest height estimates based on the 

ERH98 metric with the same footprint size.  

 740 

3.2.4 Forest and Non-forest Maps 

 Non-forest areas including water bodies and urban areas were masked out using the 2021 National Land Cover Database 

(Homer et al., 2015) and the 2021 ESRI Global Land Cover Map (Karra et al., 2021). 

 

3.2.5 Backscatter mosaic map 745 

This study used the global radar backscatter products generated by JAXA using ALOS-1/2 FBD images (Shimada et al., 2016) 

after radiometric and geometric calibration (including slope effects correction). Specifically, the global cross-polarized 

backscatter products from 2019 and 2020 over the northeast of the U.S. and China were utilized to obtain height estimates of 
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short vegetation. The two-year products were used to account for missing data gaps, backscatter calibration inconsistencies, 

and to best match the acquisition time of the validation airborne LiDAR data. 750 

4 Results 

This section begins by presenting large-scale forest height mosaic maps for the northeastern regions of the U.S. and China, 

and is followed by extensive validation for representative individual forest sites within these regions..  

 

4.1 Forest Height mosaic generation 755 

The proposed inversion approach was developed as an automated open-source software, serving as version 2 of the Forest 

Stand Height (FSH) software (https://github.com/Yanghai717/FSHv2). 

 

For generating the forest height mosaic map over the New England region (a total area of 18 million hectares), over 100 ALOS-

1 InSAR scenes were processed using a multi-look averaging (with two range looks and ten azimuth looks, leading to a pixel 760 

size of 20 by 30 m consistent with SRTM grid) and ~. Approximately 15 million GEDI rh98 samples were used for model 

parametrizationparameterization. The height estimates of short vegetation were replaced with the backscatter-based estimates 

using the ALOS-2 backscatter products in either 2019 or 2021. A few ALOS-2 InSAR pairs were also used for demonstrating 

theRadar-LiDAR fusion of  radar-lidar under concurrent acqusitionacquisitions. Non-forest areas were masked out based on 

the 2021 NLCD products. The mosaic was projected to the same geographic coordinate grid of SRTM DEM product. The 765 

forest height mosaic is depicted in Figure 15. The absence of discontinuity between adjacent scenes confirms the consistency 

of the forest height estimates. Additionally, the coastal region is included in the inversion, despite potential challenges posed 

by weather conditions (as reported in Lei et al., 2018).(Lei et al., 2019)). This underscores the advantage of using the global-

to-local two-stage inversion approach to handle fast spatially-varying temporal change factors induced by different land covers 

or weather/climate conditions. Further quantitative evaluation is conducted in subsequent sections, with a focus on each 770 

individual forest site. 

 

For the northeast of China, 688 ALOS-1 InSAR scenes and 160 million GEDI samples were used to generate the mosaic 

covering the five provinces (total area of 152 million hectares). Non-forested areas were masked out based on the 2021 

ERSIESRI global land cover maps. ALOS2ALOS-2 global backscatter maps for 2019 and 2020 were employed to estimate 775 

the height of short trees to match the acquisition time of the validation airborne LiDAR data. The final forest height mosaic is 

shown in Figure 16. It is noted the area outside the coverage of GEDI observation (>51.6°N) were discarded.  
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The generated products are made available via https://doi.org/10.5281/zenodo.11640299 (Yu and Lei, 2024). Further 

evaluation is shown in subsectionSubsections 4.2. 780 

 

 and 4.3. In both cases, small values of 𝜅𝑧 are maintained for all available InSAR pairs (𝜅𝑧 are below 0.15 rad/m, and the mean 

values are 0.032 rad/m and 0.029 rad/m for Chinese and American datasets, respectively) which is conformedconform to the 

assumption made in (Lei and Siqueira, 2014). 

 785 

https://doi.org/10.5281/zenodo.11640299
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Figure 15: 30 m gridded forest height mosaic map based on ALOS-1 InSAR and GEDI RH98 metric for the New England region in 

the U.S., with a total area of 18million hectares. The color map ranges from 0 m (“blue” for bare surfaces) to 35 m (“red” for tall 

trees). It was projected onto the map coordinate of SRTM DEM products. 790 
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Figure 16: 30 m gridded Forest height mosaic map based on ALOS-1 InSAR and GEDI RH98 metric for the northeastern region of 

China, with a total area of 152 million hectares.  

 

4.2 Validation over the New England region  795 

This subsection focuses onpresents the validation of  the forest height inversion at eachacross representative test sitesites in 

the New England, U.S. Two case studies over the Howland and Harvard Forest sites are presented initially to First, we assess 

the accuracy of the inversion over relatively flat surfaces. The evaluationresults for all selected forest sites using density 

scatterplots and corresponding error metrics including the Root Mean Square Error (RMSE),  coefficient of determination (R2),  

Standard Deviation (STD), and Bias. Unless otherwise stated, all density scatterplots and associated error metrics in this study 800 

are based on a 0.8-hectare (3×3 pixels) aggregated pixel size. A comparative analysis is then conducted between our inversion 

results and two existing forest height products: 1) the 30-m resolution GLAD canopy height map, derived by fusing  GEDI 
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and Landsat time-series (Potapov et al., 2021), and 2) the 10-m resolution ETH canopy height map, generated by fusing GEDI 

and Sentinel-2 data (Lang et al., 2022). Both products are validated against reference LiDAR data. 

Subsequently, case studies are presented to evaluate inversion performance under varying conditions. The Howland Forest site 805 

is analyzed to quantify improvements over our earlier methodology. A second case study focuses on the high-biomass region 

at the Harvard Forest site to assess inversion robustness in dense canopies. Finally, validation is extended to the White 

Mountain National Forest (WMNF) site, where with hilly topography, using high-resolution small -footprint LiDAR are used 

fordata as the validation.  data. 

 810 

4.2.1 Summary of the validation results over the northeastern U.S. 

Figure 17 presents density scatterplots comparing forest height estimates (derived from ALOS-1 mosaics or ALOS-2 single-

scene inversions where suitable InSAR pairs are available) across all test sites in the New England region of the U.S. Error 

metrics for these estimates are reported in the corresponding scatterplots.  

 815 

In short, the proposed inversion approach is capable of estimating forest height with an RMSE of 3-4 m in areas such as 

Howland and Harvard Forest sites, characterized by relatively flat topography and minimal human activity influence. In 

contrast, hilly or suburban areas like WMNF, GMNF, and Naugatuck State Forest (NSF) sites, exhibit slightly lower 

accuracy (RMSE 4-5 m). The ALOS-2 based inversion generally presents superior performance due to enhanced InSAR 

correlation behavior resulting from shorter temporal baselines, and less temporal discrepancy between radar and LiDAR data.  820 

For ALOS-1 inversion, the time mismatch between ALOS-1 and GEDI data is not a fatal problem as the inversion is carried 

out for temperate regions where the intact forest landscapes and forest height (of mature forests) remain stable. While our 

solution for addressing forest growth may not fully resolve temporal uncertainties, the resulting errors remain relatively minor, 

as evidenced by an RMSE of 3-4 m. This is also supported by the finding that the ALOS-1 based inversion is occasionally 

more accurate than ALOS-2 based estimates. 825 
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Figure 17: Density scatterplots comparing LiDAR validation data with forest height inversion estimates across multiple sites of the 

New England: Left panels show ALOS-1-based estimates; right panels show ALOS-2-based estimates. 
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In addition, we evaluate the inversion performance of two widely recognized global forest products: the GEDI-Sentinel (ETH) 830 

product (Lang et al., 2022) and the GEDI-Landsat (GLAD) product (Potapov et al., 2021). As shown in Table 4, both products 

exhibit significant biases across forest sites in the New England region compared with our ALOS-1 based estimates. 

Specifically, the GLAD product systematically underestimates canopy height, likely due to saturation effects in dense canopies, 

while the ETH product demonstrates larger systematic biases, consistently overestimating canopy height at all sites. These 

findings are consistent with the analysis by (Qi et al., 2025). In contrast, our inversion method achieves lower RMSE and 835 

smaller biases in most cases, with the exception of Naugatuck State Forest. At this site, hilly topography and suburban land 

cover likely contribute to reduced inversion accuracy. Notably, the ETH product exhibits lower STD and higher height-related 

R2 values, likely attributable to its integration of high-resolution sentinel-2 data. 

 

Table 4 Comparison of GLAD, ETH, and our ALOS-1 based canopy height products with airborne LiDAR data across all forest 840 
sites in the New England region. 

Validation sites  GEDI-Sentinel (ETH) 
GEDI-Landsat 

(GLAD) 

GEDI-ALOS 

(Our product) 

Howland Forest 

RMSE 5.71 5.59 3.81 

R2 0.53 0.1 0.47 

Bias 4.6 -1.87 -0.34 

Standard Deviation 3.38 5.21 3.78 

Harvard Forest 

RMSE 4.79 5.66 4.11 

R2 0.73 0.24 0.56 

Bias 3.35 -0.78 0.31 

Standard Deviation 3.45 4.62 4.10 

White Mountain 

National Forest 

RMSE 5.98 5.46 

0.22 

-0.87 

5.2 

4.08 

R2 0.58 0.33 

Bias 4.34 1.29 

Standard Deviation 4.04 3.87 

Green Mountain 

National Forest 

RMSE 5.55 5.78 

0.18 

-1.79 

5.09 

4.97 

R2 0.69 0.53 

Bias 3.93 0.46 

Standard Deviation 3.92 4.95 

Naugatuck State Forest 

RMSE 4.89 5.07 

0.45 

1.16 

4.43 

5.06 

R2 0.67 0.47 

Bias 2.83 -0.84 

Standard Deviation 3.98 5.01 
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4.2.2 Howland Forest site   

The Howland Forest was selected as one of the representative test sites, continuing from previous efforts in developing the 

inversion approaches (Lei et al., 2018; Lei and Siqueira, 2022). Comparing results from these earlier studies with the current 845 

onework allows for an evaluation of performance improvements. A strip of LVIS LiDAR data acquired in 2009 was used as 

the reference to assess the inversion accuracy of both the ALOS-1- based forest height mosaic map and the ALOS-2-based 

inversion from a single pair of ALOS-2 data (frame: 890, orbit: 37). The comparison between the inverted forest height 

estimates and the LVIS LiDAR data is presented in Figure 18, generating the differential height maps between the inversion 

and the LiDAR data as shown in Figure 19 (a) and (b). For quantitative analysis, density scatterplots and corresponding 850 

statistical error metrics comparing inversion results with validation data are displayed in the first row of Figure 17.  

 

The comparison between the inverted forest height estimates and the LVIS LiDAR data is illustrated in Figure 17: Validation 

of forest height inversion at the Howland Forest: (a) LVIS RH98 (25 m footprint acquired in 2009), (b) inversion extracted 

from ALOS-1 mosaic (c) ALOS-2 based inversion, and the difference maps of (d) ALOS-1 based inversion versus LVIS data 855 

and (e) ALOS-2 based inversion versus LVIS data., featuring the differential height maps between the inversion and the LiDAR 

data (Figure 17 (d) and (e)). After aggregating the pixels of the inversion and validation maps into 0.8 hectare units (3 by 

3 pixels) by averaging, scatterplots of the comparisons are provided in Figure 18 for a quantitative interpretation. Four error 

metrics were used for statistical evaluation of the inversions: the coefficient of determination (R²), Root Mean Square Error 

(RMSE), Bias, and Standard Deviation. Unless otherwise specified, all the scatterplots of comparisons and the derived error 860 

metrics presented in this paper are based on an aggregated pixel size of 0.8 hectare. 

 

The comparison indicates that the ALOS-1-based mosaic inversion can estimate forest height with an RMSE of 3.8 m. Due to 

the better correlation behaviour achieved with a 14-day temporal baseline, the ALOS-2-based single scene inversion achieves 

a forest height accuracy with an RMSE of 3.6 m. In previous efforts, the accuracy of forest height inversion was reported as 865 

an RMSE of 4 m at a 6.25-hectare aggregated pixel size. Thanks to the availability of extensive GEDI samples and the global-

to-local two-stage inversion approach, the algorithm achieves a significantly improved inversion accuracy, even at a finer grid. 

 

Indeed, the dense spatial distribution of GEDI samples allows for finer characterization of temporal factors (𝑆, 𝐶), as shown 

in Figure 19. As predicted in subsection 2.2.3, the saturation behavior of S parameters is due to the approximating of the 870 

modified model with natural forest growth (15) using the original model (3) in the local window with taller forests. This 

approach, which fuses SAR information with GEDI samples, not only addresses the wall-to-wall mapping issue inherent in 

the discrete sampling of GEDI observations but also enhances the accuracy of forest height inversion. As shown in Figure 20, 

the 30 m interpolated GEDI based forest height maps still face discontinuity problems. However, by incorporating ALOS-2 

InSAR coherence observations, an accuracy improvement of up to 20% has been achieved.  875 
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Figure 18: Validation of forest height inversion results at the Howland Forest site: (a) LVIS RH98 canopy height map (30 m grid), 

(b) inversion extracted from ALOS-1 mosaic, and (c) ALOS-2 based inversion. 880 
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Figure 19: Validation of forest: The differential height inversion at the Howland Forest: (a) LVIS RH98 (25 m footprint acquired 

in 2009), (b) inversion extracted from ALOS-1 mosaic (c) ALOS-2 based inversion, and the difference maps of (da) ALOS-1 based 

inversion versus LVIS data and (eb) ALOS-2 based inversion versus LVIS data. 

 

 885 

Figure 18: Density scatterplots of forest height inversion at the Howland Forest site for (a) ALOS-1 mosaic versus LVIS LiDAR, 

and (b) ALOS-2 single scene versus LVIS LiDAR. 
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The comparison reveals that the ALOS-1-based mosaic inversion estimates forest height with an RMSE of 3.8 m. In contrast, 890 

the ALOS-2-based single-scene inversion achieves enhanced accuracy (RMSE = 3.6 m), likely due to improved correlation 

from its 14-day temporal baseline. To compare these results against our earlier work (Lei et al., 2019), we applied the global-

fitting based inversion method (in the left panel of Figure 20), which yielded an inversion accuracy of RMSE = 4.38 m at an 

aggregated pixel size of 0.81 ha. This demonstrates that the global-to-local two-stage inversion approach significantly 

improves inversion accuracy, particularly over tall forest regions.  895 
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Figure 20: : (a) global-fitting based inversion  (Lei et al., 2019) applied to the scene (𝑺 = 𝟎. 𝟗𝟒, 𝑪 = 𝟗), (b) comparing 90 m gridded 

maps from (a) with corresponding LVIS data; (c) interpolated 30 m gridded GEDI height map; (d) density scatterplot comparing 

the interpolated 30 m GEDI map with LVIS LiDAR data; (e) density scatterplot comparing ALOS-2-based inversion results with 

LVIS LiDAR data. 900 

 

By synergistically combining SAR data with GEDI samples, this methodology not only resolves the wall-to-wall mapping 

limitations inherent to GEDI’s discrete sampling but also improves inversion precision. As shown in the right panel of Figure 

20, the 30 m interpolated GEDI based forest height maps still face discontinuity problems. However, an accuracy improvement 

of up to 20% has been achieved for ALOS-2 based estimates. This enhancement stems from the refined characterization of 905 

temporal parameters (𝑆, 𝐶) , enabled by leveraging GEDI’s dense spatial sampling, as shown in Figure 21. As anticipated in 

Section 3.4.3, the saturation behavior of 𝑆 parameters arises from approximating the modified forest growth model (15) using 

the original model (3) in the local window with taller forests. 
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Figure 21: the interpolated maps of temporal change parameters for (a) S and (b) C 910 
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Figure 20: (a) 30 m gridded interpolated GEDI height map and (b) density scatterplots comparing 30 m interpolated GEDI map and 

LVIS LiDAR data (c) density scatterplots comparing ALOS-2 based inversion with LVIS LiDAR data. Both (b) and (c) were created 

at the raw pixel size of 30 m. 915 

 

4.2.2.3 Harvard Forest site 

The Harvard Forest site was selected to evaluate the inversion in a region characterized by high biomass, up to 400 Mg/ha 

(Tang et al., 2021). Figure 22 presents the LVIS validation data acquired in 2021, covering the Harvard Forest area in subfigure 

(a), and the forest height estimates extracted from the ALOS-1 mosaic and the ALOS-2 single-scene inversion results (frame: 920 

2770, orbit: 141) in subfigures (b) and (c). The comparison of ALOS-1 and ALOS-2 inversion results against the validation 

data is illustrated in the differential height maps in Figure 23. The density scatterplots from these two comparisons are given 

in the second row of Figure 17. 
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Both the ALOS-1 mosaic and ALOS-2 single-scene inversion are capable of estimating forest height with an RMSE of 4 m. 925 

The biased estimationestimates occurred in taller forest stands may be attributed to the degraded sensitivitiessensitivity of 

GEDI measurements forover dense tall forest stands (Fayad et al., 2022). 
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 930 
Figure 22: Validation of 30 m gridded forest height inversion at the Harvard Forest site: (a) LVIS LiDAR RH98, (b) ALOS-1 based 

estimates (c) ALOS-2 based inversion. 
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Figure 23: Differential height maps over the Harvard Forest site: (a) ALOS-1 mosaic versus LVIS LiDAR, and (b) ALOS-2 single 935 
scene versus LVIS LiDAR. 
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Figure 23: Density scatterplot of forest height comparison over the Harvard Forest site:  (a) ALOS-1 mosaic versus LVIS LiDAR, 

and (b) ALOS-2 single scene versus LVIS LiDAR. 

 940 

 

4.2.34 White Mountain National Forest site 

The evaluation of the forest height inversion approach shouldwill also be extended to mountainous areas like the WMNF site, 

considering the potential challenges GEDI and InSAR observations might face in these regions. These challenges include 

GEDI'sGEDI’s geolocation shifts and slope effects, as well as radar's viewing geometry problems (e.g., layover, shadow, 945 

foreshortening). 

 

As reference data, aA high-resolution Canopy Height Model (CHM) was generated using), derived from small -footprint 

GRANIT LiDAR data. As detailed , serves as the validation reference. As outlined in Section Subsection 2.2.3.2, due to the 

footprint difference between small -footprint LiDAR data and GEDI observations, an equivalent RH metric must be extracted 950 

within the same footprint size as GEDI observations to ensure a fair comparison (see Figure 24 (a)). Without this adjustment, 

significant bias occurs if the comparability. Directly comparing GEDI-based forest height inversion is directly compared 

against the re-projected high-resolutioninversions with the reprojected CHM model simply by, via resampling or multi-pixel 

averaging. , without this adjustment introduces significant bias. Figure 24 illustrates the difference between the ERH98 metric 

and the mean value (or ERH50 metric) in subfigure (a) and shows the maps of these two metrics in subfigures (b) and (c). It 955 

is evident that theNotably, ALOS-1-based forest height estimates, as shown in subfigure (Figure 24 (d), are consistent)) align 

closely with the ERH98 metric in subfigure(Figure 24 (b).)). The differential height map and the corresponding density 

scatterplot are shown inof the differential map is provided in the third row of Figure 17. 
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Figure 24: (a) An example of histogram formed by small footprint CHM values within the GEDI footprint, with mean height and a 

98-th percentile height marked by the red dashed and red solid lines, respectively.  (b) 30 m gridded reprocessed forest height based 

on the ERH50 metric, (c) 30 m gridded reprocessed forest height based on the ERH98 metric and (d) corresponding forest height 

estimates extracted from ALOS-1 mosaic. 965 
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Figure 25: (a) Differential height map between the ALOS-1 mosaic and GRANIT ERH98 map and (b) the corresponding density 

scatterplots. 
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4.2.4 Summary of the validation results over the northeastern U.S. 

Table 4 summarizes the error metrics of the forest height estimates (from either the ALOS-1 mosaic or the ALOS-2 single 

scene inversion when suitable InSAR pairs are available) across all the test sites in the New England Region considered in this 

study. The density scatterplots of all comparisons are depicted in Figure 26. 

 975 

In summary, the proposed inversion approach is capable of estimating forest height with an RMSE of 3-4 m in areas 

such as Howland and Harvard Forests, characterized by relatively flat topography and minimal human activity 

influence. As a comparison, in hilly or suburban areas like WMNF, GMNF, and Naugatuck State Forest sites, an 

accuracy of 4-5 m is achieved. The ALOS-2 based inversion generally presents superior performance due to enhanced 

InSAR correlation behavior resulting from shorter temporal baselines, and less time discrepancy between radar and 980 

LiDAR data.  For ALOS-1 inversion, the time mismatch between ALOS-1 and GEDI data is not a fatal problem as the 

inversion is carried out for temperate regions where the intact forest landscape and forest height (of mature forests) 

remain stable. Our two-fold solution for address forest change might not be perfect and introduce errors. However, 

besides these uncertainties, the forest height is estimated with an RMSE of 3–4 m/ha, suggesting that this part of error 

is relatively minor.4.3 Validation against ALS data over the northeastern region of China 985 

The forest height mosaic for northeastern China was validated exclusively against small-footprint airborne laser scanning (ALS) 

data at representative forest sites. These high-resolution ALS datasets were processed into ERH98 metric maps following the 

methodology detailed in Subsection 2.2.3. Initial analysis focused on density scatterplots across all surveyed sites.  For a deeper 

investigation, two case studies were examined: Hubao National Park and Genhe Forest Bureau. Hubao National Park was 

selected due to the absence of significant forest disturbance, as demonstrated in Figure 4, while Genhe Forest Bureau was 990 

chosen for testing the inversion performance over boreal forest bioregion in China. 

 

4.3.1 Summary of the validation over the northeast of China 

Forest height estimates across all sites across the northeast of China were validated against ERH98 metrics derived from small-

footprint airborne LiDAR data. Density scatterplots as well as error metrics for the representative forest sites are summarized 995 

in Figure 26. The highest accuracy was observed at the Mengjiagang Forest site, achieving an RMSE of 3.32 m and a R2 up 

to 0.84. Most inversions exhibit a slight negative bias, likely due to GEDI’s reduced signal penetration capability compared to 

airborne LiDAR. Slightly less accurate estimates are provided by the ALOS-2 based inversion at the Saihanba forest site, 

attributed to the limited overlapping area between the ALOS-2 single-scene inversion and ALS validation observations. This 

limitation arises from the distribution of heterogeneous land cover influenced by human activities. Overall, forest height 1000 

estimates align closely with ERH98 LiDAR benchmarks, with accuracies of 3-4 m (even below 3.5 m at three sites) with R2 

predominantly exceeding 0.65.  
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Notably, inversion performance in northeastern China surpasses results from GEDI calibration sites in the northeastern U.S., 

likely due to fewer forest disturbance in the selected represented forest sites (See Figure 4) compared to those in the 1005 

northeastern U.S., as shown in Figure 3.  
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 This is also supported by the finding that the ALOS-1 based inversion is occasionally more accurate than ALOS-2 based 

estimates. 1010 
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Table 4 Error metrics for forest height inversion based on ALOS-1 or ALOS-2 InSAR data, compared with airborne LiDAR data 

across all forest sites in the New England region, at a 0.81-hectare aggregated pixel size. A dash ('-') indicates that no suitable ALOS-1015 
2 InSAR pairs. 

Validation sites  ALOS-1 based ALOS-2 based 

Howland Forest 

RMSE 3.81 3.61 

R2 0.47 0.50 

Bias -0.34 0.02 

Standard Deviation 3.78 3.61 

Harvard Forest 

RMSE 4.11 4.02 

R2 0.56 0.6 

Bias 0.31 0.14 

Standard Deviation 4.10 4.02 

White Mountain 

National Forest 

RMSE 4.08 

- 
R2 0.33 

Bias 1.29 

Standard Deviation 3.87 

Green Mountain 

National Forest 

RMSE 4.97 

- 
R2 0.53 

Bias 0.46 

Standard Deviation 4.95 

Naugatuck State Forest 

RMSE 5.06 

- 
R2 0.47 

Bias -0.84 

Standard Deviation 5.01 
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Figure 26: Density scatterplots comparing LiDAR validation data with forest height inversion estimates: (a) ALOS-1 and (b) ALOS-

2 for the Howland Forest site, (c) ALOS-1 and (d) ALOS-2 for the Harvard Forests, and ALOS-1 estimates for (e) WMNF, (f) GMNF, 1020 
and (g) Naugatuck State Forest. across multiple sites of northeastern China based on the ALOS-1 InSAR observation (left panels), 

and the ALOS-2 observation (right panels). 
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4.3 Validation against ALS data over the northeastern region of China 

The forest height mosaic over the northeastern China was validated solely against small footprint ALS data at represenative 1025 

forest sites. These high-resolution ALS data were processed into ERH98 metric maps based on the method as defined in 

Section 4.2.3. Similarly, two case studies over Hubao National Park and Genhe Forest Bureau are presented for detailed 

analysis. These two forest sites were chosen due to the significant dynamic range of tree height observed in both regions. 

 

4.3.1 Hubao National Park Forest site 1030 

4.3.2 Hubao National Park Forest site 

Hubao National Park is selected here as it represents one of the typical temperate regions with the richest biodiversity in terms 

of wildlife and plants in the northern hemisphere. The validation of forest height is shown in Figure 27:Figure 27: Panel (a) is 

generated by reprocessingdisplays an ERH98 map derived from reprocessed 1 m resolution canopy height model (CHM map) 

data acquired in 2018 into the ERH98 map , using a window with thesize same size as GEDI footprint. Compared to the 1035 

reference data, Figure 28footprints.  Panels (b) and (c) show thepresent forest height estimates based onfrom ALOS-1 single -

scene (frame: 860, orbit: 421) inversion (Frame 860, Orbit 421) and based on a single pair of ALOS-2 single-pair InSAR data 

(frame:Frame 860, orbit:Orbit 130), respectively. The detailed differential height maps are provided in Figure 28. 
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 1040 

Figure 27: Comparison of the forest height inversion with LiDAR data at the Hubao National Park site: (a) ALS ERH98 metric map. 

The red rectangle denotes the coverage of (b) ALOS-1 based single-scene inversion, whereas the blue rectangle indicates the coverage 

of (c) ALOS-2 based single-scene inversion. 
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). It can be observed from  

Figure 28: Differential height map between (Upper panel) the ALOS-1 based inversion and ERH98 validation data, and between 1045 
(Bottom panel) the ALOS-2 based inversion and ERH98 validation data. 
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As shown in the density scatterplots in Figure 28 that(see the bottom row of Figure 26), both ALOS-1 mosaic and ALOS-2 

single-scene based inversion results inversions align wellclosely with the ALS derived ERH98 at an accuracydata, achieving 

accuracies of 3.5-3.8 m with a 𝑅2R2 up to 0.7. This yields accurate estimates These results demonstrate the inversion precision 1050 

comparable to airborne LiDAR measurements foracross both short and tall vegetation. types. Differential height maps highlight 

discrepancies in transitional zones between forested and bare surfaces, underscoring the need for higher spatial resolution data 

integration (e.g., fusing TDX-GEDI data (Hu et al., 2024; Lei et al., 2021; Qi et al., 2025)) to refine estimates in such areas. 

 

 Slightly better performance for ALOS-1 based inversion is attributed to the fact that the ALOS-1 InSAR data archive offers 1055 

the possibility to pick out the best InSAR pair with better correlation behavior; however, the availability of proper ALOS-2 

InSAR data is limited.  

 

 

Figure 27: Comparison of the forest height inversion with LiDAR validation data at the Hubao National Park site: (a) ALS ERH98 1060 
metric map. The red rectangle denotes the coverage of (b) ALOS-1 based single-scene inversion, whereas the blue rectangle indicates 

the coverage of (c) ALOS-2 based single-scene inversion. 

 

 

 1065 
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Figure 28: Density scatterplots comparing forest height inversion over the validation site in Hubao National Park: (a) ALOS-1 single 

scene versus ALS ERH98, and (b) ALOS-2 single scene versus ALS ERH98 

4.3.23 Genhe Forest Bureau 1070 

AnotherA second case study in the northeast of China isexamines the Genhe Forest Bureau, situated in northeastern China 

within one of the country’s northernmost places in China.boreal forest regions. Figure 29 exhibitspresents (a) the reference 

ERH98 map regeneratedderived from 1 m footprintresolution airborne LiDAR data, (b) the corresponding forest height 

estimates extracted from the ALOS-1 forest height -based mosaic, and (c) the estimatesresults from the ALOS-2 single-scene 

inversion.  It is evidentDifferential height maps are shown in Figure 29 (a) that theFigure 30. The spatial distribution of forest 1075 

height is nearly identicalheights in both the reference map and the inversion results. Furthermore, the inverted forest 

heightALOS-1 and ALOS-2 inversions closely aligns with the matches the reference ERH98 map, though primary 

discrepancies occur in short vegetation and bare surfaces, likely linked to anthropogenic disturbances. 

 

Quantitative validation (see the third row of Figure 26) confirms strong agreement between inverted and reference data, 1080 

achieving forest height estimates, with an RMSE of 3.6 m and an R²R2 of 0.65 (see Figure 30), thereby, demonstrating the 

method’s effectiveness and promising accuracy of this approach in boreal regionsecosystems. 
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Figure 29: Comparison of the forest height inversionmapping over the  Genhe Forest Bureau: (a) ALS ERH98 metric generated 1085 
based on 25 m footprint; (b) ALOS-1 mosaic with red rectangle box indicating the overlapping area with (a), and (c) ALOS-2 based 

single-scene inversion. 
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(a) (b) 

 

Figure 30: Density scatterplots of the comparison of forestDifferential height map between (left panel) the ALOS-1 based inversion 1090 
over the Genhe Forest Bureau in Inner Mongolia province: (a) ALOS-1 mosaic versus ALS and ERH98 validation data, and 

(b)between (right panel) the ALOS-2 single scene versus ALSbased inversion and ERH98 validation data. 
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4.3.3 Summary of the validation over the northeast of China 1095 

The forest height estimates of all the forest validation sites were compared against the ERH98 data generated from the small 

footprint airborne LiDAR data. The error metrics of all the comparisons (See Figure 31) are concluded in the Table 5. It can 

be observed that the best inversion performance is achieved at the site of Mengjiagang forest with an RMSE of 3.32 m and a 

R2 up to 0.84. Most of forest height inversions present the negative bias, which may be attributed to the relatively weaker 

penetration capabilities for GEDI compared to the airborne LiDAR. Slightly less accurate estimates are provided by the ALOS-1100 

2 based inversion at the Saihanba forest site, attributed to the limited overlapping area between the ALOS-2 single-scene 

inversion and ALS validation observations. This limitation arises from the distribution of heterogeneous land covers influenced 

by human activities. In summary, almost all forest height estimates align well with the ERH98 ALS data, achieving an accuracy 

of 3-4 m (even below 3.5 m in three sites) with R² mostly above 0.65. This shows better inversion performance in areas farther 

away from the GEDI calibration sites in the northeastern U.S., due to the less forest disturbance activities in northeastern China 1105 

(See Figure 13) compared to the northeastern U.S. as presented in Figure 14. In this way, the errors caused by the proposed 

two-folded solution for accounting for forest change are minimized. 
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Figure 31: Density scatterplots of forest height inversions based on the ALOS-1 InSAR observations (left column), and the ALOS-2 1110 
observations (right column) for the forest sites (one site per row) listed in the same order as in Table 5. 



 

84 

 

Table 5 Error metrics of forest height inversion (based on ALOS-1 and ALOS-2 data) against airborne LiDAR data in all the forest 

sites of the northeastern China at 0.81-hectare aggregated pixel size. 

Validation sites  ALOS-1 based ALOS-2 based 

Mengjiagang Forest 

RMSE 3.32 3.48 

R2 0.84 0.78 

Bias -1.16 -0.41 

Standard Deviation 3.11 3.46 

Dagujia Forest  

RMSE 3.96 3.93 

R2 0.69 0.67 

Bias -1.29 0.32 

Standard Deviation 3.74 3.92 

Genhe Forest Bureau 

RMSE 3.60 3.64 

R2 0.65 0.63 

Bias -1.1 -0.96 

Standard Deviation 3.43 3.51 

Saihanba Forest  

RMSE 3.45 4.04 

R2 0.68 0.33 

Bias -0.79 0.23 

Standard Deviation 3.35 4.04 

Hubao National Park 

RMSE 3.48 3.64 

R2 0.7 0.69 

Bias -0.51 -0.74 

Standard Deviation 3.44 3.57 

 

 1115 

55 Discussion 

This section outlines key limitations of the proposed inversion inframework. A primary challenge stems from the complex 

InSAR correlation behavior induced by weather fluctuations (e.g., precipitation), particularly when constrained by a limited 

number of InSAR pairs. Future missions such as NISAR and BIOMASS (Quegan et al., 2019) are expected to mitigate this 

issue. As data stacks accumulate rapidly within each season, seasonally synthesized coherence maps could be produced by 1120 

averaging or selecting maximum coherence values from all available pairs (Kellndorfer et al., 2022). For example, leveraging 

NISAR’s 12-day repeat cycle would generate 7 interferometric pairs per season (or 30 annually), enabling the creation of 
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seasonally or annually averaged coherence maps. These refined datasets could significantly enhance the robustness of forest 

height inversion. 

 1125 

To address the temporal mismatch between ALOS-1 and GEDI datasets, we propose a twofold solution to account for forest 

change dynamics. While this approach does not fully capture inherent forest variability, the achieved forest height estimation 

accuracy of 3–4 m/ha suggests that its impact is negligible in temperate regions, where intact forest landscapes exhibit minimal 

canopy height variation due to gradual tree growth. 

 1130 

The methodology also depends on precise, spatially representative calibration samples from GEDI. Two key challenges arise: 

(1) slope-induced biases in GEDI forest height estimates, and (2) sparse sampling coverage in boreal and equatorial tropical 

regions. The first limitation can be mitigated using the RH metric derived from slope-corrected waveforms (Wang et al., 2019). 

The second issue may be resolved by integrating complementary LiDAR datasets, such as NASA’s ICESat-1/2 missions. 

Combining ALOS-1/2 data with both GEDI and ICESat-1/2 observations would improve the method’s accuracy and 1135 

adaptability, particularly in tropical ecosystems. 

 

Finally, the current inversion framework employs a fixed-size, distance-based weighting window to perform local fitting. This 

approach could be enhanced by using  an adaptively sptial-varying window size driven by multi-parameter classification.  

6 Conclusions 1140 

This paper presented a global-to-local two-stage forest height inversion approach for large-scale forest stand height mapping 

using L-band spaceborne repeat-pass InSAR and spaceborne GEDI LiDAR. This work extended our previous efforts in forest 

stand height mapping (FSH: https://github.com/leiyangleon/FSH; Lei and Siqueira, 2014, Lei and Siqueira, 2015, Lei et al., 

2018) at large scale by incorporating GEDI LiDAR samples for capturing local information. The sparsely yet extensively 

distributed LiDAR samples provided by the GEDI mission are used to parameterize the semi-empirical InSAR scattering 1145 

model and to obtain forest height estimates. Building on earlier works (Lei et al., 2018; Lei and Siqueira, 2022), this paper 

removed the assumptions made(Lei et al., 2019; Lei and Siqueira, 2022), this paper removed the assumptions previously 

imposed by the limited availability of calibration samples before, and developed a new inversion approach based on a global-

to-local two-stage inversion scheme. An effective use of regional GEDI samples in this approach allows for finer 

characterization of temporal decorrelation patterns and thus higher accuracy in forest height inversion while also suppressing 1150 

problemsissues in individual GEDI sample, e.g.., geolocation errorerrors. This approach was supported by fusing the ALOS-

2 InSAR data and GEDI data under nearly concurrent conditionconditions. This approach is further applied to open-access 

ALOS-1 data for testing its mapping capabilities at large scale. To address the temporal mismatch between ALOS-1 data and 

GEDI data, the introduction of fusing ALOS-2 backscatter data and GEDI data is able to detect disturbed forest areas. 
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Furthermore, a modified signal model is derived for addressing natural forest growth over temporatetemperate forest regions 1155 

where the intact forest landscape and forest height are stable with slight change. Without detailed forest growth data, 

simulations  confirmed that this modified model is found to be well -approximated with original model via local fitting. based 

on simulation. For evaulatingevaluating its performance,  two forest height mosaic maps were generated to investigate the 

northeastern regions in the U.S. and China, covering a total area of 18 million hectares and 152 million hectares, respectively. 

Validation of the forest height estimates demonstrates substantial accuracy improvements achieved by the proposed approach 1160 

compared to the previous efforts, i.e., from 4 m RMSE for 6.25-hectare aggregated pixel size to 3.8 m RMSE for 0.81-hectare 

aggregated pixel size at the Howland Forest site. The proposed fusion approach not only addresses the sparse spatial sampling 

problem of the GEDI mission, but also improves the accuracy of forest height estimates compared to the GEDI interpolated 

height estimates by 20%. The extensive evaluation of forest height inversion against LVIS LiDAR data over northeastern U.S. 

indicates an accuracy of 3-4 m on the order of 0.81 hectare over smooth areas and 4-5 m over hilly areas, while the forest 1165 

height estimates over northeastern China compare well with small footprint LiDAR validation data even at an accuracy of 

below 3.5 m on the order of sub-hectare and with R2 mostly above 0.6.  

 

The currentDespite the limitations of this work include the complicated InSAR correlation behavior induced by weather 

condition changes (e.g., precipitation) when only limited InSAR pairs are available. This issue can be addressed with future 1170 

InSAR missions where InSAR data stacks quickly accumulate within each season, allowing for a synthetic seasonal InSAR 

coherence map to be generated by averaging or takingoutlined in Section 5, the maximum value of all available InSAR pairs 

(Kellndorfer et al., 2022). For example, given the 12-day repeat cycle of NISAR, there would be 7 (or 30) 12-day InSAR pairs 

during each season (or year), enabling the synthesis of seasonally (or annually) averaged InSAR coherence observations for 

more robust height inversion.   1175 

 

As for the temporal mismatch between ALOS-1 and GEDI data, the two-fold solution is provided for adressing the forest 

changes. This solution might not be perfect for addressing the complex temporal evolution of forests. Provided that the 

achieved forest estimation method demonstrates promising forest height accuracy at 3-4 m/ha, this should not be a fatal 

problem over the temporate forest regions where intact forest landscape and forest height remain alomst stable, and only change 1180 

slightly as trees grow. 

 

Additionally, this approach reies on accurate and well-distributed calibration samples provided by GEDI observations. Such 

requirements may not always be met due to: 1) slopes causing biased forest height estimates for GEDI, and 2) limited 

observation capabilities over the boreal zone, along with reduced sample collection over tropical regions near the equator. The 1185 

first issue can be mitigated by using the RH metric extracted from slope-corrected waveforms (Wang et al., 2019). The latter 

problem may be addressed by incorporating forest height measurements from other LiDAR satellites, such as NASA’s ICESat-
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1/2. Forest height mapping based on the proposed approach can be improved (and also easily adapted) by fusing ALOS-1 with 

both GEDI and ICESat-1/2 data, particularly  for tropical regions. 

 1190 

Despite these limitations, the achieved accuracy of forest height inversion at a the sub-hectare pixel size using the proposed 

approach with publicly available spacebornescale  using open-access InSAR and LiDAR datasets presents promising values 

in the context of existing, underscoring its potential for integration with current and future spaceborne InSAR missions (e.g., 

JAXA’s ALOS/ALOS-2/ALOS-4, NASA-ISRO’s NISAR, and China’s LuTan-1) and LiDAR missions (e.g., JAXA’s, MOLI, 

NASA’s GEDI, and China’s TECIS). It may serve asThis framework offers a cost-effective complementary alternative solution 1195 

for large-scale forest height investigation when spacebornemapping based on open-acess remote sensing data, particularly in 

regions lacking multi-baseline bistatic InSAR (data for applyingadvanced techniques like PolInSAR and/or TomoSAR) data 

are unavailable. 

 

6 Data availability 1200 

The forest height mosaics over the northeastern parts of U.S. and China are available 

at https://doi.org/10.5281/zenodo.11640299 (Yu and Lei, 2024). The used ALOS-1 data can be found via the Alaska Satellite 

Facility at https://search.asf.alaska.edu/#/?dataset=ALOS. GEDI data (from 2018 to 2023) can be downloaded from the 

EARTHDATA SEARCH website at https://search.earthdata.nasa.gov/. Regarding the validation data, the LVIS and GRANIT 

LiDAR data can be found at https://lvis.gsfc.nasa.gov/Data/Maps/GEDI2021Map.html and https://lidar.unh.edu/map/. Lei and 1205 

Siqueira, 2022 

7 Software Tools 

The forest height mosaics are generated using the following software tools. First, ISCE with Version 2.4+ 

(https://github.com/isce-framework/isce2/releases; in particular the “stripmapApp” function) is used to preprocess the two 

ALOS-1/-2 images for procduing geocoded interferomteric coherence maps. Then, FSH Software Version 2 1210 

(https://github.com/Yanghai717/FSHv2) is used to invert and forest height by fusing GEDI and InSAR data and perform the 

mosaicking. Several preprocessing steps utilize basic Python libraries from FSH Version 1: 

https://github.com/leiyangleon/FSH.  
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