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RC: Reviewers’ Comments, AR: Authors’ Response,   Manuscript Text 

 

Reply to the first reviewer: 

RC: Estimating forest height from InSAR and spaceborne lidar data over large areas are challenging 
but meaning work. However, the presentation of this manuscript makes it even more challenging to 
understand than it should be. Here are some comments that may be helpful! 

AR: Thanks very much to the reviewer for the recognition and valuable comments! The specific response and 
revision are listed below. 

RC: 1. Line 50: repeat "sensitive to".  

AR: Thanks for noting this typo. We have corrected this in the revised version at line 52, as shown below. 

 

RC: 2. Line 70: use footprint instead of point. Point can be confused by lidar point cloud. 

AR: Thanks for this good suggestion. We have fixed it in the revised version at line 70： 

 

RC: 3. Figure 2 and related text: Why not using Landsat/Sentinel based disturbance detection results, 
directly?  

AR: This is an insightful suggestion. The goal of this paper is to develop a self-contained inversion framework 
for large-scale forest height estimation by fully leveraging the Radar-LiDAR fusion. In our approach, the SAR 
backscatter-based forest height inversion (for heights below 10 m) replaces the InSAR coherence-based 
estimates. Furthermore, the openly accessible annual ALOS-2 backscatter mosaic products facilitate forest 
height estimation for short vegetation or bare surfaces after forest disturbance. In this way, land cover changes 

…LiDAR and SAR are promising for capturing the internal vertical structure of forests: LiDAR is 
fundamentally sensitive to structural details, while radar detects the three-dimensional distribution of 
vegetation elements (Ulaby et al., 1990).… 

…However, GEDI collects only discrete footprint measurements, spaced approximately 60 meters apart 
in the along-track direction and 600 meters apart in the cross-track direction… 



from forests into short vegetation and bare surfaces will be included in the SAR backscatter-based forest height 
estimates. To demonstrate this approach, we tested how forest disturbances identified from Landsat/Sentinel-
based disturbance products (used as ground truth benchmarks) emerges in the backscatter-based forest height 
pixels (<10 m). The experimental result showed that the SAR backscatter-based approach can effectively 
detect the majority of forest disturbances with comparable accuracy (>70%). 

While optical-based products offer complementary insights, their direct integration could introduce additional 
artifacts or uncertainties, possibly in persistently cloud-covered regions. As the main scope of this paper is not 
to fully address the forest disturbance, we kindly ask for the reviewer’s understanding that we do not introduce 
the optical-based products in current inversion framework. 

 

RC: Line 235 and equations: what does the a on the left mean? looks very similar to a. Suggest changing 
to other symbol. Also, where is hv(t2) ? 

AR: We feel sorry to create such confusion. This symbol is changed to the “𝐺𝐺” to enhance the major distinction 
from symbol “a” at line 453 after revision. ℎ𝑣𝑣(𝑡𝑡2) represents the forest height after growth. However, the 
forest growth rate (although it can be derived by comparing the before/after status) can be modelled depending 
on the status of forest at either epoch, e.g., the initial forest height ℎ𝑣𝑣(𝑡𝑡1) in this work. Accordingly, this 
explanation is added at line 450 after revision as follows:  

 

 

RC: Line 245: It seems to be a typical tree height based allometric equation. But the parameters would 
vary a lot among tree species, and the forest age, determined by both t1, and t2. How were these 
uncertainties addressed? 

AR: We fully agree with this insight. Forest growth rates are inherently species-dependent. However, obtaining 
species-specific growth rates for individual trees across large regions remains impractical. 

To address this limitation, from a modeling perspective, we developed a modified model incorporating forest 
growth dynamics, simulating its behavior using statistical growth functions derived from spaceborne ICESat-
1 and GEDI datasets. Simulations reveal that the modified signal model can be effectively approximated by 

…where ℎ𝑣𝑣  represents the time-dependent forest height, 𝑡𝑡1, 𝑡𝑡2  denote the initial and later epochs, 
respectively. Although the forest growth rate is derived by comparing pre- and post-growth states, it can be 
modelled based only on forest height data from either epoch, for example, using the initial forest height 
ℎ𝑣𝑣(𝑡𝑡1): 

𝐺𝐺 = 𝑎𝑎 ⋅ ℎ𝑣𝑣(𝑡𝑡1) + 𝑏𝑏 (12) 

Where 𝑎𝑎 and 𝑏𝑏 are linear coefficients. If a dense time-series of forest height data over certain forest land 
cover is provided, the above equation can be constructed in a differential form as:… 

 



the original model at regional scales through local fitting, provided the adaptive parameters 𝑆𝑆′ and 𝐶𝐶′ are 
used to account for growth-induced variability (Figures 11 and 12 as shown below). 

From a practical inversion perspective, we remark that the growth functions themselves were not directly 
employed in the inversion; instead, the original sinc model but with updated parameters (𝑆𝑆′, 𝐶𝐶′) is used in the 
actual application to approximate the modified model taking natural growth into account. 

To clarify this, we have added statements at line 471 as follows: 

 

 

Figure 11: Approximating the modified sinc model with the original model by aligning two points at 10 and 30 m: the newly fitted 

parameters at (a) Harvard Forest sites; (b) the forest site in Vermont; (c) Howland Forest site. The y-axis represents the coherence 

magnitude estimated from Equation (3) and (15). 

 

 
Figure 12: Approximating the modified sinc model with the original model by aligning two points either at 10 and 15 m or at 25 and 30 

m: the newly fitted parameters at (a) the Harvard Forest site; (b) the White Mountain National Forest site; (c) the Howland Forest site. 

The y-axis represents the coherence magnitude estimated from Equation (3) and (15). 

…From a practical inversion perspective, the application of the modified model requires precise detailed 
statistics of natural growth across various forest types on a large scale. However, such data are currently 
unavailable, as existing spaceborne LiDAR datasets lack collocated measurements from two distinct time 
periods. In the absence of comprehensive forest growth data, this model is not yet recommended for direct 
large-scale use. Instead, it can be integrated into the framework of the original model by adjusting temporal 
parameters. The following subsection provides simulation examples to demonstrate this adaptation… 



RC: Line 250: What is the sinc model for? Whether I missed it, or it failed to be introduced clearly. 
But it seems to be a very important one. Not clear how the values in the y axis of Figure 4 were 
calculated? 

AR: Thank you for highlighting this oversight. The sinc function was omitted in the initial formulation and 
has now been added into the revised manuscript (Section 3.4.2, Line 459) as follows:  

 

The y-axis values are calculated using Equations (3) and (15). We understand that this information is not 
clearly explained in the original text. To address this, we have added their explanations in the relevant figure 
captions for Figures 10, 11, and 12, as follows: 

 

 

RC: Figure 3: Again, as shown in Fig 3b, the growth rate varied a lot among site (species, age, and site 
condition). Also in Fig 3a, it should be a combined results of many different growth rates. These results 
further demonstrate it is unreasonable to apply a global model for the entire regions, even just for the 
New England region. 

AR: We appreciate this valuable insight. As clarified above, a single global forest growth model cannot 
adequately capture the forest growth dynamics across diverse bioregions. To address this, we developed a 
modified model to represent the natural forest growth process and compared its behavior with that of the 
original model in Figure 11 and 12 now. In terms of practical inversion, through local fitting procedures (as 
verified by simulation), we demonstrate that the original model framework can approximate the modified 
model with updated parameters. Therefore, the original inversion framework is actually used in the large-scale 
application without introducing growth functions. 

RC: 2.2.3: Oops, I got lost after the sinc model. Sorry.  

AR: We apologize for the confusion in the descriptions of the original and updated models. For clarification, 
we have added the sentences to illustrate the main objective of this subsection at line 490 as follows: 

Figure 10, 11, and 12: … The y-axis represents the coherence magnitude estimated from Equation (3) and (15). 

�𝛾𝛾𝑡𝑡&𝑣𝑣
𝐻𝐻𝐻𝐻 (𝑡𝑡1)� = 𝑆𝑆(𝑡𝑡1) ⋅ sinc�

ℎ𝑣𝑣(𝑡𝑡2) − 𝑏𝑏 ⋅ 𝑑𝑑𝑑𝑑
(1 − 𝑎𝑎 ⋅ 𝑑𝑑𝑑𝑑) ⋅ 𝐶𝐶(𝑡𝑡1)�  (15) 

where �𝛾𝛾𝑡𝑡&𝑣𝑣
𝐻𝐻𝐻𝐻 (𝑡𝑡1)� represents the InSAR coherence at initial time 𝑡𝑡1, it follows the model is shifted and 

scaled with respect to the original model (3), 𝑑𝑑𝑑𝑑 = 𝑡𝑡2 − 𝑡𝑡1. 

 

…Without detailed forest growth statistics, this subsection demonstrates the modified sinc model can be 
well approximated in the framework of the original sinc model but with updated parameters (𝑆𝑆′,𝐶𝐶′) using 
simulation. This enables the large-scale application achieved in the framework of original model without 
detailed forest growth statistics… 



RC: Figure 9: The flowchart definitely should come first, as the Figure 1 or 2. Also, make it a more 
general and easy to understand for general readers. 

AR: Thank you for your constructive suggestion. In response to your feedback, we have repositioned the 
revised methodological flowchart to the beginning of Section 3 (now Figure 5), and modify it using more 
generalized description: 

 

Figure 5: Block diagram of the workflow for generating forest height mosaic. 

 

RC: Figure 10: Labels on the color bar are too small to read. I would also suggest zoom into a few 
sub-figures of the study areas to show more details. 

AR: We thank the reviewer for this valuable suggestion. In response, we have updated the original figure to 
include a zoomed-in subsection with bolded labels and text to enhance clarity. This revised version is now 
presented as Figure 6 in the manuscript as follows: 



 

Figure 6 An illustrative example of the processing steps at the Howland Forest site: (a) the input ALOS-1 coherence magnitude map; (b) 

the GEDI rh98 samples; (c) the forest height estimates based on InSAR coherence information; (d) the backscatter based height estimates; 

(e) the final forest height map after replacing the estimates of short trees in (c) with the collocated pixels in (d); (f) is the airborne LVIS 

LiDAR data for validation. 

 

RC: Section 3: I would suggest put these parts before the methods.  

AR: Thanks for the good suggestion! Section 3 (now renumbered as Section 2) has been placed ahead of the 
methodology section. 

 

RC: Table 2 and 3: Please add hom many plot or how large is the validate site in the table2 and 3. 

AR: Thanks for the good suggestion. The relevant information has been updated in the Tables 1 and 2 in the 
revised manuscript as follows. 

  



 

Table 1 The forest validation sites covered by the airborne LiDAR observation in the New England, U.S 

Validation sites Location Dominated tree species 
LiDAR data 

acquisition year 
Slope statistics 

ALS validation 

area (ha) 

Howland Forest 
68°44′ W,  

45°12′N 

Red spruce (Picea rubens Sarg.) 

and eastern hemlock  
2009 

Mean: 2.3° 

STD: 5.3 
4.77× 104 

Harvard Forest 
72°11′W, 

42°31′N 

Red oak, Red maple, Black birch, 

White pine, Eastern hemlocc 
2021 

Mean: 5.5° 

STD: 4.6° 

4.87× 104 

 

White Mountain 

National Forest 

71°18′W,  

44°6′N 

Red Spruce, Eastern Hemlock, 

American Beech, and Red Maple, 
2011 

Mean: 9.7° 

STD: 8.6° 
1.20× 104 

Green Mountain 

National Forest 

73°04′W, 

43°57′N 

Sugar maple, American beech, red 

maple, yellow and paper birch 
2021 

Mean: 10.4° 

STD: 7.6° 
8.91× 104 

Naugatuck State 

Forest 

73°00′W 

41°27′N 

Northern red oak, Mixed upland 

hardwoods, Yellow-poplar 
2021 

Mean: 5.2° 

STD: 4.5° 
3.58× 104 

 

Table 2 The forest validation sites covered by the ALS validation data in northeastern China 

Validation sites Location Dominated tree species 
LiDAR data 

acquisition year 
Slope statistics 

ALS validation 

area (ha) 

Mengjiagang 

Forest site  

130°42′E,  

46°25′N 

Coniferous plantations (Larix 

gmelinii and Pinus syvestris) 
2017 

Mean: 6.6° 

STD: 5.6° 
3.78× 104 

Dagujia Forest 

site  

125°00′E,  

43°21′N 

Coniferous plantations (Larix 

kaempferi, Pinus koraiensis, etc) 
2018 

Mean: 13.5° 

STD: 7.4° 
3.66× 104 

Saihanba Forest 

site  

117°18′E,  

42°24′N  

Larix principis-rupprechtii, Pinus 

syvestris, and Betula 
2018 

Mean: 8.7° 

STD: 7.3° 
2.98× 104 

Genhe Forest 

bureau 

121°32′E,  

50°47′N  

Larix gmelinii, Betula 

platyphylla, Populus davidiana 
2022 

Mean: 7.0° 

STD: 5.4° 
1.09× 105 

Hubao Forest 

site 

130°12′E,  

43°28′N  

Mongolian oak, Basswood, 

Betula platyphylla 
2018 

Mean: 8.7° 

STD: 7.4° 
3.99× 105 

 

RC: Fig 17,19,21,22,24,27,29, and so on. These figures are just too small to read clearly not to mention 
compare them. A good comparison should map the difference between the estimated and ground truth 
(ALS ERH98? maybe in Figure 29).  

AR: We sincerely apologize for the inconvenience during the visual interpretation of previous figures. To 
address this, we have carefully revised all relevant figures with bolded labels and text to enhance readability 
and interpretation as shown in Figures. 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30 after revision 
(included at the end of this response). Additionally, we have updated differential height maps (include Figures 
19, 23, 25, 28, and 30) between inversion and airborne validation data in the corresponding forest sites. 

 

RC: Conclusions: I would suggest have a longer discussion and a short conclusion in separate sections.  



AR: Thanks for this suggestion. All the limitations and implications for future works are discussed in the 
Section 5. The Sections 6 briefly concludes this paper. 

 

Updated larger figures with bold fonts 

 

Figure 17: Density scatterplots comparing LiDAR validation data with forest height inversion estimates across multiple sites of the New 

England: Left panels show ALOS-1-based estimates; right panels show ALOS-2-based estimates. 

 



 

Figure 18 Validation of forest height inversion results at the Howland Forest site: (a) LVIS RH98 canopy height map (30 m grid), (b) 

inversion extracted from ALOS-1 mosaic, and (c) ALOS-2 based inversion. 

 



 
Figure 19: The differential height maps of (a) ALOS-1 based inversion versus LVIS data and (b) ALOS-2 based inversion versus LVIS 

data. 

 

Figure 20: (a) global-fitting based inversion  (Lei et al., 2019) applied to the scene (𝑺𝑺 = 𝟎𝟎.𝟗𝟗𝟗𝟗,𝑪𝑪 = 𝟗𝟗), (b) comparing 90 m gridded maps 

from (a) with corresponding LVIS data; (c) interpolated 30 m gridded GEDI height map; (d) density scatterplot comparing the 



interpolated 30 m GEDI map with LVIS LiDAR data; (e) density scatterplot comparing ALOS-2-based inversion results with LVIS 

LiDAR data. 

 

Figure 21: the interpolated maps of temporal change parameters for (a) S and (b) C 



 

Figure 22: Validation of 30 m gridded forest height inversion at the Harvard Forest site: (a) LVIS LiDAR RH98, (b) ALOS-1 based 

estimates (c) ALOS-2 based inversion. 

 



 

Figure 23: Differential height maps over the Harvard Forest site: (a) ALOS-1 mosaic versus LVIS LiDAR, and (b) ALOS-2 single scene 

versus LVIS LiDAR. 

 



 

Figure 24: (a) An example of histogram formed by small footprint CHM values within the GEDI footprint, with mean height and a 98-th 

percentile height marked by the red dashed and red solid lines, respectively.  (b) 30 m gridded reprocessed forest height based on the 

ERH50 metric, (c) 30 m gridded reprocessed forest height based on the ERH98 metric and (d) corresponding forest height estimates 

extracted from ALOS-1 mosaic. 

 



 

Figure 25: (a) Differential height map between the ALOS-1 mosaic and GRANIT ERH98 map and (b) the corresponding density 

scatterplots. 



 

Figure 26: Density scatterplots comparing LiDAR validation data with forest height inversion estimates across multiple sites of 

northeastern China based on the ALOS-1 InSAR observation (left panels), and the ALOS-2 observation (right panels). 

 



 

Figure 27: Comparison of the forest height inversion with LiDAR data at the Hubao National Park site: (a) ALS ERH98 metric map. The 

red rectangle denotes the coverage of (b) ALOS-1 based single-scene inversion, whereas the blue rectangle indicates the coverage of (c) 

ALOS-2 based single-scene inversion. 

 



 

Figure 28: Differential height map between (Upper panel) the ALOS-1 based inversion and ERH98 validation data, and between 

(Bottom panel) the ALOS-2 based inversion and ERH98 validation data. 

 

 

 

 



 

Figure 29: Comparison of the forest height mapping over the Genhe Forest Bureau: (a) ALS ERH98 metric generated based on 25 m 

footprint; (b) ALOS-1 mosaic with red rectangle box indicating the overlapping area with (a), and (c) ALOS-2 based single-scene inversion. 

 



 

Figure 30: Differential height map between (left panel) the ALOS-1 based inversion and ERH98 validation data, and between (right panel) 

the ALOS-2 based inversion and ERH98 validation data. 

  



Reply to the second reviewer: 

RC: This paper presents a Radar/LiDAR fusion approach that create large-scale mosaics of forest stand 
height. After carefully reviewing the manuscript, I found this work presents some interesting results. 
However, there are some concerns needed to be addressed and clarified for improving the manuscript. 

AR: Thanks for insightful comments. These have greatly helped us to improve the quality of our manuscript. 
Specific revisions addressing your comments are outlined below. 

 

RC: The method of this work is based on temporal decorrelation modeling, but the Introduction part 
only presents and cites the author's previous work, without mentioning other well-known temporal 
decorrelation models. The introduction needs to be further improved. 

AR: Thank you for this constructive suggestion. We have added a dedicated paragraph in the Introduction 
Section (now at line 94) reviewing prior research on temporal decorrelation effect. The newly appended text 
is as follows: 

 

RC: How is the size of the local window determined? The spatial density of GEDI is uneven, so why not 
use an adaptively varying window? Moreover, the local modeling approach is very similar to the work 
by Hu et al. (https://doi.org/10.3390/rs16071155), and they used an automatically varying window. It is 
recommended to add a citation to help readers better understand. In addition, using distance-based 
weighting does not seem to align well with the rapidly changed forest scenario. This should be further 
described and discussed. 

AR: Thanks for these critical comments. The work by Hu et al., 2024 has been added in the literature review 
at line 88 as follows:  

 

…Temporal decorrelation has been a widely studied topic in InSAR research (Rocca, 2007; Ahmed et al., 
2011; Bhogapurapu et al., 2024). (Zebker and Villasenor, 1992) proposed a Gaussian model to analyze 
oceanic scenarios, while (Monti-Guarnieri et al., 2020) summarized the signal models tailored for vegetated 
scenarios. (Askne et al., 1997) introduced a coordinate-dependence of the vertical motion profile to analyse 
InSAR temporal decorrelation effects caused by wind. Building upon the well-known RVoG model, several 
signal models have been developed to explicitly incorporate temporal decorrelation effects (Lavalle et al., 
2012; Papathanassiou and Cloude, 2003; Lei et al., 2017a).… 

…, while  (Hu et al., 2024) exploited local ICESat-2 LiDAR information, using regional polynomials and 
an adaptive window, to estimate equivalent forest phase centers under homogeneous forest and terrain 
conditions… 



The detailed responses to the specific comments are listed as follows: 

The choice of window size and why not use an adaptively spatial-varying window? 

The optimal local window size is determined by minimizing the root mean square error (RMSE) of forest 
height estimates for moderate-to-tall trees (>10 m) across diverse window size, validated against independent 
lidar datasets. Empirical analysis identified a 960 m window as the optimal configuration, balancing spatial 
resolution, statistical robustness, and computational efficiency. This part of information is added at line 398 
as follows: 

 

The window size can be adjusted as a spatially varying parameter, provided that validation data are available. 
We admit an adaptively spatial-varying window could improve the modeling accuracy. At present, it is highly 
scene-dependent and could lead to unpredictable behavior in large-scale inversion scenarios. For example, 
very homogeneous scenario within smaller window size may induce ill-conditioning in the inversion system, 
a scenario rigorously avoided in our large-scale implementation. Additionally, employing variable window 
sizes would reduce computational efficiency, which is particularly undesirable in GPU based parallel 
computing architecture. Therefore, we prefer a fixed larger window to incorporate sufficient forest height 
variability and ensure a simplicity, computational efficiency, and robustness over large-scale application. 

However, we believe integrating a more sophisticated classification-driven adaptive window strategy in the 
future will improve our local modeling accuracy. So, we include this consideration at line 822 in the 
Discussion Section as follows:  

 

 

The difference between our work and Hu et al., 2024: 

We agree that the local concept presented in this study shares some similarities with the work by Hu et al., 
2024. 

This study advances the global-to-local inversion framework initially proposed in our earlier work (Lei and 
Siqueira, 2022; Yu et al., 2023), extending it for large-scale applications. By integrating local GEDI lidar 

… The optimal local window size is determined by minimizing the root mean square error (RMSE) of 
forest height estimates for moderate-to-tall trees (>10 m) across diverse window size configurations, 
validated against independent lidar datasets. The selection of window size is a compromise between 
smooth and detailed information. This window size is selected here for including enough samples for 
model fitting while maintaining local detailed information… 

 

… Finally, the current inversion framework employs a fixed-size, distance-based weighting window to 
perform local fitting. This approach could be enhanced by using an adaptively spatial-varying window size 
driven by multi-parameter classification.…  



samples, we calibrate a semi-empirical and semi-physical repeat-pass InSAR model at finer spatial scale, 
enabling improved forest height inversion accuracy. The framework’s primary objective is to achieve large-
scale, high-resolution forest height mapping using open-access SAR and LiDAR datasets. A core assumption 
of this method is that temporal decorrelation model remains spatially invariant at regional scales, while 
allowing for variability in forest height observations within these regions, while permitting variability in forest 
height observations across these areas, i.e., a large window of inhomogeneous forest (but with uniform 
temporal change parameters) is preferred. 

In contrast, the work by Hu et al., 2024 used the local information of ICESAT -2samples around each pixel to 
build a polynomial model (3 order) for estimating the scattering phase center. The polynomial fitting is used 
to establishing the relationship between scattering phase center and InSAR coherence as well as slopes within 
the regional scale. Furthermore, they claim that the similar forests and similar slope conditions should be 
privileged to enable better estimates. The basic assumption is that the forest height within the local window is 
similar, so they can gain benefits with more homogenous window, i.e. a small window of homogeneous forest 
is preferred. 

 

To clarify the distinction between our approach and that of Hu et al. (2024), we have added the following 
statements at line 112: 

 

And the main contribution of this paper is stated at line 124 as follows: 

 

 

For rapidly changed forest scenario, 

Sorry that we are not fully sure which specific scenario the reviewer is referring to: spatially rapid change of 
forests or temporally rapid change of forests. To ensure thoroughness, we will reply to both cases in response 
to the reviewer’s comments. 

…By efficiently leveraging regional GEDI samples, this approach calibrates a semi-empirical, semi-
physical repeat-pass InSAR model at a finer spatial scale, substantially improving forest height inversion 
accuracy. The method assumes that the temporal decorrelation model remains spatially invariant at the 
regional scale, while permitting variability in forest height observations within those regions.…  

…The key contribution of this paper lies in the use  local GEDI information for Radar-LiDAR data 
fusion, enabling large-scale and efficient forest height mapping using open-access spaceborne data, such 
as GEDI and forthcoming NISAR (Siqueira et al., 2024; Kellogg et al., 2020) data… 



For a spatially-varying condition, the current inversion framework employs a distance-based weighting 
window, primarily to ensure computational efficiency and avoid ill-conditioned scenarios as clarified above. 
For highly spatially heterogeneous cases, one potential solution involves leveraging classification algorithms, 
driven by external data sources, to prioritize targets sharing specific features. This part has been added to the 
Discussion Section. Alternatively, using high-resolution datasets (e.g., TanDEM-X) could better resolve 
spatial variations. We emphasize this advantage in our literature review, at line 81 as follows.     

 

For a temporally-varying condition, we integrate time-coincident ALOS-2 backscatter data to estimate 
heights of regenerating or low-stature vegetation in affected areas to mitigate the impact of rapid forest 
disturbances (e.g., logging or wildfires). However, our current framework is optimized for stable or slowly 
evolving temperate and boreal forests and cannot robustly resolve highly dynamic tropical forest changes, 
which lie beyond the scope of this study. As noted in the Discussion (Section 5), future missions such as 
NISAR or BIOMASS, providing dense time-series InSAR datasets, could enhance the temporal sampling 
required to capture rapid height changes in tropical ecosystems. 

References: 

Hu, H., Zhu, J., Fu, H., Liu, Z., Xie, Y. and Liu, K., 2024. Automated estimation of sub-canopy topography 
combined with single-baseline single-polarization TanDEM-X InSAR and ICESat-2 data. Remote 
Sensing, 16(7), p.1155. 

Y. Lei and P. Siqueira, "Refined Forest Stand Height Inversion Approach with Spaceborne Repeat-Pass L-
Band SAR Interferometry and GEDI Lidar Data," IGARSS 2022 - 2022 IEEE International Geoscience and 
Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022, pp. 6388-6391, doi: 
10.1109/IGARSS46834.2022.9884755. 

Y. Yu, Y. Lei and P. Siqueira, "Large-Scale Forest Height Mapping in the Northeastern U.S. using L-Band 
Spaceborne Repeat-Pass SAR Interferometry and GEDI LiDAR Data," IGARSS 2023 - 2023 IEEE 
International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 2023, pp. 1760-1763, doi: 
10.1109/IGARSS52108.2023.10281488. 

 

RC: The author emphasizes using the backscatter coefficient to estimate low forests, but there is no 
physical explanation for how the 10-m threshold is determined. Additionally, forest height below 10m 
can undergo significant changes, such as in young forests and shrub. When using ALOS data with a 
significant time difference for inversion, how is the height variation of short forests taken into account? 

…Without temporal decorrelation effects, TanDEM-X data offer opportunities to leverage very-high-
resolution observations for addressing spatially heterogeneous landscapes… 

  



AR: Thank you for your constructive feedback. The definition of "low forest" (forests with canopy heights 
below 10 meters) aligns with established literature on shrubs, typically under 6–10 m (20–33 ft) in height 
(Lawrence, 2013; Allaby, 2012). These references have been added to the line 309 as follows. 

 

We fully recognize that forest stands below 10 meters in height undergo dynamic and rapid changes. To 
address this, we utilized recent ALOS-2 backscatter mosaic data (2019–2020), selected for its close temporal 
alignment with GEDI measurements, to estimate the height of short vegetation.  

For those short forests experiencing significant temporal height variation within a short interval, the current 
ALOS-1/2 datasets lack the temporal resolution to resolve this. These can be more effectively resolved through 
dense time-series data from time-series TanDEM-X, Sentinel-1 data and forthcoming NISAR data. To clarify 
this point, we added this discussion at lines 436-438 of the manuscript as follows: 

 

 

References: 

Lawrence, A.: Plant identification: creating user-friendly field guides for biodiversity management, 
Routledge2013. 
Allaby, M.: A dictionary of plant sciences, Oxford University Press2012. 
Treuhaft, R., Lei, Y., Gonçalves, F., Keller, M., Santos, J. R. d., Neumann, M., and Almeida, A.: Tropical-
Forest Structure and Biomass Dynamics from TanDEM-X Radar Interferometry, Forests, 8, 277, 2017. 
Lei, Y., Treuhaft, R., Keller, M., dos-Santos, M., Gonçalves, F., and Neumann, M.: Quantification of selective 
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RC: The content and structure of Section 4 are very redundant, with many figures and tables 
conveying the same information. Figures 26 and 31 are completely redundant; they have already 
appeared earlier in the manuscript, so why show them again? Additionally, the content of Tables 4 
and 5 is the same as what is shown in the figures 26 and 31? Also, note that the accuracy metrics in 

…which is then used to obtain backscatter-to-height estimates (Lei et al., 2019). Short trees are identified 
using a criterion where backscatter-derived forest height estimates fall below 10 meters, based on the 
maximum height of shrub (Lawrence, 2013; Allaby, 2012), and empirical studies (Lei et al., 2019)… 

 

  

…Short forests undergoing rapid temporal height variations within short intervals cannot be adequately 
captured by current ALOS-1/2 datasets. These dynamic changes can be better resolved using dense time-
series data from TanDEM-X (Treuhaft et al., 2017; Lei et al., 2018), Sentinel-1 (Bhogapurapu et al., 2024), 
and the forthcoming NISAR mission… 

  



Figure 26(b) are different from those in Table 4, please make the correction. In summary, the section 
4 needs major adjustments and improvements.  

AR: We agree that there was redundant content, and have revised the text accordingly.  

To enhance clarity and reduce redundancy, we have restructured Section 4 as follows: all the density 
scatterplots for the New England and northeastern China study areas are now firstly summarized in Figure 17 
and 26 in Subsections 4.2.1 and 4.3.1, respectively. This reorganization allows these scatterplots to serve as 
the references for subsequent detailed analyses of representative sites in later subsections.  

Redundant tables (Tables 4 and 5) have been removed. As the reviewer suggested, we have corrected the 
mismatched metrics in the updated Figure 26 (after revision). 

 

RC: The innovation of this manuscript lies in local modeling, and it is recommended to provide the 
results of global modeling for comparative analysis to highlight the improvement effect of the method. 

AR: We acknowledge the reviewer’s recognition on local fitting and the suggestion of incorporating the 
comparison of global vs. local fitting. To validate the improvements of our inversion framework, we have 
incorporated an accuracy analysis of conventional global modeling based inversion at the Howland Forest site 
in Figure 20, Subsection 4.2.2. The associated text at line 666 and updated figures are presented as follows: 

 

 

 

…To compare these results against our earlier work (Lei et al., 2019), we applied the global-fitting-based 
inversion method (in the left panel of Figure), which yielded an inversion accuracy of RMSE = 4.38 m at 
an aggregated pixel size of 0.81 ha. This demonstrates that the global-to-local two-stage inversion 
approach significantly improves inversion accuracy, particularly over tall forest regions… 

 



 

Figure 20: (a) global-fitting based inversion  (Lei et al., 2019) applied to the scene (𝑺𝑺 = 𝟎𝟎.𝟗𝟗𝟗𝟗,𝑪𝑪 = 𝟗𝟗), (b) comparing 90 m gridded maps 

from (a) with corresponding LVIS data; (c) interpolated 30 m gridded GEDI height map; (d) density scatterplot comparing the 

interpolated 30 m GEDI map with LVIS LiDAR data; (e) density scatterplot comparing ALOS-2-based inversion results with LVIS 

LiDAR data. 

 

RC: Line 88: The wavelength of TanDEM-X is not ~0.01m, please check for updates. 

AR: Thank you for noting this typo. The wavelength is now changed to 3.1 cm in the revised manuscript at 
line 90 after revision, as follows: 

 

RC: Line 90: Are “these methods” referring to the TanDEM-X methods mentioned above? The method 
proposed in this paper may not necessarily outperform TanDEM-X. For example, the latest work by 
Qi et al (2025) adopts a strategy that is essentially similar to that of this manuscript. 

AR: We agree that our method’s performance may not surpass TanDEM-X-based approaches, as the latter 
inherently avoid temporal decorrelation challenges in forest height estimation. However, as emphasized in the 
introduction, the primary contribution of focuses on large-scale and efficient Radar-LiDAR fusion for forest 
height mapping using open-access datasets, whereas the TanDEM-X data is not open-access at present. 
Additionally, L-band data offer better penetration capabilities over X-band data, enhancing the inversion 
accuracy for dense forest regions. 

Qi et al., 2025 employs a scene-wide constant LiDAR vertical profile to enable RVOG inversion based on the 
approach developed by Choi et al., 2023, followed by regional model calibration to mitigate estimation 

…Additionally, a potential limitation of TanDEM-X observations is the insufficient penetration 
capability over dense forests due to the short wavelength of the X-band (~3.1 cm) (Kugler et al., 2014)… 

  



inaccuracies, a step implemented as a post-processing adjustment. Crucially, their framework does not 
integrate the local-scale concept into the model-based inversion itself. In contrast, our approach embeds local 
calibration directly into the scattering model of the inversion framework, with spatially varying model 
parameters dynamically determined and used for improved estimates. 

This paper is the large-scale inversion application of our early developed methodologies  (Lei and Siqueira, 
2022; Yu et al., 2023). While the use of local-scale concepts is not new, our innovation lies in using the GEDI 
local information into the physical-model based inversion framework to enhance retrievals. This 
methodological integration, coupled with our focus on open-data synergy, distinguishes our approach from 
the post-processing regional calibration strategy in (Qi et al., 2025), both in scope and execution. 

The citation to (Qi et al., 2025) and relevant discussions have been added to the revised paper at the line 87 as 
follows: 

 

References: 

Qi, W., Armston, J., Choi, C., Stovall, A., Saarela, S., Pardini, M., Fatoyinbo, L., Papathanassiou, K., 
Pascual, A. and Dubayah, R., 2025. Mapping large-scale pantropical forest canopy height by integrating 
GEDI lidar and TanDEM-X InSAR data. Remote Sensing of Environment, 318, p.114534. 

Choi, C., Cazcarra-Bes, V., Guliaev, R., Pardini, M., Papathanassiou, K.P., Qi, W., Armston, J. and 
Dubayah, R.O., 2023. Large-scale forest height mapping by combining TanDEM-X and GEDI data. IEEE 
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, pp.2374-2385. 

Y. Lei and P. Siqueira, "Refined Forest Stand Height Inversion Approach with Spaceborne Repeat-Pass L-
Band SAR Interferometry and GEDI Lidar Data," IGARSS 2022 - 2022 IEEE International Geoscience and 
Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022, pp. 6388-6391, doi: 
10.1109/IGARSS46834.2022.9884755 

Y. Yu, Y. Lei and P. Siqueira, "Large-Scale Forest Height Mapping in the Northeastern U.S. using L-Band 
Spaceborne Repeat-Pass SAR Interferometry and GEDI LiDAR Data," IGARSS 2023 - 2023 IEEE 
International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 2023, pp. 1760-1763. 

RC: I don't understand why the author chose this color scheme for Figures 13 and 14, and there is a 
lack of corresponding explanation. 

AR: We apologize for the lack of clarity in the original maps. The earlier versions displayed forest disturbances 
occurring in individual years, whereas the revised version in Figure 3 and 4 now utilizes a binary map (1 = 
disturbance, 0 = no disturbance) to represent forest changes across the entire study period (2007–2023) with 
some zoomed-in close-ups in the map of northeastern China. The new figures and their captions are added as 
follows: 

…To address this, (Qi et al., 2025) proposed a post-processing correction model to refine suboptimal 
height estimates regionally… 



 

Figure 3 Forest disturbance map of the New England region (2007–2023) derived from the Global Forest Change dataset (Hansen et al., 

2013). The binary classification distinguishes undisturbed areas (0) from disturbed areas (1) within the period. 

 

Figure 4 Forest disturbance map of northeastern China (2007–2023) derived from the Global Forest Change dataset (Hansen et al., 

2013). The binary classification distinguishes undisturbed areas (0) from disturbed areas (1) within the period. 

 

RC: Several global forest height products have been generated by combining GEDI and multi-source 
remote sensing data (Potapov et al, Lang et al.). The authors mentioned the limitations of these products 
in the introduction, and I suggest that the authors compare with these public products to highlight the 
performance of the proposed method and results. 



AR: We thank the reviewer for this great suggestion. We have added the comparison over the relevant 
performance in the Subsection 4.2.1. In specific, Table 3 summarize the accuracy evaluation metrics for the 
representative forest sites across the New England region, which clearly demonstrates that our product has 
lower bias and RMSE, thus superior to the two global GEDI-derived products. 

 

Table 4 Comparison of GLAD, ETH, and our ALOS-1 based canopy height products with airborne LiDAR data across all forest sites in 

the New England region. 

Validation sites  GEDI-Sentinel (ETH) 
GEDI-Landsat 

(GLAD) 

GEDI-ALOS 

(Our product) 

Howland Forest 

RMSE 5.71 5.59 3.81 

R2 0.53 0.1 0.47 

Bias 4.6 -1.87 -0.34 

Standard Deviation 3.38 5.21 3.78 

Harvard Forest 

RMSE 4.79 5.66 4.11 

R2 0.73 0.24 0.56 

Bias 3.35 -0.78 0.31 

Standard Deviation 3.45 4.62 4.10 

White Mountain 

National Forest 

RMSE 5.98 5.46 

0.22 

-0.87 

5.2 

4.08 

R2 0.58 0.33 

Bias 4.34 1.29 

Standard Deviation 4.04 3.87 

Green Mountain 

National Forest 

RMSE 5.55 5.78 

0.18 

-1.79 

5.09 

4.97 

R2 0.69 0.53 

Bias 3.93 0.46 

Standard Deviation 3.92 4.95 

Naugatuck State Forest 

RMSE 4.89 5.07 

0.45 

1.16 

4.43 

5.06 

R2 0.67 0.47 

Bias 2.83 -0.84 

Standard Deviation 3.98 5.01 

 

RC: There are several typos in the current manuscript. For example, Line 235: This finding i based 
on…; Line 445 Table3: left column, etc. Please proofread the manuscript carefully.  

AR: Thanks. We have fixed several typos after proofreading carefully. 

 


