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Abstract 22 

Low-level convergence and cyclonic circulation are one of the most important 23 

dynamic variables in governing the initiation and development of convective storms. 24 

Our ability to obtain high-resolution horizontal divergence and vertical vorticity 25 

profiles, nevertheless, remains limited largely due to the lack of vertical wind 26 

observations. To fill this data gap, a high-density mesonet consisting of six radar wind 27 

profilers (RWP) sites has been operated in Beijing, which allowed for continuous 28 

observations of the three-dimensional winds with high vertical resolution. This paper 29 

aims to produce a temporally continuous horizontal divergence and vertical vorticity 30 

dataset at the vertical resolution of 120 m, which are derived from horizontal winds 31 

measured by the RWP mesonet in Beijing by using the triangle method. This dataset 32 

is generated at intervals of 6-minute for the whole year of 2023, covering the altitude 33 

range of 0–5 km. The dynamic variables from RWP mesonet are found to scatter 34 

sharply, as opposed to those from ERA5 that are concentrated around zero, especially 35 

at the high altitudes. Particularly, the negative divergence and positive vorticity are 36 

detected in the low-level troposphere up to 1 h in advance of the occurrence of rainfall 37 

events, and their magnitudes are increasingly becoming greater when the time comes 38 

closer to the rainfall onset, exhibiting the key role that the dataset plays in rainfall 39 

nowcasting. This is indicative of, to some extent, the effectiveness of high-resolution 40 

divergence and vorticity dataset in Beijing. The dataset is publicly available at 41 

https://doi.org/10.5281/zenodo.14176969 (Guo et al., 2024a), which is of significance 42 

for a multitude of scientific research and applications, including convection initiation, 43 

air quality forecasting, among others. Therefore, the findings highlight the urgent 44 

need of exploiting the dynamic variables from the RWP mesonet measurements to 45 

better characterize the pre-storm environment. 46 

 47 
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 51 

Short Summary 52 

Optimal atmospheric dynamic condition is essential for convective storms. This study 53 

generates a dataset of high-resolution divergence and vorticity profiles using the 54 

measurements of radar wind profiler mesonet in Beijing. The negative divergence and 55 

positive vorticity are present in advance of rainfall events. This suggests that this 56 

dataset can help improve our understanding of prestorm environment and has the 57 

potential to be applied to weather forecasting.  58 

 59 

1. Introduction 60 

Atmospheric dynamic conditions, such as vorticity, divergence, and vertical 61 

velocity, play a critical role in inferring convection initiation (CI) and the subsequent 62 

development of mesoscale convective systems (MCSs) (Ulanski and Garstang, 1978; 63 

Weckwerth and Parsons 2006; Wilson and Roberts 2006; Lock and Houston 2014; 64 

Weckwerth et al., 2019; Guo et al., 2024b). In recent decades, a variety of previous 65 

observational analysis based on passive surface station and weather radar reveal the 66 

positive correlation between surface convergence and the formation of new 67 

convective cells (Purdom 1976; Fankhauser et al., 1995; Kalthoff et al., 2009; Bai et 68 

al., 2019). The sustained and enhanced updraft forced by local convergence is 69 

conducive to the initiation or intensification of convective cells, especially in unstable 70 

and deep moist environments. Furthermore, the interaction between wind shear and 71 

vertical vorticity structure produces favorable atmospheric conditions for cyclogenesis 72 

in both midlatitude and tropical regions during the warm season (Bosart and Sanders, 73 

1981; Zhang and Fritsch, 1987). The pressure drop caused by the cyclonic rotation of 74 

the low-level mesocyclone further accelerates the lifting, as described by the 75 

mesoscale vertical vorticity equation used in vertical velocity analyses (Yanai and 76 

Nitta, 1967; Brandes and Ziegler, 1993, Shapiro et al., 2009). 77 
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Additionally, the radiosonde sounding arrays have been used to obtain the 78 

vertical wind profiles that are further applied for retrievals of atmospheric dynamic 79 

variables over large spatial scales exceeding 500 km. In this case, the wind gradients 80 

are objectively determined by the linear interpolation to grid points using observations 81 

of distant stations with inevitable errors (Lee and Browning, 1993). Afterwards, many 82 

follow-on studies confirmed its possibility to realistically calcualte the mass 83 

divergence of the air over an area by using soundings or dropsondes distributed along 84 

the perimeter of this area (e.g., Holland and Rasmusson, 1973; Nitta and Esbensen, 85 

1974; Lenschow et al.,1999, 2017). On the other hand, vertical vorticity can be 86 

directly determined from Stokes theorem using closed integrals of the horizontal 87 

velocity tangent component enclosing the area. For instance, Davies-Jones (1993) 88 

investigated the algorithms to estimate vertical vorticity profiles and associated errors 89 

over sub-synoptic scale regions from a small number of observing stations. During an 90 

airborne field campaign over the tropical Atlantic near Barbados, the dropsondes with 91 

horizontal wind profile measurements were released with high frequency along 92 

circular flight patterns to estimated vertical profiles of the area-averaged mass 93 

divergence and vorticity (Bony and Stevens, 2019). Nevertheless, it is proved that the 94 

triangle method is more practical in operation if observations are irregularly 95 

distributed (Bellamy, 1949). 96 

Nowadays, divergence and vorticity over smaller areas, with linear dimensions on 97 

the order of 100 km, have attracted widespread attention due to the importance of 98 

mesoscale vertical motions (Bony et al., 2017). With the advent of dense remote 99 

sensing instruments, more accurate retrievals of divergence and vorticity profiles are 100 

more possible due to wind fields with higher precision and resolution. A new 101 

generation of ground-based radar wind profiler (RWP) network has been operated in 102 

China as of 2008 (Guo et al., 2021), which consists of over 260 stations by the end of 103 

2023. It has good spatial coverage with six RWP sites over the Beijing metropolitan 104 

region (BMR), which provide continuous observations of high-resolution three-105 

dimensional wind fields (Liu et al., 2019; Guo et al., 2023). In our previous study (e.g., 106 
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Guo et al, 2023, 2024b; Chen et al., 2024), the vertically resolved dynamic parameters 107 

were calculated from the measurements of RWP mesonet to identify the pre-storm 108 

conditions and forecast the ensuing evolution of MCSs. 109 

In the present study, a long-term horizontal divergence and vertical vorticity 110 

dataset covering the whole year of 2023 are generated, which have crucial 111 

implications for the identification and evaluation of vertical motion and convection 112 

development. The rest of the paper is organized as follows. Section 2 describes the 113 

fundamental data sets and the calculation methodology used here. A comparison 114 

analysis is conducted of dynamic variable profiles between RWPs retrieval and ERA5 115 

reanalysis in Section 3. Sections 4 represented the variation patterns of these two 116 

dynamic parameters preceding rainfall events. Main conclusions are given in the final 117 

section. 118 

2. Data and Methodology  119 

2.1 Radar wind profiler measurements 120 

Figure 1 presents the BMR’s RWP mesonet, which consists of six RWPs 121 

deployed at the following stations: Huairou (HR; 40.36°N, 116.63°E), Yanqing (YQ; 122 

40.45°N, 115.97°E), Shangdianzi (SDZ; 40.66°N, 117.11°E), Pinggu (PG; 40.17°N, 123 

117.12°E), Haidian (HD; 39.98°N, 116.28°E), and the Beijing Weather Observatory 124 

(BWO). The RWP mesonet provides measurements of horizontal and vertical winds, 125 

and refractive index structure parameter at 6-min intervals. The vertical resolution is 126 

120 m below 4 km above the ground level (AGL) in low-operating mode, and 240 m 127 

from 4 to 10 km AGL in high-operating mode (Liu et al., 2019). According to the 128 

validation results against radiosonde measurements in BWO by Guo et al. (2023), the 129 

horizontal winds derived from RWPs in the altitude range of 0.5–5km above the 130 

ground level (AGL) spanning a whole year of 2023 are believed to be reliable enough 131 

and then be adopted here for the generation of atmospheric dynamic dataset.  132 

https://doi.org/10.5194/essd-2024-589
Preprint. Discussion started: 30 January 2025
c© Author(s) 2025. CC BY 4.0 License.



6 
 

2.2 Calculation of horizontal divergence and vertical vorticity 133 

By applying the Gauss’s theorem, horizontal divergence  is expressed by the 134 

relative expansion rate of the air mass. The triangle method, as proposed by Bellamy 135 

(1949), computes the divergence based on the rate of change in a fluid triangle 136 

initially coincident with the network composed by any three points A, B, and C. We 137 

assume that  are the location of three vortex points, 138 

(  are the zonal and meridional component of horizontal wind, 139 

respectively. As the air parcel at  moves to  140 

after the infinitesimally short time , a new triangle  will form. The resultant 141 

horizontal divergence D over the fluid triangle can be defined as  142 

                            (1) 143 

where σ and σ' denote the area of the triangle  and , which can be 144 

formulated by 145 

                (2) 146 

                  (3) 147 

Here,  represent the unit vectors of zonal, meridional and the vertical axis in the 148 

coordinate system, respectively. Substituting Eqs. (3) and (2) into Eq. (1) and 149 

simplifying, the triangle-area averaged horizontal divergence is as follows 150 

                     (4) 151 

The vertical vorticity ζ can be estimated directly from Stokes theorem as 152 

                                                        153 

   (5) 154 
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Circulation along the triangle  can be calculated by  155 

                                          (6) 156 

where  is the vector of the horizontal wind at . 157 

Substituting Eqs. (2) and (6) into Eq. (5), the vertical vorticity is as follows 158 

                         (7) 159 

These equations are then applied to the above-mentioned wind measurements 160 

from the RWP mesonet in order to calculate the profile of horizontal divergence and 161 

vertical vorticity. Four triangles from west to east are constructed based on the 162 

position of RWP stations in the BMR. Considering the six RWPs located at different 163 

terrain elevations, the horizontal velocities measured by each RWP are interpolated to 164 

the same altitude that starts upwards from 0.51 km to 4.95 km above mean sea level 165 

(AMSL) with a vertical resolution of 120 m. 166 

2.3 Rain Gauge Measurements and ERA5 reanalysis  167 

Rainfall at 1-min interval is directly acquired from the rain gauge measurements 168 

at automated surface stations over Beijing. Here, 6-min accumulated rainfall is 169 

synchronized with the RWP measurements at 6-min interval. These rain gauge 170 

measurements have undergone rigorous quality control and are publicly available by 171 

the China Meteorological Administration.  172 

ERA5 is the fifth-generation atmospheric reanalysis of ECMWF (European 173 

Centre for Medium-Range Weather Forecasts), which benefits from advancements in 174 

data assimilation, model physics and dynamics (Hersbach et al., 2020). ERA5 dataset 175 

can provide divergence and vorticity on 37 pressure level with a spatial resolution of 176 

0.25°×0.25° at hourly intervals. Additionally, the planetary boundary layer (PBL) 177 

height product is directly obtained from the ERA5 reanalysis.  178 
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3. Comparison analysis of dynamic variables from RWP with those 179 

from ERA5  180 

Due to the widespread usage of ERA5 reanalysis in characterizing stable 181 

condition of atmosphere, evaluating its performance in representing the vertical 182 

profiles becomes crucial. The divergence and vorticity fields derived from the RWP 183 

mesonet are compared with ERA5 reanalysis in the non-precipitation day in this 184 

section. To match the spatial resolution of the ERA5 dataset on the grid of 0.25°×185 

0.25° to the RWP mesonet, divergence and vorticity profiles of all the grids within 186 

this triangle are averaged for each triangle. Simultaneously, observed profiles at 1-187 

hour interval are applied in accordance with the temporal resolution of reanalysis.  188 

It is well known that the PBL is the lowermost part of the troposphere that 189 

governs the exchange of momentum, mass and heat between surface and atmosphere. 190 

There are significant differences between the wind field in the PBL and the upper 191 

atmosphere. To better reveal the characteristics of divergence and vorticity at different 192 

heights, the sum of the average elevation and PBL height are defined as zi. The 193 

altitude is normalized by zi to provide a nondimensional vertical coordinate for 194 

horizontal divergence and vertical vorticity. The criterion of z/zi is set as 1 and 2 to 195 

separate different altitude layers to near-surface, low-level, and midlevel layer for the 196 

following analyses. Figure 2 shows the normal distribution of two dynamic 197 

parameters derived from RWPs mesonet and ERA5 reanalysis for all non-198 

precipitation day in 2023. Overall, the distributions of observed parameters on the 199 

different altitude layer are similar. The value of divergence and vorticity by ERA5 200 

reanalysis are more significantly concentrated in zero, indicating that the ERA5 201 

reanalysis underestimates the amplitude compared with the RWPs mesonet 202 

measurements. The higher peak probability is found in the low-level and midlevel 203 

troposphere. This illustrates that ERA5 reanalysis does not detect well divergence and 204 

vorticity at higher altitudes, which resembles the results in previous studies (Taszarek 205 
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et al., 2021; Wu et al., 2024). We speculate the difference may be likely resulted from 206 

insufficient wind profiling measurements in China being assimilated into ERA models. 207 

To further explore the overall differences of vertical profiles between reanalysis 208 

datasets and observation more quantitatively, divergence and vorticity from RWPs 209 

mesonet measurements are validated against ERA5 after interpolating the reanalysis 210 

to corresponding level. As shown in Figure 3a-c, ERA5 reanalysis cannot characterize 211 

the potential horizontal and vertical motion in a non-precipitation environment with 212 

the correlation coefficient (R) less than 0.1. It’s also evident that ERA5 exhibits a 213 

substantial underestimation of divergence, especially at the higher altitudes. 214 

Noteworthy is that ERA5 reanalysis exhibits better performance in representing 215 

vertical vorticity with R reaching 0.3 even though the disparity is still apparent 216 

(Figure 3d-f). This could be due to the magnitude of vorticity being greater than that 217 

of divergence. 218 

4. Height-resolved temporal patterns of dynamic variables preceding 219 

the onset of rainfall  220 

The ERA5 reanalysis with lower temporal resolution is recognized to have 221 

limited capability of characterizing the temporally continuous evolution of 222 

atmospheric motion in a pre-storm environment over a mesoscale region. It is 223 

desirable to fill this gap with height-resolved dynamic variables as calculated with the 224 

RWP mesonet measurements at 6-min intervals. In this section, we attempt to explore 225 

how the horizontal divergence and vertical vorticity derived from the RWP mesonet 226 

could be used as precursors for the pre-storm environment conditions. The triangle-227 

area-averaged rainfall amount (mm), which is obtained from 29, 42, 49, and 15 rain 228 

gauges in triangles 1, 2, 3, and 4 respectively, is used to identify rainfall events 229 

occurring during the whole year of 2023 over the BMR’s RWP mesonet. For each 230 

triangle, all rainfall moments are selected when the 6 min accumulated triangle-area-231 

averaged rainfall is greater than zero. Considering the intermittent nature of rainfall, 232 

all the adjacent rainfall events being separated by less than 2 hours are classified as 233 

the same rainfall event. That’s to say, the interval between two rainfall events is 234 
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required to be at least 2 hours. The first and last rainfall moment of every rainfall 235 

event are defined as the occurrence and ending time of rainfall event, respectively. To 236 

avoid the impact of data error, the rainfall events with duration of less than 30 minutes 237 

are discarded. Finally, a total of 462 rainfall events are identified over the RWP 238 

mesonet in 2023. 239 

Figure 4a and 4b present the normalized contoured frequency by altitude 240 

(NCFAD) for all profiles of the horizontal divergence and vertical vorticity as 241 

observed by the RWP mesonet within 1-hour preceding rainfall events, respectively. 242 

The pre-storm dynamic environment exhibits significant difference, which implies the 243 

presence of complex vertical motion in this unstable atmosphere. By using dynamic 244 

parameters with higher temporal resolution obtained from the RWPs mesonet, our aim 245 

is to further explore potential patterns or trends in the pre-rainfall convection 246 

environment during the lead time. Figures 5a and 5b show the evolutions of average 247 

profiles of horizontal divergence and vertical vorticity at 12-min interval before the 248 

occurrence of rainfall events. 249 

Specifically, the horizontal divergence with maximum frequency appears about 0 250 

above 1 km AMSL (Figure 4a). In contrast, the divergence below 1 km AMSL 251 

significantly concentrates from -5×10-5 s-1 to 0. The presence of weak convergence, as 252 

indicated by negative value of divergence, is possibly associated with topography. In 253 

spite of this weaknesses, convergence tends to provide favorable upward motions in 254 

the lower troposphere. These upward motions represent the important lifting of moist 255 

air near surface that facilitates the subsequent formation of clouds and onset the 256 

convective rainfall. Typically, Wilson and Schreiber (1986) extensively elucidated the 257 

potential precursors of convergent processes in the PBL to CI and intensifying 258 

existing storms by providing locally enhanced updrafts. The significant increase in 259 

average convergence below 1.5 km AMSL within 48 min ahead of precipitation 260 

(Figure 5a) is largely contributed to the fact that near-surface air tends to strongly 261 

converge into the pre-squall mesotrough when the system approaches. The main 262 

convection was collocated with low-level convergence and midlevel divergence 263 
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placed ahead of the precipitation center. These patterns are consistent with previous 264 

studies (Zhang et al., 1989; Qin and Chen, 2017; Yin et al., 2020).  265 

As indicated in Figure 4b, the magnitude of vorticity is greater than that of 266 

divergence with more vertical fluctuation in the lower to mid-troposphere. The lowest 267 

layer is dominated by positive vorticity centering near 1 km AMSL. Similarly, the 268 

significant increase in vertical vorticity shown in Figure 5b might be in part attributed 269 

to the preexisting ambient vorticity associated with significant horizontal wind shear. 270 

The environmental wind field before the arrival of MCS is critical to system 271 

organization since the orientation of its vertical shear directly influences an 272 

asymmetric precipitation structure with mesoscale rotation. In addition, the mesoscale 273 

convectively vortex (MCV) may be resulted from deep and moist convection prior to 274 

the passage of the MCS (Wang et al. 1993). Trier et al. (1997) indicated that the 275 

MCS-induced horizontal flow and its associated vertical shear are critical factors 276 

which influence the development of the vortex. This southwesterly flow, enhanced by 277 

the by the MCV circulation, transports moisture northward in the lower troposphere, 278 

thereby creating potential instability ahead of the vortex center. Such an environment 279 

is favorable for convection and further lead heavy precipitation (Johnson et al., 1989; 280 

Hendricks et al., 2004; Lai et al., 2011). 281 

5. Concluding remarks and summary 282 

The generation and organization of convergence and rotation are the recurring 283 

theme of baroclinic convection in midlatitude during the warm season. Owing to 284 

relatively few direct observations, the detailed structure of MCSs has not been exactly 285 

explored. The unique aspect of this study is the analysis of the enhanced observations 286 

derived from the new-generation ground-based RWP mesonet in Beijing. The RWP 287 

mesonet is shown being capable of continuously observing the horizontal wind fields 288 

in the lower troposphere with ultra-high vertical and temporal resolutions. The 289 

horizontal wind measurements are then used to calculate the vertical profiles of the 290 
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triangle-area-averaged horizontal divergence and vertical vorticity, which is well 291 

indicative of the dynamic structure in the lower to mid-troposphere. 292 

Compared to the vertical profiles with higher accuracy, ERA5 exhibits a 293 

substantial underestimation of divergence and vorticity, especially at the higher 294 

altitudes. ERA5 reanalysis cannot characterize the potential horizontal and vertical 295 

motion even in a non-precipitation environment. The limitation may be likely due to 296 

the lack of higher-level wind profiling measurements in China being assimilated into 297 

ERA models. In addition, ERA5 reanalysis is unable to identify the propagation of 298 

MCSs and provide the real-time precursor signals of precipitation. The RWP-derived 299 

convergence and cyclonic circulation can provide useful information with a temporal 300 

resolution of 6-minute for detecting rainfall initiation, which filling the gap of 301 

sounding and reanalysis for nowcasting the occurrence of rainfall events. 302 

For this purpose, a statistical analysis of the vertical divergence and vorticity 303 

profiles preceding rainfall events over the RWP mesonet in 2023 are performed. 304 

Results show that the patterns of increasing low-level convergence and cyclonic 305 

circulation is evident before the occurrence of rainfall events. This indicates the 306 

development of the corresponding upward motion, at least in the lower troposphere, 307 

prior to the arrival the passage of the storm, respectively. The convergence near 308 

surface, in combination with the low-level cyclonic rotation, provide favorable 309 

dynamic conditions to lift moist air for the subsequent formation of clouds and onset 310 

the convective rainfall.  311 

In conclusion, the RWP mesonet can be used to calculate the vertical profiles of 312 

divergence and vorticity in the lower to mid-troposphere more realistically compared 313 

to reanalysis dataset. These dynamic variables from observations can provide useful 314 

information for characterizing the process of convection and detecting rainfall 315 

initiation in advance. While the results presented above are encouraging, it is 316 

imperative to fill the observational gaps near surface and apply them to nowcasting of 317 

severe weather events as well as the improvement of initial conditions in numerical 318 
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weather prediction models. Furthermore, the orographic influence on the structure of 319 

the convergence, vortex and precipitation will also be explored in a forthcoming study. 320 
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Figures 477 

 478 

 479 

Figure 1. Locations of the six mesonet radar wind profiler (RWP) stations, which are 480 

deployed at Huairou (HR; 40.36°N, 116.63°E), Yanqing (YQ; 40.45°N, 115.97°E), 481 

Shangdianzi (SDZ; 40.66°N, 117.11°E), Pinggu (PG; 40.17°N, 117.12°E), Haidian 482 

(HD; 39.98°N, 116.28°E), and the Beijing Weather Observatory (BWO; 39.79°N, 483 

116.47°E). The blue line denotes the administrative boundaries at the provincial level. 484 

Four black triangles with number denote the regions used to calculate the horizontal 485 

divergence and vertical vorticity with the triangle method. 486 

 487 

 488 

 489 
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 491 

Figure 2. The probability density function (PDF) of horizontal divergence (D) 492 

estimated from the measurements of RWPs mesonet (blue line) and ERA5 reanalysis 493 

(red line) at the height of (a) z/zi≤1, (b) 1<z/zi≤2, and (c) z/zi>2; (d) –(f) the same as 494 

(a)-(c) but for the PDF of vertical vorticity (ζ). 495 
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 498 

Figure 3. Scatterplots of the horizontal divergence (D) from the measurements of 499 

RWPs mesonet versus ERA5 reanalysis at the heights of (a) z/zi≤1, (b) 1<z/zi≤2, and 500 

(c) z/zi>2 with the 1:1 line shown as black-dashed lines, respectively. The color bar 501 

indicates the counts of data points. (d)-(f) the same as (a)-(c) but for the vertical 502 

vorticity (ζ).  503 
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 507 

Figure 4. Normalized contoured frequency by altitude (NCFAD) for the horizontal 508 

divergence and vertical vorticity between 0.51-4.95 km AMSL as calculated by the 509 

RWP mesonet measurements preceding all the rainfall events of 2023 in BMR. Note 510 

that the white line represents the profile of maximum frequency distribution. Gray 511 

layer is not analyzed due to the error of wind measurements. 512 
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 516 

Figure 5. Evolution of the profiles of horizontal divergence (a) and vertical vorticity 517 

(b) between 0.51–4.95 km AMSL averaged over 12 minutes, which are calculated 518 

from the RWP mesonet (blue line) in the BMR within 1-hour before the onset of 519 

rainfall events in 2023. The lowest atmospheric layer shaded in grey is not analyzed 520 

due to the error of wind measurements from RWP. 521 
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