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Abstract: Soil organic carbon (SOC) is an important component of the global carbon cycle and a vital indicator of

ecosystem health, playing key roles in agricultural productivity and climate change mitigation. To trace the spatiotemporal

dynamics of SOC in China, a high-resolution (1 km) Soil Organic Carbon Density (SOCD) dataset for the 0–20 cm and 0–

100 cm depths spanning the period from 1985 to 2020 is produced in this study. By integrating Landsat archives,10

topographic and meteorological data, and 11,743 soil profile measurements, we produced the SOCD dataset from 1985 to

2020 in China using the Random Forest ensemble learning approach. Specially, a climate zoning strategy was developed to

account for the significant environmental heterogeneity across China. The validation of our SOCD estimated results with 0-

20 cm depth with independent testing samples showed strong agreement with R2=0.63 and RMSE=2.03 (kg C/m2) for 0-20

cm SOCD estimation and R2=0.62 and RMSE=6.16 (kg C/m2) for 0-100 cm. Moreover, our SOCD estimated results with 0-15

20 cm depth are aligned well with independent samples (R²=0.76, RMSE=1.75 kg C/m2) and Xu's dataset (R²=0.68,

RMSE=1.70 kg C/m2). Furthermore, the validation of our SOCD estimated results with 0-100 cm depth with independent

measurements from Dong et al. (2024) showed strong agreement (R²=0.50, RMSE=4.93 kg C/m²). Furthermore, our SOCD

product exhibits high consistency with existing global datasets (HWSD, SoilGrids250m, and GSOCmap), showing the best

fit with SoilGrids250m (R²=0.74, RMSE=1.03 kg C/m2). Comparisons of model predictions to independent datasets from the20

1980s, 2000s, and 2010s in China reveal substantial connections and demonstrate strong performance over time. The

estimated SOCD products, along with the compiled raw soil profile observations for both 0–20 cm and 0–100 cm depths, are

openly available via Figshare (https://doi.org/10.6084/m9.figshare.27290310.v2) (Dong et al., 2024).

mailto:suwei@cau.edu.cn
https://doi.org/10.6084/m9.figshare.27290310.v1


2

1 Introduction

Soil organic carbon (SOC) plays a fundamental role in the earth system by mediating the fluxes of carbon, energy, and water25

(Chaney et al., 2019; Crow et al., 2012). The foundation of soil fertility lies in soil carbon, a significant component of

terrestrial carbon storage. SOC accounts for more than half of total soil carbon and is an essential component of the soil

carbon cycle, which has a major impact on soil fertility and agricultural productivity (Baldock, 2007; Chen et al., 2022). A

combination of natural and human forces is placing significant strain on the global SOC reservoir. SOC content estimation

has become a hot spot in global climate change due to its close relationship with climate change. The sustainability of30

agricultural production is threatened worldwide by soil degradation and the loss of intimate relationships. The sustainability

of agricultural production is threatened worldwide by soil degradation and the loss of intimate relationships (Xu et al., 2018).

This lack of high-resolution, long-term observational data impedes precise assessment of soil degradation and carbon

sequestration potential. Therefore, developing a robust, spatiotemporally continuous SOC density (SOCD) dataset for China

is urgent.35

In recent years, increasing attention has been paid to estimating SOC across global, national, and regional scales (Padarian et

al., 2022). In-depth studies to estimate subsurface SOC content estimation, particularly at a regional scale, remain

challenging due to the difficulty of data collection, the lack of long-term observations, and the depth dependency of soil

carbon sequestration (Padarian et al., 2022). The advancement of digital soil mapping technology opens up new paths for

estimating SOC content in large-scale and long-term series (Li et al., 2024). The use of machine learning techniques for40

digital soil modeling is a common concept in DSM. Compared to traditional mapping methods such as geo-statistics, expert

knowledge, and individual representation, machine learning techniques provide a new paradigm for estimating SOC content

in large-scale and long-term series. To produce continental-scale SOC-weighted mean maps, Odgers et al. (2012) used an

equal-area spline function for soil databases, while Mulder et al. (2016) used a machine learning model with a three-

dimensional distribution to estimate SOC content in eastern France. These studies provide evidence for a comprehensive and45

accurate understanding of soil properties and their spatial variation. Despite these advances, most digital soil mapping

studies have focused on a specific period and the long-term dynamics of SOCD mapping have not yet been developed.

Emadi et al. (2020) predicted the SOCD in northern Iran using a sample of 1879 measurements, and Nabiollahi et al. (2019)
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used a random forest (RF) model to predict the SOCD at 137 sites in Marivan, Kurdistan Province, Iran. However, these

studies only focus on local zones. In China, researchers have paid considerable attention to the sequestration potential of50

SOC storage, but most studies have focused on specific experimental areas or ecosystem types. Fang et al. (2007) estimated

the carbon sink of terrestrial vegetation in China. Furthermore, these studies often lack attention to long-term trends and

dynamics, resulting in insufficient data sets to fully understand climate change and the impact of human activities on SOCD.

At the national level, there is relatively little study on the potential for organic carbon storage across different ecosystem

types (O'Rourke et al., 2015). The scarcity and unevenness of SOC data in China, as well as the lack of effective estimation55

methods, all contribute to the uncertainty of SOC prediction. In addition, the diverse and complex topography in China, as

well as the lack of measured SOCD data, have increased the difficulty of SOC content estimation. Previous studies often

used the data from inventories of relevant resources to make rough calculations of carbon sinks (Pan et al., 2004).

Unfortunately, the spatial continuity and variability of SOC, the spatial differentiation of organic carbon sequestration

potential, and the influence of environmental factors have not been considered in previous studies. Especially in western60

China, there is almost no measured SOC data (Liu et al., 2022), which poses a challenge for understanding terrestrial

ecosystems and soil carbon sinks in China. Given these challenges, it is urgent to carry out SOCD mapping and analyze the

temporal and spatial changes of SOCD in China.

To produce robust and accurate long-term SOCD products in China, we explore the RF models with climate zoning to

predict SOCD in China from 1985 to 2020 and improve the study of SOCD maps for the 0-20 cm and 0-100 cm soil layers in65

China. The Landsat TM/ETM+/OLI images, topography, meteorology, and soil properties data are used for SOCD mapping

in this study. The main contributions of this study can be summarized as follows.

(1) A nationwide, long-term soil organic carbon density dataset from 1985 to 2020 with depths of 20cm and 100cm in China

is provided in this study.

(2) The machine learning RF models zoned by climate zones in China are developed for SOCD estimation, and the spatial-70

temporal variability of soil carbon is considered in our SOCD estimation.
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(3) The proposed framework provides a comprehensive understanding of SOCD estimation including spectral indices of

satellite remote sensing images, digital elevation model (DEM) and its topographic derivatives, meteorological features, and

soil properties. The technique offers the potential for SOCD mapping with sufficiently measured SOC content data.

2 Study area and data sources75

2.1 Study area

The study area, which extends throughout China, is characterized by complex and diverse terrains including mountains,

plateaus, basins, plains, and deserts (Yuan et al., 2023). In addition, China has a large latitude difference from 4°N to 53°N

and a large longitude difference from 73°E to 135°E. Therefore, there are obvious differences in precipitation and

temperature in the study area, which bring significantly different accumulation processes and spatial patterns of soil carbon80

(Zheng et al., 2023) . In addition, there are various soil types, including red soil, brown soil, black soil, and chestnut calcium

soil, which have obvious spatial characteristics in the study area (Shangguan et al., 2014) . For these reasons, we developed

four different RF models for SOCD estimation for four temperature zones from south to north in China including humid area,

semi-humid area, semi-arid area and arid area.

2.2 Data sources85

(1) SOC content data

After removing duplicates and incomplete records, we compiled a comprehensive database of 11743 soil profiles containing

measured SOC content and bulk density across China, spanning three distinct periods including the 1980s, 2000s, and

2010s.The SOC content and soil mass weight data of the 1980s were collected from the profile database of the Second

National Soil Survey (1980-1996) (http://www.geodata.cn). The SOCD data of the 2000s was collected from the China90

Terrestrial Ecosystem Carbon Density Dataset (2000-2014) (http://www.cnern.org.cn/). The SOC content data of the 2010s

was collected from the Soil Attribute Data of the China Soil System Record (2010s) (https://www.resdc.cn/), which was

measured in the China Soil System Survey Collection and China Soil System Journal Compilation Project. To enhance

spatiotemporal coverage, particularly for data-scarce regions, we incorporated additional SOC data from two recent national

data products: the national soil organic carbon density dataset for 2010–2024 in China (Chen et al., 2025) and the updated95

http://www.geodata.cn
http://www.cnern.org.cn/
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China dataset of soil properties for land surface modelling (Shi et al., 2025). We harmonized the point-level information

from these datasets (profile ID, latitude and longitude, upper and lower depth, SOC content, sampling year, and land-use

type) to match the structure of our database. Then a detailed overlap analysis between these profiles and our original

compilation was done. Because many profiles in Chen et al. (2025) and Shi et al. (2024) originated from the same legacy

sources as our database, we applied a strict de-duplication procedure based on geographic coordinates, sampling year, and100

depth structure to identify duplicated entries. Profiles that matched existing profiles within a small spatial tolerance and with

similar temporal and depth characteristics were treated as duplicates and excluded. Only those profiles that could be clearly

identified as non-overlapping were retained and merged into our database.

To evaluate the generalization capability of our developed model rigorous, we employed three independent datasets that

were not involved in the training process. These datasets cover different spatial scales and ecosystem types, ensuring a robust105

assessment of our SOCD products, including the measured SOC content data in the Heihe River basin (Song et al., 2016),

the measured SOCD data from Xu et al. (2018), and the soil inorganic carbon (SIC) and SOC density dataset from Dong et al.

(2024). The SOC content data of the Heihe River basin were collected from the spatio-temporal Tripolar Environmental Big

Data Platform (https://poles.tpdc.ac.cn/zh-hans/). The measured SOCD data from Xu et al. (2018) focuses on SOC densities

and soil carbon storage with a depth of 0–20 cm in various terrestrial ecosystems in China. The data was measured in field110

campaigns between 2004 and 2014, as well as some unpublished field measurements. The dataset from Dong et al. (2024)

provides comprehensive measurements of SOC and inorganic carbon densities across 0-100 cm profiles in Chinese grassland

and desert ecosystems, along with key environmental drivers such as climate variables, soil properties (texture, pH,

conductivity), nitrogen deposition, and root biomass. This multi-source validation enhances the robustness of our SOCD

assessments across different ecosystems and soil depths.115

(2) Landsat archives

The time-series archived Landsat 4, 5, 7, and 8 TM/ETM+/OLI images spanning from 1985 to 2020 (Yu et al., 2023) are

used for SOCD estimation, which are retrieved from the GEE cloud computing platform (Liu et al., 2024). Preprocessing of

Landsat images, including radiometric calibration, atmospheric correction, geometric correction, cloud identification, and

spectral index calculating are carried out on the GEE cloud computing platform. Random sampling and statistical regression120

https://poles.tpdc.ac.cn/zh-hans/
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analysis are performed to determine the calibration coefficients for each band spectral reflectance. Principal major axis

regression models are used to normalize the reflectance data for different sensors. Radiometric correction coefficients of

different Landsat sensors are calculated (Fig. 1). The spatially overlapping images are combined into one image using the

aggregation function, and the combined image dataset is subjected to stitching operations to produce spatially coherent

images. A variety of spectral indices were calculated using Landsat images after processing. Spectral indices Normalized125

Difference Vegetation Index (NDVI), Bare Soil Index (BSI), Enhanced Vegetation Index (EVI), Land Surface Water Index

(LSWI), and Soil-Adjusted Vegetation Index (SAVI) were calculated using Landsat images. The formulae for these spectral

indices are as follows:
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Where, ���� is the reference of near-infrared band, ���� is the reference of red band, ����� is the reference of blue band,

����� is the reference of short-wave infrared band and �����1 is the reference of short-wave infrared band 1.130

The land cover dataset newly released by Wuhan University (Yang and Huang, 2021) is used in this study. This is the first

China Land Cover Annual Data Set (CLCD) derived from Landsat on the GEE platform.

(3) DEM and its topographic derivatives

Terrain is an important factor affecting the formation of soil organic matter. The DEM data is used for SOCD estimation,

which is downloaded from the Resource and Environment Science Data Platform of the Chinese Academy of Sciences135

(https://www.resdc.cn) with a spatial resolution of 500 m. Topographic data and its topographic derivatives are extracted

from the DEM data. There are four terrain derivatives, including Slope, Aspect, Elevation, and Topographic Wetness Index

(TWI), which are calculated using SAGA GIS version 8.0.1 (https://saga-gis.org/) (Zhang et al., 2023). The spatial resolution

https://www.resdc.cn
https://saga-gis.org/
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of all raster data was uniformly adjusted to 1000m using resampling techniques to achieve spatial consistency between

different datasets.140

(4) Meteorological data

The meteorological features including Temperature (Tem), Precipitation (Pre) and Solar Radiation (SR), measured in 2,400

Chinese meteorological stations are used to quantify the effects of meteorological fluctuations. All meteorological data are

downloaded from the China Meteorological Data Network (http://data.cma.cn/). For spatial consistency, the meteorological

data is defined and projected into WGS 84 coordinates. All meteorological point data are interpolated into grid data with145

1000 m spatial resolution using the ANUSPLIN program (Padarian et al., 2022). Crucially, to account for the lapse rate

effect in complex terrain, DEM data was used as a covariate during the spline interpolation process.

(5) Published soil database

There are four published soil databases used to validate the SOCD estimation results in this study. One is the Harmonized

World Soil Database (HWSD v2.0), produced by the International Institute for Applied Systems in Vienna and the Food and150

Agriculture Organization of the United Nations. There are two soil properties including soil bulk weight and organic carbon

content are used for SOCD estimation at depths of 0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm, and 80-100 cm. The

SoilGrids250m v2.0 dataset including the soil silt content, sand content, clay content, and organic carbon content data with

the spatial resolution of 250 m are downloaded from FAQ SoilGrids (https://soilgrids.org/) for validation. For spatial

consistency, this soil attribute datum is resampled to 1000 m. This soil product with five depth intervals (5 cm, 15 cm, 30 cm,155

60 cm, and 100 cm) is used to calculate the soil silt content (Silt), sand content (Sand), clay content (Clay), and organic

carbon at 0-20 cm and 0-100 cm (Zhang et al., 2023). Taking the clay content data as an example, the clay content with

depths of 0-20 cm and 0-100 cm is calculated as follows:

���020 =
���05

4 +
���515

2
+

���1530

4
(6)

���0100 =
���05

20 +
���515

10 +
3
20 × ���1530 +

3
10 × ���3060 +

2
5 × ���60100 (7)

Where, CLY05, CLY515, CLY1530, CLY3060, and CLY60100 are the clay content (g/kg) at depths of 0-5, 5-15, 15-30, 30-60, and

60-100 cm respectively.160

http://data.cma.cn/
https://soilgrids.org/
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The GSOCmap dataset (https://www.fao.org/), which is the first global SOC product led by FAO, is used for validation.

GSOCmap is a 1-kilometer soil grid that covers depths ranging from 0 to 30 centimeters. The SOC Dynamics ML dataset in

China is now available on the Dryad platform (https://datadryad.org/). Using machine learning, the dataset aims to capture

the dynamics of SOC and its drivers in different soil horizons in China between the 1980s and 2010s (Li et al., 2022). The

dataset contains valuable information such as SOC stocks, carbon fixation rates, and SOC content. While these existing165

datasets offer broad insights into SOC, our study specifically focuses on refining the estimation of SOCD for precise

national-level carbon accounting across multiple historical periods. The organic carbon density with the depth of 20 cm and

100 cm in the 1980s, 2000s, and 2010s in China is used. This study focuses on SOCD, which is different from SOC content.

The conversion from SOC content to SOCD is presented in Section 3.1.

3 Methodology170

3.1 Converting SOC to SOCD with normalized soil depth

The dataset from the 2000s provided pre-calculated SOCD values (derived from SOC, bulk density, and coarse fragments by

the original data source), while the data reported in 1980s and 2010s are SOC content. For data consistency, we converted all

SOC content data to SOCD using Equation 8. The SOC content data of 1980s were from the Second National Soil Survey,

and the SOC content data of 2010s were from the Soil Attribute Data of China Soil System Record, which had several175

different soil depths. For the consistency of the measured data, we convert the soil data with different depths into the SOCD

with the depth of 0-20 cm and 0-100 cm using the package "mpspline2" v.0.1.3 (Bishop et al., 1999). The observed horizons,

defined by their upper and lower depths, were input to `mpspline2`, which fits a mass‑preserving spline to the vertical SOC

profile and integrates this spline over the target depth intervals. We used the default value of 0.1 for the spline smoothing

parameter lambda. We do not extrapolate beyond the observed soil depth when calculating SOCD. Profiles shallower than180

100 cm are used to compute SOCD only for depth intervals that are fully covered by observations, but they are excluded

from 0–100 cm SOCD statistics. When we report and analyze SOCD for the full 0–100 cm interval, we therefore restrict the

calculations to profiles with an observed depth of at least 100 cm after quality control. For all datasets, SOCD (kg C/m2) is

https://www.fao.org/
https://datadryad.org/
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calculated using bulk density (kg/m3), and coarse fractions percentage (%) provided by the National Soil Information Grids

of China (Liu et al., 2022).185

SOCD =
SOC × BD × SD

100
× 1 −

CF
100

(8)

Where, SOC is the soil organic carbon content (%), SOCD is the soil organic carbon density, BD is the soil bulk density, SD

is the soil depth (cm), and CF is the coarse fractions in a specific soil layer.

3.2 Feature selection for RF modelling

To achieve optimal prediction accuracy for SOCD and to elucidate its underlying mechanisms using RF models,

comprehensive feature selection for the numerous potential environmental driving factors is a critical prerequisite (Jiang et190

al., 2024). This process is instrumental in mitigating model complexity, enhancing computational efficiency, improving

model interpretability, and eliminating data redundancy that could adversely affect model performance. In this study, the

initial feature set comprised diverse categories of crucial environmental drivers, including remote sensing indices (e.g.,

NDVI, BSI, etc., derived from Landsat satellite imagery), topographic factors (e.g., elevation, slope, aspect, etc., generated

from DEM), climatic factors (e.g., mean annual temperature, mean annual precipitation, etc.), as well as auxiliary soil195

attributes (e.g., soil type) and other relevant indicators (Fig. 2).

Our methodology commenced with a combined approach of correlation analysis, random forest importance ranking, and

combinatorial optimization. First, a Pearson correlation matrix was constructed for the initial candidate features, and those

exhibiting high correlation (specifically, where the absolute value of the Pearson correlation coefficient exceeded 0.95) were

removed to reduce redundancy. The remaining features, representing a refined set, then underwent an importance assessment200

and ranking utilizing the RF algorithm. A preliminary RF model was constructed with these features as inputs and SOCD as

the target variable, and each feature's importance in predicting SOCD was quantified using Gini importance scores, thereby

enabling the preliminary identification of core factors possessing substantial explanatory power for SOCD variation. This

iterative procedure ensured the high independence of the selected feature set, preventing information overlap from impairing

model performance and interpretability. Finally, to identify the optimal feature combination capable of maximizing model205

prediction accuracy, an exhaustive combinatorial search was conducted on the 10 most informative features remaining after
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the initial screening steps. Through a comprehensive evaluation of all possible feature subsets' performance, aiming to

maximize the coefficient of determination (R²), seven key environmental driving factors were ultimately identified as

collectively providing the best predictive performance for SOCD: Temperature, Elevation, NDVI, Clay, SR, BSI, and Slope.

This rigorous selection process ensures that the chosen feature set effectively characterizes SOCD dynamics while210

optimizing the model's predictive capability.

The selected features represent fundamental controls on SOCD through their influence on microbial activity (temperature),

carbon input (vegetation indices), physical protection (clay content), and soil redistribution processes (slope). This multi-

stage selection approach effectively balanced model complexity with predictive power while maintaining the ecological

interpretability of the final feature set. The robustness of the selected features was further confirmed through cross-validation,215

demonstrating consistent performance across different validation datasets.

3.3 Climate zoning in China

Climate zoning is carried out to quantify the differences in temperature and precipitation in China and improve the accuracy

of SOCD estimation. China spans a vast geographical area, crossing multiple major climate zones from the eastern coast to

the western interior and from the subtropical monsoon climate in the southeast to the temperate continental climate in the220

northwest. This extensive climatic complexity leads to pronounced regional heterogeneity in soil formation and carbon

cycling, which necessitates a zoned approach for accurate SOCD estimation. According to Tang et al. (2018), there are

obvious differences in SOCD observed in different climate zones of China for the diverse and complex environmental

factors under warm-temperate climate conditions with a mean precipitation (MAP) threshold of 400 mm and a mean annual

temperature (MAT) threshold of 10 °C. To mitigate the interannual variability, the multi-annual average temperature and225

precipitation are used to classify the climatic differences in China into four subzones including humid areas (MAP ≥ 400

mm and MAT ≥ 10°C), semi-humid area (MAP ≥ 400 mm and MAT ≤ 10°C), semi-arid area (MAP ≤ 400 mm and

MAT ≤ 10°C) and arid area (MAP ≤ 400 mm and MAT ≥ 10°C) (Fig. 3). Soil data and environmental variables are

grouped in each subzone, and zonal SOCD estimation models are developed for each subzone with depths of 0-20 cm and 0-

100 cm (Fig. 3).230
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3.4 SOCD estimation using zoned RF models

For the estimation of SOCD, RF models were developed independently across four distinct climate subzones (arid, semi-arid,

humid, and semi-humid) and for two soil depths (0-20 cm and 0-100 cm).Within each subzone, the RF model aggregates

predictions from numerous decision trees, enhancing forecast stability and accuracy (Wu et al., 2021). This ensemble

approach inherently mitigates overfitting, as individual trees are constructed from random subsets of data and features (Sun235

et al., 2024), thereby significantly improving the generalization of models. Especially, our RF model is conceptualized as a

single, unified space-time model, meticulously trained on a comprehensive pooled dataset spanning distinct historical

decades (1980s, 2000s, and 2010s). This unified framework, a key novelty of our approach, facilitates consistent SOCD

prediction across multiple historical intervals (1985-2020 in five-year increments) for the vast and diverse Chinese region.

The methodology effectively leverages the 'space-for-time' principle (Heuvelink et al., 2021) by integrating soil samples240

collected across these decades into a single training process. This enables the RF model to learn intricate relationships

between environmental covariates and SOCD under varying historical conditions, inferring temporal SOCD evolution driven

by dynamic factors based on observed spatial patterns.

The RF model inputs, established within the Scikit-Learn framework, comprised both static and dynamic predictors.

Dynamic covariates, such as temperature, NDVI, SR, and BSI, were precisely matched to their corresponding five-year245

mapping periods by utilizing their average values for those intervals (e.g., 1985-1990). Model parameters, including the

number of trees, the percentage of randomly selected features, and maximum tree depth, were tuned using a param_dist

dictionary to optimize performance during cross-validation. The model's robustness and spatiotemporal capabilities are

underscored by a sophisticated stratified spatiotemporal K-fold cross-validation strategy. This involved spatially stratifying

the study area into K independent sub-regions to address autocorrelation and assess generalization to new locations.250

Critically, temporal stratification ensured proportional representation of samples from all three decades within each spatial

fold's training and validation sets, allowing the model to learn complex SOCD change patterns over time. The optimized RF

model was subsequently employed to predict SOCD across the entire study area, utilizing measured SOCD values alongside

spectral indices from soil properties, Landsat archives, topographic derivatives, and meteorological elements. Model

performance and generalization ability were rigorously validated using the coefficient of determination (R²) and root mean255
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square error (RMSE). The trained model was saved using the joblib library, and the resulting estimations were combined

with a geographic coordinate system to generate digital SOCD maps, facilitating the exploration of relationships between

SOCD and optimized environmental variables.

4 Results and conclusions

4.1 Statistical analysis of sampling points260

The statistics of the measured SOCD values are presented in Fig. 4. For the 0–20 cm soil layer, the mean value of SOCD in

the 1980s was 4.16 kg C/m², and the data showed a positively skewed distribution. In the 2000s, the mean value of SOCD

slightly decreased to 4.02 kg C/m², accompanied by increased variability resulting from a larger number of sampling sites.

Sampling density was highest in the 2010s, during which the mean value of SOCD rose modestly to 4.14 kg C/m² and the

distribution became more strongly skewed. For the 0–100 cm soil layer, the mean value of SOCD in the 1980s was 10.92 kg265

C/m². In the 2000s, the mean value decreased notably to 8.81 kg C/m², accompanied by reduced data variability. In the 2010s,

the mean value of SOCD increased again to 11.65 kg C/m², and the distribution displayed a more pronounced skew and

thicker tails, reflecting greater heterogeneity in deep‑soil carbon stocks across regions (Fig. 4).

Fig. 5 shows the geographical arrangement of SOCD data based on Whittaker biomes with depths of 20 cm and 100 cm in

the 1980s, 2000s, and 2010s in China. The distribution of samples shows significant regional concentration and geographical270

variation, with most points concentrated in the northeastern plain, southwestern plateau, hilly zones, and southeastern coastal

zones. There are fewer SOCD samples in northwestern China due to difficult human accessibility, lower vegetation cover,

less human activity, and a dry environment. In terms of timing, there are fewer SOCD sample sites in the 1980s. The number

of sampling sites increased in the 2010s, particularly in agriculturally developed and densely populated areas.

4.2 Model performance of SOCD estimation275

To evaluate the model performance of SOCD estimation at depths of 0-20 cm and 0-100 cm, two key indicators were

utilized, including the coefficient of determination (R2) and the Root Mean Square Error (RMSE). R2 quantifies the

proportion of variance in the dependent variable explained by the model, while RMSE assesses the discrepancy between



13

model predictions and estimated results. The precision of RMSE values is further characterized by their 95% confidence

intervals (CI), providing insight into the robustness and statistical significance of observed performance differences.280

As shown in Fig. 6, climatic zoning improved model substantially performance for both soil depths relative to the global

(non‑zoned) approach. For the SOCD prediction in the depth of 0-20 cm, the global model achieved an accuracy of R2=0.46

and RMSE = 2.38 kg C/m² (95% CI of [2.22, 2.55]). After incorporating climatic zoning, the accuracy of SOCD estimation

was significantly improved with R2=0.63 and RMSE = 2.03 kg C/m² (95% CI of [1.95, 2.13]), demonstrating an R2 increase

of 0.17 and an RMSE decrease of 0.35 kg C/m². The non-overlapping confidence intervals for the global and zoned models285

(95% CI of [2.22, 2.55 vs. [1.95, 2.13]) clearly indicate a statistically significant improvement in RMSE due to climatic

zoning. Similarly, for the SOCD prediction in the depth of 0-100 cm, the global model yielded an R2=0.43 and RMSE = 8.06

kg C/m² (95% CI of [6.76, 9.49]). With climatic zoning, the performance enhanced to R2=0.62 and RMSE = 6.16 kg C/m²

(95% CI of [5.65, 6.89]), reflecting an R2 increase of 0.19 and an RMSE decrease of 1.9 kg C/m². Here again, the distinct

confidence intervals ([6.76, 9.49] vs. [5.65, 6.89]) confirm the statistical significance of performance enhancement from290

zoning. Overall, the SOCD estimation model for the 0-20 cm depth generally exhibited a higher R2 compared to the 0-100

cm depth model, indicating greater complexity in modeling deeper SOC dynamics with available covariates.

Further analysis of model performance across different climate zones revealed distinct patterns at the 0–20 cm depth (Fig. 7).

The model achieved the highest accuracy in the semi-arid zone (R2=0.70, RMSE =1.95 kg C/m², 95% CI of [1.80, 2.11]),

followed closely by the semi-humid zone (R2=0.67, RMSE =2.20 kg C/m², 95% CI of [2.07, 2.32]). In contrast, the arid zone295

exhibited moderate performance (R2=0.65, RMSE =1.86 kg C/m², 95% CI of [1.15, 2.68]), while the humid zone showed the

lowest correlation (R2=0.50, RMSE =1.90 kg C/m², 95% CI of [1.79, 2.01]). The superior model fit in the semi-humid and

semi-arid regions is primarily characterized by consistently higher R2 values. Although RMSE values vary, these transitional

zones avoid the extreme uncertainty observed in the arid zone, suggesting that the model captures SOCD spatial variability

more effectively in these areas. This performance is likely attributable to a more balanced distribution of SOCD sampling300

points, which mitigates the bias caused by extreme values. Furthermore, the environmental covariates selected for the model

appear to exhibit a stronger and more consistent correlation with SOCD dynamics in semi-arid and semi-humid climates

compared to other zones, thereby contributing to the improved estimation accuracy.
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For the 0-100 cm depth, the semi-humid zone demonstrated the highest R2=0.68 with RMSE = 6.29 kg C/m² (95% CI of

[5.77, 6.76]). The semi-arid zone had an R2=0.64 and RMSE = 5.92 kg C/m² (95% CI of [5.22, 6.58]). The arid zone showed305

an R2=0.61 and RMSE = 5.71 kg C/m² (95% CI of [5.12, 6.32]). The humid zone had an R2=0.54 and RMSE = 6.37 kg C/m²

(95% CI of [5.13, 8.18]). Notably, although the semi-humid zone retained the highest R2, the arid zone exhibited the lowest

prediction error (RMSE) and a relatively narrow confidence interval. This suggests that while the model explains a moderate

proportion of the total variance in arid regions, its predictive errors are tightly constrained. This phenomenon may be linked

to the distinct environmental controls in drylands, where soil moisture is the dominant limiting factor. The high sensitivity of310

vegetation and soil microorganisms to water availability in arid zones creates strong, clear predictive signals that the model

can easily capture. In contrast, in humid regions, SOC dynamics are governed by complex interactions among multiple

factors—such as precipitation, temperature, and dense vegetation cover. These confounding influences can obscure direct

relationships, thereby reducing the model's predictive power, particularly for deeper soil layers where long-term

accumulation processes dominate. Our results confirm that the proposed modeling framework effectively captures these315

divergent mechanisms of SOC accumulation across different climatic regimes.

To elucidate the drivers of SOCD estimation, we analyzed the hierarchical importance of optimized environmental features

(Fig. 8). The results reveal distinct driver mechanisms across soil depths. For the 0–20 cm depth (Fig. 8a), Temperature

emerged as the dominant predictor, accounting for 35.91% of the model's contribution. It was followed by solar radiation

(SR) (17.57%), Elevation (13.21%), NDVI (11.37%), Clay (8.99%), BSI (6.69%), Slope (3.70%), and CLCD (2.56%). The320

overarching influence of temperature on topsoil SOCD operates primarily through the regulation of microbial kinetics. While

elevated temperatures accelerate the heterotrophic respiration and decomposition of SOC, they may simultaneously enhance

plant productivity and residue turnover, thereby increasing carbon inputs. SR, as the second most important factor, acts in

concert with temperature to drive the surface energy balance and potential evapotranspiration. These hydrothermal dynamics

directly regulate soil water status: optimal moisture levels favor SOC accumulation by supporting vegetation growth,325

whereas moisture deficits induced by high radiation and evaporation can limit inputs or accelerate oxidative loss. The high

ranking of NDVI further underscores the critical role of vegetation vitality, as it determines the quantity of organic litterfall

and root exudates returned to the soil.
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For the 0–100 cm depth (Fig. 8b), while Temperature remained the leading factor (25.62%), its relative dominance decreased

compared to the surface layer. Notably, the importance of topographic and edaphic factors increased, with the hierarchy330

shifting to: Elevation (16.45%), SR (16.43%), NDVI (14.59%), Clay (12.44%), BSI (9.49%), Slope (3.32%), and CLCD

(1.67%). The increased prominence of Elevation reflects its control over the vertical zonation of hydrothermal conditions

(including radiation receipts), which fundamentally shapes soil formation processes and the depth-wise distribution of

organic carbon.

The shift in feature importance between the two models highlights the complexity of SOC dynamics and the necessity of335

depth-specific modeling. In the 0–20 cm model, bioclimatic factors (Temperature, SR, and NDVI) exert a more pronounced

influence, reflecting the direct sensitivity of topsoil to atmospheric energy inputs and immediate vegetation exchange. In

contrast, the 0–100 cm model shows a marked increase in the contribution of soil physicochemical properties (e.g., Clay) and

stable topographic features (e.g., Elevation, Slope). This suggests that SOCD in deeper layers is increasingly governed by

long-term pedogenic processes, geological context, and depositional dynamics rather than immediate surface accumulation.340

Incorporating these depth-dependent determinants—spanning climatic, topographic, biological, and edaphic variables—is

essential for accurately capturing the spatial and temporal heterogeneity of soil organic carbon stocks.

4.3 Validation with independent sample points

The SOCD estimation result is validated with independent published SOCD data in the Heihe River basin by Li et al. (2022).

The Heihe River basin is a major ecological and agricultural zone in northwest China. There are special geographical and345

climatic characteristics for the soil carbon accumulation in the Heihe River basin, which are important for exploring soil

quality in arid and semi-arid zones. Validation is carried out by comparing measured data in the Heihe River basin with the

estimated SOCD in this study. The comparison results show that our estimated SOCD is highly consistent with the measured

SOC data from the Heihe River basin (Fig. 9). The estimated SOCD and the measured SOCD have a significant correlation,

which is shown by the R2 value of 0.76, and the RMSE value of 1.75 (kg C/m²) (95% CI of [1.25, 2.23]) for the estimated350

result with the depth of 0-20 cm. Additionally, the proposed model demonstrates superior accuracy compared to Li’s dataset,

which reported an R2 of 0.60 and an RMSE of 2.27 (kg C/m²) (95% CI of [1.59, 2.98]).
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To further assess model robustness across a wider range of environmental conditions, our estimated SOCD results are

compared with the data published data by Xu et al. (2018), which is the data on carbon storage of terrestrial ecosystems in

China with a depth of 0-20 cm These samples are widely distributed across the southern Tibet Autonomous Region, Qinghai355

Province, and eastern Inner Mongolia Autonomous Region. This is very good evidence for validating the robustness,

reliability, and generalizability of the SOCD estimation model in this study. The estimated SOCD results are compared with

the measured SOC data in the field campaign of Xu et al. (2018). In addition, the field data were compared with 0-20 cm

organic carbon density maps generated by a machine learning analysis dataset of SOC dynamics and their drivers in China

during 2000-2014. The results of the comparative analysis are encouraging and show high agreement between the estimated360

SOCD using our developed model and the measured SOC data. Specifically, the R² value is 0.68 and the RMSE value is 1.70

(kg C/m²) [95%CI: 1.51, 1.90], which further confirms the accuracy of our SOCD estimation model (Fig. 9). Furthermore,

the model outperforms Li’s dataset, which yielded an R2 of 0.54 and an RMSE of 2.04 (kg C/m²) [95%CI: 1.73, 2.34],

underscoring the enhanced predictive accuracy of our approach.

Our estimated SOCD results with the depth of 0-100 cm were validated furtherly with independent measurements from365

Inorganic carbon pools and their drivers in grassland and desert soils (Dong et al., 2024) and compared with the machine

learning-derived SOCD simulations by Li et al. (2022). The SOCD dataset of Dong et al. (2024), covering grassland and

desert ecosystems across China, provides robust in-situ measurements of SOCD (0-100 cm) alongside critical environmental

drivers (e.g., climate, soil properties), offering an ideal benchmark for evaluating model generalizability in arid and semi-

arid regions. Comparative analysis revealed that our SOCD estimates achieved significantly better agreement with the370

independent validation data (R2 = 0.50, RMSE = 4.93 kg C/m²) [95%CI: 1.65, 7.47] than Li et al.’s simulations (R2 = 0.31,

RMSE = 5.80 kg C/m²) [95%CI: 4.16, 7.48] (Fig. 9). This demonstrates the superior accuracy of our approach in capturing

deep soil carbon dynamics (0-100 cm), particularly in heterogeneous grassland and desert environments. The higher R2 and

lower RMSE values underscore the improved capability of our model to resolve spatial patterns of SOC storage compared to

earlier machine learning-based efforts.375
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4.4 Comparison with published SOCD products

The 1-km-resolution SOCD dataset of China is produced in this study, which is compared with the published SOCD

products including HWSD v2.0, SoilGrids 250m, and GSOCmap datasets to validate and confirm its accuracy and reliability.

As shown in Fig. 10, our estimated SOCD dataset exhibits strong consistency with published products, with the highest

agreement observed with SoilGrids 250 m (R² = 0.74). This performance is substantially better than the correlations with380

GSOCmap (R² = 0.64) and HWSD (R² = 0.71). The HWSD v2.0 dataset is jointly published by the Food and Agriculture

Organization of the United Nations (FAO) and the International Institute for Applied Systems (IIAS) in Vienna, which

provides soil data on a global scale. The correlation of our SOCD dataset with HWSD is reported with the R² value of 0.71

and the RMSE value of 11.52 (kg C/m2). The GSOCmap dataset is led by the FAO and is intended to cover various

ecosystems around the world. This is the first global SOC map. The correlation of our SOCD dataset with GSOCmap is385

reported with the R² of 0.64 and the RMSE of 1.25 (kg C/m2). The SoilGrids250m dataset is created using ISRIC's digital

soil mapping technology, which is a global soil dataset. The correlation of our SOCD dataset with SoilGrids250m is reported

with the R² of 0.74 and the RMSE of 1.03 (kg C/m2). Models are more accurate and applicable than global soil databases in

capturing SOCD changes in China. This study highlights the need to create and implement region-specific models that utilize

current geographic and environmental data to provide a more precise tool for accurately estimating soil carbon reserves.390

To evaluate the temporal accuracy of our product, we compared the SOCD estimates for the 1980s, 2000s, and 2010s

against the corresponding SOC Dynamics ML dataset (Fig. 11). The results demonstrate a strong and consistent agreement

between the estimated and measured values across all periods. Specifically, the model achieved R² values of 0.78, 0.76, and

0.73, with corresponding RMSEs of 0.90, 1.02, and 1.07 kg C/m2 for the 1980s, 2000s, and 2010s, respectively. While the R²

shows slight fluctuations, the consistently low RMSE values indicate that the model remains robust over time. Overall, these395

comparisons validate the reliability of the SOCD estimation framework developed in this study. The sustained accuracy over

three decades highlights the model's capability to provide precise long-term SOCD estimates, underscoring the importance of

integrating multi-temporal field data with advanced analytical methods.
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4.5 Spatiotemporal changing of SOCD in China

The SOCD changes over time from the 1980s to the 2010s are validated in Fig. 12 compared with the published400

investigations. Fig. 12 reveals that our estimated SOCD results with depths of 0-20 cm (a) and 0-100 cm (b) are falling in the

value range of the previous investigations of Xie et al. ( 2007), Wu et al. (2003), Wang et al. (2004), Xu et al. (2018), Wang

et al. (2021), Li et al. (2022), Zhang et al. (2023). A slight increasing trend in SOCD was observed in the 0–20 cm topsoil

from the 1980s to the 2010s (Fig. 12a). This resulted from that the topsoil is more susceptible to the direct effects of soil

management practices and environmental changes (Oechaiyaphum et al., 2020). In contrast, the estimated SOCD in the 0–405

100 cm profile remained relatively stable throughout the study period (Fig. 12b). Fig. 13 and Fig. 14 show the

spatiotemporal distributions of the estimated SOCD at the 5-year interval from the 1980s to the 2010s. And the regions with

high SOCD value in depth of 0-20 cm are in northeast and southwest China with red color in Fig. 13. Comparably speaking,

there are the largest area of high SOCD value labeled dark red color bar in period of 2010-2015 (Fig. 13f). From the

perspective of longitude, the SOCD distribution shows different pattern, and it is homogeneous in high and low longitudes410

where the land cover is forest mostly. Conversely, the variance of SOCD is higher in mid-longitude regions where is with

distinct land cover types. Similarly, the regions with high SOCD value in depth of 0-100 cm are in northeast and southwest

China with green color in Fig. 14. And there are smaller variance of SOCD in high and low longitudes, and there are higher

variance of SOCD in mid-longitude regions. There are many driving factors for the changing of SOCD in China. Targeted

monitoring and management practices should be implemented for SOCD trends at different soil depths to maximize soil415

carbon sequestration and continuously improve soil quality.

5 Data availability

The 1‑km soil organic carbon density dataset for China at depths of 0–20 cm and 0–100 cm from 1985 to 2020 is freely avail

able at https://doi.org/10.6084/m9.figshare.27290310.v2(Dong et al., 2024). The dataset can be imported into remote sensing

processing software (e.g., ENVI), standard geographical information system software (e.g., ArcGIS). In addition, the origina420

l CSV‑format field measurement dataset used in this study is provided to enhance transparency, reproducibility, and facilitate

further applications of the SOCD dataset.

https://doi.org/10.6084/m9.figshare.27290310.v2
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6 Conclusions

In this study, a SOCD dataset with a resolution of 1-km resolution and soil depths of 0-20 cm and 0-100 cm is created from

1985 to 2020 in China. The accuracy and validity of this dataset are validated by three independent metrics and data and four425

types of published global products. The conclusions are as follows.

(1) The delineation of climatic zones for SOCD estimation modeling has been proven useful for enhancing the precision of

the models and effectively addressing the uneven distribution of measured SOC.

(2) Independent validations confirmed the robustness of the estimated SOCD. For the 0-20 cm depth, our estimates showed

strong agreement with measured data from the Heihe River basin (R²=0.76, RMSE=1.75 kg C/m²) and the Xu dataset430

(R²=0.68, RMSE=1.70 kg C/m²). Furthermore, for the 0-100 cm depth, validation against independent measurements from

Dong et al. (2024) also indicated strong agreement (R²=0.50 RMSE=4.93 kg C/m²).

(3) Compared to published global products including HWSD, SoilGrids250m, and GSOCmap, the estimated SOCD in this

study was consistent and accurate. Comparison with the SoilGrids250m dataset shows the superiority of zoning RF models

in capturing variations in SOCD in China with R²=0.74 and RMSE=1.03 (kg C/m2).435

(4) Temporal evaluations showed good agreement between our SOCD estimates and independent measurements from the

1980s, 2000s, and 2010s. The time‑series analysis revealed clear SOCD variations across China and across soil depths,

reflecting the influence of agricultural management, land‑use changes, and climate variability.

While this dataset represents a significant advancement in national-scale SOC accounting, the continuous integration of new

soil profile data remains essential for further model refinement. Future research should prioritize quantifying the impacts of440

specific land management strategies on SOC dynamics. Furthermore, given the persistent uncertainties in large-scale soil

carbon estimates, we advocate for standardized sampling protocols, broader data sharing, and strengthened global

collaboration to improve the accuracy of future soil carbon inventories.
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Figure 1. Radiometric normalization coefficients between Landsat 5 TM、Landsat 7 ETM+ (a-f) and Landsat 7 ETM+、Landsat 8 OLI560

(e-j) sensors for different bands including blue, green, red, NIR, SWIR1, and SWIR2. The radiometric normalization coefficients for each

sensor are represented by fitted lines and correlation coefficients, indicating the correlation between the reference of different sensors, and

characterizing the spectral response of the sensors in the different wavelength bands.
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565
Figure 2. Feature selection process for SOCD estimation. (a) Pearson correlation matrix of top environmental covariates

(upper triangle shows correlation coefficients; red=positive, blue=negative), with boxed features indicating the final selected

variables. (b) Hierarchical feature importance evaluation combining correlation filtering (removing |r| > 0.95), random

forest-based ranking (Gini importance), and combinatorial optimization. (c)The optimal feature set (highlighted in bold)

comprised seven variables: mean annual temperature, elevation, NDVI, clay content (Clay), Solar Radiation (SR), bare soil570
index (BS1), and slope, which collectively maximize prediction accuracy (R²) while maintaining ecological interpretability.
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Figure 3. Climatic zones for SOCD estimation modeling. Climate zoning comes from the time-series climate data including temperature

and precipitation. According to the difference in climate zones, it can be divided into humid, semi-humid, arid, and semi-arid zones.

575
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Figure 4. Statistical characteristics of soil sample points in different periods. Frequency distribution of SOCD data with the soil depth of

0-20 cm (a-c) and 0-100 cm (d-f) during the 1980s, 2000s, and 2010s.580
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Figure 5. Spatial distribution of SOC soil sample points with depth of 0-20 cm (b) and 0-100 cm (d). And the Whittaker biomes of soil585

sample points with depth of 0-20 cm and 0-100 cm are shown in (a) and (c).
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Figure 6. The model performance of global and zoning models with the depth of 0-20 cm and 0-100 cm. The SOCD prediction model of590

0-20 cm and 0-100 cm soil depth is evaluated strictly by using a variety of statistical indicators, corresponding to four evaluation results, 0-

20 cm global model (a), 0-20 cm regional model (b), 0-100 cm global model (c), and 0-100 cm regional model (d).
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Figure 7. The model performance of different zoning models with the depth of 0-20 cm and 0-100 cm. Panels (a) and (e) depict the model595

performance for arid regions. Panels (b) and (f) illustrate results for humid regions. Panels (c) and (g) showcase semi-arid regions. Finally,

panels (d) and (h) display model accuracy in semi-humid regions.
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600
Figure 8. Importance ranking of features for SOCD estimation with the depth of 0-20 cm and 0-100 cm. It reports the contribution of

different environmental variables to the SOCD estimation with different soil depths, including feature importance ranking for 0-20 cm

depth (a) and feature importance ranking for 0-100 cm depth (b).

605



33

Figure 9. Comparison of predicted and machine learning (ML) derived SOCD with independent measurements at various

depths. Panels (a), (b), and (c) display correlations of this study's predicted SOCD, while (d), (e), and (f) show correlations of

SOC Dynamics ML dataset. Specifically, (a) and (d) are for 0-20 cm SOCD against Heihe River basin measurements. (b)

and (e) compare 0-20 cm SOCD with Xu's published data. (c) and (f) present 0-100 cm SOCD correlations with610
measurements from Dong et al. (2024) and simulations from Li et al. (2022).

615
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Figure 10. Comparison with three published global products. Our estimated SOCD is compared with the SoilGrids250m (a & b),

GSOCmap (c & d), and HWSD v2.0 (e & f) datasets.
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620
Figure 11. Comparison with the SOC Dynamics ML dataset with a depth of 0-20 cm in China in the 1980s (a), 2000s (b), and 2010s (c).
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Figure 12. Aggregated results of estimated SOCD with the depth of 0-20 cm (a) and 0-100 cm (b) in China from this study

and previous investigations.625
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Figure 13. Spatial distribution of estimated SOCD at a depth of 0-20 cm in 1985-1990 (a), 1990-1995 (b), 1995-2000(c), 2000-2005 (d),

2005-2010 (e), 2010-2015 (f), 2015-2020 (g) and average from 1985 to 2020 (h). The lower left histograms in each panel show the area

ratios for different SOCD levels.630
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Figure 14. Spatial distribution of estimated SOCD at a depth of 0-100 cm in 1985-1990 (a), 1990-1995 (b), 1995-2000(c), 2000-2005 (d),

2005-2010 (e), 2010-2015 (f), and 2015-2020 (g) and average from 1985 to 2020 (h). The lower left histograms in each panel show the

area ratios for different SOCD levels.635
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