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Abstract: Soil organic carbon (SOC) is an important component of the global carbon cycle and a vital indicator of ecosystem 

health, playing key roles in agricultural productivity and climate change mitigation. To trace the spatiotemporal dynamics of 

SOC in China, a high-resolution (1 km) Soil Organic Carbon Density (SOCD) dataset for the 0–20 cm and 0–100 cm depths 

spanning the period from 1985 to 2020 is produced in this study. By integrating Landsat archives, topographic and 10 

meteorological data, and 11,743 soil profile measurements, we produced the SOCD dataset from 1985 to 2020 in China using 

the Random Forest ensemble learning approach. Specially, a climate zoning strategy was developed to account for the 

significant environmental heterogeneity across ChinaSoil organic carbon (SOC) is an important component of the worldwide 

carbon cycle as a vital indicator of soil quality and ecosystem health, with significant implications for agricultural production 

and climate change adaptation and mitigation strategies. For tracing the spatiotemporal changes of SOC content in China, this 15 

study is aiming at producing the accurate soil organic carbon density (SOCD) products from 1985 to 2020 with the spatial 

resolution of 1km with depths of 0-20 cm and 0-100 cm. The data sources used in this study include Landsat archives, 

topographic data, meteorological data, and measured SOCD data. The climate zoning was done for quantifying the climate 

differences with large area of China and the random forest ensemble learning approach was used for robust SOCD estimation 

with 8203 samples. The validation of our SOCD estimated results with 0-20 cm depth with independent testing samples showed 20 

strong agreementOur estimated results show that the zoning model outperformed the global model without climate zoning in 

estimating SOCD with R2=0.63 and RMSE=1.922.03 (kg C/m2) for 0-20 cm SOCD estimation and R2=0.600.62 and 

RMSE=7.076.16 (kg C/m2) for 0-100 cm. Comparably, the SOCD estimation using the global model is with R2=0.49 and 

RMSE=2.24 (kg C/m2) for 0-20 cm SOCD estimation and R2=0.48 and RMSE=7.97 (kg C/m2) for 0-100 cm. Moreover, our 
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SOCD estimated results with 0-20 cm depth are aligned well with independent samples (R²=0.710.76, RMSE=1.941.75 kg 25 

C/m2) and Xu's dataset (R²=0.660.68, RMSE=1.751.70 kg C/m2). Furthermore, the validation of our SOCD estimated results 

with 0-100 cm depth with independent measurements from Dong et al. (2024) showed strong agreement (R²=0.440.50, 

RMSE=5.244.93 kg C/m²). The comparisons with the published SOC content products including HWSD, SoilGrids250m, and 

GSOCmap have also shown good consistency, too. Comparably, our predicted SOCD is the best fit with SoilGrids250m 

products with R2=0.72 and RMSE=1.35 (kg C/m2) Furthermore, our SOCD product exhibits high consistency with existing 30 

global datasets (HWSD, SoilGrids250m, and GSOCmap), showing the best fit with SoilGrids250m (R²=0.74, RMSE=1.03 kg 

C/m2). Comparisons of model predictions to independent datasets from the 1980s, 2000s, and 2010s in China reveal substantial 

connections and demonstrate strong performance over time. The estimated SOCD products, along with the compiled raw soil 

profile observations for both 0–20 cm and 0–100 cm depths, are openly available via FigshareThe estimated SOCD is available 

via the Figshare (https://doi.org/10.6084/m9.figshare.27290310.v1https://doi.org/10.6084/m9.figshare.27290310.v2) (Dong et 35 

al., 2024). 

1 Introduction 

Soil organic carbon (SOC) plays a fundamental role in the earth system by mediating the fluxes of carbon, energy, and 

waterSoils are important because they enable the movement of carbon, energy, and water (Chaney et al., 2019; Crow et al., 

2012). The foundation of soil fertility lies in soil carbon, a significant component of terrestrial carbon storage. SOC accounts 40 

for more than half of total soil carbon and is an essential component of the soil carbon cycle, which has a major impact on soil 

fertility and agricultural productivity (Baldock, 2007; Chen et al., 2022). A combination of natural and human forces is placing 

significant strain on the global SOC reservoir. SOC content estimation has become a hot spot in global climate change due to 

its close relationship with climate change. The sustainability of agricultural production is threatened worldwide by soil 

degradation and the loss of intimate relationships.  (Xu et al., 2018). This lack of high-resolution, long-term observational data 45 

impedes precise assessment of soil degradation and carbon sequestration potential. Therefore, developing a robust, 

spatiotemporally continuous SOC density (SOCD) dataset for China is urgent.Moreover, the complicated geography and varied 
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climate in China have resulted in significant regional differences in SOC, leading to the difficulties of SOC content estimation 

in China. 

In recent years, increasing attention has been paid to estimating SOC across global, national, and regional scalesThere has 50 

been more and more interest in global, national, and regional SOC content estimation in the last few years (Padarian et al., 

2022). In-depth studies to estimate subsurface SOC content estimation, particularly at a regional scale, remain challenging due 

to the difficulty of data collection, the lack of long-term observations, and the depth dependency of soil carbon sequestration 

(Padarian et al., 2022). The advancement of digital soil mapping technology opens up new paths for estimating SOC content 

in large-scale and long-term series (Li et al., 2024). The use of machine learning techniques for digital soil modeling is a 55 

common concept in DSM. Compared to traditional mapping methods such as geo-statistics, expert knowledge, and individual 

representation, machine learning techniques provide a new paradigm for estimating SOC content in large-scale and long-term 

series. To produce continental-scale SOC-weighted mean maps, Odgers et al. (2012) used an equal-area spline function for 

soil databases, while Mulder et al. (2016) used a machine learning model with a three-dimensional distribution to estimate 

SOC content in eastern France. These studies provide evidence for a comprehensive and accurate understanding of soil 60 

properties and their spatial variation. Despite these advances, most digital soil mapping studies have focused on a specific 

period and the long-term dynamics of SOCD mapping have not yet been developed. Emadi et al. (2020) predicted the SOCD 

in northern Iran using a sample of 1879 measurements, and Nabiollahi et al. (2019) used a random forest (RF) model to predict 

the SOCD at 137 sites in Marivan, Kurdistan Province, Iran. However, these studies only focus on local zones. In China, 

researchers have paid considerable attention to the sequestration potential of SOC storage, but most studies have focused on 65 

specific experimental areas or ecosystem types. Fang et al. (2007) estimated the carbon sink of terrestrial vegetation in China. 

Furthermore, these studies often lack attention to long-term trends and dynamics, resulting in insufficient data sets to fully 

understand climate change and the impact of human activities on SOCD. At the national level, there is relatively little study 

on the potential for organic carbon storage across different ecosystem types (O'Rourke et al., 2015). The scarcity and 

unevenness of SOC data in China, as well as the lack of effective estimation methods, all contribute to the uncertainty of SOC 70 

prediction. In addition, the diverse and complex topography in China, as well as the lack of measured SOCD data, have 

increased the difficulty of SOC content estimation. Previous studies often used the data from inventories of relevant resources 
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to make rough calculations of carbon sinks (Pan et al., 2004). Unfortunately, the spatial continuity and variability of SOC, the 

spatial differentiation of organic carbon sequestration potential, and the influence of environmental factors have not been 

considered in previous studies. Especially in western China, there is almost no measured SOC data (Liu et al., 2022), which 75 

poses a challenge for understanding terrestrial ecosystems and soil carbon sinks in China. Given these challenges, it is urgent 

to carry out SOCD mapping and analyze the temporal and spatial changes of SOCD in China. 

To produce robust and accurate long-term SOCD products in China, we explore the RF models with climate zoning to predict 

SOCD in China from 1985 to 2020 and improve the study of SOCD maps for the 0-20 cm and 0-100 cm soil layers in China. 

The Landsat TM/ETM+/OLI images, topography, meteorology, and soil properties data are used for SOCD mapping in this 80 

study. The main contributions of this study can be summarized as follows. 

(1) A nationwide, long-term soil organic carbon density dataset from 1985 to 2020 with depths of 20cm and 100cm in China 

is provided in this study. 

(2) The machine learning RF models zoned by climate zones in China are developed for SOCD estimation, and the spatial-

temporal variability of soil carbon is considered in our SOCD estimation. 85 

(3) The proposed framework provides a comprehensive understanding of SOCD estimation including spectral indices of 

satellite remote sensing images, digital elevation model (DEM) and its topographic derivatives, meteorological features, and 

soil properties. The technique offers the potential for SOCD mapping with sufficiently measured SOC content data. 

2 Study area and data sources 

2.1 Study area 90 

The study area, which extends throughout China, is characterized by complex and diverse terrains including mountains, 

plateaus, basins, plains, and deserts (Yuan et al., 2023). In addition, China has a large latitude difference from 4°N to 53°N 

and a large longitude difference from 73°E to 135°E. Therefore, there are obvious differences in precipitation and temperature 

in the study area, which bring significantly different accumulation processes and spatial patterns of soil carbon (Zheng et al., 

2023) . In addition, there are various soil types, including red soil, brown soil, black soil, and chestnut calcium soil, which 95 

have obvious spatial characteristics in the study area (Shangguan et al., 2014) . For these reasons, we developed four different 
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RF models for SOCD estimation for four temperature zones from south to north in China including humid area, semi-humid 

area, semi-arid area and arid area. 

2.2 Data sources 

(1) SOC content data 100 

After removing duplicates and incomplete records, we compiled a comprehensive database of 11743 soil profiles containing 

measured SOC content and bulk density across China, spanning three distinct periods including the 1980s, 2000s, and 

2010s.There were 8203measured SOC content samples in the 1980s, 2000s, and 2010s in China collected for model building 

and validation of SOCD estimation. The SOC content and soil mass weight data of the 1980s were collected from the profile 

database of the Second National Soil Survey (1980-1996) (http://www.geodata.cn). The SOCD data of the 2000s was collected 105 

from the China Terrestrial Ecosystem Carbon Density Dataset (2000-2014) (http://www.cnern.org.cn/). The SOC content data 

of the 2010s was collected from the Soil Attribute Data of the China Soil System Record (2010s) (https://www.resdc.cn/), 

which was measured in the China Soil System Survey Collection and China Soil System Journal Compilation Project. To 

enhance spatiotemporal coverage, particularly for data-scarce regions , we incorporated additional SOC data from two recent 

national data products: the national soil organic carbon density dataset for 2010–2024 in China (Chen et al., 2025) and the 110 

updated China dataset of soil properties for land surface modelling (Shi et al., 2025). We harmonized the point-level 

information from these datasets (profile ID, latitude and longitude, upper and lower depth, SOC content, sampling year, and 

land-use type) to match the structure of our database. Then a detailed overlap analysis between these profiles and our original 

compilation was done. Because many profiles in Chen et al. (2025) and Shi et al. (2024) originated from the same legacy 

sources as our database, we developed a strict de-duplication procedure based on geographic coordinates, sampling year, and 115 

depth structure to identify duplicated entries. Profiles that matched existing profiles within a small spatial tolerance and with 

similar temporal and depth characteristics were treated as duplicates and excluded. Only those profiles that could be clearly 

identified as non-overlapping were retained and merged into our database. 

To evaluate the generalization capability of our developed model rigorous, we employed three independent datasets that were 

not involved in the training process. These datasets cover different spatial scales and ecosystem types, ensuring a robust 120 

assessment of our SOCD productsTo validate the SOCD estimation results in this study, three independent SOCD datasets 

http://www.geodata.cn/
http://www.cnern.org.cn/
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were used, including the measured SOC content data in the Heihe River basin (Song et al., 2016), the measured SOCD data 

from Xu et al. (2018), and the soil inorganic carbon (SIC) and SOC density dataset from Dong et al. (2024). The SOC content 

data of the Heihe River basin were collected from the spatio-temporal Tripolar Environmental Big Data Platform 

(https://poles.tpdc.ac.cn/zh-hans/). The measured SOCD data from Xu et al. (2018) focuses on SOC densities and soil carbon 125 

storage with a depth of 0–20 cm in various terrestrial ecosystems in China. The data was measured in field campaigns between 

2004 and 2014, as well as some unpublished field measurements. The dataset from Dong et al. (2024) provides comprehensive 

measurements of SOC and inorganic carbon densities across 0-100 cm profiles in Chinese grassland and desert ecosystems, 

along with key environmental drivers such as climate variables, soil properties (texture, pH, conductivity), nitrogen deposition, 

and root biomass. This multi-source validation enhances the robustness of our SOCD assessments across different ecosystems 130 

and soil depths. 

(2) Landsat archives 

The time-series archived Landsat 4, 5, 7, and 8 TM/ETM+/OLI images spanning from 1985 to 2020 (Yu et al., 2023) are used 

for SOCD estimation, which are retrieved from the GEE cloud computing platform (Liu et al., 2024). Preprocessing of Landsat 

images, including radiometric calibration, atmospheric correction, geometric correction, cloud identification, and spectral 135 

index calculating are carried out on the GEE cloud computing platform. Random sampling and statistical regression analysis 

are performed to determine the calibration coefficients for each band spectral reflectance. Principal major axis regression 

models are used to normalize the reflectance data for different sensors. Radiometric correction coefficients of different Landsat 

sensors are calculated (Fig. 1). The spatially overlapping images are combined into one image using the aggregation function, 

and the combined image dataset is subjected to stitching operations to produce spatially coherent images. A variety of spectral 140 

indices were calculated using Landsat images after processing. Spectral indices Normalized Difference Vegetation Index 

(NDVI), Bare Soil Index (BSI), Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI), and Soil-Adjusted 

Vegetation Index (SAVI) were calculated using Landsat images. The formulae for these spectral indices are as follows: 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑

 (1) 

𝐵𝑆𝐼 =
(𝜌𝑆𝑊𝐼𝑅 + 𝜌𝑅𝑒𝑑) − (𝜌𝑁𝐼𝑅 + 𝜌𝑏𝑙𝑢𝑒)

(𝜌𝑆𝑊𝐼𝑅 + 𝜌𝑅𝑒𝑑) + (𝜌𝑁𝐼𝑅 + 𝜌𝑏𝑙𝑢𝑒)
 (2) 

https://poles.tpdc.ac.cn/zh-hans/
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𝐸𝑉𝐼 = 2.5 ×
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 6 × 𝜌𝑅𝑒𝑑 − 7.5 × 𝜌𝑏𝑙𝑢𝑒 + 1
 (3) 

𝑆𝐴𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑 + 0.5) × 1.5
 (4) 

𝐿𝑆𝑊𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅1

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅1

 (5) 

Where, 𝜌𝑁𝐼𝑅 is the reference of near-infrared band, 𝜌𝑅𝑒𝑑  is the reference of red band, 𝜌𝑏𝑙𝑢𝑒  is the reference of blue band, 𝜌𝑆𝑊𝐼𝑅 

is the reference of short-wave infrared band and 𝜌𝑆𝑊𝐼𝑅1 is the reference of short-wave infrared band 1. 145 

The land cover dataset newly released by Wuhan University (Yang and Huang, 2021) is used in this study. This is the first 

China Land Cover Annual Data Set (CLCD) derived from Landsat on the GEE platform.  

(3) DEM and its topographic derivatives 

Terrain is an important factor affecting the formation of soil organic matter. The DEM data is used for SOCD estimation, 

which is downloaded from the Resource and Environment Science Data Platform of the Chinese Academy of Sciences 150 

(https://www.resdc.cn) with a spatial resolution of 500 m. Topographic data and its topographic derivatives are extracted from 

the DEM data. There are four terrain derivatives, including Slope, Aspect, Elevation, and Topographic Wetness Index (TWI), 

which are calculated using SAGA GIS version 8.0.1 (https://saga-gis.org/) (Zhang et al., 2023). The spatial resolution of all 

raster data was uniformly adjusted to 1000m using resampling techniques to achieve spatial consistency between different 

datasets. 155 

(4) Meteorological data 

The meteorological features including Temperature (Tem), Precipitation (Pre) and Solar Radiation (SR), measured in 2,400 

Chinese meteorological stations are used to quantify the effects of meteorological fluctuations. All meteorological data are 

downloaded from the China Meteorological Data Network (http://data.cma.cn/). For spatial consistency, the meteorological 

data is defined and projected into WGS 84 coordinates. All meteorological point data are interpolated into grid data with 1000 160 

m spatial resolution using the ANUSPLIN program (Padarian et al., 2022). Crucially, to account for the lapse rate effect in 

complex terrain, DEM data was used as a covariate during the spline interpolation process. 

https://www.resdc.cn/
https://saga-gis.org/
http://data.cma.cn/
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(5) Published soil database 

There are four published soil databases used to validate the SOCD estimation results in this study. One is the Harmonized 

World Soil Database (HWSD v2.0), produced by the International Institute for Applied Systems in Vienna and the Food and 165 

Agriculture Organization of the United Nations. There are two soil properties including soil bulk weight and organic carbon 

content are used for SOCD estimation at depths of 0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm, and 80-100 cm. The 

SoilGrids250m v2.0 dataset including the soil silt content, sand content, clay content, and organic carbon content data with the 

spatial resolution of 250 m are downloaded from FAQ SoilGrids (https://soilgrids.org/) for validation. For spatial consistency, 

this soil attribute datum is resampled to 1000 m. This soil product with five depth intervals (5 cm, 15 cm, 30 cm, 60 cm, and 170 

100 cm) is used to calculate the soil silt content (Silt), sand content (Sand), clay content (Clay), and organic carbon at 0-20 cm 

and 0-100 cm (Zhang et al., 2023). Taking the clay content data as an example, the clay content with depths of 0-20 cm and 0-

100 cm is calculated as follows: 

𝐶𝐿𝑌020 =
𝐶𝐿𝑌05

4
+

𝐶𝐿𝑌515

2
+

𝐶𝐿𝑌1530

4
 (6) 

𝐶𝐿𝑌0100 =
𝐶𝐿𝑌05

20
+

𝐶𝐿𝑌515

10
+

3

20
× 𝐶𝐿𝑌1530 +

3

10
× 𝐶𝐿𝑌3060 +

2

5
× 𝐶𝐿𝑌60100 (7) 

Where, CLY05, CLY515, CLY1530, CLY3060, and CLY60100 are the clay content (g/kg) at depths of 0-5 cm, 5-15 cm, 15-30 cm, 

30-60 cm, and 60-100 cm respectively. 175 

The GSOCmap dataset (https://www.fao.org/), which is the first global SOC product led by FAO, is used for validation. 

GSOCmap is a 1-kilometer soil grid that covers depths ranging from 0 to 30 centimeters. The SOC Dynamics ML dataset in 

China is now available on the Dryad platform (https://datadryad.org/). Using machine learning, the dataset aims to capture the 

dynamics of SOC and its drivers in different soil horizons in China between the 1980s and 2010s (Li et al., 2022). The dataset 

contains valuable information such as SOC stocks, carbon fixation rates, and SOC content. While these existing datasets offer 180 

broad insights into SOC, our study specifically focuses on refining the estimation of SOCD for precise national-level carbon 

accounting across multiple historical periods. The organic carbon density with the depth of 20 cm and 100 cm in the 1980s, 

2000s, and 2010s in China is used. This study focuses on SOCD, which is different from SOC content. The conversion from 

SOC content to SOCD is presented in Section 3.1. 

https://soilgrids.org/
https://www.fao.org/
https://datadryad.org/
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3 Methodology 185 

3.1 Converting SOC to SOCD with normalized soil depth 

The dataset from the 2000s provided pre-calculated SOCD values (derived from SOC, bulk density, and coarse fragments by 

the original data source), while the 1980s and 2010s data reported in 1980s and 2010s are SOC content. For data consistency, 

we converted all SOC content data to SOCD using Equation 78. The 1980s SOC content data of 1980s were from the Second 

National Soil Survey, and the 2010s SOC content data of 2010s  were from the Soil Attribute Data of China Soil System 190 

Record, which had several different soil depths. For the consistency of the measured data, we convert the soil data with different 

depths into the SOCD with the depth of 0-20 cm and 0-100 cm using the package "mpspline2" v.0.1.3 (Bishop et al., 1999). 

The observed horizons, defined by their upper and lower depths, were input to ̀ mpspline2`, which fits a mass‑preserving spline 

to the vertical SOC profile and integrates this spline over the target depth intervals. We used the default value of 0.1 for the 

spline smoothing parameter lambda. We do not extrapolate beyond the observed soil depth when calculating SOCD. Profiles 195 

shallower than 100 cm are used to compute SOCD only for depth intervals that are fully covered by observations, but they are 

excluded from 0–100 cm SOCD statistics. When we report and analyze SOCD for the full 0–100 cm interval, we therefore 

restrict the calculations to profiles with an observed depth of at least 100 cm after quality control. The default value of 0.1 was 

used for the spline smoothing parameter lambda. For all datasets, The SOCD (kg C/m2) is calculated using bulk density (kg/m3), 

and coarse fractions percentage (%) provided by the National Soil Information Grids of ChinaSoilGrids 2.0 (Liu et al., 200 

2022)(Poggio et al., 2021; Zhang et al., 2023). 

SOCD =  
SOC × BD × SD

100
× (1 −

CF

100
) (8) 

Where, SOC is the soil organic carbon content (%), SOCD is the soil organic carbon density, BD is the soil bulk density, SD 

is the soil depth (cm), and CF is the coarse fractions in a specific soil layer. 

3.2 Feature selection for RF modelling 

To achieve optimal prediction accuracy for SOCD and to elucidate its underlying mechanisms using RF models, 205 

comprehensive feature selection for the numerous potential environmental driving factors is a critical prerequisite (Jiang et al., 

2024). This process is instrumental in mitigating model complexity, enhancing computational efficiency, improving model 
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interpretability, and eliminating data redundancy that could adversely affect model performance. In this study, the initial 

feature set comprised diverse categories of crucial environmental drivers, including remote sensing indices (e.g., NDVI, BSI, 

etc., derived from Landsat satellite imagery), topographic factors (e.g., elevation, slope, aspect, etc., generated from DEM), 210 

climatic factors (e.g., mean annual temperature, mean annual precipitation, etc.), as well as auxiliary soil attributes (e.g., soil 

type) and other relevant indicators (Fig. 2). 

Our methodology commenced with a combined approach of correlation analysis, random forest importance ranking, and 

combinatorial optimization. First, a Pearson correlation matrix was constructed for the initial candidate features, and those 

exhibiting high correlation (specifically, where the absolute value of the Pearson correlation coefficient exceeded 0.95) were 215 

removed to reduce redundancy. The remaining features, representing a refined set, then underwent an importance assessment 

and ranking utilizing the RF algorithm. A preliminary RF model was constructed with these features as inputs and SOCD as 

the target variable, and each feature's importance in predicting SOCD was quantified using Gini importance scores, thereby 

enabling the preliminary identification of core factors possessing substantial explanatory power for SOCD variation. This 

iterative procedure ensured the high independence of the selected feature set, preventing information overlap from impairing 220 

model performance and interpretability. Finally, to identify the optimal feature combination capable of maximizing model 

prediction accuracy, an exhaustive combinatorial search was conducted on the 10 most informative features remaining after 

the initial screening steps. Through a comprehensive evaluation of all possible feature subsets' performance, aiming to 

maximize the coefficient of determination (R²), seven key environmental driving factors were ultimately identified as 

collectively providing the best predictive performance for SOCD: Temperature, Elevation, NDVI, Clay, SR, BSI, and Slope. 225 

This rigorous selection process ensures that the chosen feature set effectively characterizes SOCD dynamics while optimizing 

the model's predictive capability. 

The selected features represent fundamental controls on SOCD through their influence on microbial activity (temperature), 

carbon input (vegetation indices), physical protection (clay content), and soil redistribution processes (slope). This multi-stage 

selection approach effectively balanced model complexity with predictive power while maintaining the ecological 230 

interpretability of the final feature set. The robustness of the selected features was further confirmed through cross-validation, 

demonstrating consistent performance across different validation datasets. 
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3.3 Climate zoning in China 

Climate zoning is carried out to quantify the differences in temperature and precipitation in China and improve the accuracy 

of SOCD estimation. China spans a vast geographical area, crossing multiple major climate zones from the eastern coast to the 235 

western interior and from the subtropical monsoon climate in the southeast to the temperate continental climate in the northwest. 

This extensive climatic complexity leads to pronounced regional heterogeneity in soil formation and carbon cycling, which 

necessitates a zoned approach for accurate SOCD estimation. According to Tang et al. (2018), there are obvious differences 

in SOCD observed in different climate zones of China for the diverse and complex environmental factors under warm-

temperate climate conditions with a mean precipitation (MAP) threshold of 400 mm and a mean annual temperature (MAT) 240 

threshold of 10 °C. To mitigate the interannual variability, the multi-annual average temperature and precipitation are used to 

classify the climatic differences in China into four subzones including humid areas (MAP ≥ 400 mm and MAT ≥ 10°C), 

semi-humid area (MAP ≥ 400 mm and MAT ≤ 10°C), semi-arid area (MAP ≤ 400 mm and MAT ≤ 10°C) and arid area 

(MAP ≤ 400 mm and MAT ≥ 10°C) (Fig. 3). Soil data and environmental variables are grouped in each subzone, and zonal 

SOCD estimation models are developed for each subzone with depths of 0-20 cm and 0-100 cm (Fig. 3). 245 

3.4 SOCD estimation using zoned RF models 

For the estimation of SOCD, RF models were developed independently across four distinct climate subzones (arid, semi-arid, 

humid, and semi-humid) and for two soil depths (0-20 cm and 0-100 cm).Within each subzone, the RF model aggregates 

predictions from numerous decision trees, enhancing forecast stability and accuracy (Wu et al., 2021). This ensemble approach 

inherently mitigates overfitting, as individual trees are constructed from random subsets of data and features (Sun et al., 2024), 250 

thereby significantly improving the generalization of models. Especially, our RF model is conceptualized as a single, unified 

space-time model, meticulously trained on a comprehensive pooled dataset spanning distinct historical decades (1980s, 2000s, 

and 2010s). This unified framework, a key novelty of our approach, facilitates consistent SOCD prediction across multiple 

historical intervals (1985-2020 in five-year increments) for the vast and diverse Chinese region. The methodology effectively 

leverages the 'space-for-time' principle (Heuvelink et al., 2021) by integrating soil samples collected across these decades into 255 

a single training process. This enables the RF model to learn intricate relationships between environmental covariates and 
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SOCD under varying historical conditions, inferring temporal SOCD evolution driven by dynamic factors based on observed 

spatial patterns. 

The RF model inputs, established within the Scikit-Learn framework, comprised both static and dynamic predictors. Dynamic 

covariates, such as temperature, NDVI, SR, and BSI, were precisely matched to their corresponding five-year mapping periods 260 

by utilizing their average values for those intervals (e.g., 1985-1990). Model parameters, including the number of trees, the 

percentage of randomly selected features, and maximum tree depth, were tuned using a param_dist dictionary to optimize 

performance during cross-validation. The model's robustness and spatiotemporal capabilities are underscored by a 

sophisticated stratified spatiotemporal K-fold cross-validation strategy. This involved spatially stratifying the study area into 

K independent sub-regions to address autocorrelation and assess generalization to new locations. Critically, temporal 265 

stratification ensured proportional representation of samples from all three decades within each spatial fold's training and 

validation sets, allowing the model to learn complex SOCD change patterns over time. The optimized RF model was 

subsequently employed to predict SOCD across the entire study area, utilizing measured SOCD values alongside spectral 

indices from soil properties, Landsat archives, topographic derivatives, and meteorological elements. Model performance and 

generalization ability were rigorously validated using the coefficient of determination (R²) and root mean square error (RMSE). 270 

The trained model was saved using the joblib library, and the resulting estimations were combined with a geographic coordinate 

system to generate digital SOCD maps, facilitating the exploration of relationships between SOCD and optimized 

environmental variables. 

4 Results and conclusions 

4.1 Statistical analysis of sampling points 275 

The statistics of the measured SOCD are shown in Fig. 4. The SOCD value at 0-20 cm depth shows a range of 0.070 to 22.93 

kg C/m² in the 1980s with an average SOCD of 4.12 kg C/m², showing a positive offset and sharp distribution pattern. In the 

2000s, average SOCD increased slightly to 4.30 kg C/m² and data variability increased with more measured samples. The 

number of samples reached its maximum in the 2010s, with the average density decreasing to 4.18 kg C/m², but the maximum 

reaching 26.58 kg C/m², suggesting that the skewness of the data distribution increased. For the SOCD value with a depth of 280 
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0-100 cm, the mean value in the 1980s was 13.23 kg C/m². In the 2000s, the average SOCD decreased significantly to 9.06 kg 

C/m² and the variability decreased. There is a significant increase in the maximum value of SOCD, with an average of 13.32 

kg C/m² and a maximum of 132.92 kg C/m², with a more distorted data distribution and thicker tails (Fig. 4). 

The statistics of the measured SOCD values are presented in Fig. 4. For the 0–20 cm soil layer, the mean value of SOCD in 

the 1980s was 4.16 kg C/m², and the data showed a positively skewed distribution. In the 2000s, the mean value of SOCD 285 

slightly decreased to 4.02 kg C/m², accompanied by increased variability resulting from a larger number of sampling sites. 

Sampling density was highest in the 2010s, during which the mean value of SOCD rose modestly to 4.14 kg C/m² and the 

distribution became more strongly skewed. For the 0–100 cm soil layer, the mean value of SOCD in the 1980s was 10.92 kg 

C/m². In the 2000s, the mean value decreased notably to 8.81 kg C/m², accompanied by reduced data variability. In the 2010s, 

the mean value of SOCD increased again to 11.65 kg C/m², and the distribution displayed a more pronounced skew and thicker 290 

tails, reflecting greater heterogeneity in deep‑soil carbon stocks across regions (Fig. 4). 

Figure Fig. 5 shows the geographical arrangement of SOCD data based on Whittaker biomes with depths of 20 cm and 100 

cm in the 1980s, 2000s, and 2010s in China. The distribution of samples shows significant regional concentration and 

geographical variation, with most points concentrated in the northeastern plain, southwestern plateau, hilly zones, and 

southeastern coastal zones. There are fewer SOCD samples in northwestern China due to difficult human accessibility, lower 295 

vegetation cover, less human activity, and a dry environment. In terms of timing, there are fewer SOCD sample sites in the 

1980s. The number of sampling sites increased in the 2000s2010s, particularly in agriculturally developed and densely 

populated areas. 

4.2 Model performance of SOCD estimation 

To evaluate the model performance of SOCD estimation at depths of 0-20 cm and 0-100 cm, two key indicators were utilized, 300 

including the coefficient of determination (R2) and the Root Mean Square Error (RMSE). R2 quantifies the proportion of 

variance in the dependent variable explained by the model, while RMSE assesses the discrepancy between model predictions 

and estimated results. The precision of RMSE values is further characterized by their 95% confidence intervals (CI), providing 

insight into the robustness and statistical significance of observed performance differences. 
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As illustrated shown in Figure Fig. 6, climatic zoning improved model performance substantially for both soil depths relative 305 

to the global (non‑zoned) approachthe implementation of a climatic zoning strategy significantly improved the model 

performance for both soil depths compared to global models. For the 0-20 cm SOCD prediction in the depth of 0-20 cm, the 

global model achieved an accuracy of R2=0.490.46 and RMSE = 2.242.38 kg C/m² (95% CI of [2.132.22, 2.352.55]). After 

incorporating climatic zoning, the accuracy of SOCD estimationperformance was significantly improved to with R2=0.63 and 

RMSE = 1.922.03 kg C/m² (95% CI of [1.851.95, 1.992.13]), demonstrating an R2 increase of 0.14 0.17 and an RMSE decrease 310 

of 0.320.35 kg C/m². The non-overlapping confidence intervals for the global and zoned models (95% CI of [2.132.22, 

2.35]2.55 vs. [1.851.95, 1.992.13]) clearly indicate a statistically significant improvement in RMSE due to climatic zoning. 

Similarly, for the SOCD prediction in the depth of 0-100 cm SOCD prediction, the global model yielded an R2=0.48 0.43 and 

RMSE = 7.978.06 kg C/m² (95% CI of [7.346.76, 8.679.49]). With climatic zoning, the performance enhanced to R2=0.600.62 

and RMSE = 7.076.16 kg C/m² (95% CI of [6.495.65, 7.786.89]), reflecting an R2 increase of 0.120.19 and an RMSE decrease 315 

of 0.901.9 kg C/m². Here again, the distinct confidence intervals ([7.346.76, 8.679.49] vs. [6.495.65, 7.786.89]) confirm the 

statistical significance of performance enhancement from zoning. Overall, the SOCD estimation model for the 0-20 cm depth 

generally exhibited a higher R2 compared to the 0-100 cm depth model (e.g., peak R2=0.63 for 0-20 cm versus R2=0.60 for 0-

100 cm in zoned models), indicating greater complexity in modeling deeper SOC dynamics with available covariates.  

Further analysis of model performance within different climate zones revealed distinct patterns for each depth, as detailed in 320 

Figure 7. For the 0-20 cm depth, the humid zone showed the highest accuracy with R2=0.65 and RMSE = 1.77 kg C/m² (95% 

CI of [1.61, 1.93]). The semi-arid zone followed closely with R2=0.64 and RMSE = 1.77 kg C/m² (95% CI of [1.49, 1.63]). 

The semi-humid zone achieved R2=0.63 and RMSE = 2.58 kg C/m² (95% CI of [2.39, 2.76]). The arid zone showed an R2=0.58 

and RMSE = 1.61 kg C/m² (95% CI of [1.17, 2.07]). The higher estimation accuracy observed in humid and semi-arid zones, 

indicated by generally higher R2 values and often lower RMSEs with narrower CIs (e.g., arid zone RMSE CI [1.17, 2.07] is 325 

distinct from semi-humid RMSE CI [2.39, 2.76]), suggests superior model fit in these regions. This can be attributed to a more 

even distribution of SOCD measurements in these regions, which reduces the influence of extreme values and facilitates more 

accurate estimations. Furthermore, environmental factors in these zones are often more consistent with the measured SOCD 

data used for model training, contributing to improved accuracy. 
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For the 0-100 cm depth, the humid zone again demonstrated the highest R2=0.62 with RMSE = 5.44 kg C/m² (95% CI of [4.38, 330 

5.63]). The semi-humid zone had an R2=0.61 and RMSE = 7.70 kg C/m² (95% CI of [6.87, 8.52]). The semi-arid zone showed 

an R2=0.60 and RMSE = 4.63 kg C/m² (95% CI of [4.14, 5.18]). The arid zone had an R2=0.54 and RMSE = 3.17 kg C/m² 

(95% CI of [2.56, 3.81]). At this deeper layer, while the humid zone still shows the highest R2, the arid zone exhibits the lowest 

RMSE with a relatively narrow confidence interval ([2.56, 3.81]), indicating good precision despite a lower R2. This pattern 

suggests that while overall explained variance might be moderate, the model's predictive error in arid regions for deeper layers 335 

is tightly constrained. The explanation might lie in the unique soil moisture conditions of drylands, where more extreme and 

significant changes lead to sensitive and distinct responses of vegetation and soil microorganisms to water. This high sensitivity 

can provide a clearer prediction signal, potentially improving accuracy in certain scenarios or for shallower layers. Conversely, 

the influence of multiple complex factors (e.g., precipitation, temperature, vegetation cover) on soil moisture in wet areas can 

reduce the predictive power of the model for deeper layers where long-term processes dominate. Our SOCD estimation models 340 

successfully capture this feature of SOC accumulation. 

Further analysis of model performance across different climate zones revealed distinct patterns at the 0–20 cm depth (Fig. 7). 

The model achieved the highest accuracy in the semi-arid zone (R2=0.70, RMSE =1.95 kg C/m², 95% CI of [1.80, 2.11]), 

followed closely by the semi-humid zone (R2=0.67, RMSE =2.20 kg C/m², 95% CI of [2.07, 2.32]). In contrast, the arid zone 

exhibited moderate performance (R2=0.65, RMSE =1.86 kg C/m², 95% CI of [1.15, 2.68]), while the humid zone showed the 345 

lowest correlation (R2=0.50, RMSE =1.90 kg C/m², 95% CI of [1.79, 2.01]). The superior model fit in the semi-humid and 

semi-arid regions is primarily characterized by consistently higher R2 values. Although RMSE values vary, these transitional 

zones avoid the extreme uncertainty observed in the arid zone, suggesting that the model captures SOCD spatial variability 

more effectively in these areas. This performance is likely attributable to a more balanced distribution of SOCD sampling 

points, which mitigates the bias caused by extreme values. Furthermore, the environmental covariates selected for the model 350 

appear to exhibit a stronger and more consistent correlation with SOCD dynamics in semi-arid and semi-humid climates 

compared to other zones, thereby contributing to the improved estimation accuracy. 

For the 0-100 cm depth, the semi-humid zone demonstrated the highest R2=0.68 with RMSE = 6.29 kg C/m² (95% CI of [5.77, 

6.76]). The semi-arid zone had an R2=0.64 and RMSE = 5.92 kg C/m² (95% CI of [5.22, 6.58]). The arid zone showed an 
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R2=0.61 and RMSE = 5.71 kg C/m² (95% CI of [5.12, 6.32]). The humid zone had an R2=0.54 and RMSE = 6.37 kg C/m² (95% 355 

CI of [5.13, 8.18]). Notably, although the semi-humid zone retained the highest R2, the arid zone exhibited the lowest prediction 

error (RMSE) and a relatively narrow confidence interval. This suggests that while the model explains a moderate proportion 

of the total variance in arid regions, its predictive errors are tightly constrained. This phenomenon may be linked to the distinct 

environmental controls in drylands, where soil moisture is the dominant limiting factor. The high sensitivity of vegetation and 

soil microorganisms to water availability in arid zones creates strong, clear predictive signals that the model can easily capture. 360 

In contrast, in humid regions, SOC dynamics are governed by complex interactions among multiple factors—such as 

precipitation, temperature, and dense vegetation cover. These confounding influences can obscure direct relationships, thereby 

reducing the model's predictive power, particularly for deeper soil layers where long-term accumulation processes dominate. 

Our results confirm that the proposed modeling framework effectively captures these divergent mechanisms of SOC 

accumulation across different climatic regimes. 365 

Importance analysis of optimized features for SOCD estimation was performed to better understand the contribution of various 

environmental variables to SOCD estimation. Figure 8 illustrates the hierarchical importance of these features for both depths. 

For the 0-20 cm depth (Figure 8a), Temperature (Tem) emerged as the most influential variable, contributing 34.41% to the 

model. It was followed by NDVI (20.3%), SR (12.42%), Elevation (6.92%), Clay (5.2%), BSI (4.19%), and Slope (1.69%). 

The dominant influence of temperature on SOCD is primarily through its effects on soil microbial activity and respiration. An 370 

increase in temperature can accelerate the decomposition of soil organic carbon, but it may also increase the rate of plant 

residue decomposition, thereby augmenting carbon return to the soil. The high importance of NDVI underscores the critical 

role of vegetation health and productivity in contributing to SOCD. Vegetation cover influences the amount of organic matter 

returned to the soil via litterfall, and root activity affects soil moisture and nutrient cycling. Precipitation also directly affects 

soil water status, where suitable soil water content is conducive to SOC accumulation, while low moisture content can 375 

accelerate SOC decomposition, thus reducing SOCD. For the 0-100 cm depth (Figure 8b), NDVI was the most important 

feature, contributing 28.3%, followed by Temperature (20.2%), Elevation (17.0%), SR (9.5%), BSI (7.2%), Clay (6.2%), and 

Slope (0.9%). Elevation is associated with the vertical distribution of surface hydrothermal conditions, which affects the soil 

formation process and organic carbon distribution properties.    
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The differences in feature importance between the two depth models highlight the complexity of soil organic carbon dynamics 380 

and the necessity of considering depth-specific processes in SOCD estimation models. In the 0-20 cm model, climatic 

conditions (Temperature) and vegetation cover (NDVI) play a more dominant role, reflecting the direct influence of these 

factors on topsoil organic carbon accumulation. In contrast, in the 0-100 cm model, soil physical-chemical properties (e. g., 

Clay) and topographic features (e. g., Elevation, Slope) become more important, indicating that deeper soil layers are 

influenced by long-term geological processes and soil erosion/deposition dynamics. Understanding these variations allows for 385 

a better capture of the spatial and temporal variability of soil organic carbon across different soil layers. All these factors, 

including climatic conditions, topographic features, vegetation coverage, and soil physicochemical properties, are crucial 

determinants of SOCD estimation.  

To elucidate the drivers of SOCD estimation, we analyzed the hierarchical importance of optimized environmental features 

(Fig. 8). The results reveal distinct driver mechanisms across soil depths. For the 0–20 cm depth (Fig. 8a), Temperature 390 

emerged as the dominant predictor, accounting for 35.91% of the model's contribution. It was followed by solar radiation (SR) 

(17.57%), Elevation (13.21%), NDVI (11.37%), Clay (8.99%), BSI (6.69%), Slope (3.70%), and CLCD (2.56%). The 

overarching influence of temperature on topsoil SOCD operates primarily through the regulation of microbial kinetics. While 

elevated temperatures accelerate the heterotrophic respiration and decomposition of SOC, they may simultaneously enhance 

plant productivity and residue turnover, thereby increasing carbon inputs. SR, as the second most important factor, acts in 395 

concert with temperature to drive the surface energy balance and potential evapotranspiration. These hydrothermal dynamics 

directly regulate soil water status: optimal moisture levels favor SOC accumulation by supporting vegetation growth, whereas 

moisture deficits induced by high radiation and evaporation can limit inputs or accelerate oxidative loss. The high ranking of 

NDVI further underscores the critical role of vegetation vitality, as it determines the quantity of organic litterfall and root 

exudates returned to the soil. 400 

For the 0–100 cm depth (Fig. 8b), while Temperature remained the leading factor (25.62%), its relative dominance decreased 

compared to the surface layer. Notably, the importance of topographic and edaphic factors increased, with the hierarchy 

shifting to: Elevation (16.45%), SR (16.43%), NDVI (14.59%), Clay (12.44%), BSI (9.49%), Slope (3.32%), and CLCD 

(1.67%). The increased prominence of Elevation reflects its control over the vertical zonation of hydrothermal conditions 
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(including radiation receipts), which fundamentally shapes soil formation processes and the depth-wise distribution of organic 405 

carbon. 

The shift in feature importance between the two models highlights the complexity of SOC dynamics and the necessity of depth-

specific modeling. In the 0–20 cm model, bioclimatic factors (Temperature, SR, and NDVI) exert a more pronounced influence, 

reflecting the direct sensitivity of topsoil to atmospheric energy inputs and immediate vegetation exchange. In contrast, the 0–

100 cm model shows a marked increase in the contribution of soil physicochemical properties (e.g., Clay) and stable 410 

topographic features (e.g., Elevation, Slope). This suggests that SOCD in deeper layers is increasingly governed by long-term 

pedogenic processes, geological context, and depositional dynamics rather than immediate surface accumulation. 

Incorporating these depth-dependent determinants—spanning climatic, topographic, biological, and edaphic variables—is 

essential for accurately capturing the spatial and temporal heterogeneity of soil organic carbon stocks. 

4.3 Validation with independent sample points 415 

The SOCD estimation result is validated with independent published SOCD data in the Heihe River basin by Li et al. (2022). 

The Heihe River basin is a major ecological and agricultural zone in northwest China. There are special geographical and 

climatic characteristics for the soil carbon accumulation in the Heihe River basin, which are important for exploring soil quality 

in arid and semi-arid zones. Validation is carried out by comparing measured data in the Heihe River basin with the estimated 

SOCD in this study. The comparison results show that our estimated SOCD is highly consistent with the measured SOC data 420 

from the Heihe River basin (Fig. 9). The estimated SOCD and the measured SOCD have a significant correlation, which is 

shown by the R2 value of 0.710.76, and the RMSE value of 1.941.75 (kg C/m²) (95% CI of [1.591.25, 2.272.23]) for the 

estimated result with the depth of 0-20 cm. Additionally, the proposed model demonstrates superior accuracy compared to Li’s 

dataset, which reported an R2 of 0.60 and an RMSE of 2.27 (kg C/m²) (95% CI of [1.59, 2.98]). 

To further assess model robustness across a wider range of environmental conditionsIn order to validate with more SOCD 425 

samples data with wider ranging area, our estimated SOCD results are compared with the data published data by Xu et al. 

(2018), which is the data on carbon storage of terrestrial ecosystems in China with a depth of 0-20 cm These samples are 

widely distributed across the southern Tibet Autonomous Region, Qinghai Province, and eastern Inner Mongolia Autonomous 

Region. This is very good evidence for validating the robustness, reliability, and generalizability of the SOCD estimation 
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model in this study. The estimated SOCD results are compared with the measured SOC data in the field campaign of Xu et al. 430 

(2018). In addition, the field data were compared with 0-20 cm organic carbon density maps generated by a machine learning 

analysis dataset of SOC dynamics and their drivers in China during 2000-2014. The results of the comparative analysis are 

encouraging and show high agreement between the estimated SOCD using our developed model and the measured SOC data. 

Specifically, the R² value is 0.660.68 and the RMSE value is 1.751.70 (kg C/m²) [95%CI: 1.491.51, 2.011.90], which further 

confirms the accuracy of our SOCD estimation model (Fig. 9). Furthermore, the model outperforms Li’s dataset, which yielded 435 

an R2 of 0.54 and an RMSE of 2.04 (kg C/m²) [95%CI: 1.73, 2.34], underscoring the enhanced predictive accuracy of our 

approach. 

Our estimated SOCD results with the depth of 0-100 cm were validated furtherly with independent measurements from 

Inorganic carbon pools and their drivers in grassland and desert soils (Dong et al., 2024) and compared with the machine 

learning-derived SOCD simulations by Li et al. (2022). The SOCD dataset of Dong et al. (2024), covering grassland and desert 440 

ecosystems across China, provides robust in-situ measurements of SOCD (0-100 cm) alongside critical environmental drivers 

(e.g., climate, soil properties), offering an ideal benchmark for evaluating model generalizability in arid and semi-arid regions. 

Comparative analysis revealed that our SOCD estimates achieved significantly better agreement with the independent 

validation data (R2 = 0.440.50, RMSE = 5.244.93 kg C/m²) [95%CI: 4.421.65, 6.137.47] than Li et al.’s simulations (R2 = 0.31, 

RMSE = 5.80 kg C/m²) [95%CI: 4.16, 7.48] (Fig. 9). This demonstrates the superior accuracy of our approach in capturing 445 

deep soil carbon dynamics (0-100 cm), particularly in heterogeneous grassland and desert environments. The higher R2 and 

lower RMSE values underscore the improved capability of our model to resolve spatial patterns of SOC storage compared to 

earlier machine learning-based efforts. 

4.4 Comparison with published SOCD products 

The 1-km-resolution SOCD dataset of China is producedcreated in this study, which is compared with the published SOCD 450 

products including HWSD v2.0, SoilGrids 250m, and GSOCmap datasets to validate and confirm its accuracy and reliability. 

As shown in Fig. 10, our estimated SOCD dataset exhibits strong consistency with published products, with the highest 

agreement observed with SoilGrids 250 m (R² = 0.74). This performance is substantially better than the correlations with 

GSOCmap (R² = 0.64) and HWSD (R² = 0.71).The comparison results shown in Fig. 10 show that our produced 1-km-
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resolution SOCD dataset is largely consistent with published SOCD products, with the highest fit to SoilGrids250m and an R² 455 

of 0.72, significantly better than that of 0.61 with GSOCmap dataset and that of 0.54 with HWSD dataset. The HWSD v2.0 

dataset is jointly published by the Food and Agriculture Organization of the United Nations (FAO) and the International 

Institute for Applied Systems (IIAS) in Vienna, which provides soil data on a global scale. Unfortunately, its applicability and 

accuracy are limited in China. The correlation of our SOCD dataset with HWSD is reported with the R² value of 0.540.71 and 

the RMSE value of 1.421.52 (kg C/m2). The GSOCmap dataset is led by the FAO and is intended to cover various ecosystems 460 

around the world. This is the first global SOC map. The correlation of our SOCD dataset with GSOCmap is reported with the 

R² of 0.610.64 and the RMSE of 1.321.25 (kg C/m2). The SoilGrids250m dataset is created using ISRIC's digital soil mapping 

technology, which is a global soil dataset. The correlation of our SOCD dataset with SoilGrids250m is reported with the R² of 

0.72 0.74 and the RMSE of 1.071.03 (kg C/m2). Models are more accurate and applicable than global soil databases in capturing 

SOCD changes in China. This study highlights the need to create and implement region-specific models that utilize current 465 

geographic and environmental data to provide a more precise tool for accurately estimating soil carbon reserves. 

For time series estimation accuracy, the estimated SOCDs in China are compared with the SOC Dynamics ML dataset in China 

in the 1980s, 2000s, and 2010s (Fig. 11). The comparison results show that there are significant correlations between estimated 

SOCDs and measured data with RMSE of 1.04 (kg C/m2), 1.10 (kg C/m2) and 1.09 (kg C/m2) and R2 of 0.72, 0.74 and 0.73 in 

the 1980s, 2000s and 2010, respectively. The performance improvement in the later period is mainly due to the increased 470 

sample points. With more sample data available, the model has captured the spatial heterogeneity of SOCD more accurately.  

These comparisons confirm the robustness of the SOCD estimation model in this study and its potential to provide accurate 

estimates of SOCD. The improvement over time highlights the importance of integrating current data and advanced analytical 

methods into soil carbon studies To evaluate the temporal accuracy of our product, we compared the SOCD estimates for the 

1980s, 2000s, and 2010s against the corresponding SOC Dynamics ML dataset (Fig. 11). The results demonstrate a strong and 475 

consistent agreement between the estimated and measured values across all periods. Specifically, the model achieved R² values 

of 0.78, 0.76, and 0.73, with corresponding RMSEs of 0.90 1.02, and 1.07 kg C/m2 for the 1980s, 2000s, and 2010s, 

respectively. While the R² shows slight fluctuations, the consistently low RMSE values indicate that the model remains robust 

over time. Overall, these comparisons validate the reliability of the SOCD estimation framework developed in this study. The 
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sustained accuracy over three decades highlights the model's capability to provide precise long-term SOCD estimates, 480 

underscoring the importance of integrating multi-temporal field data with advanced analytical methods. 

4.5 Spatiotemporal changing of SOCD in China 

The SOCD changes over time from the 1980s to the 2010s are validated in Fig. 12 compared with the published investigations. 

Fig. 12 reveals that our estimated SOCD results with depths of 0-20 cm (a) and 0-100 cm (b) are falling in the value range of 

the previous investigations of Ni Xie et al. ( 2007)(2001), Wu et al. (2003), Wang et al. (2004), Xu et al. (2018), Wang et al. 485 

(2021), Li et al. (2022), Zhang et al. (2023). A slight increasing trend in SOCD was observed in the 0–20 cm topsoil from the 

1980s to the 2010sWe can find that SOCD in China has slightly upward increasing from the 1980s to the 2010s in the 0-20 

cm topsoil (Fig. 12a). This resulted from that the topsoil is more susceptible to the direct effects of soil management practices 

and environmental changes (Oechaiyaphum et al., 2020). In contrast, the estimated SOCD in the 0–100 cm profile remained 

relatively stable throughout the study periodHowever, the estimated SOCD shows an increasing from 1980s to 1990s and 490 

keeps stable from 1990s to 2020s in the 0-100 cm deep soil (Fig. 12b). Fig. 13 and Fig. 14 show the spatiotemporal distributions 

of the estimated SOCD at the 5-year interval from the 1980s to the 2010s. And the regions with high SOCD value in depth of 

0-20 cm are in northeast and southwest China with red color in Fig. 13. Comparably speaking, there are the largest area of 

high SOCD value labeled dark red color bar in period of 2010-2015 (Fig. 13f). From the perspective of longitude, the SOCD 

distribution shows different pattern, and it is homogeneous in high and low longitudes where the land cover is forest mostly. 495 

Conversely, the variance of SOCD is higher in mid-longitude regions where is with distinct land cover types. Similarly, the 

regions with high SOCD value in depth of 0-100 cm are in northeast and southwest China with green color in Fig. 14. And 

there are smaller variance of SOCD in high and low longitudes, and there are higher variance of SOCD in mid-longitude 

regions. There are many driving factors for the changing of SOCD in China. Targeted monitoring and management practices 

should be implemented for SOCD trends at different soil depths to maximize soil carbon sequestration and continuously 500 

improve soil quality. 
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5 Data availability 

The 1‑km soil organic carbon density dataset for China at depths of 0–20 cm and 0–100 cm from 1985 to 2020 is freely avail

able atThe 1 km soil organic carbon density dataset with depths of 20cm and 100cm from 1985 to 2020 in China is currently 

freely available at https://doi.org/10.6084/m9.figshare.27290310.v1https://doi.org/10.6084/m9.figshare.27290310.v2 (Dong 505 

et al., 2024). The dataset can be imported into remote sensing processing software (e.g., ENVI), standard geographical infor

mation system software (e.g., ArcGIS). In addition, the original CSV‑format field measurement dataset used in this study is 

provided to enhance transparency, reproducibility, and facilitate further applications of the SOCD dataset. 

6 Conclusions 

In this study, a SOCD dataset with a resolution of 1-kilometer km resolution and soil depths of 0-20 cm and 0-100 cm is 510 

created from 1985 to 2020 in China. The accuracy and validity of this dataset are validated by three independent metrics and 

data and four types of published global products. The conclusions are as follows. 

(1) The delineation of climatic zones for SOCD estimation modeling has been proven useful for enhancing the precision of the 

models and effectively addressing the uneven distribution of measured SOC.  

(2) Independent validations confirmed the robustness of the estimated SOCDValidation against independent datasets 515 

confirmed the robust accuracy of the estimated SOCD. For the 0-20 cm depth, our estimates showed strong agreement with 

measured data from the Heihe River basin (R²=0.710.76, RMSE=1.941.75 kg C/m²) and the Xu dataset (R²=0.660.68, 

RMSE=1.751.70 kg C/m²). Furthermore, for the 0-100 cm depth, validation against independent measurements from Dong et 

al. (2024) also indicated strong agreement (R²=0.44,0.50 RMSE=5.244.93 kg C/m²). Across all validations with the published 

datasets of Li et al. (2022), Xu et al. (2018) and Dong et al. (2024), our estimated results showed consistently performance 520 

with the published SOC product of Li et al. (R²=0.60 and RMSE=2.27 kg C/m² by, R²=0.54), and Xu et al. (RMSE=2.04 kg 

C/m² by, R²=0.31) and Dong et al. (RMSE=5.80 kg C/m²). 

(3) Compared to published global products including HWSD, SoilGrids250m, and GSOCmap, the estimated SOCD in this 

study was consistent and accurate. Comparison with the SoilGrids250m dataset shows the superiority of zoning RF models in 

capturing variations in SOCD in China with R²=0.720.74 and RMSE=1.071.03 (kg C/m2). 525 

https://doi.org/10.6084/m9.figshare.27290310.v2
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(4) Temporal evaluations showed good agreement between our SOCD estimates and independent measurements from the 

1980s, 2000s, and 2010s. The time‑series analysis revealed clear SOCD variations across China and across soil depths, 

reflecting the influence of agricultural management, land‑use changes, and climate variability.The model demonstrated 

excellent correlation with time series datasets and increased accuracy over time by comparing with the independently measured 

data from the 1980s, 2000s, and 2010s. This highlights the importance of integrating current data and advanced analytical 530 

methods into soil carbon studies. In addition, time series analyses showed the change of SOCD in China over time and at 

different soil depths, which can be influenced by many reasons such as agricultural management practices, land-use changes, 

and climate change. 

While this dataset represents a significant advancement in national-scale SOC accounting, the continuous integration of new 

soil profile data remains essential for further model refinement. Future research should prioritize quantifying the impacts of 535 

specific land management strategies on SOC dynamics. Furthermore, given the persistent uncertainties in large-scale soil 

carbon estimates, we advocate for standardized sampling protocols, broader data sharing, and strengthened global collaboration 

to improve the accuracy of future soil carbon inventoriesDespite the impressive results of this study, more soil data are required 

to validate and improve the SOC estimation model. Future studies will focus on the effects of different land management 

strategies on SOC change as well as the development of more refined models for estimating soil organic carbon. Furthermore, 540 

given the uncertainties in existing global SOC estimates, we urge that future research focus on standardized soil sampling, 

cross-dataset comparisons, more validation, and global collaboration to improve the accuracy of SOC estimates. 
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Figure 1. Radiometric normalization coefficients between Landsat 5 TM、Landsat 7 ETM+ (a-f) and Landsat 7 ETM+、Landsat 8 OLI (e-

j) sensors for different bands including blue, green, red, NIR, SWIR1, and SWIR2. The radiometric normalization coefficients for each 660 

sensor are represented by fitted lines and correlation coefficients, indicating the correlation between the reference of different sensors, and 

characterizing the spectral response of the sensors in the different wavelength bands. 



30 

 

 

 

Figure 2. Feature selection process for predicting soil organic carbon density (SOCD). estimation (a) Pearson correlation 665 

matrix of top environmental covariates (upper triangle shows correlation coefficients; red=positive, blue=negative), with boxed 

features indicating the final selected variables. (b) Hierarchical feature importance evaluation combining correlation filtering 

(removing |r| > 0.95), random forest-based ranking (Gini importance), and combinatorial optimization. (c) The optimal feature 
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set (highlighted in bold) comprised seven variables: mean annual temperature (Tem), elevation, NDVI, clay content (Clay), 

Solar Radiationsimple ratio index (SR), bare soil index (BS1), and slope, which collectively maximize prediction accuracy 670 

(R²) while maintaining ecological interpretability. 

 
Figure 3. Climatic zones for SOCD estimation modeling. Climate zoning comes from the time-series climate data including temperature 

and precipitation. According to the difference in climate zones, it can be divided into humid, semi-humid, arid, and semi-arid zones. 

 675 
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Figure 4. Statistical characteristics of soil sample points in different periods. Frequency distribution of SOCD data with the soil depth of 0-

20 cm (a-c) and 0-100 cm (d-f) during the 1980s, 2000s, and 2010s.Statistical characteristics of SOCD sample points in different periods. 680 

SOCD data with the soil depth of 0-20 cm (a-c) and 0-100 cm (d-f) in China during the 1980s, 2000s, and 2010s are evaluated 

comprehensively. 
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Figure 5. Spatial distribution of SOC soil sample points with depth of 0-20 cm (b) and 0-100 cm (d). And the Whittaker biomes of soil 

sample points with depth of 0-20 cm and 0-100 cm are shown in (a) and (c).Spatial distribution of SOC sample points. (a-d) Distribution of 

the SOCD sampling sites with data used in this study for (b) top 20 cm soil and (d) top 100 cm soil. The distribution of site-level training 

data is based on Whittaker biomes for (a) top 20 cm soil and (c) top 100 cm soil.  690 
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Figure 6. The model performance of global and zoning models with the depth of 0-20 cm and 0-100 cm. The SOCD prediction model of 

0-20 cm and 0-100 cm soil depth is evaluated strictly by using a variety of statistical indicators, corresponding to four evaluation results, 0-695 

20 cm global model (a), 0-20 cm regional model (b), 0-100 cm global model (c), and 0-100 cm regional model (d). 
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Figure 7. The model performance of different zoning models with the depth of 0-20 cm and 0-100 cm. Panels (a) and (e) depict the model 700 

performance for arid regions, where water scarcity is a predominant factor affecting SOCD. Panels (b) and (f) illustrate results for humid 

regions characterized by high moisture availability. Panels (c) and (g) showcase semi-arid regions, where the balance between precipitation 
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and evaporation influences SOCD patterns. Finally, panels (d) and (h) display model accuracy in semi-humid regions, which exhibit 

intermediate conditions between arid and humid environments.  
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Figure 8. Importance ranking of features for SOCD estimation with the depth of 0-20 cm and 0-100 cm. It reports the contribution of 

different environmental variables to the SOCD estimation with different soil depths, including feature importance ranking for 0-20 cm depth 710 

(a) and feature importance ranking for 0-100 cm depth (b). 
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 715 

Figure 9. Comparison of predicted and machine learning (ML) derived SOCD with independent measurements at various 

depths. Panels (a), (b), and (c) display correlations of this study's predicted SOCD, while (d), (e), and (f) show correlations of 

SOC Dynamics ML dataset. Specifically, (a) and (d) are for 0-20 cm SOCD against Heihe River basin measurements. (b) and 

(e) compare 0-20 cm SOCD with Xu's published data. (c) and (f) present 0-100 cm SOCD correlations with measurements 

from Dong et al. (2024) and simulations from Li et al. (2022). 720 
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 725 

Figure 10. Comparison with three published global products. Our estimated SOCD is compared with the SoilGrids250m (a & b), 

GSOCmap (c & d), and HWSD v2.0 (e & f) datasets. 
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Figure 11. Comparison with the SOC Dynamics ML dataset with a depth of 0-20 cm in China in the 1980s (a), 2000s (b), and 2010s (c).730 
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Figure 12. Aggregated results of estimated SOCD with the depth of 0-20 cm (a) and 0-100 cm (b) in China from this study 

and previous investigations.
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Figure 13. Spatial distribution of estimated SOCD at a depth of 0-20 cm in 1985-1990 (a), 1990-1995 (b), 1995-2000(c), 2000-2005 (d), 

2005-2010 (e), 2010-2015 (f), 2015-2020 (g) and average from 1985 to 2020 (h). The lower left histograms in each panel show the area 

ratios for different SOCD levels. 
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Figure 14. Spatial distribution of estimated SOCD at a depth of 0-100 cm in 1985-1990 (a), 1990-1995 (b), 1995-2000(c), 2000-2005 (d), 

2005-2010 (e), 2010-2015 (f), and 2015-2020 (g) and average from 1985 to 2020 (h). The lower left histograms in each panel show the area 

ratios for different SOCD levels. 745 
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