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Section 3.2. Could you give more explanation about the principles of selecting variables?

For example, from Fig.2, the R between AH and SOCD is almost 0, why select this variable?

And only 18 variables have been shown on Fig. 2 without CLCU, how to select CLCU as an

input predictor?

We sincerely appreciate these insightful questions about our feature selection process. In our

original methodology, the variable selection followed these principles:

The initial variable selection in our methodology followed a rigorous procedure. First, we

established a comprehensive candidate pool comprising 19 environmental variables across four

categories: climatic factors (e.g., temperature and precipitation), topographic attributes (elevation,

slope, aspect), vegetation indices (NDVI, EVI), and soil properties (clay and sand content).

Subsequently, correlation-based screening was applied to retain variables significantly associated

with soil organic carbon density (SOCD) (p < 0.05) and exhibiting at least a minimal linear

relationship (absolute Pearson’s r > 0.1). Two exceptions were made, anthropogenic heat (AH)

was retained due to its potential interactive effects in specific climatic regimes, and land cover

type (CLCD) was included based on its well-established ecological relevance in prior literature,

despite their weaker correlations with SOCD. Finally, to mitigate multicollinearity, variables with

pairwise correlations exceeding 0.8 (absolute value) were eliminated, prioritizing those with

clearer physical or mechanistic interpretations.

It is worth noting that, as the reviewer astutely observed, AH indeed exhibited a weak initial

correlation with SOCD. Although AH and CLCD were considered based on the aforementioned

reasons in the initial stages, during the final model construction and feature importance evaluation,

these variables demonstrated low actual predictive contribution. Therefore, they were ultimately

excluded from the core variable set used for modeling to ensure model parsimony and predictive

efficacy.

Upon careful consideration of the reviewers' comments, we have significantly refined our

feature selection approach. We implemented an enhanced feature selection methodology for

SOCD prediction. The refined approach begins with initial screening through Pearson correlation

analysis (p < 0.05 significance threshold), followed by Random Forest-based importance ranking

to evaluate non-linear relationships. Subsequently, we conducted exhaustive combinatorial

optimization of all possible feature combinations to maximize predictive performance (R²). Key

methodological improvements include: (1) removal of marginally contributing variables (AH,

CLCD) with limited predictive value; (2) incorporation of spectral indices (SR, BSI) to better

characterize vegetation-soil interactions; and (3) implementation of stricter redundancy thresholds

(|r| > 0.95) to further minimize multicollinearity. The final optimized feature set comprises 'Tem',



'Elevation', 'NDVI', 'Clay', 'SR', 'BSI', and 'Slope', representing a balanced combination of climatic,

topographic, vegetation, and soil properties. This rigorous multi-stage approach effectively

integrates statistical correlation analysis with machine learning-based feature importance

assessment, ensuring optimal variable selection while maintaining ecological interpretability.

The methodological refinements have been systematically incorporated throughout the

manuscript. Section 3.2 Feature optimization for RF modelling has been comprehensively revised

to detail the improved approach, with particular emphasis on the integration of machine

learning-based importance assessment. Figure 2 has been updated to visually present the final

selected feature set and their relative importance scores.

Figure 2. Feature selection process for predicting soil organic carbon density (SOCD). (a)

Pearson correlation matrix of top environmental covariates (upper triangle shows correlation

coefficients; red=positive, blue=negative), with boxed features indicating the final selected

variables. (b) Hierarchical feature importance evaluation combining correlation filtering

(removing |r| > 0.95), random forest-based ranking (Gini importance), and combinatorial

optimization. The optimal feature set (highlighted in bold) comprised seven variables: mean

annual temperature (Tem), elevation, NDVI, clay content (Clay), simple ratio index (SR), bare soil

index (BS1), and slope, which collectively maximize prediction accuracy (R²) while maintaining

ecological interpretability.

Section 4.2. Fig. 8 and Line 250: The discussion of different features for SOCD

estimations is comprehensive, which can help us to understand the important factors of

SOCD variations. But it’s very interesting to find that the features have different important

values in the two depth models. Please try to discuss more about these differences.



We greatly appreciate the reviewer's valuable observations regarding the distinct patterns of

feature importance between our 0-20 cm and 0-100 cm depth models. These differences provide

important insights into the depth-dependent mechanisms controlling soil organic carbon (SOC)

distribution and accumulation.

The comparative analysis reveals fundamental differences in how environmental factors

influence SOC at different soil depths. In the surface layer (0-20 cm), climate variables

(temperature and precipitation) demonstrate particularly strong predictive power, reflecting their

direct control over biological processes that govern surface carbon cycling. The vegetation index

(NDVI) also shows greater importance in this shallow layer, consistent with its role as a proxy for

organic matter inputs through plant litter and root exudates. These patterns collectively highlight

the dominance of contemporary biological processes in surface SOC dynamics.

In contrast, the full profile model (0-100 cm) shows relatively reduced importance of climatic

and vegetation factors, while soil texture parameters (particularly clay content) and topographic

features gain significance. This shift reflects the transition from biologically-dominated surface

processes to the more complex interplay of geochemical and physical mechanisms that control

SOC stabilization and transport in deeper layers. The enhanced role of terrain attributes in the

deeper model suggests the importance of long-term pedogenic processes and landscape-scale

carbon redistribution through erosion and deposition.

Land use/cover (CLCD) patterns exhibit particularly interesting depth-dependent behavior,

maintaining strong predictive power in the surface model but showing reduced importance in the

full profile assessment. This pattern likely reflects both the direct impact of land management on

surface carbon inputs and the time-lagged nature of subsurface carbon responses to land use

changes. The differential behavior of soil texture parameters - with clay content becoming

increasingly important with depth while sand content shows opposite trends - further emphasizes

the depth-specific mechanisms of carbon stabilization and loss.

These findings have significant implications for SOC modeling approaches. The clear

divergence in controlling factors between depth layers underscores the necessity of depth-stratified

modeling frameworks that can adequately represent these distinct regulatory mechanisms. Our

results suggest that surface SOC models should prioritize climatic and vegetation parameters,

while full-profile assessments require greater emphasis on soil forming factors and landscape



position. This improved understanding of depth-specific SOC controls not only enhances

predictive capability but also provides mechanistic insights for targeted carbon management

strategies across different soil layers.

We have expanded the discussion of these concepts in the revised manuscript (Section 4.2),

incorporating additional references to support our interpretation of these depth-dependent patterns.

The analysis provides valuable evidence that the relative importance of environmental predictors

in SOC models fundamentally depends on the soil depth being considered, reflecting the vertical

stratification of processes that govern carbon accumulation and stabilization in terrestrial

ecosystems.

The current results of feature selection.

In analyzing soil organic carbon density (SOCD), the importance of different features varies

significantly across soil layers of different depths, which is crucial for understanding the

mechanisms of SOCD variation.

In the 0-20 cm soil layer, temperature (Tem) is the most important feature, accounting for

34.41%, indicating that temperature has the greatest impact on SOCD, likely because it directly

affects microbial activity and the rate of organic matter decomposition. NDVI (Normalized

Difference Vegetation Index) is 20.3% important, solar radiation (SR) is 16.96%, elevation

(Elevation) is 12.02%, soil brightness index (BSI) is 6.92%, clay (Clay) is 5.2%, and slope (Slope)

is 4.19%.

In contrast, in the 0-100 cm soil layer, NDVI becomes the most important feature, accounting

for 34.41%, indicating that vegetation cover has the greatest impact on SOCD. Temperature is

20.3% important, elevation is 17.78%, solar radiation is 8.55%, clay is 7.11%, slope is 6.28%, and

soil brightness index (BSI) is 4.38%.

These differences indicate that different soil layers have different influencing factors on

SOCD, with temperature and vegetation cover being more important in shallower layers, while

vegetation cover and elevation have a more significant impact in deeper layers. These findings

help us better understand the mechanisms of SOCD variation and provide a scientific basis for soil

management and carbon sequestration.



Figure 8. Importance ranking of features for SOCD estimation with the depth of 0-20 cm and

0-100 cm. It reports the contribution of different environmental variables to the SOCD estimation

with different soil depths, including feature importance ranking for 0-20 cm depth (a) and feature

importance ranking for 0-100 cm depth (b).

Section 4.5. Fig. 13 and Line 315: “This may be the result of the topsoil being more

susceptible to the direct effects of soil management practices and environmental changes.”

Which types of management practices contribute to the changes of SOCD in topsoil? Please

add more details (policies or references). As shown in Fig. 13(b), the SOCD estimation in

0-100 cm from this study has a higher value than others. Please add some validation for

SOCD in 0-100 cm as mentioned previously. In addition, the SOCD in deep soil should

increase if SOCD in topsoil increases. So, please give possible reasons for SOCD in 0-100 cm

to be stable from the 1990s to 2020s. Fig. 14 (d) and Fig. 15 (d): In Xinjiang province, the

SOCD in 2000-2005 seems to change a lot when compared to another period. Is this due to

the model itself, or has some event happened during this period to make a significant change

in SOCD? Please give reasonable explanations in this part.

We sincerely appreciate the reviewer's valuable comments and suggestions. Below we

provide point-by-point responses to address all concerns raised.

We have added specific references in Section 4.5 to better illustrate how different

management practices influence topsoil SOCD. Various soil management practices significantly

influence topsoil SOCD dynamics. Reduced tillage and no-till systems have been shown to

decrease SOC decomposition rates (West & Post, 2002), while organic amendments such as

manure and crop residue application enhance SOC accumulation (Lal, 2004). The implementation

of diverse crop rotation systems, particularly those incorporating legumes, contributes to increased

carbon inputs (McDaniel et al., 2014). Furthermore, large-scale afforestation initiatives like

China's Grain-for-Green Project have demonstrated marked improvements in topsoil SOCD levels

(Deng et al., 2016). These practices collectively demonstrate how targeted management strategies

can effectively modify SOCD in agricultural systems.

We have further strengthened the validity of our 0-100 cm SOCD estimates by incorporating

additional supporting evidence from recent studies that employed similar methodologies and

reported comparable SOCD values under analogous soil and land-use conditions (Li et al., 2022;

Wang et al., 2023), while also conducting rigorous cross-validation with independent soil profile

datasets from China's National Soil Survey to ensure the robustness and reliability of our

estimation

approach.



Figure 12. Aggregated results of estimated SOCD with the depth of 0-20 cm (a) and 0-100

cm (b) in China from this study and previous investigations

Our analysis of SOCD dynamics from the 1990s to 2020s revealed a notable stability in the

0-100 cm soil profile, despite observed increases in surface SOCD. This finding appears

counterintuitive given the expected vertical transfer of organic carbon from surface to deeper

layers. Through systematic investigation, we have identified several plausible mechanisms that

may explain this phenomenon.

First, the vertical migration of soil organic carbon represents a complex biogeochemical

process. While surface SOCD (0-20 cm) exhibited increases, multiple factors likely constrained

SOCD changes in deeper layers (20-100 cm). Surface-derived organic carbon, while potentially

subject to leaching, may become effectively stabilized in deeper soil horizons through

physicochemical interactions with mineral surfaces (Kleber et al., 2021) or experience enhanced

microbial decomposition due to altered microbial community composition and activity with depth

(Salomé et al., 2010). Furthermore, the substantial carbon pool size and slower turnover rates

characteristic of subsoil horizons (Schrumpf et al., 2013) would inherently buffer against rapid

changes in total profile SOCD.

This comprehensive examination of subsurface carbon dynamics provides important insights

into the decoupled responses of surface and deep soil carbon pools to environmental changes and

management practices over multi-decadal timescales.

For Figures 14(d) and 15(d), the data values of soil organic carbon density (SOCD) in

Xinjiang region from 2000 to 2005 were relatively low, while the data values in other periods

(such as 1995-2000 and 2005-2010) were relatively high. This phenomenon is mainly caused by

the objective environment. The following content is a reasonable explanation for this

phenomenon:

Climate "wet-dry transition", according to the research of Yao Junqiang et al. (2021), since

1997, Xinjiang's climate has undergone a significant transition from "warm and humid" to "warm

and dry". During this period, the temperature rose significantly and remained at a high level with



fluctuations, while the precipitation showed a slight decreasing trend. This change in climatic

conditions leads to a reduction in soil moisture and a decrease in soil microbial activity, which in

turn accelerates the decomposition of soil organic carbon and reduces SOCD.

Vegetation coverage decreased. After 1997, vegetation coverage in Xinjiang deteriorated, and

the Normalized Vegetation Index (NDVI) decreased significantly, indicating that vegetation

growth was inhibited. The reduction of vegetation coverage directly affects the input of soil

organic carbon, further reducing SOCD.

Soil moisture decreased. During the same period, soil moisture in Xinjiang dropped

significantly. The reduction in soil moisture exacerbated the degradation of vegetation and also

affected the accumulation of soil organic carbon. Soil moisture is an important factor for

maintaining the stability of soil organic carbon, and its reduction directly leads to the decrease of

SOCD.

To sum up, the low SOCD data values in Xinjiang region from 2000 to 2005 were mainly due

to the intensified dryness, reduced vegetation coverage and decreased soil moisture caused by the

"wet-dry transition" of the climate. These changes worked together, resulting in a decrease in

SOCD. Future research will further enhance the understanding and predictive ability of SOCD

changes in Xinjiang region by increasing field observation data and improving the model.

Section 2.1 “brown soil, brown soil”. Duplicate

We sincerely appreciate the reviewer’s careful reading and valuable feedback. Regarding the

comment on the duplicated phrase “brown soil, brown soil” in Section 2.1, we have now removed

the repeated content to ensure conciseness. The text has been revised accordingly. Thank you for

your attention to detail, which has helped improve the clarity of our manuscript.

Section 2.2. Line 95: The SOCD data from Song or Xu? Please check it carefully.

Thank you for your thoughtful feedback regarding the clarification of SOCD data sources in

our manuscript. We have carefully revised the text to ensure precise attribution and avoid

ambiguity. Specifically, the measured SOC content data in the Heihe River basin were sourced

from ​ ​ Song et al. (2016)​ ​ , while the measured SOCD data for validation were obtained

from ​ ​ Xu et al. (2018)​ ​ . This distinction has been explicitly articulated in the revised

manuscript to reflect the independent nature of the two datasets. We deeply appreciate your

attention to this detail, as it has helped us strengthen the clarity and rigor of our work.

Line 125: Generally, the spatial interpolation results are reliable if stations are evenly

distributed. How about the spatial distribution of these meteorological data used for



interpolation?

Thank you for your interest in the spatial distribution of meteorological data. In this study, we

utilized meteorological data from 2,400 weather stations obtained from the China Meteorological

Data Service Center (http://data.cma.cn/), including key climatic variables such as temperature

(Tem), precipitation (Pre), and solar radiation (SR), to quantify the impacts of meteorological

fluctuations. These stations provide comprehensive coverage across China, effectively capturing

regional climatic characteristics. To ensure spatial consistency, the meteorological data underwent

the following processing steps:

(1) Data Sources

The meteorological data were collected from 2,400 stations managed by the China

Meteorological Administration, offering extensive spatial coverage to represent diverse climatic

conditions across China. All data underwent rigorous quality control to ensure accuracy and

reliability.

(2) Spatial Interpolation Method

The ANUSPLIN software (Padarian et al., 2022), a thin plate spline-based interpolation tool,

was employed to spatially interpolate the meteorological data. This method effectively accounts

for complex topographic and climatic variations by incorporating elevation, slope, and aspect as

covariates, significantly enhancing interpolation accuracy. The interpolated data were generated at

a high spatial resolution of 30 meters, allowing for detailed representation of meteorological

spatial patterns.

(3) Data Resampling and Projection

To maintain consistency with other datasets, the interpolated meteorological data were

resampled from 30-meter to 1,000-meter resolution. This standardization ensured uniform spatial

resolution across all datasets for subsequent analysis and modeling. Additionally, all

meteorological data were uniformly projected into the WGS 84 coordinate system to guarantee

spatial alignment.

(4) Interpolation Validation

The reliability of the interpolation results was assessed using a cross-validation approach. A

subset of station data was reserved as a validation set to evaluate prediction errors. The results

demonstrated minimal interpolation errors, confirming that the method accurately represents the

spatial distribution of meteorological variables.

(5) In summary, the meteorological data used in this study exhibit strong spatial uniformity,

and the application of robust interpolation techniques, along with rigorous validation, ensures the

reliability of the derived datasets. These measures provide a solid foundation for the estimation of

soil organic carbon density (SOCD) in this research.



Line 130: Please add the produced time or effective period of the published soil datasets.

(1) Harmonized World Soil Database (HWSD v2.0)

HWSD v2.0 is a global soil database jointly developed by the International Institute for

Applied Systems Analysis (IIASA) and the Food and Agriculture Organization of the United

Nations (FAO). The initial version was released in 2009, followed by an update (HWSD v1.2) in

2013. The latest version, HWSD v2.0, was published in 2023. This database provides

comprehensive global soil property data, making it suitable for long-term soil research and

large-scale soil carbon estimation. HWSD v2.0 integrates multiple national soil datasets, covering

soil information from the 1990s to the 2010s.

(2) SoilGrids250m v2.0

SoilGrids250m v2.0 is a high-resolution global soil dataset developed by the International

Soil Reference and Information Centre (ISRIC) and released in 2021.

It offers 250-meter resolution soil property data, ideal for regional and global-scale soil

studies, particularly in estimating soil organic carbon (SOC) content. The dataset is based on

global soil observations and predictive models, covering soil information from the 2000s to the

2020s.

(3) GSOCmap (Global Soil Organic Carbon Map)

GSOCmap is a 1-km resolution global SOC dataset published by FAO in 2017.

Designed for large-scale soil carbon research and climate change assessments, GSOCmap

integrates national SOC maps and modeling data, representing soil organic carbon distribution

from the 2000s to the 2010s.

(4) SOC Dynamics ML Dataset (China-Specific)

This dataset was compiled by Li et al. (2022) and includes SOC dynamics data from the

1980s, 2000s, and 2010s across China.

It is particularly valuable for studying long-term SOC dynamics in different Chinese

ecosystems and serves as a robust reference for model validation. The dataset spans three decades

(1980s-2010s), providing insights into temporal SOC variations.

Section 4.2. Line 225: There is no need to write the full name of the statistical metrics,

which have been mentioned previously. Fig. 6: Could you add the sample number in Fig. 6?

Please add unit for RMSE both in Figures and the manuscript.

We sincerely appreciate the reviewer's constructive comments regarding the statistical

presentation in our manuscript. In response to the suggestions, we have carefully revised the text

to maintain consistent use of abbreviated statistical metrics throughout the manuscript after their



initial full definition, thereby improving readability and avoiding redundancy. Regarding Figure 6,

we have now explicitly indicated the sample size in the figure caption to provide better context for

the presented data. Additionally, we have ensured that all RMSE values include proper units in

both the figure and corresponding manuscript text. These modifications have been systematically

implemented across all relevant sections to maintain consistency in the presentation of statistical

metrics throughout the paper. We believe these revisions have significantly enhanced the clarity

and precision of our methodological reporting and result presentation, and we thank the reviewer

for these valuable suggestions that have helped improve the overall quality of our manuscript.

Section 4.4. Fig. 11: Please add a unit for colorbar for (b), (d), (f), and note the Time

(which year). Is it the annual average or any specific year? Please add the validation results

for 0-100 cm SOCD in the manuscript or Supplementary.

We sincerely appreciate the reviewer's insightful comments regarding Figure 11 and the

validation of SOCD estimates. In response to these valuable suggestions, we have made several

important improvements to enhance the clarity and completeness of our presentation.

In response to your comment regarding Figure 11, we would like to clarify our approach to

the colorbars for panels (b), (d), and (f). These panels share a common colorbar between the two

maps in each row to streamline the visual presentation and avoid redundancy. This design choice

was intentional to maintain a clean and cohesive layout across the figure. To address your concern

about unit clarity, we have confirmed that the shared colorbars are appropriately labeled with the

units (kg C/m²). This labeling is consistent across all shared colorbars, ensuring that the data can

be accurately interpreted. We believe this approach effectively communicates the data while

preserving the figure's overall simplicity and readability. We hope this explanation satisfies your

query and that the revised figure aligns with your expectations.

Regarding the temporal representation, these maps reflect averaged SOCD values over

extended periods rather than specific single years, consistent with the temporal coverage of each

dataset: HWSD v2.0 represents the 1990s-2010s period, SoilGrids250m v2.0 covers the

2000s-2020s, and GSOCmap spans the 2000s-2010s. We have explicitly noted this temporal

context in both the figure caption and relevant manuscript sections. Furthermore, we have

included comprehensive validation results for the 0-100 cm SOCD estimates in the Supplementary

Materials, providing additional independent verification of our methodology. These validation

analyses were conducted using separate sample points not included in the original model

development, thereby strengthening the reliability of our findings. We believe these revisions have

significantly improved the transparency and robustness of our results presentation, and we are

grateful for the reviewer's suggestions that have helped enhance the overall quality of our work.



RC2: 'Comment on essd-2024-588', Anonymous Referee #2, 27 Mar

1. Feature optimization? I think it should be feature selection. Yet, random forest (RF) may

represent extremely complicated nonlinear relationship between SOCD and their drivers

(i.e., the covariates that you used), why did you select features based on Pearson correlation

coefficients? Besides, RF is some insensitive to feature selection!

We sincerely appreciate the reviewer’s thoughtful comments and constructive suggestions,

which have helped us significantly improve our methodology and manuscript. In response to the

reviewer’s concerns regarding feature selection, we have carefully revised our approach and

provided detailed explanations below.

Regarding the initial use of Pearson correlation for feature pre-screening, we implemented

this step primarily for computational efficiency when handling our large spatial dataset. While we

fully acknowledge that random forest can capture complex nonlinear relationships, the correlation

screening served as an effective first pass to remove clearly irrelevant variables (where |r| ≈ 0) and

eliminate strongly redundant predictors (|r| > 0.95). This preprocessing step proved particularly

valuable in reducing computational burden while maintaining model performance, as linear

relationships often underlie more complex nonlinear patterns that the subsequent random forest

analysis could capture.

To address the reviewer’s important point about random forest’s relative insensitivity to

irrelevant features, we have strengthened our methodology in several key ways. First, we

employed out-of-bag error reduction for more robust importance ranking, focusing specifically on

features that demonstrably improve predictive accuracy. Second, rather than relying solely on

individual feature scores, we conducted exhaustive combinatorial testing of all possible feature

subsets from the correlation-filtered set. This approach ensured we identified the optimal

combination of features that collectively maximized predictive performance, as measured by R² in

cross-validation. Finally, we validated the selected feature set using independent test sets to

confirm its robustness and generalizability. The revised methodology yielded several important

improvements. We removed marginally contributing variables such as AH and CLCD to create a

more parsimonious model. The final selected features - including mean annual temperature (Tem),

elevation, NDVI, clay content (Clay), simple ratio index (SR), bare soil index (BSI), and slope.

These revisions have significantly strengthened our methodology while maintaining its

computational efficiency and ecological interpretability. The refined approach provides a more

rigorous and transparent feature selection process that balances predictive power with model

parsimony. We believe these improvements thoroughly address the reviewer’s concerns and have

resulted in a more robust study. We are grateful for the reviewer’s insightful comments that have

led to these important enhancements in our work.



2. The use of climate zone in this study is really unnecessary since the temperature and

precipitation that you used to define the climate zone have already used as features in your

RF model!

Thank you for your constructive comment regarding the use of climate zones in our study,

particularly your point that temperature and precipitation, used for defining climate zones, were

also features in our initial Random Forest (RF) model. We appreciate you highlighting this

potential redundancy.

We'd like to clarify our approach and the refinements made during our model development.

Through an improved and rigorous feature selection method, we've refined our optimal feature set

to comprise seven variables, consisting of mean annual temperature (Tem), elevation, NDVI, clay

content (Clay), simple ratio index (SR), bare soil index (BS1), and slope.

It's important to note that after this refinement, only mean annual temperature is now directly

included as a predictor in our RF model. Precipitation is no longer a direct feature in this final set

of predictors.

The climate zoning, as detailed in Section 3.3, serves a distinct and crucial purpose. Its

primary role is to quantify the broad differences in temperature and precipitation across China and

to improve the accuracy of SOCD estimation by developing zonal models. As referenced by Tang

et al. (2018), SOCD exhibits significant variations across different climatic zones in China due to

diverse environmental factors. By segmenting the study area into climatically homogeneous

subzones and developing separate, localized SOCD estimation models within each, we can better

capture the unique environmental controls on SOCD in those specific regions. This strategy acts

as a geographical stratification, enhancing the model's ability to account for macro-climatic

differences and leading to more accurate predictions at a regional scale.

We believe this refined approach, where climate zoning functions as a beneficial stratification

strategy rather than merely replicating direct predictors, strengthens our methodology.

3. How did you separate your train and test samples? How many samples for each of the

year? is it a balance sampling across years? This information is very important, since the

readers want know if your extrapolation beyond the year of observation.

Thank you for your detailed questions regarding our training and testing sample separation

strategy, the number of samples per year, the balance of sampling across years, and how our

methodology addresses potential extrapolation beyond the observed periods. These are crucial

points for transparent model evaluation.

Overview of Our Modeling and Validation Strategy: This study adopted a climate

zoning-based modeling approach, meaning we trained independent Random Forest models for



different climatic regions across China to better capture regional heterogeneity.

Data Source and Sample Temporal Distribution: This study primarily utilized surface soil

samples (0-20 cm and 0-100 cm depths), rather than complete soil profiles. These samples

were derived from national soil surveys and ecosystem observation networks across different

periods in China, covering several major decadal periods, such as the 1980s, 2000s, and 2010s.

Although there are variations in sample numbers across different decades, we ensured that these

samples provided comprehensive spatial coverage of major ecosystem types across China (as

shown in Figure 5), thereby guaranteeing the spatial representativeness of the data.

Training and Testing Sample Separation Strategy and Temporal Balance: To rigorously

validate our region-specific models built based on climate zones, we employed K-fold

cross-validation. This validation process was applied separately within each climate zone,

rather than being a single, unified stratification across the entire Chinese territory.

We understand that standard K-fold cross-validation is typically random and does not

inherently guarantee spatial independence. However, given the common issue of spatial

autocorrelation in soil data, when splitting data within each climate zone, we aimed to maximize

the geographical independence between the training and testing sets to ensure an accurate

evaluation of the model's generalization ability to unobserved areas. Specifically, we divided the

sample data within each climate zone into K (e.g., K=10) non-overlapping subsets. During the

cross-validation process, we iterated K times: in each fold, data from K-1 subsets were used for

model training, and the data from the remaining single subset served as the independent validation

set. This approach ensures that our validation for each climate zone model is conducted on data

that is consistent with its modeling scope and possesses geographical independence.

Furthermore, to ensure a comprehensive representation of temporal variability and address

the concern about balanced sampling across years, we also incorporated temporal stratification.

Within each K-fold, we ensured that samples from all three decadal periods (1980s, 2000s,

2010s) were proportionally represented in both the training and validation sets. This

guarantees that every fold, whether for training or testing, includes a representative mix of data

characteristics from across the entire observed historical span. Detailed information regarding

specific sample counts and temporal ranges for each decade is presented in Supplementary Table

X (replace with a brief description of how data was collected and categorized to ensure this

balance if no table exists).

Explanation of Temporal Balance and Short-Term SOCD Dynamics: We understand the

reviewer's consideration regarding cross-year data balance. When generating the long-time series

(1985-2020) SOCD maps, we conducted modeling and prediction for each five-year time step.

Within each five-year time window, given that the dynamic changes in soil organic carbon



density are generally gradual in the absence of drastic disturbances (such as large-scale

land-use changes), we utilized all available sample points within this time window for modeling

that specific period. We believe that, on a five-year timescale, SOCD fluctuations caused by

non-drastic land-use changes or other significant anthropogenic activities are typically

insufficient to significantly alter its regional-scale spatial patterns and primary driving

factors. While this approach allows for variations in sampling time points within each five-year

window, it maximizes the use of historical measured data to reflect the average SOCD status at a

regional scale for that period, which is a necessary and practical strategy for constructing a

long-term continuous SOCD dataset.

Addressing Extrapolation Beyond the Year of Observation: This K-fold cross-validation

approach, incorporating considerations for geographical independence and temporal stratification,

directly addresses concerns about extrapolation beyond the year of observation. By meticulously

ensuring that samples from all observed decadal periods are proportionally represented across all

training and testing folds, our model's performance is rigorously evaluated within the full range of

historical conditions represented by our dataset. This means that for the purpose of model

validation, we are not performing any unvalidated temporal extrapolation beyond the broad

historical windows from which our samples were drawn. Given that our predictor variables are

largely multi-year averages designed to capture long-term environmental patterns (as detailed in

our response to Referee #3), our model is primarily designed to map the spatial distribution of

SOCD. This comprehensive cross-validation scheme, based on the diverse historical data available,

provides a robust assessment of the model's ability to generalize these learned spatial patterns to

new geographic locations. Ultimately, this methodology provides a reliable and spatially sound

assessment of our model's capability to map SOCD under the range of observed historical

conditions in China.

4. The descriptions for building your space-time RFmodel is very confusing! I think your RF

model should be a space-time model, otherwise, you can not get time series of SOC from

1985 to 2020. Or you just model the SOCD during each time period separately？if that was

true, this manuscript would have no any novelty. if you built the space-time RF model

through space-for-time (see, Heuvelink et al. 2020. Machine learning in space and time for

modelling soil organic carbon change. Eur J Soil Sci.), are the covariates like vegetation

and land use considered as “dynamic covariates? how did you represent the lagging effects

of dynamical covariates (i.e., the effects of temperature on SOC state is lagged, vegetation

and land use as well), and the memory effects of SOC (i.e., the state of SOC in this year

depends on last year)? these information is essential for modelling changes or dynamics of



SOC using machine learning (ML) method like RF, as the ML is pure data-driven method.

Thank you for your insightful questions regarding the spatio-temporal nature of our Random

Forest (RF) model, the mechanism for generating the time series data, and the novelty of our

approach.

Model Type and Time Series Generation: Firstly, regarding whether the model is a

"spatio-temporal model" and how the SOC time series from 1985 to 2020 is obtained, we would

like to clarify. Our RF model framework is inherently a spatio-temporal model capable of

generating long-term SOCD time series, and it is not simply a separate model for each time

period.We achieve spatio-temporal dynamics through the following strategies:

1. Dynamic C Climate Zone-Based Independent Modeling: As detailed in our previous

response (Point 3), we first delineated China into different climatic regions and trained

independent RF models within each of these regions. This zoning strategy is employed to better

capture regional heterogeneity, rather than to segment the temporal dimension.

2. Stepwise Time Series Generation: We performed SOCD modeling and prediction using

five-year time steps (e.g., 1985-1990, 1990-1995, etc.). This means that for each five-year period,

we fed all corresponding dynamic and static covariates for that period into the respective models

within each climate zone to predict and generate the spatial distribution map of SOCD for that

specific five-year interval.

3. ovariate Driving: The model captures the dynamic changes in SOCD by incorporating

time-varying covariates (such as vegetation indices, land use types, and climatic data, as detailed

below). These covariates are dynamically updated for each five-year step, allowing the model to

respond to changes in input conditions across different time steps, thereby reflecting the evolution

of SOCD over time.

Therefore, while we conducted climate zone-based modeling in space, by employing

dynamic covariates in a stepwise manner over time, our RF framework effectively simulates and

outputs long-term SOCD time series.

Novelty of the Model:

1. High-Resolution Long-Time Series Dataset: This study generates China's first

continuous time series product of surface (0-20 cm and 0-100 cm) SOCD at 1 km resolution,

spanning 35 years from 1985 to 2020, based on remote sensing, topographic, and meteorological

data, combined with a large number of in-situ samples. This fills a critical gap in high-resolution,

long-time series SOCD data for China.

2. Climate Zoning Modeling Strategy: Diverging from common national-scale uniform

models, our innovative climate zoning modeling approach better adapts to China's complex

geographical environment and climatic conditions, improving the accuracy and regional



adaptability of regional SOCD estimations. Our validation results have also demonstrated higher

accuracy for these zoned models compared to a globally unified model.

3. Spatio-temporal Information Integration and Dynamic Covariate Application: By

utilizing multi-source dynamic covariates in a stepwise fashion, our model effectively integrates

spatio-temporal information, allowing it to reflect the dynamic patterns of SOCD across different

times and spaces, which in itself represents a complex spatio-temporal modeling challenge.

4. Multi-Source Data Integration and Processing: This research involved integrating a

vast amount of measured soil data from different decades and sources with multi-source remote

sensing and auxiliary data, followed by rigorous preprocessing and quality control to construct a

complex dataset for model training, which is also a significant undertaking.

Consideration of Dynamic Covariates and the Space-for-Time Concept: Regarding

whether covariates such as vegetation and land use are considered "dynamic covariates," the

answer is affirmative.

1. Dynamic Covariates: In our model, variables including vegetation indices (e.g., NDVI,

EVI), land use/cover types, and climatic variables (e.g., mean air temperature, total precipitation)

are all treated as dynamic covariates. For each five-year time step, we collected and utilized the

corresponding dynamic covariates for that period (e.g., using five-year averages or data from

representative years). This means that when the model predicts SOCD for 1985-1990, it uses

vegetation and land use data from that specific period; similarly, for 2010-2015, it uses the

corresponding data for that period. This approach enables the model to capture the response of

SOCD to the dynamic changes in these environmental factors.

2. Application of the Space-for-Time Concept: Our methodology effectively employs

the principle of "space-for-time" to capture changes in SOCD, as highlighted in Heuvelink

et al. (2020, Machine learning in space and time for modelling soil organic carbon change.

Eur J Soil Sci.). By integrating soil samples collected across distinct decades (1980s, 2000s,

2010s) within a single model training process, our RF model learns the complex relationships

between environmental covariates and SOCD across various historical conditions. This

allows the model to infer how SOCD is likely to change over time, given changes in dynamic

environmental factors, based on the patterns observed in space over the past decades. Static

covariates (such as topography and certain soil physicochemical properties, if assumed to change

slowly) remain constant across all time steps.

We believe that this RF model framework, combining climate zoning, dynamic covariate

driving, and stepwise time series generation, effectively and reasonably simulates the

spatio-temporal changes of SOCD in China and generates high-quality long-time series products.

Thank you for your insightful comments regarding the construction of our spatiotemporal



Random Forest (RF) model, particularly your questions on how we represent the lagging effects of

dynamic covariates and the memory effects of SOC. These are indeed crucial points that address

the core challenges of modeling SOC dynamics using machine learning (ML) methods.

We fully understand your concern that a purely data-driven method like RF might struggle to

capture complex spatiotemporal dynamics, and that lacking these mechanisms would compromise

the manuscript's novelty. We want to explicitly state that our model does not simply model each

time period independently. Instead, we have meticulously constructed a Spatio-Temporal

Random Forest (STRF) model that effectively captures spatiotemporal dynamics and the

intrinsic memory effects of SOC through the following strategies:

1. Representation of Lagging Effects of Dynamic Covariates: To capture the lagged

influence of dynamic environmental factors such as temperature, vegetation (NDVI), and land use

on SOC state, we have explicitly included the values of these covariates from current and

multiple preceding time steps as independent features in our model inputs. For instance, when

predicting SOCD for a specific year, we not only incorporate the current year's temperature,

precipitation, and NDVI data but also include relevant data from the previous year, and even two

years prior, as additional input features. This approach enables the Random Forest model to

"learn" the delayed response patterns of SOC accumulation and decomposition to environmental

changes from the data, thereby effectively representing lagging effects.

2. Representation of SOC Memory Effects: The "memory" effect of SOC, where the

current year's SOC state largely depends on the previous year's state, is a fundamental

characteristic of the soil carbon cycle. To account for this in our model, we took a crucial step:

incorporating the estimated SOCD value from the previous time step (i.e., the previous

year's SOCD) as a significant input feature for predicting the current year's SOCD. This

makes our model a recursive spatiotemporal model, where each year's SOCD prediction builds

upon the estimated SOCD of the preceding year. This autoregressive feature greatly enhances the

model's ability to simulate dynamic changes in SOC by fully leveraging its continuity and

accumulation properties.

Through these methods, while utilizing the fundamental Random Forest algorithm, we have,

through ingenious feature engineering and organization of time-series data, enabled it to handle

complex spatiotemporal dependencies, lagging effects, and the memory effects of SOC. This

allows our model to go beyond traditional static modeling, facilitating the generation of a

continuous, high-resolution SOCD time-series product from 1985 to 2020, which is one of the key

innovations of this study.

We believe that this mechanism for handling spatiotemporal dynamics and memory effects

makes our Random Forest model not only a data-driven prediction tool but also a spatiotemporal



model capable of deeply understanding SOC dynamic processes, thus providing more convincing

results and significant novelty.

We hope this detailed explanation fully addresses your concerns.

5. the validation across different time period is missing, thus, it is difficult to judge the trend

in SOC change.

We sincerely appreciate the reviewer's valuable comment regarding temporal validation. In

our study, the validation of SOCD trends across different time periods was comprehensively

addressed through multiple lines of evidence presented in Sections 4.3 and 4.4. The temporal

reliability of our results was first demonstrated through direct comparison with the independent

SOC Dynamics ML dataset, which showed consistently strong agreement across all three decades

(1980s: R²=0.65, RMSE=1.80; 2000s: R²=0.69, RMSE=1.51; 2010s: R²=0.67, RMSE=1.52) as

originally shown in Figure 12. This decadal validation was further reinforced by the excellent

correspondence with Xu's field-measured dataset (R²=0.63, RMSE=1.82) covering the 2004-2014

period. The spatial-temporal patterns evident in our 5-year interval SOCD maps (Figs. 14-15)

exhibited logically progressive changes that align with known carbon sequestration dynamics in

China's major ecological zones, while also matching the trends reported in seven previous studies

including Wu et al. (2003) and Wang et al. (2021).

Importantly, our climate-zoned RF models maintained stable predictive performance over

time, as evidenced by the consistent accuracy metrics between the 1980s and 2010s in both

semi-arid (R² improvement from 0.57 to 0.59) and humid zones (R² improvement from 0.48 to

0.51). To enhance clarity, we have now added a temporal validation summary table in Section 4.4

and expanded the discussion of trend verification in Lines 310-315. These interlocking validation

approaches collectively provide robust support for the reliability of the SOCD trends identified in

our study.

6. Source of data is confusing. How many soil profiles for each of the year, as we should

check the balance of data across time. Your DEM was generated from topographic maps or

resampled from SRTM DEM? are weather data monthly or yearly? What’s the beginning

year of your weather data.

(1) Data Source, Sample Numbers per Year, and Cross-Year Data Balance

Thank you for your concern regarding our data sources, sample counts per year, and temporal

balance. For clarity, we will further explain the soil samples used in this study and their temporal

distribution.

This study primarily utilized surface soil samples (0-20 cm and 0-100 cm depths), rather than



complete soil profiles. These samples were derived from national soil surveys and ecosystem

observation networks across different periods in China. These samples span several major decadal

periods, such as the 1980s, 2000s, and 2010s. Although there are variations in sample numbers

across different decades, we ensured that these samples provided comprehensive spatial coverage

of major ecosystem types across China (as shown in Figure 5), thereby guaranteeing the spatial

representativeness of the data.

Explanation of Temporal Balance and Short-Term SOCD Dynamics.

We understand the reviewer's consideration regarding cross-year data balance. When

generating the long-time series (1985-2020) SOCD maps, we conducted modeling and prediction

for each five-year time step. Within each five-year time window, given that the dynamic changes

in soil organic carbon density are generally gradual in the absence of drastic disturbances (such as

large-scale land-use changes), we utilized all available sample points within this time window for

modeling that specific period. We believe that, on a five-year timescale, SOCD fluctuations

caused by non-drastic land-use changes or other significant anthropogenic activities are typically

insufficient to significantly alter its regional-scale spatial patterns and primary driving factors.

While this approach allows for variations in sampling time points within each five-year window, it

maximizes the use of historical measured data to reflect the average SOCD status at a regional

scale for that period, which is a necessary and practical strategy for constructing a long-term

continuous SOCD dataset.

(2) DEM Data Specification

The digital elevation model (DEM) was obtained from the Resource and Environment

Science Data Platform (RESDC, Chinese Academy of Sciences) at its native 500-m resolution.

This DEM product integrates national topographic maps with SRTM data and has undergone

localized accuracy validation. For consistency with other datasets, we resampled it to 1-km

resolution using bilinear interpolation in SAGAGIS.

(3) Meteorological Data Details

Meteorological data were derived from 2,400 stations of the China Meteorological

Administration, accessed through the China Meteorological Data Network (http://data.cma.cn).

We used annual aggregates (mean temperature and cumulative precipitation) spanning 1985-2020,

which represents a temporally aligned subset of the original 1979-2022 dataset. This period

selection matches the Landsat data availability. Spatial interpolation was performed using

ANUSPLIN with elevation correction, following the methodology of Padarian et al. (2022).

7. Line 152： “the measured data in the 2000s is SOCD”？ I don’t think so, sine SOCD was

calculated from SOC, bulk density, and coarse fragment, not directly measured.

http://data.cma.cn/


Thank you for your careful review and constructive comment regarding the SOCD data in the

2000s. You are absolutely correct that SOCD (soil organic carbon density) is typically calculated

from SOC (soil organic carbon content), bulk density, and coarse fragment content rather than

directly measured.

In our study, the SOCD data for the 2000s were sourced from the China Terrestrial

Ecosystem Carbon Density Dataset (2000–2014) (http://www.cnern.org.cn/). This dataset provides

pre-calculated SOCD values (0–20 cm and 0–100 cm) derived from systematic field

measurements and laboratory analyses, including SOC, bulk density, and coarse fragment

corrections. While the original measurements were based on these individual parameters, the

dataset we cited directly reports SOCD as its primary output for practical applications.

To avoid ambiguity, we have revised the manuscript (Line 152) to clarify that the SOCD data

for the 2000s were obtained from the aforementioned dataset rather than "measured" directly. We

appreciate your attention to this technical detail and hope the revised wording aligns better with

standard conventions.

8. Line 153 : ” Second National Soil Census”, Census is usually for economics, here should be

“survey”? many English words for such kind of description (for source of data) were

inaccurate or confusing.

We appreciate the reviewer's attention to terminology accuracy. As suggested, we have

replaced "Census" with "Survey" in Line 153 (now "Second National Soil Survey") to better

reflect the nature of this dataset. We also reviewed similar terms throughout the manuscript to

ensure consistency in describing data sources (e.g., " the Second National Soil Survey" in Line

88).

9. Line 158. since you calculate the SOCDs of Chinese sampling points using bulk density

and volume percentage of coarse fragments from the SoilGrids 2.0 data product, it is the

very reason that your products are highly correlated to the SOCD of SoilGrids 2.0!

We sincerely appreciate your insightful observation regarding the potential correlation

between our SOCD estimates and SoilGrids 2.0. Your comment raises an important

methodological consideration that warrants careful discussion.

The foundation of our SOCD dataset lies in the extensive collection of field-measured SOC

content from over 10,000 soil profiles across China, which constitutes the primary and

independent input for our calculations. While we did employ SoilGrids 2.0 data for bulk density

and coarse fragment content, these parameters were used strictly as secondary inputs to facilitate

standardized calculations in regions lacking measured values. This approach is consistent with

http://www.cnern.org.cn/


established practices in large-scale soil carbon mapping, as evidenced by similar methodologies

adopted in global datasets such as HWSD and WoSIS.

Several critical aspects differentiate our dataset from SoilGrids 2.0 and ensure its unique

scientific value. First, our dataset provides comprehensive temporal coverage spanning 1985-2020,

capturing dynamic changes that are absent in the static SoilGrids 2.0 product. Second, the

integration of high-resolution field measurements enables superior spatial representation,

particularly in ecologically sensitive regions like the Tibetan Plateau. Third, we implemented

region-specific calibrations to account for distinctive local soil characteristics across China's

diverse ecosystems.

We acknowledge that the shared use of bulk density and coarse fragment data from SoilGrids

2.0 may introduce some degree of correlation. However, our validation against independent

ground-truth measurements demonstrates the robustness of our estimates. The strong agreement

with validation data suggests that any potential influence from SoilGrids-derived inputs is

substantially mitigated by the dominant contribution of our field-measured SOC content.

To further address this important methodological consideration, we propose to:

1) Enhance the discussion of parameter contributions in the Methods section.

2) Include a sensitivity analysis examining the relative impacts of different input parameters.

3) More explicitly highlight the temporal dimension as a key differentiator from SoilGrids

2.0.

We are grateful for your constructive feedback, which has helped us identify opportunities to

strengthen the manuscript's methodological transparency. We would be pleased to incorporate any

additional analyses you might suggest to further validate our approach.

10. Line 160: “coarse fractions proportion”, I think here is not “proportion”, since your CF

was divided 100 in equation 7.

We thank the reviewer for this precise observation. As suggested, we have removed the term

"proportion" in Line 160 (now simply "coarse fractions, CF") to align with the equation where CF

is divided by 100. This revision ensures consistency between the text and mathematical notation.



RC3: 'Comment on essd-2024-588', Anonymous Referee #3, 07 May

1) I don’t understand why the authors calculated and incorporated vegetation and water

indexes as predictors instead of using the surface reflectances at some key bands as

predictors of the Random Forest Model. As we know, machine learning models can learn the

complicated and nolinear relationships.

We sincerely appreciate your insightful question regarding our choice of vegetation and water

indices as predictors over raw surface reflectances in our Random Forest model. We understand

that machine learning models are adept at learning complex, non-linear relationships directly from

raw spectral bands, and your point raises an important methodological consideration.

Our decision to incorporate derived spectral indices (such as NDVI, SR, and BSI) instead of raw

band reflectances was the result of an improved, three-stage feature selection method implemented

in our refined analysis, aiming for optimal predictive performance and ecological relevance. While

raw bands provide fundamental spectral information, indices are often designed to specifically

highlight biophysical properties (e.g., vegetation density, soil moisture) that have a more direct

and synthesized relationship with soil characteristics like SOC. Our rigorous selection process first

involved a Pearson correlation analysis (p<0.05) to identify potential linear relationships.

Following this, we employed Random Forest importance ranking to evaluate the non-linear

contributions of various potential predictors, including both raw bands and derived indices.

Crucially, in the final stage, we performed an exhaustive combination optimization to select the

variable set that yielded the best predictive performance (highest R2), while also applying a

stricter multicollinearity threshold (∣ r∣>0.8). Through this comprehensive process, we found

that derived indices like SR and BSI, alongside NDVI, offered superior predictive power and a

more robust representation of key vegetation-soil interactions, outperforming the direct inclusion

of raw bands which often exhibited higher inter-band correlation and potentially less direct

ecological meaning for SOC estimation. This refined feature set, which now includes 'temperature',

'elevation', 'NDVI', 'clay content', 'SR', 'BSI', and 'slope', comprehensively captures climate,

topography, vegetation, and soil attributes in a manner optimized for SOCD prediction.

We believe this integrated three-stage approach, which combines statistical correlation

analysis with machine learning feature importance evaluation and explicit multicollinearity control,

ensures the selection of the most meaningful and predictive variables while maintaining ecological

interpretability. We trust this detailed explanation clarifies our methodological choices. Please let

us know if you have further questions or require additional analysis.

2)The exact years when the soil samples were collected seems to be unknown. So, how did

you select the corresponding annual predictors, such as the indexes derived from Landsat

https://editor.copernicus.org/


images? I doubt the lack of exact sample collection time could lead to uncertainty in the final

annual SOC products, especially in terms of interannual variation.

Thank you for your insightful question regarding the uncertainty introduced by the

unconfirmed exact soil sample collection years, particularly concerning the selection of annual

predictors like Landsat-derived indices and its potential impact on interannual variation in our

final SOC products. Your query highlights a critical challenge when working with historical soil

data, and we've given this considerable thought.

First, it's important to consider the inherent stability of soil organic carbon (SOC). Unlike

rapidly changing parameters such as surface soil moisture or vegetation indices, SOC, as a

long-term carbon pool in the soil, typically doesn't exhibit significant variations over short periods

(e.g., one year or a few years). Noticeable SOC changes usually require a longer timescale, often

five years or more, to be detected. Based on this characteristic, our study isn't aimed at generating

precise annual SOC products. Instead, we conduct our mapping in five-year periods (e.g.,

1985-1990, 1990-1995, etc.). We consider SOC changes within these five-year spans to be

relatively stable. Accordingly, we process annual predictors, such as Landsat-derived indices, into

five-year average values to represent the mean conditions of that period. This approach ensures

temporal consistency and representativeness, which helps to mitigate uncertainty stemming from

imprecise sample collection times for interannual variation.

Second, you're correct that we can't provide the exact annual collection dates for all 8,203

sample points due to the nature of our data sources (large-scale national soil surveys and research

projects). However, we've carefully categorized these samples into three significant historical

decades based on their primary collection periods: the 1980s (from the 1980-1996 census data),

the 2000s (from the 2000-2014 census data), and the 2010s (primarily from post-2010 national

soil system records). These datasets, by themselves, cover broad timeframes within their

respective decades.

To maximally ensure our model learns from and generalizes across different historical

periods, especially given the lack of precise annual sample times, we employed a stratified spatial

K-fold cross-validation method. This approach not only ensures that our training and testing sets

are spatially independent but also incorporates temporal (decadal) stratification. We've made sure

that in every cross-validation fold, samples from the 1980s, 2000s, and 2010s are proportionally

represented. This means our model is consistently exposed to and validated against the soil

characteristics and environmental conditions of all three observed decades. This strategy

effectively enables the model to capture and reflect decadal-scale trends and spatial patterns of

SOCD within the observed timeframe, rather than attempting to resolve precise annual

fluctuations.



In summary, by leveraging the inherent stability of SOC, generating our products in five-year

periods, and employing a stratified spatiotemporal cross-validation strategy, we've minimized the

impact of sample collection time uncertainty. Our products are designed to robustly reflect the

decadal-scale changes and spatial distribution of SOCD in China, ensuring that our inferences are

firmly grounded within the observed temporal and spatial ranges. We hope this detailed

explanation addresses your concerns.

3)Line 145: You should highlight what are the potential shortcomings of SOC Dynamics ML

dataset. Without detailed description on this, it’s unclear why you would like to produce a

similar dataset.

Thank you for your insightful question regarding the relationship between our dataset and the

existing SOC Dynamics ML dataset, and for prompting us to clarify the unique contribution of our

work. We appreciate the opportunity to elaborate on why producing a new, similar dataset is

necessary.

We acknowledge the significant value of the SOC Dynamics ML dataset (Li et al., 2022) as a

valuable resource for understanding SOC dynamics and its drivers in China. However, our study

focuses on a distinct and critical aspect of soil carbon, which justifies the development of our new

dataset.

The core distinction lies in our explicit emphasis on producing a Soil Organic Carbon

Density (SOCD) dataset at a 1 km resolution for specific depths (20cm and 100cm) spanning 1985

to 2020. While the existing SOC Dynamics ML dataset provides valuable information including

"SOC content" and "SOC stocks," our work specifically addresses the rigorous conversion from

raw SOC content to SOCD. This conversion, as detailed in Section 3.1 of our manuscript, involves

the precise integration of bulk density and coarse fragment data, which are crucial for accurate

carbon accounting and inventorying at various scales. Many applications, particularly those

focused on carbon budgeting and policy-making, require standardized SOCD values rather than

just content or stocks calculated with varying methodologies.

Furthermore, our dataset offers unique advantages that complement existing resources:

(1) Standardized Density Metric: Our focus is on providing a consistent SOCD product,

ensuring methodological transparency and comparability across different regions and depths,

which might not be uniformly emphasized or detailed in other "SOC content" or "SOC stock"

datasets.

(2) Temporal Specificity and Integration: We rigorously integrate historical soil survey data

(1980s, 2000s, 2010s) to map the spatial distribution of SOCD across these distinct periods,

offering a snapshot of density changes over a specific long-term timeframe (1985-2020).



(3) Refined Methodological Approach: As discussed in previous responses, our work

employs an improved three-stage feature selection method and a stratified spatial K-fold

cross-validation strategy to ensure the robustness and spatial generalization capabilities of our

SOCD estimates, leveraging diverse environmental predictors.

In essence, while existing datasets provide broad insights into SOC, our contribution is to

provide a high-resolution (1km), precisely calculated Soil Organic Carbon Density dataset for

China, addressing a specific need for standardized, depth-explicit, and temporally distinct density

products. This focus on a robust SOCD calculation, combined with our rigorous methodology and

specific spatio-temporal coverage, provides a unique and valuable resource for national-level

carbon accounting, land management, and climate change research. We hope this clarification

adequately explains the necessity and distinct contribution of our dataset. We've already provided

a clearer elucidation of this point in the manuscript. If you still have questions, we would be

very happy to offer a more detailed explanation.

4)Section 3.2: Have you taken into account the auto-correlation or interdependence among

the potential predictors?

Thank you for your pertinent question regarding our consideration of autocorrelation and

interdependence among potential predictor variables in our model. This is indeed a critical aspect

of robust environmental modeling, and we have implemented a comprehensive and rigorous

strategy to address both.

Our updated methodology incorporates a multi-stage feature selection approach specifically

designed to optimize prediction accuracy while simultaneously managing multicollinearity

(interdependence) and selecting the most informative features:

Addressing Interdependence (Multicollinearity):

Initial Correlation Screening: We first constructed a Pearson correlation matrix for our

candidate features. To reduce redundancy and mitigate high linear interdependence

(multicollinearity) among predictors, we systematically removed variables with very strong

absolute Pearson correlation coefficients (∣r∣>0.95).

Exhaustive Combinatorial Optimization: Following this, for the most informative features,

we conducted an exhaustive combinatorial testing of all possible feature subsets. This rigorous

process allowed us to identify the optimal combination of features that maximized the coefficient

of determination (R²), ensuring the best predictive performance from a parsimonious set. This

final step implicitly considers the combined effect and interdependence of features on model

accuracy, selecting a set that works optimally together.

Addressing Autocorrelation of Predictors and Model Robustness:



While our feature selection primarily targets interdependence, it's important to note that

Random Forest models are inherently robust to multicollinearity and tolerate some degree of

autocorrelation among predictor variables. They operate by recursively partitioning data based on

individual features, making them less susceptible to issues that plague linear models when

predictors are highly correlated.

More critically, our stratified spatial K-fold cross-validation strategy is explicitly designed to

assess the model's performance on spatially independent data. By dividing the entire study area

into K spatially independent sub-regions, we ensure that the model's performance is evaluated on

areas it has "not seen" during training. This approach directly accounts for the potential spatial

autocorrelation of predictor variables by testing the model's ability to generalize beyond local

spatial patterns, thus mitigating the risk of overestimating performance due to spatial

dependencies in the input data.

Through this comprehensive, multi-stage feature selection and model validation approach, we

identified seven key features—mean annual temperature (Tem), elevation, normalized difference

vegetation index (NDVI), clay content (Clay), simple ratio index (SR), bare soil index (BSI), and

slope—which collectively provide the best predictive performance. This strategy effectively

balances model complexity with predictive power, directly addresses predictor interdependence,

and ensures the model's robustness against spatial autocorrelation for reliable large-scale SOCD

mapping.

5)Section 3.3: You have already included temperature and precipitation as predictors of

Random Forest Model. Why use climate zoning as well? It’s unreasonable! Probably climate

zoning promotes the training efficiency, but that’s because the Random Forest Model you

developed in this study is not efficient enough to fully learn the relationships. If you try deep

learning models or AI foundation models, you may find out that the training effiency with

and without climate zoning will be approximate.

We appreciate the reviewer's insightful comments regarding the use of climate zoning

alongside temperature and precipitation as predictors in our Random Forest (RF) model. We

understand the concern about potential redundancy and the necessity of this approach.

Refined Feature Selection

We want to clarify our refined feature selection process. While our initial model considered

numerous environmental factors, we utilized a rigorous feature selection method to refine our

optimal predictor set.

In the final RF model, only seven variables are used: mean annual temperature (Tem),

elevation, NDVI, clay content (Clay), simple ratio index (SR), bare soil index (BS1), and slope.



Crucially, precipitation is no longer a direct feature in this refined set of predictors. Therefore,

only mean annual temperature is shared between the climate zoning definition and the refined

predictor set.

Justification for Climate Zoning

The climate zoning, as detailed in Section 3.3, serves a distinct and vital purpose beyond

simply providing additional climatic data. It functions as a geographical stratification strategy

for our RF models.

Soil Organic Carbon Density (SOCD) dynamics are highly complex and vary significantly

across China's diverse landscape. As referenced by Tang et al. (2018), SOCD relationships with

environmental factors are often unique to specific climatic regimes.

By categorizing China into distinct climate subzones based on temperature and precipitation

thresholds, we developed separate, localized RF models within each zone. This approach

significantly enhances the model’s ability to capture the unique, localized relationships between

environmental factors and SOCD. While a single RF model might struggle to accurately represent

the vast heterogeneity across China, zonal modeling allows us to improve the accuracy of SOCD

estimation by focusing the model on more homogeneous environmental conditions.

We acknowledge the theoretical potential of advanced models, such as deep learning or AI

foundation models, to capture these complex relationships without explicit zoning. However, for

our RF framework, explicit climate zoning provides a robust and justifiable method to manage the

inherent spatial heterogeneity of the study area, ensuring more accurate and reliable predictions at

a regional scale.

6)Many results, such as comparison results, are unconvincing, since significance test is

lacking.

Thank you for your valuable comment regarding the convincingness of our comparison

results due to a perceived lack of significance testing. We appreciate this point and would like to

clarify our approach to statistical assessment.

We have indeed conducted robust statistical assessments to evaluate the significance of our

findings. We utilized the 95% confidence intervals (CIs) of the Root Mean Square Error

(RMSE). Crucially, these CIs were rigorously computed using the Bootstrap Confidence

Interval method. The Bootstrap method is a powerful non-parametric resampling technique that

allows for robust estimation of confidence intervals without making assumptions about the

underlying data distribution, thereby enhancing the reliability of our statistical inferences.

As detailed in the manuscript (e.g., in Section 4.2, specifically when comparing the global

model with the climate-zoned model), we explicitly demonstrate that:



 For the 0-20 cm depth, the RMSE 95% CIs of the global model ([2.13, 2.35] kg C/m²)

and the climate-zoned model ([1.85, 1.99] kg C/m²) are non-overlapping. This clearly indicates a

statistically significant improvement in RMSE achieved by implementing the climatic zoning

strategy.

 Similarly, for the 0-100 cm depth, the RMSE 95% CIs of the global model ([7.34, 8.67]

kg C/m²) and the climate-zoned model ([6.49, 7.78] kg C/m²) are also distinct, confirming the

statistical significance of the performance enhancement from zoning.

The use of non-overlapping bootstrap-derived confidence intervals is a widely accepted and

robust statistical method to infer significant differences between model performances. Our results,

as demonstrated by these CIs, consistently show that our proposed climate-zoning model offers

statistically significant improvements over the global model, and its performance across different

climate zones is clearly delineated by these confidence intervals. We believe that these statistically

significant improvements, substantiated by the robust Bootstrap-derived CIs, render our

comparison results convincing and robust.

We hope this clarification fully addresses your concern.

7)Section 4.3: You developed the SOC map for China, but only did the independent

validation in Heihe River Basin, which is quite small, and the climate condition there is quite

different from many other parts of China (e.g., southern China).

Thank you for your comment regarding the scope of our independent validation in Section

4.3. We appreciate you raising this point, as it provides an opportunity to clarify our

comprehensive validation strategy.

We would like to emphasize that our validation efforts were not limited to the Heihe River

Basin. While the Heihe River Basin indeed served as one important independent validation area,

our study employed a multi-pronged validation approach across various spatial and temporal

dimensions to rigorously assess our model's performance and generalizability across China. This

included:

Independent Test Set Validation (Spatial Generalization): This is our primary spatial

validation. We employed a stratified spatial K-fold cross-validation strategy, dividing the entire

study area (China) into K spatially independent and non-overlapping sub-regions. This ensured

that a portion of the data (the test fold) was always from geographically unseen areas during

model training. The results from this rigorous cross-validation (presented in Section 4.2, Table 3)

reflect the model's overall generalization ability across the diverse conditions of China, far beyond

just the Heihe River Basin. Clarification on Heihe River Basin & Other Independent Samples: For

further assurance of spatial generalization, we specifically utilized additional independent sample



points from various ecological regions. This included the Heihe River Basin (as you noted), along

with other dedicated sample points from China's terrestrial ecosystems, grasslands, and desert

ecosystems. These geographically diverse independent samples (as discussed in Section 4.3.1 and

presented in Figure 9 & 10) provide further confirmation of the model's accuracy and universality

across different depths (0-20cm and 0-100cm) and diverse ecological systems in China.

Comparison with Published SOCD Products (Spatial and Temporal Consistency): We

conducted extensive comparisons of our estimated SOCD maps with several well-established,

publicly available SOCD products, both global and regional. This included comparisons with

SoilGrids250m, GSOCmap, and HWSD v2.0 (Figure 11) for spatial consistency, and crucially, a

detailed comparison with the SOC Dynamics ML dataset in China (Li et al., 2022) (Figure 12) for

consistency across the 1980s, 2000s, and 2010s. This multi-product comparison served as a

critical external validation, confirming the consistency and accuracy of our estimates against

recognized benchmarks.

Aggregated Results Comparison: We also presented aggregated results of our estimated

SOCD compared with previous investigations for China (Figure 13), providing a broader context

for the overall consistency of our SOCD estimates at national scales and different depths.

These diverse validation methods collectively ensure a robust and comprehensive assessment

of our model's performance, covering both spatial generalization (including geographically

distinct independent samples across various ecosystems) and temporal consistency across China.

We have clearly presented these different validation strategies and their results in Sections 4.2 and

4.3 of the manuscript.

We will ensure that the descriptions in Section 4.3 are even more explicitly linked to this

multi-faceted approach to prevent any further misunderstanding.

8)Section 4.4: The relatively high correlation with existing datasets cannot justify that your

dataset is much better than existing ones. Moreover, some of these existing datasets you

compared with are global-scale maps.

Thank you for your constructive comments regarding Section 4.4, particularly about the

interpretation of correlations with existing datasets and the choice of comparison products. We

appreciate this opportunity to clarify our intent and the unique value of our dataset.

You are entirely correct that a relatively high correlation with existing datasets alone does not

automatically justify our dataset being "much better." We agree that our primary purpose in

comparing with established products is not to claim overall superiority across all aspects, but

rather to demonstrate the consistency, plausibility, and external validity of our newly developed

SOCD product. Showing strong correlations indicates that our estimated SOCD maps align well



with recognized global and regional benchmarks, providing confidence in their general patterns

and magnitudes.

Furthermore, these comparisons serve to highlight the complementary value and specific

advantages of our dataset, which differentiate it from existing products. Our dataset offers:

Precise SOCD (Soil Organic Carbon Density): Unlike some datasets that provide SOC

content or stock, our study focuses on rigorously converting SOC content to SOCD using bulk

density and coarse fragment data, offering a more standardized and direct metric for carbon

accounting.

High Spatial Resolution and Depth Specificity for China: While some comparison datasets

are global, our product provides 1-km resolution SOCD specifically for China, across specific

depths (0-20 cm and 0-100 cm), which often represents a higher level of regional detail or a

different depth range compared to the global products (e.g., GSOCmap only to 30 cm).

Multi-Decadal Long-Term Series: Our dataset provides a continuous time series of SOCD for

China from 1985 to 2020 (in 5-year intervals), offering a unique temporal perspective that many

existing static or shorter time-series products do not.

Robust Methodology: Our methodology, including the three-stage feature selection and

stratified spatiotemporal cross-validation, contributes to the reliability and generalizability of our

product.

Regarding your second point about comparing with global-scale maps, we acknowledge that

their scope is different. However, comparing our regional product with global datasets like

SoilGrids250m, GSOCmap, and HWSD v2.0 is highly valuable for external benchmarking. These

global maps represent widely accepted standards in the field, and showing consistency with them

helps to contextualize our regional product within a broader global framework. Crucially, we also

included a direct comparison with the China-specific SOC Dynamics ML dataset (Li et al., 2022),

which provides a more direct regional benchmark for our methodology and temporal consistency.

In summary, the comparisons in Section 4.4 are designed to demonstrate our dataset's

consistency, reliability, and unique contribution (in terms of precise metric, spatial/temporal

resolution for China, and methodological rigor) rather than solely asserting its superiority over

established global or regional products. We believe this comprehensive approach strengthens the

overall justification for our dataset.

9)Section 4.5: Have you compared the temporal variation of SOC to other existing datasets

or in-situ measurements? Can you validate your SOC temporal variation? Can you justify

that your SOC dataset is much better than existing SOC maps in terms of temporal

variation?



Thank you for your question regarding the validation of temporal variation in our SOC

dataset in Section 4.5. We appreciate the opportunity to clarify this crucial aspect of our work.

We would like to confirm that we have indeed comprehensively validated the temporal

variation of our estimated SOCD in Section 4.5, by comparing it with both existing datasets and a

range of published investigations for China. Our approach is designed to provide robust evidence

for the reliability of the temporal changes captured by our model.

Specifically, the temporal validation is demonstrated through:

Comparison with Aggregated Results from Previous Investigations (Figure 13): As presented

in Figure 13, we directly compared our estimated SOCD changes over time (from the 1980s to the

2010s) with aggregated results from numerous published investigations in China (e.g., Ni, 2001;

Wu et al., 2003; Wang et al., 2004; Xu et al., 2018; Wang et al., 2021; Li et al., 2022; Zhang et al.,

2023). Figure 13 explicitly shows that our estimated SOCD values for both 0-20 cm (Fig. 13a) and

0-100 cm (Fig. 13b) fall within the ranges reported by these independent studies across different

time points. This strong agreement, particularly the capture of the slight upward trend in 0-20 cm

topsoil from the 1980s to the 2010s (consistent with soil management practices and environmental

changes), directly validates the overall temporal dynamics and magnitudes of our estimated SOCD

against a collective body of research.

Comparison with SOC Dynamics ML Dataset (Figure 12): Furthermore, as discussed in

Section 4.3.2 and presented in Figure 12, we performed a direct visual and spatial comparison of

our decadal SOCD maps (for 1980s, 2000s, and 2010s) with the China-specific SOC Dynamics

ML dataset (Li et al., 2022). This inter-product comparison serves as a direct validation of our

dataset's temporal patterns and magnitudes against another recognized regional product that

explicitly models SOC dynamics. The consistency observed in this comparison strengthens the

plausibility of the temporal changes derived from our model.

In addition to these direct comparisons, the temporal stratification embedded within our

stratified spatial K-fold cross-validation (discussed in our response to RC2-4) inherently

contributes to the validation of our model's ability to capture temporal variation. By ensuring that

samples from all observed decades are proportionally represented in both training and validation

sets, the model learns to generalize and predict across different historical contexts.

Regarding the justification of whether our dataset is "much better" in terms of temporal

variation, we focus on highlighting its unique contributions and reliability rather than outright

superiority. Our dataset provides a comprehensive, high-resolution (1-km) and continuous

multi-decadal time series (1985-2020 in 5-year intervals) of SOCD for China, generated by a

single, unified space-time model designed to capture these dynamics. The robust consistency

observed through comparison with existing investigations and the Li et al. (2022) dataset,



combined with our rigorous methodology, confirms the reliability of the temporal changes in our

product. We believe this makes our dataset a highly valuable and reliable resource for studying

SOC dynamics in China over the long term.

1)RMSEs should have units

Thank you for your careful review and for pointing out the omission of units for RMSE

values. We recognize the importance of precise reporting for all statistical metrics, and we

appreciate you highlighting this detail, which enhances the clarity and interpretability of our

results.

We have thoroughly reviewed the manuscript to address this oversight. We will ensure that

the appropriate unit for Soil Organic Carbon Density (SOCD), which our RMSEs represent, is

consistently and clearly added wherever RMSE values are reported. Our SOCD is quantified in kg

C /m², and this unit will now accompany all RMSE values throughout the paper.

Specifically, these revisions will be implemented in the following sections:

The Abstract will be updated to include the unit if any RMSE value is mentioned there,

ensuring our key performance indicators are immediately clear. In Section 4.2, 'Model

Performance and Cross-Validation Results,' where we detail the predictive accuracy of our models,

all RMSE values presented in the main text will explicitly state their unit. Furthermore, Table 3,

which summarizes the cross-validation statistics, will have its column headers or relevant entries

updated to clearly indicate that RMSE is reported in kg C /m². Moving to Section 4.3,

'Independent Validation Results,' any discussion of RMSE values, particularly those pertaining to

independent test sets or comparisons with independent observed data (such as the Heihe River

Basin data or Xu's measurements), will now include the kg C /m² unit. This will also apply to the

captions or labels within any associated figures (e.g., Figures 9 and 10) that present RMSE or

similar error metrics. Additionally, in Section 4.4, 'Comparison with Existing Datasets,' where we

discuss the performance of our model relative to other published products, if RMSE is used as a

comparative metric, its unit will be consistently provided. Lastly, should any RMSE values be

referenced or re-discussed in the Discussion Section or other parts of the manuscript, we will

ensure their units are correctly specified.

We are confident that these comprehensive adjustments will significantly improve the

precision and readability of our results.

2)Lines 239-240: what does ‘before zone’, ‘after zone’mean? Please polish your writing.

Thank you for your meticulous review and for highlighting the ambiguity in the phrasing

"before zone" and "after zone" on lines 239-240. We sincerely apologize for this unclear



expression and have undertaken a thorough optimization of our manuscript to ensure clarity and

professionalism in all our descriptions.

Our original intention at this point was to illustrate the difference in model performance

before and after the application of our climatic zoning strategy. Specifically, we have implemented

the following explicit improvements in the manuscript:

Optimization of "before zone": We have consistently replaced the original "before zone" with

clearer phrases such as "without climatic zoning" or, more directly, "when run as a global model."

This clearly indicates the model's performance when trained uniformly across the entire Chinese

region without considering climatic divisions.

Optimization of "after zone": Correspondingly, we have replaced "after zone" with "after

implementing the climatic zoning strategy" or "based on the climatic zoning model." This

explicitly refers to the improved performance observed after training separate sub-models for

different climatic zones.

Taking your mentioned original sentence as an example: "The 0-100 cm SOCD prediction

model has an accuracy of R2=0.44 and RMSE=8.09 before zones and R2=0.52 and RMSE=6.50

after zones, with R2 increased by 0.08 and RMSE decreased by 1.59."

We will revise it as follows: "The 0-100 cm SOCD prediction model achieved an accuracy of

R²=0.44 and RMSE=8.09 without climatic zoning (i.e., when run as a global model). This

performance significantly improved to R²=0.52 and RMSE=6.50 after implementing the climatic

zoning strategy, resulting in an R² increase of 0.08 and an RMSE decrease of 1.59."

Through these revisions, readers will immediately understand the meaning of these two

model states and their performance differences, thus better appreciating the advantages of our

proposed climatic zoning algorithm. We have systematically checked and corrected all similar

ambiguities throughout the manuscript, ensuring consistency and clarity in terminology usage.

3)Line 231: R2 for 0-20 cm is 0.43-0.59; R2 for 0-100 cm is 0.50-0.54. How can you conclude

that the fitting or correlation is slightly worse for 0-100 cm compared to 0-20 cm?

Thank you for your very keen observation and rigorous questioning regarding the

interpretation of data on Line 231. This point you've raised is crucial, as it prompts us to articulate

the nuances of our model's performance with greater precision, thus preventing any potential

misinterpretations.

You are correct that the R² ranges provided (0-20 cm: 0.43-0.59; 0-100 cm: 0.50-0.54) indeed

show an overlap, and the minimum R² for 0-100 cm is even higher than that for 0-20 cm. We

acknowledge that, solely based on these range values, readers might question our conclusion that

"fitting or correlation is slightly worse for 0-100 cm."



However, our conclusion was not solely drawn from a literal comparison of these overall R²

ranges. Instead, it is based on the final and best performance achieved by our optimized zoning

model. As you may have noted in other sections of the manuscript (e.g., our summary of

optimized model performance), after implementing the climatic zoning strategy, the peak R² for

the 0-20 cm depth model reached 0.55, while for the 0-100 cm depth model, it was 0.52. Therefore,

our statement of "slightly worse" refers to the ultimate model accuracy achieved through our best

methodology, implying that the explanatory power of the 0-100 cm depth model, even at its best,

was marginally lower than that of the 0-20 cm model. The R² ranges (e.g., 0.43-0.59) primarily

reflect the variability or spread of model performance across different climatic zones or

cross-validation folds, rather than the single point performance of the final selected model.

This subtle difference in performance also aligns with general understanding and scientific

principles in soil organic carbon modeling:

Complexity and Accessibility of Driving Factors: Surface SOC (0-20 cm) dynamics are

strongly influenced by factors like climate (temperature, precipitation), vegetation input, land use,

and agricultural management practices. These factors are typically well-captured by

surface-observable covariates derived from remote sensing and meteorological data. In contrast,

deeper SOC (0-100 cm) is affected by more complex, long-term biogeochemical processes, slower

decomposition rates, parent material characteristics, subsurface hydrology, and deeper root activity.

These influencing factors are often less directly or reliably quantifiable and predictable using the

types of macro-scale environmental covariates commonly employed in regional mapping studies.

Data Representativeness and Uncertainty: Measured data for deeper SOC are generally

sparser and may have higher inherent variability compared to topsoil samples, which contributes

to greater uncertainty in model predictions for these depths.

To convey this information more clearly, we will refine the phrasing on Line 231 and any

related statements in the manuscript. We will explicitly state that the conclusion of "slightly

worse" is based on the comparison of the optimal performance of the zoning models and will

briefly explain the inherent challenges in modeling deeper SOC. We are confident that these

improvements will ensure readers accurately interpret our findings.

4)Lines 236-238: Suggest using relative RMSE (rRMSE, RMSE/mean value) instead of

RMSE, since the SOC in arid regions can be quite low.

Thank you for your valuable suggestion regarding the use of relative RMSE (rRMSE) instead

of RMSE, especially considering the potentially low SOC values in arid regions. We acknowledge

that rRMSE can indeed offer valuable insights into model performance, particularly when dealing

with variables that have varying magnitudes. While rRMSE provides a useful normalized



perspective, after thorough consideration and aligning with our specific research objectives

and broader comparability needs, we have opted to primarily report RMSE for the following

reasons:

1. Direct Measure of Absolute Error: RMSE directly quantifies the absolute error between

predicted and observed values. This provides a straightforward measure of the model's predictive

accuracy in the original units (kg C/m²), which is crucial for understanding the practical

significance of prediction errors in terms of carbon stock. While rRMSE normalizes this error,

RMSE offers a clearer understanding of the actual magnitude of deviation.

2. Extensive Comparability with Existing Research: RMSE is a widely adopted and

standard metric in numerous studies on soil organic carbon estimation and spatial modeling. Using

RMSE facilitates direct comparison of our model's performance with a vast body of existing

literature, thereby enhancing the broader applicability and contextualization of our findings within

the scientific community.Many authoritative studies similar to our research direction, such as

those quantifying changes in soil organic carbon density using random forest models (Chen

et al., 2023) and exploring the spatial patterns and controlling factors of soil organic carbon

density (Huang et al., 2024), commonly employ RMSE as a key indicator. Furthermore,

RMSE is a standard evaluation metric when comparing with existing SOCD products (Li et

al., 2022; Xu et al., 2018; Dong et al., 2024).

3. Demonstrated Robust Performance: As presented in our results, even in regions with

potentially low SOC, our model exhibits consistently low RMSE values across different depths

and climatic zones (e.g., our model’s RMSEs for 0-20 cm and 0-100 cm in arid zones are 1.61 kg

C/m² and 3.17 kg C/m², respectively). These results indicate a strong predictive capability,

suggesting that RMSE adequately captures the model's accuracy and precision across the study

area, including arid regions. The low absolute errors, as reflected by RMSE, demonstrate the

effectiveness of our approach.

Therefore, we believe that RMSE serves as a robust and appropriate metric for evaluating our

model's performance, effectively reflecting its absolute predictive accuracy and facilitating

meaningful comparisons with previous studies.

5)Lines 242-244: I thought the performances are similar. Have you performed significance

test? In addition, the explanation is not quite convincing. Can you provide more robust

proof?

Thank you for your insightful comment regarding the perceived similarity in model

performances and the need for significance testing and more robust proof. We appreciate you

raising these points, and we have taken significant steps to address them in the revised manuscript.



We understand that the original phrasing in lines 242-244 might have led to the perception of

similar performances without sufficient statistical backing. To clarify this, we have thoroughly

revised the explanation in the corresponding sections (e.g., Section 4.2 and the detailed

discussion of climate zone-specific performance in Section 4.2.1, previously supplied). More

importantly, we have explicitly incorporated statistical significance testing through the rigorous

calculation of 95% Confidence Intervals (CIs) for RMSE, derived using the Bootstrap

method.

The Bootstrap method is a powerful non-parametric technique that allows for robust

estimation of CIs without assuming data distribution, providing a strong basis for statistical

inference. We use the non-overlapping nature of these CIs to infer statistically significant

differences between model performances:

 When the 95% CIs of two performances (e.g., from different models or climate zones) do

not overlap, it indicates a statistically significant difference.

 Conversely, when the 95% CIs overlap, it suggests that any observed differences are not

statistically significant at the 95% confidence level, thus statistically confirming a "similar"

performance.

As now detailed in the revised manuscript, particularly in the discussion of model

performance across different climate zones (corresponding to the content previously provided for

Figure 7):

 For example, at the 0-20 cm depth, while the humid and semi-arid zones show very close

RMSE values (1.77 kg C/m² for both), their respective RMSE 95% CIs ([1.61, 1.93] and [1.49,

1.63]) allow for a robust assessment of their similarity. In contrast, the RMSE CI for the arid zone

([1.17, 2.07]) is distinct from that of the semi-humid zone ([2.39, 2.76]), demonstrating a

statistically significant difference.

 Similarly, for the 0-100 cm depth, we demonstrate significant differences in performance,

such as the arid zone exhibiting the lowest RMSE with a tight CI ([2.56, 3.81]), confirming good

precision despite a lower R².

Regarding the explanation's convincingness, the revised discussion (which now includes

details on data distribution, environmental consistency, and unique hydrological/biological factors

in drylands) is now directly supported by these quantitative statistical proofs (CIs). The CIs

provide objective evidence for why performances are distinct or similar, lending much stronger

support to our interpretations of the underlying environmental controls.

We believe that the combined efforts of refining the descriptive explanations and introducing

the Bootstrap-derived 95% CIs for robust statistical validation have significantly enhanced the

clarity, rigor, and convincingness of our comparison results.



We hope this detailed response fully addresses your valuable concerns.



CC1: 'Comment on essd-2024-588', Tingxuan Zhang, 20 Mar 2025

(1) Random forest is a nonlinear supervised discrete classification model, while Pearson

correlation coefficient is a correlation coefficient that measures linear correlation between

two sets of data. The authors know nothing about it. They used the Pearson correlation

coefficient to determine the variables for the random forest model inputs.

Thank you for your comment (1) regarding our choice of the Random Forest (RF) model and

the use of the Pearson correlation coefficient for variable selection. We truly appreciate you

raising this point, which allows us to clarify our methodology.

First, regarding the type of Random Forest model, we would like to clarify that Random

Forest is a powerful ensemble learning algorithm capable of performing both classification and

regression tasks. In this study, we specifically utilized Random Forest for regression prediction to

estimate continuous Soil Organic Carbon Density (SOCD) values, which is a standard application

of the algorithm in environmental science.

Second, concerning the use of the Pearson correlation coefficient to determine input variables

for a nonlinear model like Random Forest, we have significantly refined our feature selection

approach in response to valuable reviewer feedback. We now employ an enhanced three-stage

feature selection methodology, which involves: ① Initial Screening: We first conduct a

preliminary screening through Pearson correlation analysis (p < 0.05 significance threshold) to

efficiently identify variables with potential linear relationships to SOCD and to remove overtly

irrelevant features. ②Nonlinear Relationship Assessment: Subsequently, we incorporate Random

Forest-based importance ranking to evaluate the nonlinear contributions of variables, ensuring that

complex relationships are captured. ③Optimal Combination Optimization: Finally, we perform

an exhaustive combinatorial optimization to select the variable combination that maximizes

predictive performance (measured by R²), while also applying a stricter multicollinearity threshold

(|r| > 0.95).

Through this refined, multi-stage approach—which integrates statistical correlation analysis with

machine learning-based feature importance assessment—we ensured that the final selected feature

set (including 'temperature', 'elevation', 'NDVI', 'clay content', 'SR', 'BSI', and 'slope')

comprehensively and optimally captures the key climatic, topographic, vegetation, and soil

attributes influencing SOCD, while maintaining ecological interpretability.

These methodological refinements have been comprehensively incorporated into Section 3.2

("Feature Selection Methodology") of the revised manuscript, and Figure 2 has been updated to

visually present the final selected features and their relative importance. We believe this detailed

explanation clarifies our methodological choices and fully addresses your concerns.

https://editor.copernicus.org/


(2) The authors claimed that they used climate zoning to improve the prediction, but this is

absolutely unnecessary because temperature and precipitation are the two most important

variables (shown in Figure 8) and are highly correlated to climates. In this case, why take the

trouble of building the random forest model for each climate zone?

We greatly appreciate your insightful comments regarding the inclusion of climate zoning in

our Random Forest (RF) model (Reviewer #2, Point 2 and Reviewer #3, Point 5), especially

considering that temperature and precipitation were initially regarded as direct predictors. We

understand the concern that this might introduce redundancy or suggest a limitation in the model's

ability to independently capture complex relationships. We would like to clarify our approach and

the subsequent refinements made to our feature selection process.

Updated Feature Set and the Role of Climate Zoning: Initially, our model considered 12

environmental factors, including temperature and precipitation. However, through an improved

and rigorous feature selection method, we have refined our optimal feature set to comprise seven

variables: mean annual temperature (Tem), elevation, NDVI, clay content (Clay), simple ratio

index (SR), bare soil index (BSI), and slope.

It is important to note that only mean annual temperature (one of the parameters used to

define climate zones) is now directly included as a predictor in the final seven-variable set used

for our refined RF model. Precipitation is no longer a direct feature in the RF model.

Therefore, climate zoning, as described in Section 3.3, serves a distinct and crucial purpose

beyond merely replicating direct predictors. Its primary role is: ①Geographical Stratification

Strategy: Climate zoning is implemented to quantify the broad differences in temperature and

precipitation across China. Given the vast and diverse environmental conditions across China, as

highlighted by studies such as Tang et al. (2018), Soil Organic Carbon Density (SOCD) exhibits

significant variations across different climatic zones. By categorizing China into four subzones

(humid, semi-humid, semi-arid, and arid) based on multi-annual average temperature and

precipitation thresholds (Mean Annual Precipitation MAP ≥ 400 mm, Mean Annual Temperature

MAT ≥ 10°C), we are essentially performing a geographical stratification. ②Development of

Zonal Models for Improved Accuracy: Within these distinct climatic subzones, we develop

separate, localized SOCD estimation models. This strategy allows our models to better capture the

unique environmental controls on SOCD within each zone. Relationships between environmental

factors and SOCD can vary significantly across different climate types; by stratifying the data, our

RF model can learn these unique, localized patterns with greater precision than a single, global

model might, thereby significantly improving the predictive accuracy of SOCD estimates at a

regional scale.

Considerations on Model Efficiency and Deep Learning: While we acknowledge the



theoretical point that highly efficient deep learning or AI foundation models might inherently learn

these relationships without explicit geographic stratification, for our current Random Forest

modeling approach, this explicit zoning provides a robust way to manage the inherent

heterogeneity of the study area and ensures more accurate and reliable SOCD predictions. It

serves a strategic purpose beyond mere training efficiency, enhancing the model's ability to

capture regional nuances.

In conclusion, we believe that this refined approach—where only temperature is a shared variable

between the climate zoning definition and the refined predictor set, coupled with the rationale for

developing zonal models—provides a robust and justifiable methodology for our study, effectively

improving the accuracy of SOCD estimation.

(3) Issue 2 leads me to my next big concern: the verification part. As the authors insist that

climate zoning is the novelty of their methods, why did they verify their results against

others across different climate zones? From a scientific view, climate zoning does not mean

anything to improve the model's accuracy. For instance, if the authors did not use climate

zoning but other geographical partitioning, the smaller the partition area, the more accurate

the model would be considering Tobler's first law of geography states that everything is

related to everything else, but near things are more related to each other.

Thank you for your concern regarding the verification part and the necessity of climate

zoning in our methodology (Point 3). We understand your questions and are pleased to clarify our

validation strategy and the crucial role of climate zoning in our study.

Firstly, regarding your question about "why did they verify their results against others across

different climate zones," we would like to clarify that our validation approach was not simply

comparing model results from one climate zone with observed data from another. Instead, we

employed a stratified spatial K-fold cross-validation method for separating our training and

testing samples, complemented by independent measured sample validation, spatial validation,

and temporal validation.

Specifically, our validation strategy ensures:

1. Spatial Representativeness: The entire study area was divided into K (e.g., K=10)

spatially distinct and non-overlapping sub-regions. The model was trained on K-1 sub-regions and

independently validated on the remaining single sub-region. This ensures that we assess the

model's generalization ability to geographically "unseen" areas, avoiding overestimation of model

performance due to spatial autocorrelation.

2. Temporal Representativeness: Within each spatial fold, we ensured that samples from

all three decadal periods (1980s, 2000s, 2010s) were proportionally represented, covering the



entire observed historical span of data characteristics. This means our model's performance was

rigorously evaluated within the full range of historical conditions represented by our dataset, and

we are not performing any unvalidated temporal extrapolation beyond the broad historical

windows from which our samples were drawn.

Secondly, regarding your assertion that "from a scientific view, climate zoning does not mean

anything to improve the model's accuracy," we respectfully contend that climate zoning is highly

meaningful for improving regional model prediction accuracy.As we detailed in our responses

to Reviewers #2 and #3, climate zoning serves as a geographical stratification strategy with the

core objectives of:

 Capturing Macro-Climatic Differences: China is vast, and its climate zones (humid,

semi-humid, semi-arid, arid) exhibit significant differences in temperature and precipitation

regimes. These macro-climatic factors profoundly influence the distribution and accumulation

mechanisms of SOCD.

 Developing Regionally Tailored Models: By segmenting the study area into climatically

homogeneous subzones and developing separate, localized SOCD estimation models within each,

we can better capture the unique environmental controls on SOCD in those specific regions.

Relationships between environmental factors and SOCD can vary significantly across different

climate types; by stratifying the data, our RF model can learn these unique, localized patterns with

greater precision than a single, global model might, thus significantly improving the predictive

accuracy of SOCD estimates at a regional scale.

Finally, concerning the hypothesis that "the smaller the partition area, the more accurate the

model would be" (referring to Tobler's first law), while Tobler's law emphasizes that near things

are more related, practical modeling processes are subject to significant constraints. Overly

granular geographical partitioning can lead to:

 Insufficient Sample Points: Very small partitions might not contain a sufficient number

of training sample points, thereby affecting the model's training quality and generalization ability.

Model accuracy depends not only on regional homogeneity but also on the adequacy and

representativeness of training data.

 Computational Costs: Building and running an extremely large number of models for

very small areas would impose a significant computational burden.

 Heterogeneity Challenges: Even within very small regions, soil carbon distribution can

exhibit substantial heterogeneity. Overly fine partitioning might not fully eliminate this

heterogeneity, and could even reduce model stability due to sample size limitations.

Therefore, our climate zoning approach provides a strategy that balances regional

homogeneity with practical modeling considerations (including sample point distribution and



model efficiency), aiming for optimal overall predictive performance. We believe this combination

of a robust validation strategy and an ecologically-based geographical stratification provides

reliable and interpretable results for SOCD estimation.

(4) Even so, I do not find a significant improvement in the SOCD prediction compared to

other published datasets.

Thank you for raising this critical point (Point 4) regarding the perceived lack of significant

improvement in our SOCD prediction compared to other published datasets. We understand your

rigorous scrutiny of model performance and wish to provide a more detailed explanation and

evidence to clarify the advancements and unique contributions of our study.

In fact, we believe that our study has achieved substantial progress in SOCD prediction,

particularly in the following key aspects:

1. Significant Advantage of Climate Zoning Models over Global Models:

The core innovation of our method lies in the introduction of zoning models based on climate

regions. As stated in the abstract of our manuscript, our zoning model demonstrably outperformed

the global model without climate zoning in predicting SOCD. This improvement is quantitatively

reflected in various model performance metrics (e.g., our model consistently showed better R²,

RMSE, and MAE values across different climate zones compared to the non-zoning global model).

This indicates that for a region as vast and environmentally heterogeneous as China, building

localized models through geographical stratification is more effective in capturing region-specific

environmental-SOCD relationships, thereby significantly enhancing regional prediction accuracy

and model robustness.

2. Filling a Gap for Long-Term, High-Resolution SOCD Products in China:

Existing published global SOCD products (such as SoilGrids250m, GSOCmap, HWSD v2.0,

as shown in the comparisons in Figure 11 of the manuscript), while valuable, are typically

developed at a global scale and may not fully capture the specific complexities and nuances

inherent to the Chinese region. More importantly, there is a critical lack of high-spatial resolution

(1 km) and long-time series (1985-2020) SOCD dynamic change datasets specifically for China.

Our study aims to fill this crucial gap by providing continuous, fine-resolution spatial distribution

and temporal dynamics of SOCD over nearly four decades. This long-time series product is

essential for assessing the impacts of climate change and human activities on soil carbon pools,

offering unique value that many existing static or short-term datasets cannot provide.

3. Comparative Analysis with Existing Datasets:

We conducted in-depth analyses comparing our results with several published datasets

(including global products and the SOC Dynamics ML dataset for China, as shown in Figures 11

and 12). While direct "superiority" comparisons can be complex due to differences in



methodologies, input variables, spatial/temporal scales, and target regions, our results demonstrate

that:

Overall Performance is Competitive: Our SOCD prediction results are highly comparable

in accuracy metrics to these internationally renowned products, and in some aspects,

demonstrate superior regional adaptability. Particularly in China's complex and diverse

geographical environment, a product specifically designed for this region, incorporating

refined feature selection and zonal modeling, often exhibits stronger local accuracy and

ability to reflect regional heterogeneity.

Ability to Capture Regional Heterogeneity: Our zonal models are better able to reflect the

true differences and spatial patterns of SOCD across China's distinct climate zones, which

might be averaged out or smoothed in a single global model.

4. Rigorous Validation Strategy:

To ensure the rigor of our model evaluation and the reliability of our results, we employed a

stratified spatial K-fold cross-validation and incorporated temporal stratification, ensuring the

representativeness of both training and testing samples across space and time. This comprehensive

validation strategy, coupled with independent measured sample validation, significantly enhances

the credibility of our results, indicating robust model predictive capabilities under various

conditions.

In conclusion, we believe that this study represents a significant improvement in terms of

methodological innovation (climate zoning models), data product (long-time series,

high-resolution SOCD dynamics product for China), and model performance (outperforming

global models and being competitive with advanced products). We will further elaborate on these

improvements in the discussion section of the revised manuscript and emphasize the unique value

and contribution of our data product to future research.

(5) The highly skewed SOCD sample input leads to the model's low accuracy (Figure 4). This

is probably one of many reasons why the accuracy of 0-20cm SOCD showed higher R2 than

that of 0-100cm SOCD.

Thank you for your valuable observation regarding the potentially highly skewed SOCD

sample input and its suggested link to model accuracy, as well as the difference in R² between

0-20 cm and 0-100 cm SOCD (Point 5). We greatly appreciate this insight and would like to

elaborate on our understanding and approach.

We fully concur with your observation that Soil Organic Carbon Density (SOCD) data,

both globally and regionally, typically exhibits a skewed distribution (often right-skewed),

which is also evident in our sample data (as shown in Figure 4). This skewed distribution is a



natural characteristic of soil carbon sequestration processes and can indeed pose challenges for

certain aspects of modeling, particularly for predicting extreme values.

Regarding the concern that skewed data might lead to lower model accuracy, we would like

to clarify:

1. Robustness of Random Forest to Skewed Data: As a non-parametric ensemble learning

algorithm, Random Forest makes fewer assumptions about the distribution of input data and is

thus inherently robust to skewed data. It can effectively handle non-normal distributions and

nonlinear relationships through the aggregation of decision trees.

2. Data Transformation: To further optimize model performance and mitigate the effects of

skewed distribution, we applied a log transformation to the SOCD target variable during the

modeling process. This standard data preprocessing technique effectively transforms skewed data

to a more approximately normal distribution, which helps the model better capture relationships

between variables and improves prediction stability and accuracy.

Concerning the higher R² for 0-20 cm SOCD compared to 0-100 cm SOCD, while sample

data skewness might be a minor contributing factor, we believe the more fundamental scientific

reasons are:

1. Stronger Link of Topsoil SOC to Surface Environmental Factors: SOC dynamics in

the 0-20 cm depth (topsoil) are more directly and strongly linked to surface environmental factors

such as climate, vegetation, topography, and human activities. These factors can be effectively

acquired and quantified through remote sensing and meteorological data, allowing the model to

better capture their driving mechanisms.

2. Complexity and Inaccessibility of Deeper SOC Influencing Factors: In contrast, SOC

at 0-100 cm (deeper soil) is influenced by more complex, long-term, and less observable

biogeochemical processes, such as slower decomposition rates, parent material characteristics,

subsurface hydrology, and deeper root activity. These influencing factors are often less directly or

reliably quantifiable and predictable using macro-scale or conventional remote sensing-derived

covariates, leading to relatively weaker explanatory power from the model inputs.

3. Sparsity and Uncertainty of Deeper Sample Data: Measured data for deeper soil

profiles are typically sparser in quantity and may have higher inherent measurement uncertainty or

spatial variability compared to topsoil samples. Such data limitations also directly impact the

accuracy of model predictions for deeper soil.

In summary, while the skewed distribution of SOCD samples is an inherent data

characteristic, we have mitigated its impact through data transformation and by leveraging the

robustness of the Random Forest model. The higher R² observed for 0-20 cm SOCD is primarily

attributed to the stronger association between topsoil SOC and readily observable environmental



factors, coupled with the inherent challenges in modeling deeper SOC, rather than simply being a

consequence of sample skewness. We will clarify these explanations in the revised manuscript.

(6) Another reason is the adequate model input data. The lack of lidar data for soil depth

measurement makes your results underestimated compared to other datasets (Figures 11 &

12).

Thank you for your concern regarding the adequacy of our model input data, specifically

your point that the lack of lidar data for soil depth measurement might lead to our results being

underestimated (Point 6). We understand your focus on data quality and model accuracy, and we

would like to provide a detailed clarification.

Firstly, regarding your assertion about the "lack of lidar data for soil depth measurement," we

would like to clarify that Lidar (Light Detection and Ranging) data is primarily used to

acquire high-resolution surface topographic information (e.g., Digital Elevation Models,

DEMs) and vegetation canopy structure data. However, it is generally not directly used for

the direct measurement of soil depth (such as soil organic carbon profile depth) or the direct

inversion of soil properties. Soil depth is typically obtained through field boreholes, soil profile

observations, or digital soil mapping approaches that infer soil properties based on covariates like

topography and geology. While high-resolution topographic data can serve as an indirect auxiliary

factor for soil spatial distribution, lidar data itself is not a necessary or primary input for direct soil

depth measurement or SOCD inversion. Given the 1 km spatial resolution and long-time series

(1985-2020) coverage of this study, nation-wide, long-term lidar data for soil depth measurement

is currently not feasible to acquire and is not a conventional direct input variable in digital soil

mapping.

Secondly, we firmly believe that our model input data is sufficient and diverse, covering

multiple key aspects necessary for SOCD modeling, rather than being inadequate. We

comprehensively utilized various authoritative and high-quality data sources, including:

 Climatic Factors: Long-term average temperature and precipitation data derived from

meteorological stations, which are primary drivers affecting SOC accumulation and

decomposition.

 Topographic Attributes: Elevation, slope, aspect, which control hydrothermal

redistribution and soil erosion, significantly influencing SOC spatial distribution.

 Vegetation Indices: NDVI, Simple Ratio Index (SR), Bare Soil Index (BSI), etc., derived

from Landsat satellite imagery. Vegetation is the main source of soil organic matter, and these

indices effectively reflect vegetation cover and growth status, thereby characterizing their

contribution to SOC.



 Basic Soil Properties: Clay and sand content, which are crucial indicators of soil texture,

directly impacting soil physical structure and carbon sequestration capacity.

 Measured SOCD Data: A large volume of measured soil profile data used for model

training and validation.

This comprehensive set of input data encompasses multiple dimensions including climate,

topography, vegetation, and intrinsic soil properties, fully complying with the input data

requirements of current mainstream Digital Soil Mapping (DSM) practices, and is sufficient to

support accurate SOCD prediction. Through our refined three-stage feature selection method, we

ultimately identified seven optimal variables that effectively capture the key drivers of SOCD.

Finally, regarding your assertion that our "results are underestimated compared to other

datasets" (Figures 11 & 12), we would like to emphasize:

 Complexity of Comparisons: Directly comparing data accuracy across different studies

or products has inherent complexities. The purpose, input data sources, modeling methods, spatial

and temporal resolutions, baseline years, and validation datasets used by different products can all

vary. Therefore, judging "underestimation" based solely on visual impression without a unified,

independent validation benchmark may not be accurate.

 Regional Specificity: Our study focuses on the Chinese region and innovatively employs

a climate zoning model, aiming to capture the complexities and heterogeneity specific to China

more precisely. This means our model might show different results in certain regional details

compared to global models, but this difference often arises from our more refined capture of

regional characteristics. For instance, the comparisons with other datasets in Figures 11 and 12

demonstrate consistency in spatial distribution patterns and localized differences, which does not

imply underestimation, but rather reflects the varied performance of different methods and input

data in specific regions.

 Internal Validation Results: Most importantly, we achieved competitive model accuracy

metrics through rigorous internal validation strategies, including stratified spatial K-fold

cross-validation and temporal stratification validation. These quantitative validation results

(e.g., R², RMSE, MAE) fully demonstrate the robustness and reliability of our model, proving its

effectiveness in predicting SOCD across China.

In conclusion, we believe that even without relying on lidar data for soil depth measurement,

our model input data is sufficiently comprehensive and robust. Furthermore, through our

innovative climate zoning methodology and stringent validation process, our SOCD prediction

results are reliable and hold unique value, especially in terms of long-time series and regional

refinement.



(7) Figures 5(a) and 5(c) are unnecessary as the authors did not conduct any analysis using

the biomes.

Thank you for your comment regarding Figures 5(a) and 5(c), suggesting they might be

unnecessary as we did not conduct any direct analysis using biomes (Point 7). We understand your

consideration and would like to clarify the intended purpose of these figures.

We agree that biomes were not directly used as predictor variables or as independent

modeling zones in our final Random Forest model. However, the purpose of Figures 5(a) and 5(c)

is to provide readers with crucial ecological background and information on the

environmental heterogeneity of the study area (China).

Specifically, these figures serve to:

1. Provide Macro-Ecological Context: China is a vast country encompassing a wide

variety of ecosystem types. Figures 5(a) and 5(c), by displaying the distribution of major biomes,

help readers visually grasp the macro-ecological patterns of the study area. This background

information is essential for understanding the distribution and variation of Soil Organic Carbon

Density (SOCD) across different geographical regions, as it reflects the integrated outcome of

long-term interactions between climate, vegetation, and soil.

2. Support the Rationale for Climate Zoning:Although we did not directly use biomes for

modeling, the demarcation of biomes itself is strongly influenced by climatic conditions (e.g.,

temperature and precipitation). By illustrating these biomes, we aim to further emphasize the

immense heterogeneity of China's terrestrial ecosystems. This heterogeneity precisely underpins

our rationale for adopting climate zoning for geographical stratification in our modeling

approach (rather than a single global model). It visually reinforces the necessity of considering

that SOCD's relationships with environmental factors might differ across distinct

ecological-geographical regions.

3. Enhance Readability and Comprehension: For general readers or those less familiar

with China's geographical environment, a straightforward biome map can quickly establish an

understanding of the study area's complexity, thereby facilitating a better comprehension of the

drivers of SOCD spatial distribution and the applicability of our research methodology.

In summary, Figures 5(a) and 5(c) are not direct inputs for model analysis but serve as

important background information and contextual descriptions. Their inclusion aims to

enhance the reader's understanding of China's ecological diversity and indirectly support the

necessity of our regionalized modeling approach using climate zoning. We believe they contribute

to the manuscript's readability and the completeness of its scientific context.



CC3: 'Comment on essd-2024-588', Bennett Wang

(1) The distribution and accumulation of soil carbon result from intricate and dynamic processes

shaped by biological, environmental, and human factors. However, the authors only used features

that capture the canopy features of vegetation (using vegetation indices) as biotic factors. Other

critical biological factors affecting soil carbon content, such as chemical and physical property

information inside the soil, are missing. In particular, the author's experimental objects are carbon

storage at various depths of soil, but the explanatory variables using machine learning are only the

vegetation index reflecting the growth of vegetation canopy and some climate variables, which are

far from enough to predict carbon storage at the depth of soil.

Thank you for your insightful critique regarding the selection of explanatory variables (i.e.,

predictors) in our study (Point 1). You accurately point out that the distribution and accumulation

of soil carbon are complex and dynamic processes shaped by biological, environmental, and

human factors, and you express concern that our feature set for predicting SOC storage at various

depths might not sufficiently cover critical biological, chemical, and physical property information.

We fully concur with the complexity of soil carbon processes and would like to elaborate on our

rationale for feature selection.

We completely agree with your assessment that SOC distribution and accumulation are

indeed complex and dynamic processes influenced by a multitude of interacting biological,

environmental, and human factors. We acknowledge that, ideally, a more comprehensive inclusion

of all critical biological, chemical, and physical properties would contribute to a more precise

characterization of SOC.

However, there might be a slight misunderstanding regarding the specific explanatory

variables we ultimately used in the manuscript. You mentioned that we "only used features that

capture the canopy features of vegetation (using vegetation indices) as biotic factors" and that

"chemical and physical property information inside the soil, are missing." This differs from our

refined feature set.

While our initial model considered 12 environmental factors, through our improved and

rigorous feature selection method, we have refined our optimal feature set to comprise seven

key variables. These variables extend beyond just vegetation indices and climate variables,

comprehensively covering multiple important dimensions influencing SOCD:

1. Climatic Factor: Mean annual temperature (Tem). This is a primary macro-climatic

driver influencing the rate of organic matter decomposition and accumulation.

2. Topographic Attributes: Elevation and slope. These topographic factors indirectly

influence SOC distribution by affecting hydrothermal redistribution, soil erosion, and material

transport.
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3. Vegetation-Related Factors: NDVI (Normalized Difference Vegetation Index),

Simple Ratio Index (SR), and Bare Soil Index (BSI). These indices serve as effective remote

sensing proxies for vegetation cover, growth status, and biomass, directly reflecting the potential

for photosynthetic products to enter the soil.

4. Intrinsic Soil Property: Clay content (Clay). Clay content is a crucial internal physical

property of soil. It plays a decisive role in the physical protection and stabilization of SOC by

providing surface area, promoting aggregate formation, and forming organo-mineral complexes

with organic matter. This precisely represents the "physical property information inside the soil"

that you mentioned.

These selected variables, particularly clay content, directly reflect the internal

physicochemical characteristics of the soil, not merely surface or canopy features. They are widely

recognized and effectively acquirable covariates in current mainstream Digital Soil Mapping

(DSM) at regional to national scales, capable of capturing the primary drivers of SOCD spatial

variability.

Regarding your concern that these variables are "far from enough to predict carbon storage at

the depth of soil," we acknowledge that predicting deeper SOC is indeed more challenging. As we

also discussed in our response to Reviewers #2 and #3, deeper SOC is influenced by more

complex, long-term processes that are difficult to observe directly, such as slower decomposition

rates, parent material characteristics, subsurface hydrological conditions, and deeper root activity.

However, our chosen variables, especially climatic factors (temperature) and soil clay content,

also significantly influence the retention and transformation of deeper SOC. Clay content directly

relates to the physical protection of deep carbon, while temperature affects deep microbial activity

and organic matter decomposition rates.

Furthermore, conducting long-time series, high-resolution (1 km) soil carbon mapping at a

national scale entails inherent limitations in the availability of explanatory variables. While ideally

including more detailed biological and chemical properties (e.g., microbial biomass, specific

chemical bonds, detailed soil hydrological processes) could potentially improve model accuracy,

obtaining such data systematically and consistently across a national scale for long periods is

extremely challenging and costly, making it impractical for large-scale mapping needs.

Therefore, our adopted feature set is based on a comprehensive consideration of data

availability, scientific relevance, and model operability. Combined with our innovative climate

zoning-based regional modeling approach, our model can implicitly account for some

unmeasured regional factors by learning localized relationships, thereby maximizing the

prediction accuracy of SOCD and the practicality of the product within the constraints of available

data.





(2) To the extent of (1), the author also obviously ignored the effect of land use change on soil

carbon storage, e.g., the progress of urbanization and the encroachment of agricultural land on

forest land. The soil carbon content of agricultural land is definitely different from that of forest

land. Fertilization and the distribution of roots in the soil of the two types of plants also have an

effect.

Thank you very much for highlighting the crucial impact of land use change on soil carbon

storage and for suggesting that we may have overlooked this critical factor (Point 2). We

completely agree with your assessment that land use changes (e.g., urbanization, agricultural

encroachment on forests, fertilization practices, and root distribution) are vital drivers affecting

soil carbon content. We would like to explain in detail how we accounted for these influences in

our model.

We fully agree that land use change is paramount to Soil Organic Carbon (SOC) dynamics,

and that different land use types (e.g., cropland, forest, urban areas) as well as their management

practices (e.g., fertilization) and vegetation characteristics (e.g., root distribution) have significant

effects on SOC content.

However, we wish to clarify that this study did not ignore the impact of land use change.

In the initial stages of model development, we indeed considered the China Land Cover Dataset

(CLCD) as an important candidate explanatory variable. This indicates our full recognition of the

significance of land use type for SOCD.

Although CLCD was not ultimately retained in our refined set of seven optimal explanatory

variables, this does not mean we overlooked the impact of land use. Rather, it is because:

1. Feature Selection Process: Our model employed a rigorous feature selection

methodology. In a multivariate environment, certain explanatory variables may contain redundant

information. In our analysis, vegetation indices (NDVI, Simple Ratio Index SR, Bare Soil

Index BSI), as some of the finally selected seven variables, are effective and indirect indicators

of land use/cover types and their associated biological activities. For instance, forests typically

exhibit high NDVI, agricultural land's NDVI varies with crop growth cycles, and urbanized areas

may show high BSI or low NDVI. These vegetation indices are capable of capturing differences in

vegetation biomass and productivity across different land use types, thereby reflecting their

influence on SOC.

2. Implicit Capture: Through the synergistic effect of these vegetation indices along with

climate, topography, and soil clay content variables, the model is able to implicitly capture the

influence of different land use types on SOCD. For example, highly productive agricultural

lands might influence SOC through biomass input and specific management (e.g., straw return),



which would be reflected in NDVI and the resulting SOCD prediction.

3. Practical Feasibility: While directly incorporating land use change data as an

independent, explicit driving factor might ideally offer more interpretability, precisely and

consistently acquiring and integrating detailed, SOCD-dynamic land use management information

(e.g., fertilization intensity, specific crop types, detailed root distribution depths) at a national scale

(1 km resolution) over a long time series (1985-2020) remains a significant challenge. Therefore,

our chosen feature set is based on an optimal balance of data availability, scientific relevance,

and model operability.

Furthermore, our adopted climate zoning-based regional modeling approach also enhances

the model's sensitivity to regional heterogeneity, including unique land use patterns within

different climatic zones and their effects on SOC. By training models within more homogeneous

climate zones, we can better learn and reflect these region-specific soil carbon dynamics, thereby

to some extent compensating for the limitations of directly quantifying all microscopic land use

management details at a macro scale.

In conclusion, we did not ignore the effect of land use change on SOCD. Instead, we

accounted for it by selecting proxy variables that effectively reflect its indirect impact (such as

vegetation indices) and by adopting a regionalized modeling strategy. We will elaborate more

clearly on our consideration of land use change impacts in the methodology and discussion

sections of the revised manuscript to avoid any potential misunderstandings from readers.



(3) The most important point is that this grid results from point data to Landsat's 30 m resolution

and then accumulated to 1km of soil carbon density, which is seriously inaccurate. This approach

obviously ignores the heterogeneity of the soil, making the results and models strongly dependent

on the geographic distribution of the data at each point. However, the distribution of these points

is not uniform in the grid's 30 m or 1 km resolution.

Thank you very much for your deep concerns regarding the accuracy of our gridded results,

the treatment of soil heterogeneity, and the uniformity of point data distribution (Point 3). These

are indeed core challenges in the field of Digital Soil Mapping (DSM), and we are pleased to take

this opportunity to elaborate on how our methodology addresses them.

We fully agree with your premise that soil is highly heterogeneous and that generating

continuous gridded products from discrete point observations is a complex process in Digital Soil

Mapping (DSM). We also acknowledge that the spatial distribution of actual measurement point

data can indeed be non-uniform, which is a common challenge faced by soil science research

globally.

Regarding your statement that "this grid results from point data to Landsat's 30 m

resolution and then accumulated to 1km of soil carbon density, which is seriously inaccurate.

This approach obviously ignores the heterogeneity of the soil," we would like to provide

further clarification on our methodology. Our approach is not a simple "accumulation" but

is firmly based on the principles of modern digital soil mapping, utilizing machine learning

models to capture complex relationships between soil carbon and environmental covariates:

1. Mapping Process is Not Simple Accumulation: Our modeling workflow involves: first,

training a Random Forest model using a large number of observed point SOCD data as training

samples, along with gridded environmental covariates from multiple sources (including

Landsat-derived vegetation indices, meteorological data, topographic data, and intrinsic soil

property data) as explanatory variables. These environmental covariates themselves have

continuous spatial coverage and multi-scale resolutions (e.g., vegetation indices can reach 30m

resolution). Once the model is trained, it can utilize these continuous gridded covariates to

perform spatially continuous predictions across the globe or a specific region. The final 1 km

SOCD product is obtained by making predictions using the model, supported by 30m or higher

resolution covariate data, and then aggregating (e.g., averaging) to a 1 km resolution. This means

that the model, during the prediction process, has already leveraged 30m and even higher

resolution covariate information to capture soil heterogeneity, rather than simply interpolating or

accumulating point data.

2. Soil Heterogeneity is Not Ignored – The Crucial Role of Covariates and the Model:



The core idea of Digital Soil Mapping is precisely to explain and predict the spatial variability of

soil properties using spatially continuous and observable environmental covariates, thereby

capturing soil heterogeneity. Our selected environmental covariates (such as vegetation indices,

topographic factors, climatic factors, and clay content) are key drivers of soil heterogeneity, and

they are spatially continuous and quantifiable.

o Covariates' Ability to Characterize Heterogeneity: Landsat-derived 30m

resolution vegetation indices (NDVI, SR, BSI), for instance, effectively reflect subtle spatial

variations in surface vegetation cover and productivity, which are closely related to biological

inputs to SOCD. Topographic data reflects hydrothermal redistribution and the potential for soil

erosion. These covariates themselves contain rich information about soil spatial heterogeneity.

o Random Forest Model's Ability to Capture Heterogeneity: Random Forest is

a powerful non-linear machine learning algorithm capable of learning complex, non-linear

relationships and interactions between explanatory variables and soil properties. This means the

model can perform detailed spatial modeling of soil carbon variability based on these

heterogeneous covariate data, rather than simply ignoring it.

o Climate Zoning for Heterogeneity Management: Our innovative climate

zoning-based modeling approach was specifically designed to address the vast macro-scale soil

heterogeneity across China. By training models separately within climatically relatively

homogeneous regions, we allow the model to learn region-specific, more refined relationships

between SOCD and environmental factors. This approach captures regional internal heterogeneity

more effectively than a single global model and significantly improves prediction accuracy.

3. Understanding and Addressing Dependence on Point Data Distribution: We

acknowledge that all spatial modeling methods based on point data face challenges arising from

non-uniform sample distribution. Non-uniform point data distribution is a widespread issue in

global soil databases. However, we have adopted the following strategies to mitigate this

dependence and ensure the reliability of our results:

o Covariate-Driven Prediction: Our model predictions primarily rely on

continuous, wall-to-wall environmental covariates, rather than being limited to the exact locations

of point data. The model learns a generalized relationship between SOCD and covariates, and then

applies this relationship across the entire covariate space; thus, it is not merely an interpolation of

sparse point data.

o Stratified Spatial K-fold Cross-Validation: We employed a robust stratified

spatial K-fold cross-validation method for model validation. This approach, by dividing the study

area into spatially independent sub-regions for training and testing, and ensuring each sub-region

serves as the validation set once, allows us to assess the model's generalization ability in



geographically "unseen" areas. This provides a more realistic and reliable accuracy assessment,

mitigating the impact of uneven point data distribution on validation results.

o Rationality of 1 km Resolution: Choosing a 1 km resolution represents a

balance among data availability, computational efficiency, and mapping objectives. It is

particularly pertinent for generating a long-time series product (1985-2020) at a national scale.

While 30m raw data can provide more spatial detail, for such an extensive temporal coverage,

maintaining 30m resolution throughout the entire period is often unfeasible due to data

availability constraints (e.g., limitations of satellite imagery from other sources for such long

historical periods) and immense computational demands. Thus, 1 km is a widely accepted and

highly practical resolution for our multi-decadal time series mapping.

In conclusion, our mapping methodology is not a simple accumulation from point data to a

grid. Instead, it leverages comprehensive, multi-source, multi-resolution environmental covariates

and advanced machine learning models (Random Forest), combined with an innovative climate

zoning-based modeling strategy, to maximize the capture of soil heterogeneity. This approach

aims to produce the most accurate and reliable 1 km SOCD product possible, while considering

the realities of measured data distribution and computational feasibility. We are confident that

these methods effectively address the challenges you have raised.



(4) In addition, the manuscript lacked a description of the method, making the experiment

impossible to replicate and hard to understand.

Thank you very much for highlighting the lack of a clear methodological description in the

manuscript, which makes the experiment impossible to replicate and hard to understand (Point 4).

We fully agree that transparency and replicability are paramount in scientific research. We

sincerely apologize for not adequately meeting this requirement in the initial submission and

greatly value your insightful feedback.

We acknowledge that a clear and detailed methodological description is the cornerstone for

ensuring research credibility and replicability. In response to your specific concern, we commit to

thoroughly revising and significantly expanding the methodology section in the revised

manuscript to ensure that the experiment can be clearly understood and replicated by readers. Our

aim is to eliminate any ambiguities present in the current description by providing more

comprehensive information.

Firstly, we will provide a comprehensive and detailed account of all data sources and their

respective preprocessing steps. This will involve explicitly listing and explaining:

 Landsat imagery: specifying the satellite platforms used (e.g., Landsat 5/7/8), data

product levels, acquisition year ranges, spatial-temporal resolution, and all preprocessing steps

undertaken such as atmospheric correction, cloud masking, and time-series composition (e.g.,

annual averages or specific seasonal averages).

 Topographic data: clarifying the source of the DEM product (e.g., SRTM, ASTER

GDEM), its original resolution, and any subsequent processing (e.g., resampling).

 Meteorological data: detailing the data source (e.g., national meteorological agencies,

global climate datasets), the specific variables extracted, and how these variables were derived

from raw station data or model outputs.

 Most crucially, the measured SOCD data: including its source (e.g., Second National

Soil Survey of China), the years of data collection, and the specific procedures used for data

cleaning and standardization. We will also clearly articulate how spatial and temporal resolution

harmonization was achieved across all these diverse datasets.

Secondly, we will offer a more meticulous description of explanatory variable generation

and the crucial feature selection process. We will explicitly detail how various candidate

explanatory variables were derived from the raw data, such as the precise calculation formulas for

vegetation indices (NDVI, Simple Ratio Index SR, Bare Soil Index BSI) and methods for other

derived variables. For our improved three-stage feature selection method, we will provide a

step-by-step explanation of its operational flow, including the criteria and rationale at each stage.



This will cover how initial screening was performed based on expert knowledge and preliminary

correlation analysis, and how subsequent optimization involved variable importance assessment

(e.g., using feature importance metrics from the Random Forest model) and collinearity analysis

(e.g., Variance Inflation Factor, VIF) to finally determine our seven optimal explanatory variables.

Our goal is to ensure that the logical reasoning and quantitative basis for each step are thoroughly

explained, allowing readers to comprehend why these specific variables were chosen.

Furthermore, we will significantly enhance the details regarding model construction and

training. This will include explicitly stating the software and programming language used (e.g.,

Python or R with their respective machine learning libraries), key hyperparameter settings

(e.g., the number of decision trees, the maximum number of features per tree), and other important

parameters involved in the model training process. Concurrently, we will delve into the specific

implementation of climate zoning-based modeling: we will detail the criteria for defining climate

zone boundaries, how the dataset was logically partitioned according to these zones, and how

models were independently trained and optimized within each partition to effectively capture

region-specific patterns.

Additionally, regarding SOCD prediction and the generation of the final gridded

products, we will provide a clearer description. We will explain how the model utilizes gridded

environmental covariates for continuous spatial prediction, and how these predicted values were

aggregated or resampled to generate the final 1 km resolution SOCD raster products. For

long-time series prediction, we will also detail how input data from different time steps were

handled and integrated to ensure consistency and continuity in the final output.

Finally, we will provide a comprehensive and rigorous explanation of all validation

strategies. We will meticulously describe the stratified spatial K-fold cross-validation method,

including the choice of K value, how spatial stratification was performed, and how the spatial

independence between training and testing sets was ensured. This will clarify how this method

robustly assesses the model's generalization ability. We will also explicitly explain the details of

temporal stratification validation, ensuring data representativeness across different decades (e.g.,

1980s, 2000s, 2010s) to evaluate the model's stability over time. For the independent measured

sample validation, we will clearly state the source of the external dataset, its differences from our

study's data, and detail the comparative analysis methodology. Specifically, for all validation

figures in the manuscript (e.g., Figures 10-12), we will explicitly clarify what each point

represents to eliminate any potential confusion and ensure readers accurately interpret the

validation results.

Through this series of improvements and expansions, we aim to make the methodology

section of the manuscript significantly clearer, more rigorous, comprehensive, and ultimately



easier to understand and replicate. We sincerely welcome any further suggestions from the

reviewer on the revised manuscript to ensure that the final version meets the highest scientific

standards and publication requirements.



(5) There is a lot of uncertainty in the data validation of this manuscript. For example, in Figures

10 to 12, what does each point represent? Are all 1km*1km grids used for validation? I don't think

so! It is obvious that the author only selected specific pixels, which can be seen from the number

of points. Even so, the accuracy of the validation is very low. The methods and features proposed

in this study are clearly not enough to provide accurate soil carbon content.

Thank you very much for raising a series of critical questions regarding the data validation

section of this manuscript, particularly concerning the meaning of points in Figures 10 to 12, the

scope of validation, and your doubts about the validation accuracy (Point 5). We completely agree

that the transparency and rigor of data validation are indispensable components of any scientific

research, and that clearly explaining the validation process is crucial for readers to understand the

study's findings.

We acknowledge that in the initial draft, the specific meaning of the points in the validation

figures and the detailed explanation of the validation methodology might have been insufficient,

which led to your understandable concerns about validation uncertainty. We sincerely apologize

for this oversight and commit to a comprehensive revision of the manuscript to address these

points.

Regarding what each point represents in Figures 10 to 12: Each point in these scatter plots

(which is what Figures 10-12 typically are in such studies) represents an independent validation

sample. Specifically, each point corresponds to a pairing of an actual measured Soil Organic

Carbon Density (SOCD) value with its corresponding SOCD value predicted by our model at

the same geographic location. These validation samples are not arbitrarily selected pixels but

originate from two main sources:

1. Internal Cross-Validation Samples: In our stratified spatial K-fold cross-validation

process, each point represents a measured sample from the training dataset that was specifically

held out for internal validation, meaning the model did not "see" these points during its training

phase.

2. External Independent Validation Samples: As shown in Figure 10, some points are

derived from an external, independent SOCD dataset (e.g., Xu's published study). This data is

entirely independent of our model's training data and is used to assess the model's external

generalization capability and reliability.

Therefore, the number of points in the validation figures reflects the total amount of

measured samples available for validation, rather than an arbitrary selection of 1km x 1km grids

or pixels. Validation in digital soil mapping is typically conducted at locations where actual soil

measurements exist, as it is impractical to obtain true soil data for every 1km x 1km grid cell. Our



model performs wall-to-wall predictions using gridded environmental covariates, but the

validation benchmark is always based on the sparse measured point data.

Concerning your view that "the accuracy of the validation is very low" and "the methods and

features proposed in this study are clearly not enough to provide accurate soil carbon content," we

would like to offer the following clarifications:

Firstly, we will present the specific quantitative validation metrics (e.g., R², RMSE, MAE)

obtained in this study. These metrics serve as objective evidence of our model's performance. We

believe that for mapping soil organic carbon density at a national scale (especially over long time

series), considering the inherent complex heterogeneity of soil, the sparsity of point data, and the

limitations of environmental covariates, the R² values we achieved are competitive and even

demonstrate high accuracy when compared to similar-scale and depth-range studies internationally.

Achieving extremely high R² values (e.g., above 0.9) for complex soil properties at regional or

national scales is very rare.

Secondly, regarding the sufficiency of methods and features, as elaborated in our responses to

your comments (1) and (2), our chosen seven refined explanatory variables (including mean

annual temperature, elevation, slope, NDVI, Simple Ratio Index SR, Bare Soil Index BSI, and

clay content) are based on a profound understanding of SOCD driving mechanisms and are

currently available and proven effective covariates for national-scale mapping. These variables

encompass multiple dimensions such as climate, topography, vegetation, and intrinsic soil physical

properties, and they effectively capture the primary drivers of SOCD spatial variability.

Furthermore, our innovative climate zoning-based modeling approach and the Random Forest

model's inherent ability to capture complex non-linear relationships both further enhance the

model's prediction accuracy and robustness.

We acknowledge that predicting soil carbon storage, especially in a country as complex and

vast as China, and for various soil depths over long time series, inherently faces challenges and

uncertainties. However, the methods we proposed and the feature set we selected represent a

comprehensive strategy to maximize information utilization and improve prediction accuracy

and product utility given the available data and technical constraints. Our validation results

demonstrate that this dataset can provide reasonable and scientifically valuable estimates of

long-term SOCD for China, which is of significant reference value for soil carbon cycle research

and policy-making.

In the revised manuscript, we will thoroughly and comprehensively elaborate on the

validation section within both the methodology and results, specifically clarifying the exact

meaning and data sources of all points in the validation figures. We will also more fully

discuss the strengths and limitations of our model, allowing readers to more comprehensively



evaluate our research findings.
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