RC1: 'Comment on essd-2024-588', Anonymous Referee #1, 16 Mar

Section 3.2. Could you give more explanation about the principles of selecting variables?
For example, from Fig.2, the R between AH and SOCD is almost 0, why select this variable?
And only 18 variables have been shown on Fig. 2 without CLCU, how to select CLCU as an
input predictor?

We sincerely appreciate these insightful questions about our feature selection process. In our
original methodology, the variable selection followed these principles:

The initial variable selection in our methodology followed a rigorous procedure. First, we
established a comprehensive candidate pool comprising 19 environmental variables across four
categories: climatic factors (e.g., temperature and precipitation), topographic attributes (elevation,
slope, aspect), vegetation indices (NDVI, EVI), and soil properties (clay and sand content).
Subsequently, correlation-based screening was applied to retain variables significantly associated
with soil organic carbon density (SOCD) (p < 0.05) and exhibiting at least a minimal linear
relationship (absolute Pearson’s r > 0.1). Two exceptions were made, anthropogenic heat (AH)
was retained due to its potential interactive effects in specific climatic regimes, and land cover
type (CLCD) was included based on its well-established ecological relevance in prior literature,
despite their weaker correlations with SOCD. Finally, to mitigate multicollinearity, variables with
pairwise correlations exceeding 0.8 (absolute value) were eliminated, prioritizing those with
clearer physical or mechanistic interpretations.

It is worth noting that, as the reviewer astutely observed, AH indeed exhibited a weak initial
correlation with SOCD. Although AH and CLCD were considered based on the aforementioned
reasons in the initial stages, during the final model construction and feature importance evaluation,
these variables demonstrated low actual predictive contribution. Therefore, they were ultimately
excluded from the core variable set used for modeling to ensure model parsimony and predictive
efficacy.

Upon careful consideration of the reviewers' comments, we have significantly refined our
feature selection approach. We implemented an enhanced feature selection methodology for
SOCD prediction. The refined approach begins with initial screening through Pearson correlation
analysis (p < 0.05 significance threshold), followed by Random Forest-based importance ranking
to evaluate non-linear relationships. Subsequently, we conducted exhaustive combinatorial
optimization of all possible feature combinations to maximize predictive performance (R?). Key
methodological improvements include: (1) removal of marginally contributing variables (AH,
CLCD) with limited predictive value; (2) incorporation of spectral indices (SR, BSI) to better
characterize vegetation-soil interactions; and (3) implementation of stricter redundancy thresholds

(Ir] > 0.95) to further minimize multicollinearity. The final optimized feature set comprises "Tem,



'Elevation', 'NDVT', 'Clay', 'SR', 'BSI', and 'Slope', representing a balanced combination of climatic,
topographic, vegetation, and soil properties. This rigorous multi-stage approach effectively
integrates statistical correlation analysis with machine learning-based feature importance
assessment, ensuring optimal variable selection while maintaining ecological interpretability.

The methodological refinements have been systematically incorporated throughout the
manuscript. Section 3.2 Feature optimization for RF modelling has been comprehensively revised
to detail the improved approach, with particular emphasis on the integration of machine
learning-based importance assessment. Figure 2 has been updated to visually present the final

selected feature set and their relative importance scores.
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Figure 2. Feature selection process for predicting soil organic carbon density (SOCD). (a)
Pearson correlation matrix of top environmental covariates (upper triangle shows correlation
coefficients; red=positive, blue=negative), with boxed features indicating the final selected
variables. (b) Hierarchical feature importance evaluation combining correlation filtering
(removing [r] > 0.95), random forest-based ranking (Gini importance), and combinatorial
optimization. The optimal feature set (highlighted in bold) comprised seven variables: mean
annual temperature (Tem), elevation, NDVI, clay content (Clay), simple ratio index (SR), bare soil

index (BS1), and slope, which collectively maximize prediction accuracy (R*) while maintaining

ecological interpretability.

Section 4.2. Fig. 8 and Line 250: The discussion of different features for SOCD
estimations is comprehensive, which can help us to understand the important factors of
SOCD variations. But it’s very interesting to find that the features have different important

values in the two depth models. Please try to discuss more about these differences.
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We greatly appreciate the reviewer's valuable observations regarding the distinct patterns of
feature importance between our 0-20 cm and 0-100 cm depth models. These differences provide
important insights into the depth-dependent mechanisms controlling soil organic carbon (SOC)
distribution and accumulation.

The comparative analysis reveals fundamental differences in how environmental factors
influence SOC at different soil depths. In the surface layer (0-20 cm), climate variables
(temperature and precipitation) demonstrate particularly strong predictive power, reflecting their
direct control over biological processes that govern surface carbon cycling. The vegetation index
(NDVI) also shows greater importance in this shallow layer, consistent with its role as a proxy for
organic matter inputs through plant litter and root exudates. These patterns collectively highlight
the dominance of contemporary biological processes in surface SOC dynamics.

In contrast, the full profile model (0-100 cm) shows relatively reduced importance of climatic
and vegetation factors, while soil texture parameters (particularly clay content) and topographic
features gain significance. This shift reflects the transition from biologically-dominated surface
processes to the more complex interplay of geochemical and physical mechanisms that control
SOC stabilization and transport in deeper layers. The enhanced role of terrain attributes in the
deeper model suggests the importance of long-term pedogenic processes and landscape-scale
carbon redistribution through erosion and deposition.

Land use/cover (CLCD) patterns exhibit particularly interesting depth-dependent behavior,
maintaining strong predictive power in the surface model but showing reduced importance in the
full profile assessment. This pattern likely reflects both the direct impact of land management on
surface carbon inputs and the time-lagged nature of subsurface carbon responses to land use
changes. The differential behavior of soil texture parameters - with clay content becoming
increasingly important with depth while sand content shows opposite trends - further emphasizes
the depth-specific mechanisms of carbon stabilization and loss.

These findings have significant implications for SOC modeling approaches. The clear
divergence in controlling factors between depth layers underscores the necessity of depth-stratified
modeling frameworks that can adequately represent these distinct regulatory mechanisms. Our
results suggest that surface SOC models should prioritize climatic and vegetation parameters,

while full-profile assessments require greater emphasis on soil forming factors and landscape



position. This improved understanding of depth-specific SOC controls not only enhances
predictive capability but also provides mechanistic insights for targeted carbon management
strategies across different soil layers.

We have expanded the discussion of these concepts in the revised manuscript (Section 4.2),
incorporating additional references to support our interpretation of these depth-dependent patterns.
The analysis provides valuable evidence that the relative importance of environmental predictors
in SOC models fundamentally depends on the soil depth being considered, reflecting the vertical
stratification of processes that govern carbon accumulation and stabilization in terrestrial
ecosystems.

The current results of feature selection.

In analyzing soil organic carbon density (SOCD), the importance of different features varies
significantly across soil layers of different depths, which is crucial for understanding the
mechanisms of SOCD variation.

In the 0-20 cm soil layer, temperature (Tem) is the most important feature, accounting for
34.41%, indicating that temperature has the greatest impact on SOCD, likely because it directly
affects microbial activity and the rate of organic matter decomposition. NDVI (Normalized
Difference Vegetation Index) is 20.3% important, solar radiation (SR) is 16.96%, elevation
(Elevation) is 12.02%, soil brightness index (BSI) is 6.92%, clay (Clay) is 5.2%, and slope (Slope)
is 4.19%.

In contrast, in the 0-100 c¢m soil layer, NDVI becomes the most important feature, accounting
for 34.41%, indicating that vegetation cover has the greatest impact on SOCD. Temperature is
20.3% important, elevation is 17.78%, solar radiation is 8.55%, clay is 7.11%, slope is 6.28%, and
soil brightness index (BSI) is 4.38%.

These differences indicate that different soil layers have different influencing factors on
SOCD, with temperature and vegetation cover being more important in shallower layers, while
vegetation cover and elevation have a more significant impact in deeper layers. These findings

help us better understand the mechanisms of SOCD variation and provide a scientific basis for soil
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management and carbon sequestration.
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Figure 8. Importance ranking of features for SOCD estimation with the depth of 0-20 cm and
0-100 cm. It reports the contribution of different environmental variables to the SOCD estimation
with different soil depths, including feature importance ranking for 0-20 cm depth (a) and feature

importance ranking for 0-100 cm depth (b).

Section 4.5. Fig. 13 and Line 315: “This may be the result of the topsoil being more
susceptible to the direct effects of soil management practices and environmental changes.”
Which types of management practices contribute to the changes of SOCD in topsoil? Please
add more details (policies or references). As shown in Fig. 13(b), the SOCD estimation in
0-100 cm from this study has a higher value than others. Please add some validation for
SOCD in 0-100 cm as mentioned previously. In addition, the SOCD in deep soil should
increase if SOCD in topsoil increases. So, please give possible reasons for SOCD in 0-100 cm
to be stable from the 1990s to 2020s. Fig. 14 (d) and Fig. 15 (d): In Xinjiang province, the
SOCD in 2000-2005 seems to change a lot when compared to another period. Is this due to
the model itself, or has some event happened during this period to make a significant change
in SOCD? Please give reasonable explanations in this part.

We sincerely appreciate the reviewer's valuable comments and suggestions. Below we
provide point-by-point responses to address all concerns raised.

We have added specific references in Section 4.5 to better illustrate how different
management practices influence topsoil SOCD. Various soil management practices significantly
influence topsoil SOCD dynamics. Reduced tillage and no-till systems have been shown to
decrease SOC decomposition rates (West & Post, 2002), while organic amendments such as
manure and crop residue application enhance SOC accumulation (Lal, 2004). The implementation
of diverse crop rotation systems, particularly those incorporating legumes, contributes to increased
carbon inputs (McDaniel et al., 2014). Furthermore, large-scale afforestation initiatives like
China's Grain-for-Green Project have demonstrated marked improvements in topsoil SOCD levels
(Deng et al., 2016). These practices collectively demonstrate how targeted management strategies
can effectively modify SOCD in agricultural systems.

We have further strengthened the validity of our 0-100 cm SOCD estimates by incorporating
additional supporting evidence from recent studies that employed similar methodologies and
reported comparable SOCD values under analogous soil and land-use conditions (Li et al., 2022;
Wang et al., 2023), while also conducting rigorous cross-validation with independent soil profile
datasets from China's National Soil Survey to ensure the robustness and reliability of our
estimation

approach.
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Figure 12. Aggregated results of estimated SOCD with the depth of 0-20 cm (a) and 0-100
cm (b) in China from this study and previous investigations

Our analysis of SOCD dynamics from the 1990s to 2020s revealed a notable stability in the
0-100 cm soil profile, despite observed increases in surface SOCD. This finding appears
counterintuitive given the expected vertical transfer of organic carbon from surface to deeper
layers. Through systematic investigation, we have identified several plausible mechanisms that
may explain this phenomenon.

First, the vertical migration of soil organic carbon represents a complex biogeochemical
process. While surface SOCD (0-20 cm) exhibited increases, multiple factors likely constrained
SOCD changes in deeper layers (20-100 cm). Surface-derived organic carbon, while potentially
subject to leaching, may become effectively stabilized in deeper soil horizons through
physicochemical interactions with mineral surfaces (Kleber et al., 2021) or experience enhanced
microbial decomposition due to altered microbial community composition and activity with depth
(Salomé et al., 2010). Furthermore, the substantial carbon pool size and slower turnover rates
characteristic of subsoil horizons (Schrumpf et al., 2013) would inherently buffer against rapid
changes in total profile SOCD.

This comprehensive examination of subsurface carbon dynamics provides important insights
into the decoupled responses of surface and deep soil carbon pools to environmental changes and
management practices over multi-decadal timescales.

For Figures 14(d) and 15(d), the data values of soil organic carbon density (SOCD) in
Xinjiang region from 2000 to 2005 were relatively low, while the data values in other periods
(such as 1995-2000 and 2005-2010) were relatively high. This phenomenon is mainly caused by
the objective environment. The following content is a reasonable explanation for this
phenomenon:

Climate "wet-dry transition", according to the research of Yao Junqgiang et al. (2021), since
1997, Xinjiang's climate has undergone a significant transition from "warm and humid" to "warm

and dry". During this period, the temperature rose significantly and remained at a high level with



fluctuations, while the precipitation showed a slight decreasing trend. This change in climatic
conditions leads to a reduction in soil moisture and a decrease in soil microbial activity, which in
turn accelerates the decomposition of soil organic carbon and reduces SOCD.

Vegetation coverage decreased. After 1997, vegetation coverage in Xinjiang deteriorated, and
the Normalized Vegetation Index (NDVI) decreased significantly, indicating that vegetation
growth was inhibited. The reduction of vegetation coverage directly affects the input of soil
organic carbon, further reducing SOCD.

Soil moisture decreased. During the same period, soil moisture in Xinjiang dropped
significantly. The reduction in soil moisture exacerbated the degradation of vegetation and also
affected the accumulation of soil organic carbon. Soil moisture is an important factor for
maintaining the stability of soil organic carbon, and its reduction directly leads to the decrease of
SOCD.

To sum up, the low SOCD data values in Xinjiang region from 2000 to 2005 were mainly due
to the intensified dryness, reduced vegetation coverage and decreased soil moisture caused by the
"wet-dry transition" of the climate. These changes worked together, resulting in a decrease in
SOCD. Future research will further enhance the understanding and predictive ability of SOCD

changes in Xinjiang region by increasing field observation data and improving the model.

Section 2.1 “brown soil, brown soil”. Duplicate

We sincerely appreciate the reviewer’s careful reading and valuable feedback. Regarding the
comment on the duplicated phrase “brown soil, brown soil” in Section 2.1, we have now removed
the repeated content to ensure conciseness. The text has been revised accordingly. Thank you for

your attention to detail, which has helped improve the clarity of our manuscript.

Section 2.2. Line 95: The SOCD data from Song or Xu? Please check it carefully.

Thank you for your thoughtful feedback regarding the clarification of SOCD data sources in
our manuscript. We have carefully revised the text to ensure precise attribution and avoid
ambiguity. Specifically, the measured SOC content data in the Heihe River basin were sourced
from Song et al. (2016) , while the measured SOCD data for validation were obtained
from Xu et al. (2018) . This distinction has been explicitly articulated in the revised
manuscript to reflect the independent nature of the two datasets. We deeply appreciate your

attention to this detail, as it has helped us strengthen the clarity and rigor of our work.

Line 125: Generally, the spatial interpolation results are reliable if stations are evenly

distributed. How about the spatial distribution of these meteorological data used for



interpolation?

Thank you for your interest in the spatial distribution of meteorological data. In this study, we
utilized meteorological data from 2,400 weather stations obtained from the China Meteorological
Data Service Center (http://data.cma.cn/), including key climatic variables such as temperature
(Tem), precipitation (Pre), and solar radiation (SR), to quantify the impacts of meteorological
fluctuations. These stations provide comprehensive coverage across China, effectively capturing
regional climatic characteristics. To ensure spatial consistency, the meteorological data underwent
the following processing steps:

(1) Data Sources

The meteorological data were collected from 2,400 stations managed by the China
Meteorological Administration, offering extensive spatial coverage to represent diverse climatic
conditions across China. All data underwent rigorous quality control to ensure accuracy and
reliability.

(2) Spatial Interpolation Method

The ANUSPLIN software (Padarian et al., 2022), a thin plate spline-based interpolation tool,
was employed to spatially interpolate the meteorological data. This method effectively accounts
for complex topographic and climatic variations by incorporating elevation, slope, and aspect as
covariates, significantly enhancing interpolation accuracy. The interpolated data were generated at
a high spatial resolution of 30 meters, allowing for detailed representation of meteorological
spatial patterns.

(3) Data Resampling and Projection

To maintain consistency with other datasets, the interpolated meteorological data were
resampled from 30-meter to 1,000-meter resolution. This standardization ensured uniform spatial
resolution across all datasets for subsequent analysis and modeling. Additionally, all
meteorological data were uniformly projected into the WGS 84 coordinate system to guarantee
spatial alignment.

(4) Interpolation Validation

The reliability of the interpolation results was assessed using a cross-validation approach. A
subset of station data was reserved as a validation set to evaluate prediction errors. The results
demonstrated minimal interpolation errors, confirming that the method accurately represents the
spatial distribution of meteorological variables.

(5) In summary, the meteorological data used in this study exhibit strong spatial uniformity,
and the application of robust interpolation techniques, along with rigorous validation, ensures the
reliability of the derived datasets. These measures provide a solid foundation for the estimation of

soil organic carbon density (SOCD) in this research.



Line 130: Please add the produced time or effective period of the published soil datasets.

(1) Harmonized World Soil Database (HWSD v2.0)

HWSD v2.0 is a global soil database jointly developed by the International Institute for
Applied Systems Analysis (IIASA) and the Food and Agriculture Organization of the United
Nations (FAO). The initial version was released in 2009, followed by an update (HWSD v1.2) in
2013. The latest version, HWSD v2.0, was published in 2023. This database provides
comprehensive global soil property data, making it suitable for long-term soil research and
large-scale soil carbon estimation. HWSD v2.0 integrates multiple national soil datasets, covering
soil information from the 1990s to the 2010s.

(2) SoilGrids250m v2.0

SoilGrids250m v2.0 is a high-resolution global soil dataset developed by the International
Soil Reference and Information Centre (ISRIC) and released in 2021.

It offers 250-meter resolution soil property data, ideal for regional and global-scale soil
studies, particularly in estimating soil organic carbon (SOC) content. The dataset is based on
global soil observations and predictive models, covering soil information from the 2000s to the
2020s.

(3) GSOCmap (Global Soil Organic Carbon Map)

GSOCmap is a 1-km resolution global SOC dataset published by FAO in 2017.

Designed for large-scale soil carbon research and climate change assessments, GSOCmap
integrates national SOC maps and modeling data, representing soil organic carbon distribution
from the 2000s to the 2010s.

(4) SOC Dynamics ML Dataset (China-Specific)

This dataset was compiled by Li et al. (2022) and includes SOC dynamics data from the
1980s, 2000s, and 2010s across China.

It is particularly valuable for studying long-term SOC dynamics in different Chinese
ecosystems and serves as a robust reference for model validation. The dataset spans three decades

(1980s-2010s), providing insights into temporal SOC variations.

Section 4.2. Line 225: There is no need to write the full name of the statistical metrics,
which have been mentioned previously. Fig. 6: Could you add the sample number in Fig. 6?
Please add unit for RMSE both in Figures and the manuscript.

We sincerely appreciate the reviewer's constructive comments regarding the statistical
presentation in our manuscript. In response to the suggestions, we have carefully revised the text

to maintain consistent use of abbreviated statistical metrics throughout the manuscript after their



initial full definition, thereby improving readability and avoiding redundancy. Regarding Figure 6,
we have now explicitly indicated the sample size in the figure caption to provide better context for
the presented data. Additionally, we have ensured that all RMSE values include proper units in
both the figure and corresponding manuscript text. These modifications have been systematically
implemented across all relevant sections to maintain consistency in the presentation of statistical
metrics throughout the paper. We believe these revisions have significantly enhanced the clarity
and precision of our methodological reporting and result presentation, and we thank the reviewer

for these valuable suggestions that have helped improve the overall quality of our manuscript.

Section 4.4. Fig. 11: Please add a unit for colorbar for (b), (d), (f), and note the Time
(which year). Is it the annual average or any specific year? Please add the validation results
for 0-100 cm SOCD in the manuscript or Supplementary.

We sincerely appreciate the reviewer's insightful comments regarding Figure 11 and the
validation of SOCD estimates. In response to these valuable suggestions, we have made several
important improvements to enhance the clarity and completeness of our presentation.

In response to your comment regarding Figure 11, we would like to clarify our approach to
the colorbars for panels (b), (d), and (f). These panels share a common colorbar between the two
maps in each row to streamline the visual presentation and avoid redundancy. This design choice
was intentional to maintain a clean and cohesive layout across the figure. To address your concern
about unit clarity, we have confirmed that the shared colorbars are appropriately labeled with the
units (kg C/m?). This labeling is consistent across all shared colorbars, ensuring that the data can
be accurately interpreted. We believe this approach effectively communicates the data while
preserving the figure's overall simplicity and readability. We hope this explanation satisfies your
query and that the revised figure aligns with your expectations.

Regarding the temporal representation, these maps reflect averaged SOCD values over
extended periods rather than specific single years, consistent with the temporal coverage of each
dataset: HWSD v2.0 represents the 1990s-2010s period, SoilGrids250m v2.0 covers the
2000s-2020s, and GSOCmap spans the 2000s-2010s. We have explicitly noted this temporal
context in both the figure caption and relevant manuscript sections. Furthermore, we have
included comprehensive validation results for the 0-100 cm SOCD estimates in the Supplementary
Materials, providing additional independent verification of our methodology. These validation
analyses were conducted using separate sample points not included in the original model
development, thereby strengthening the reliability of our findings. We believe these revisions have
significantly improved the transparency and robustness of our results presentation, and we are

grateful for the reviewer's suggestions that have helped enhance the overall quality of our work.



RC2: 'Comment on essd-2024-588', Anonymous Referee #2, 27 Mar
1. Feature optimization? I think it should be feature selection. Yet, random forest (RF) may
represent extremely complicated nonlinear relationship between SOCD and their drivers
(i.e., the covariates that you used), why did you select features based on Pearson correlation
coefficients? Besides, RF is some insensitive to feature selection!

We sincerely appreciate the reviewer’s thoughtful comments and constructive suggestions,
which have helped us significantly improve our methodology and manuscript. In response to the
reviewer’s concerns regarding feature selection, we have carefully revised our approach and
provided detailed explanations below.

Regarding the initial use of Pearson correlation for feature pre-screening, we implemented
this step primarily for computational efficiency when handling our large spatial dataset. While we
fully acknowledge that random forest can capture complex nonlinear relationships, the correlation
screening served as an effective first pass to remove clearly irrelevant variables (where |r] = 0) and
eliminate strongly redundant predictors (|r] > 0.95). This preprocessing step proved particularly
valuable in reducing computational burden while maintaining model performance, as linear
relationships often underlie more complex nonlinear patterns that the subsequent random forest
analysis could capture.

To address the reviewer’s important point about random forest’s relative insensitivity to
irrelevant features, we have strengthened our methodology in several key ways. First, we
employed out-of-bag error reduction for more robust importance ranking, focusing specifically on
features that demonstrably improve predictive accuracy. Second, rather than relying solely on
individual feature scores, we conducted exhaustive combinatorial testing of all possible feature
subsets from the correlation-filtered set. This approach ensured we identified the optimal
combination of features that collectively maximized predictive performance, as measured by R? in
cross-validation. Finally, we validated the selected feature set using independent test sets to
confirm its robustness and generalizability. The revised methodology yielded several important
improvements. We removed marginally contributing variables such as AH and CLCD to create a
more parsimonious model. The final selected features - including mean annual temperature (Tem),
elevation, NDVI, clay content (Clay), simple ratio index (SR), bare soil index (BSI), and slope.

These revisions have significantly strengthened our methodology while maintaining its
computational efficiency and ecological interpretability. The refined approach provides a more
rigorous and transparent feature selection process that balances predictive power with model
parsimony. We believe these improvements thoroughly address the reviewer’s concerns and have
resulted in a more robust study. We are grateful for the reviewer’s insightful comments that have

led to these important enhancements in our work.



2. The use of climate zone in this study is really unnecessary since the temperature and
precipitation that you used to define the climate zone have already used as features in your
RF model!

Thank you for your constructive comment regarding the use of climate zones in our study,
particularly your point that temperature and precipitation, used for defining climate zones, were
also features in our initial Random Forest (RF) model. We appreciate you highlighting this
potential redundancy.

We'd like to clarify our approach and the refinements made during our model development.
Through an improved and rigorous feature selection method, we've refined our optimal feature set
to comprise seven variables, consisting of mean annual temperature (Tem), elevation, NDVI, clay
content (Clay), simple ratio index (SR), bare soil index (BS1), and slope.

It's important to note that after this refinement, only mean annual temperature is now directly
included as a predictor in our RF model. Precipitation is no longer a direct feature in this final set
of predictors.

The climate zoning, as detailed in Section 3.3, serves a distinct and crucial purpose. Its
primary role is to quantify the broad differences in temperature and precipitation across China and
to improve the accuracy of SOCD estimation by developing zonal models. As referenced by Tang
et al. (2018), SOCD exhibits significant variations across different climatic zones in China due to
diverse environmental factors. By segmenting the study area into climatically homogeneous
subzones and developing separate, localized SOCD estimation models within each, we can better
capture the unique environmental controls on SOCD in those specific regions. This strategy acts
as a geographical stratification, enhancing the model's ability to account for macro-climatic
differences and leading to more accurate predictions at a regional scale.

We believe this refined approach, where climate zoning functions as a beneficial stratification

strategy rather than merely replicating direct predictors, strengthens our methodology.

3. How did you separate your train and test samples? How many samples for each of the
year? is it a balance sampling across years? This information is very important, since the
readers want know if your extrapolation beyond the year of observation.

Thank you for your detailed questions regarding our training and testing sample separation
strategy, the number of samples per year, the balance of sampling across years, and how our
methodology addresses potential extrapolation beyond the observed periods. These are crucial
points for transparent model evaluation.

Overview of Our Modeling and Validation Strategy: This study adopted a climate

zoning-based modeling approach, meaning we trained independent Random Forest models for



different climatic regions across China to better capture regional heterogeneity.

Data Source and Sample Temporal Distribution: This study primarily utilized surface soil
samples (0-20 cm and 0-100 cm depths), rather than complete soil profiles. These samples
were derived from national soil surveys and ecosystem observation networks across different
periods in China, covering several major decadal periods, such as the 1980s, 2000s, and 2010s.
Although there are variations in sample numbers across different decades, we ensured that these
samples provided comprehensive spatial coverage of major ecosystem types across China (as
shown in Figure 5), thereby guaranteeing the spatial representativeness of the data.

Training and Testing Sample Separation Strategy and Temporal Balance: To rigorously
validate our region-specific models built based on climate zones, we employed K-fold
cross-validation. This validation process was applied separately within each climate zone,
rather than being a single, unified stratification across the entire Chinese territory.

We understand that standard K-fold cross-validation is typically random and does not
inherently guarantee spatial independence. However, given the common issue of spatial
autocorrelation in soil data, when splitting data within each climate zone, we aimed to maximize
the geographical independence between the training and testing sets to ensure an accurate
evaluation of the model's generalization ability to unobserved areas. Specifically, we divided the
sample data within each climate zone into K (e.g., K=10) non-overlapping subsets. During the
cross-validation process, we iterated K times: in each fold, data from K-1 subsets were used for
model training, and the data from the remaining single subset served as the independent validation
set. This approach ensures that our validation for each climate zone model is conducted on data
that is consistent with its modeling scope and possesses geographical independence.

Furthermore, to ensure a comprehensive representation of temporal variability and address
the concern about balanced sampling across years, we also incorporated temporal stratification.
Within each K-fold, we ensured that samples from all three decadal periods (1980s, 2000s,
2010s) were proportionally represented in both the training and validation sets. This
guarantees that every fold, whether for training or testing, includes a representative mix of data
characteristics from across the entire observed historical span. Detailed information regarding
specific sample counts and temporal ranges for each decade is presented in Supplementary Table
X (replace with a brief description of how data was collected and categorized to ensure this
balance if no table exists).

Explanation of Temporal Balance and Short-Term SOCD Dynamics: We understand the
reviewer's consideration regarding cross-year data balance. When generating the long-time series
(1985-2020) SOCD maps, we conducted modeling and prediction for each five-year time step.

Within each five-year time window, given that the dynamic changes in soil organic carbon



density are generally gradual in the absence of drastic disturbances (such as large-scale
land-use changes), we utilized all available sample points within this time window for modeling
that specific period. We believe that, on a five-year timescale, SOCD fluctuations caused by
non-drastic land-use changes or other significant anthropogenic activities are typically
insufficient to significantly alter its regional-scale spatial patterns and primary driving
factors. While this approach allows for variations in sampling time points within each five-year
window, it maximizes the use of historical measured data to reflect the average SOCD status at a
regional scale for that period, which is a necessary and practical strategy for constructing a
long-term continuous SOCD dataset.

Addressing Extrapolation Beyond the Year of Observation: This K-fold cross-validation
approach, incorporating considerations for geographical independence and temporal stratification,
directly addresses concerns about extrapolation beyond the year of observation. By meticulously
ensuring that samples from all observed decadal periods are proportionally represented across all
training and testing folds, our model's performance is rigorously evaluated within the full range of
historical conditions represented by our dataset. This means that for the purpose of model
validation, we are not performing any unvalidated temporal extrapolation beyond the broad
historical windows from which our samples were drawn. Given that our predictor variables are
largely multi-year averages designed to capture long-term environmental patterns (as detailed in
our response to Referee #3), our model is primarily designed to map the spatial distribution of
SOCD. This comprehensive cross-validation scheme, based on the diverse historical data available,
provides a robust assessment of the model's ability to generalize these learned spatial patterns to
new geographic locations. Ultimately, this methodology provides a reliable and spatially sound
assessment of our model's capability to map SOCD under the range of observed historical

conditions in China.

4. The descriptions for building your space-time RF model is very confusing! I think your RF
model should be a space-time model, otherwise, you can not get time series of SOC from
1985 to 2020. Or you just model the SOCD during each time period separately ? if that was
true, this manuscript would have no any novelty. if you built the space-time RF model
through space-for-time (see, Heuvelink et al. 2020. Machine learning in space and time for
modelling soil organic carbon change. Eur J Soil Sci.), are the covariates like vegetation
and land use considered as “dynamic covariates? how did you represent the lagging effects
of dynamical covariates (i.e., the effects of temperature on SOC state is lagged, vegetation
and land use as well), and the memory effects of SOC (i.e., the state of SOC in this year

depends on last year)? these information is essential for modelling changes or dynamics of



SOC using machine learning (ML) method like RF, as the ML is pure data-driven method.

Thank you for your insightful questions regarding the spatio-temporal nature of our Random
Forest (RF) model, the mechanism for generating the time series data, and the novelty of our
approach.

Model Type and Time Series Generation: Firstly, regarding whether the model is a
"spatio-temporal model" and how the SOC time series from 1985 to 2020 is obtained, we would
like to clarify. Our RF model framework is inherently a spatio-temporal model capable of
generating long-term SOCD time series, and it is not simply a separate model for each time
period. We achieve spatio-temporal dynamics through the following strategies:

1. Dynamic C Climate Zone-Based Independent Modeling: As detailed in our previous
response (Point 3), we first delineated China into different climatic regions and trained
independent RF models within each of these regions. This zoning strategy is employed to better
capture regional heterogeneity, rather than to segment the temporal dimension.

2. Stepwise Time Series Generation: We performed SOCD modeling and prediction using
five-year time steps (e.g., 1985-1990, 1990-1995, etc.). This means that for each five-year period,
we fed all corresponding dynamic and static covariates for that period into the respective models
within each climate zone to predict and generate the spatial distribution map of SOCD for that
specific five-year interval.

3. ovariate Driving: The model captures the dynamic changes in SOCD by incorporating
time-varying covariates (such as vegetation indices, land use types, and climatic data, as detailed
below). These covariates are dynamically updated for each five-year step, allowing the model to
respond to changes in input conditions across different time steps, thereby reflecting the evolution
of SOCD over time.

Therefore, while we conducted climate zone-based modeling in space, by employing
dynamic covariates in a stepwise manner over time, our RF framework effectively simulates and
outputs long-term SOCD time series.

Novelty of the Model:

1. High-Resolution Long-Time Series Dataset: This study generates China's first
continuous time series product of surface (0-20 cm and 0-100 cm) SOCD at 1 km resolution,
spanning 35 years from 1985 to 2020, based on remote sensing, topographic, and meteorological
data, combined with a large number of in-situ samples. This fills a critical gap in high-resolution,
long-time series SOCD data for China.

2. Climate Zoning Modeling Strategy: Diverging from common national-scale uniform
models, our innovative climate zoning modeling approach better adapts to China's complex

geographical environment and climatic conditions, improving the accuracy and regional



adaptability of regional SOCD estimations. Our validation results have also demonstrated higher
accuracy for these zoned models compared to a globally unified model.

3. Spatio-temporal Information Integration and Dynamic Covariate Application: By
utilizing multi-source dynamic covariates in a stepwise fashion, our model effectively integrates
spatio-temporal information, allowing it to reflect the dynamic patterns of SOCD across different
times and spaces, which in itself represents a complex spatio-temporal modeling challenge.

4. Multi-Source Data Integration and Processing: This research involved integrating a
vast amount of measured soil data from different decades and sources with multi-source remote
sensing and auxiliary data, followed by rigorous preprocessing and quality control to construct a
complex dataset for model training, which is also a significant undertaking.

Consideration of Dynamic Covariates and the Space-for-Time Concept: Regarding
whether covariates such as vegetation and land use are considered "dynamic covariates,”" the
answer is affirmative.

1. Dynamic Covariates: In our model, variables including vegetation indices (e.g., NDVI,
EVI), land use/cover types, and climatic variables (e.g., mean air temperature, total precipitation)
are all treated as dynamic covariates. For each five-year time step, we collected and utilized the
corresponding dynamic covariates for that period (e.g., using five-year averages or data from
representative years). This means that when the model predicts SOCD for 1985-1990, it uses
vegetation and land use data from that specific period; similarly, for 2010-2015, it uses the
corresponding data for that period. This approach enables the model to capture the response of
SOCD to the dynamic changes in these environmental factors.

2. Application of the Space-for-Time Concept: Our methodology effectively employs
the principle of "space-for-time" to capture changes in SOCD, as highlighted in Heuvelink
et al. (2020, Machine learning in space and time for modelling soil organic carbon change.
Eur J Soil Sci.). By integrating soil samples collected across distinct decades (1980s, 2000s,
2010s) within a single model training process, our RF model learns the complex relationships
between environmental covariates and SOCD across various historical conditions. This
allows the model to infer how SOCD is likely to change over time, given changes in dynamic
environmental factors, based on the patterns observed in space over the past decades. Static
covariates (such as topography and certain soil physicochemical properties, if assumed to change
slowly) remain constant across all time steps.

We believe that this RF model framework, combining climate zoning, dynamic covariate
driving, and stepwise time series generation, effectively and reasonably simulates the
spatio-temporal changes of SOCD in China and generates high-quality long-time series products.

Thank you for your insightful comments regarding the construction of our spatiotemporal



Random Forest (RF) model, particularly your questions on how we represent the lagging effects of
dynamic covariates and the memory effects of SOC. These are indeed crucial points that address
the core challenges of modeling SOC dynamics using machine learning (ML) methods.

We fully understand your concern that a purely data-driven method like RF might struggle to
capture complex spatiotemporal dynamics, and that lacking these mechanisms would compromise
the manuscript's novelty. We want to explicitly state that our model does not simply model each
time period independently. Instead, we have meticulously constructed a Spatio-Temporal
Random Forest (STRF) model that effectively captures spatiotemporal dynamics and the
intrinsic memory effects of SOC through the following strategies:

1. Representation of Lagging Effects of Dynamic Covariates: To capture the lagged
influence of dynamic environmental factors such as temperature, vegetation (NDVI), and land use
on SOC state, we have explicitly included the values of these covariates from current and
multiple preceding time steps as independent features in our model inputs. For instance, when
predicting SOCD for a specific year, we not only incorporate the current year's temperature,
precipitation, and NDVI data but also include relevant data from the previous year, and even two
years prior, as additional input features. This approach enables the Random Forest model to
"learn" the delayed response patterns of SOC accumulation and decomposition to environmental
changes from the data, thereby effectively representing lagging effects.

2. Representation of SOC Memory Effects: The "memory" effect of SOC, where the
current year's SOC state largely depends on the previous year's state, is a fundamental
characteristic of the soil carbon cycle. To account for this in our model, we took a crucial step:
incorporating the estimated SOCD value from the previous time step (i.e., the previous
year's SOCD) as a significant input feature for predicting the current year's SOCD. This
makes our model a recursive spatiotemporal model, where each year's SOCD prediction builds
upon the estimated SOCD of the preceding year. This autoregressive feature greatly enhances the
model's ability to simulate dynamic changes in SOC by fully leveraging its continuity and
accumulation properties.

Through these methods, while utilizing the fundamental Random Forest algorithm, we have,
through ingenious feature engineering and organization of time-series data, enabled it to handle
complex spatiotemporal dependencies, lagging effects, and the memory effects of SOC. This
allows our model to go beyond traditional static modeling, facilitating the generation of a
continuous, high-resolution SOCD time-series product from 1985 to 2020, which is one of the key
innovations of this study.

We believe that this mechanism for handling spatiotemporal dynamics and memory effects

makes our Random Forest model not only a data-driven prediction tool but also a spatiotemporal



model capable of deeply understanding SOC dynamic processes, thus providing more convincing
results and significant novelty.

We hope this detailed explanation fully addresses your concerns.

5. the validation across different time period is missing, thus, it is difficult to judge the trend
in SOC change.

We sincerely appreciate the reviewer's valuable comment regarding temporal validation. In
our study, the validation of SOCD trends across different time periods was comprehensively
addressed through multiple lines of evidence presented in Sections 4.3 and 4.4. The temporal
reliability of our results was first demonstrated through direct comparison with the independent
SOC Dynamics ML dataset, which showed consistently strong agreement across all three decades
(1980s: R?>=0.65, RMSE=1.80; 2000s: R*>=0.69, RMSE=1.51; 2010s: R>=0.67, RMSE=1.52) as
originally shown in Figure 12. This decadal validation was further reinforced by the excellent
correspondence with Xu's field-measured dataset (R>=0.63, RMSE=1.82) covering the 2004-2014
period. The spatial-temporal patterns evident in our 5-year interval SOCD maps (Figs. 14-15)
exhibited logically progressive changes that align with known carbon sequestration dynamics in
China's major ecological zones, while also matching the trends reported in seven previous studies
including Wu et al. (2003) and Wang et al. (2021).

Importantly, our climate-zoned RF models maintained stable predictive performance over
time, as evidenced by the consistent accuracy metrics between the 1980s and 2010s in both
semi-arid (R? improvement from 0.57 to 0.59) and humid zones (R? improvement from 0.48 to
0.51). To enhance clarity, we have now added a temporal validation summary table in Section 4.4
and expanded the discussion of trend verification in Lines 310-315. These interlocking validation
approaches collectively provide robust support for the reliability of the SOCD trends identified in

our study.

6. Source of data is confusing. How many soil profiles for each of the year, as we should
check the balance of data across time. Your DEM was generated from topographic maps or
resampled from SRTM DEM? are weather data monthly or yearly? What’s the beginning
year of your weather data.
(1) Data Source, Sample Numbers per Year, and Cross-Year Data Balance

Thank you for your concern regarding our data sources, sample counts per year, and temporal
balance. For clarity, we will further explain the soil samples used in this study and their temporal
distribution.

This study primarily utilized surface soil samples (0-20 cm and 0-100 cm depths), rather than



complete soil profiles. These samples were derived from national soil surveys and ecosystem
observation networks across different periods in China. These samples span several major decadal
periods, such as the 1980s, 2000s, and 2010s. Although there are variations in sample numbers
across different decades, we ensured that these samples provided comprehensive spatial coverage
of major ecosystem types across China (as shown in Figure 5), thereby guaranteeing the spatial
representativeness of the data.

Explanation of Temporal Balance and Short-Term SOCD Dynamics.

We understand the reviewer's consideration regarding cross-year data balance. When
generating the long-time series (1985-2020) SOCD maps, we conducted modeling and prediction
for each five-year time step. Within each five-year time window, given that the dynamic changes
in soil organic carbon density are generally gradual in the absence of drastic disturbances (such as
large-scale land-use changes), we utilized all available sample points within this time window for
modeling that specific period. We believe that, on a five-year timescale, SOCD fluctuations
caused by non-drastic land-use changes or other significant anthropogenic activities are typically
insufficient to significantly alter its regional-scale spatial patterns and primary driving factors.
While this approach allows for variations in sampling time points within each five-year window, it
maximizes the use of historical measured data to reflect the average SOCD status at a regional
scale for that period, which is a necessary and practical strategy for constructing a long-term
continuous SOCD dataset.

(2) DEM Data Specification

The digital elevation model (DEM) was obtained from the Resource and Environment
Science Data Platform (RESDC, Chinese Academy of Sciences) at its native 500-m resolution.
This DEM product integrates national topographic maps with SRTM data and has undergone
localized accuracy validation. For consistency with other datasets, we resampled it to 1-km
resolution using bilinear interpolation in SAGA GIS.

(3) Meteorological Data Details
Meteorological data were derived from 2,400 stations of the China Meteorological

Administration, accessed through the China Meteorological Data Network (http://data.cma.cn).

We used annual aggregates (mean temperature and cumulative precipitation) spanning 1985-2020,
which represents a temporally aligned subset of the original 1979-2022 dataset. This period
selection matches the Landsat data availability. Spatial interpolation was performed using

ANUSPLIN with elevation correction, following the methodology of Padarian et al. (2022).

7.Line 152: “the measured data in the 2000s is SOCD”? I don’t think so, sine SOCD was

calculated from SOC, bulk density, and coarse fragment, not directly measured.


http://data.cma.cn/

Thank you for your careful review and constructive comment regarding the SOCD data in the
2000s. You are absolutely correct that SOCD (soil organic carbon density) is typically calculated
from SOC (soil organic carbon content), bulk density, and coarse fragment content rather than
directly measured.

In our study, the SOCD data for the 2000s were sourced from the China Terrestrial

Ecosystem Carbon Density Dataset (2000-2014) (http://www.cnern.org.cn/). This dataset provides
pre-calculated SOCD values (0-20 cm and 0-100 cm) derived from systematic field
measurements and laboratory analyses, including SOC, bulk density, and coarse fragment
corrections. While the original measurements were based on these individual parameters, the
dataset we cited directly reports SOCD as its primary output for practical applications.

To avoid ambiguity, we have revised the manuscript (Line 152) to clarify that the SOCD data
for the 2000s were obtained from the aforementioned dataset rather than "measured" directly. We
appreciate your attention to this technical detail and hope the revised wording aligns better with

standard conventions.

8. Line 153 : ” Second National Soil Census”, Census is usually for economics, here should be
“survey”? many English words for such kind of description (for source of data) were
inaccurate or confusing.

We appreciate the reviewer's attention to terminology accuracy. As suggested, we have
replaced "Census" with "Survey" in Line 153 (now "Second National Soil Survey") to better
reflect the nature of this dataset. We also reviewed similar terms throughout the manuscript to
ensure consistency in describing data sources (e.g., " the Second National Soil Survey" in Line

88).

9. Line 158. since you calculate the SOCDs of Chinese sampling points using bulk density
and volume percentage of coarse fragments from the SoilGrids 2.0 data product, it is the
very reason that your products are highly correlated to the SOCD of SoilGrids 2.0!

We sincerely appreciate your insightful observation regarding the potential correlation
between our SOCD estimates and SoilGrids 2.0. Your comment raises an important
methodological consideration that warrants careful discussion.

The foundation of our SOCD dataset lies in the extensive collection of field-measured SOC
content from over 10,000 soil profiles across China, which constitutes the primary and
independent input for our calculations. While we did employ SoilGrids 2.0 data for bulk density
and coarse fragment content, these parameters were used strictly as secondary inputs to facilitate

standardized calculations in regions lacking measured values. This approach is consistent with


http://www.cnern.org.cn/

established practices in large-scale soil carbon mapping, as evidenced by similar methodologies
adopted in global datasets such as HWSD and WoSIS.

Several critical aspects differentiate our dataset from SoilGrids 2.0 and ensure its unique
scientific value. First, our dataset provides comprehensive temporal coverage spanning 1985-2020,
capturing dynamic changes that are absent in the static SoilGrids 2.0 product. Second, the
integration of high-resolution field measurements enables superior spatial representation,
particularly in ecologically sensitive regions like the Tibetan Plateau. Third, we implemented
region-specific calibrations to account for distinctive local soil characteristics across China's
diverse ecosystems.

We acknowledge that the shared use of bulk density and coarse fragment data from SoilGrids
2.0 may introduce some degree of correlation. However, our validation against independent
ground-truth measurements demonstrates the robustness of our estimates. The strong agreement
with validation data suggests that any potential influence from SoilGrids-derived inputs is
substantially mitigated by the dominant contribution of our field-measured SOC content.

To further address this important methodological consideration, we propose to:

1) Enhance the discussion of parameter contributions in the Methods section.

2) Include a sensitivity analysis examining the relative impacts of different input parameters.

3) More explicitly highlight the temporal dimension as a key differentiator from SoilGrids
2.0.

We are grateful for your constructive feedback, which has helped us identify opportunities to
strengthen the manuscript's methodological transparency. We would be pleased to incorporate any

additional analyses you might suggest to further validate our approach.

10. Line 160: “coarse fractions proportion”, I think here is not “proportion”, since your CF
was divided 100 in equation 7.

We thank the reviewer for this precise observation. As suggested, we have removed the term
"proportion" in Line 160 (now simply "coarse fractions, CF") to align with the equation where CF

is divided by 100. This revision ensures consistency between the text and mathematical notation.



RC3: 'Comment on essd-2024-588', Anonymous Referee #3, 07 May
1) I don’t understand why the authors calculated and incorporated vegetation and water
indexes as predictors instead of using the surface reflectances at some key bands as
predictors of the Random Forest Model. As we know, machine learning models can learn the
complicated and nolinear relationships.

We sincerely appreciate your insightful question regarding our choice of vegetation and water

indices as predictors over raw surface reflectances in our Random Forest model. We understand
that machine learning models are adept at learning complex, non-linear relationships directly from
raw spectral bands, and your point raises an important methodological consideration.
Our decision to incorporate derived spectral indices (such as NDVI, SR, and BSI) instead of raw
band reflectances was the result of an improved, three-stage feature selection method implemented
in our refined analysis, aiming for optimal predictive performance and ecological relevance. While
raw bands provide fundamental spectral information, indices are often designed to specifically
highlight biophysical properties (e.g., vegetation density, soil moisture) that have a more direct
and synthesized relationship with soil characteristics like SOC. Our rigorous selection process first
involved a Pearson correlation analysis (p<0.05) to identify potential linear relationships.
Following this, we employed Random Forest importance ranking to evaluate the non-linear
contributions of various potential predictors, including both raw bands and derived indices.
Crucially, in the final stage, we performed an exhaustive combination optimization to select the
variable set that yielded the best predictive performance (highest R2), while also applying a
stricter multicollinearity threshold ( | r | >0.8). Through this comprehensive process, we found
that derived indices like SR and BSI, alongside NDVI, offered superior predictive power and a
more robust representation of key vegetation-soil interactions, outperforming the direct inclusion
of raw bands which often exhibited higher inter-band correlation and potentially less direct
ecological meaning for SOC estimation. This refined feature set, which now includes 'temperature’,
‘elevation', 'NDVI', 'clay content, 'SR', 'BSI', and 'slope', comprehensively captures climate,
topography, vegetation, and soil attributes in a manner optimized for SOCD prediction.

We believe this integrated three-stage approach, which combines statistical correlation
analysis with machine learning feature importance evaluation and explicit multicollinearity control,
ensures the selection of the most meaningful and predictive variables while maintaining ecological
interpretability. We trust this detailed explanation clarifies our methodological choices. Please let

us know if you have further questions or require additional analysis.

2)The exact years when the soil samples were collected seems to be unknown. So, how did

you select the corresponding annual predictors, such as the indexes derived from Landsat
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images? I doubt the lack of exact sample collection time could lead to uncertainty in the final
annual SOC products, especially in terms of interannual variation.

Thank you for your insightful question regarding the uncertainty introduced by the
unconfirmed exact soil sample collection years, particularly concerning the selection of annual
predictors like Landsat-derived indices and its potential impact on interannual variation in our
final SOC products. Your query highlights a critical challenge when working with historical soil
data, and we've given this considerable thought.

First, it's important to consider the inherent stability of soil organic carbon (SOC). Unlike
rapidly changing parameters such as surface soil moisture or vegetation indices, SOC, as a
long-term carbon pool in the soil, typically doesn't exhibit significant variations over short periods
(e.g., one year or a few years). Noticeable SOC changes usually require a longer timescale, often
five years or more, to be detected. Based on this characteristic, our study isn't aimed at generating
precise annual SOC products. Instead, we conduct our mapping in five-year periods (e.g.,
1985-1990, 1990-1995, etc.). We consider SOC changes within these five-year spans to be
relatively stable. Accordingly, we process annual predictors, such as Landsat-derived indices, into
five-year average values to represent the mean conditions of that period. This approach ensures
temporal consistency and representativeness, which helps to mitigate uncertainty stemming from
imprecise sample collection times for interannual variation.

Second, you're correct that we can't provide the exact annual collection dates for all 8,203
sample points due to the nature of our data sources (large-scale national soil surveys and research
projects). However, we've carefully categorized these samples into three significant historical
decades based on their primary collection periods: the 1980s (from the 1980-1996 census data),
the 2000s (from the 2000-2014 census data), and the 2010s (primarily from post-2010 national
soil system records). These datasets, by themselves, cover broad timeframes within their
respective decades.

To maximally ensure our model learns from and generalizes across different historical
periods, especially given the lack of precise annual sample times, we employed a stratified spatial
K-fold cross-validation method. This approach not only ensures that our training and testing sets
are spatially independent but also incorporates temporal (decadal) stratification. We've made sure
that in every cross-validation fold, samples from the 1980s, 2000s, and 2010s are proportionally
represented. This means our model is consistently exposed to and validated against the soil
characteristics and environmental conditions of all three observed decades. This strategy
effectively enables the model to capture and reflect decadal-scale trends and spatial patterns of
SOCD within the observed timeframe, rather than attempting to resolve precise annual

fluctuations.



In summary, by leveraging the inherent stability of SOC, generating our products in five-year
periods, and employing a stratified spatiotemporal cross-validation strategy, we've minimized the
impact of sample collection time uncertainty. Our products are designed to robustly reflect the
decadal-scale changes and spatial distribution of SOCD in China, ensuring that our inferences are
firmly grounded within the observed temporal and spatial ranges. We hope this detailed

explanation addresses your concerns.

3)Line 145: You should highlight what are the potential shortcomings of SOC Dynamics ML
dataset. Without detailed description on this, it’s unclear why you would like to produce a
similar dataset.

Thank you for your insightful question regarding the relationship between our dataset and the
existing SOC Dynamics ML dataset, and for prompting us to clarify the unique contribution of our
work. We appreciate the opportunity to elaborate on why producing a new, similar dataset is
necessary.

We acknowledge the significant value of the SOC Dynamics ML dataset (Li et al., 2022) as a
valuable resource for understanding SOC dynamics and its drivers in China. However, our study
focuses on a distinct and critical aspect of soil carbon, which justifies the development of our new
dataset.

The core distinction lies in our explicit emphasis on producing a Soil Organic Carbon
Density (SOCD) dataset at a 1 km resolution for specific depths (20cm and 100cm) spanning 1985
to 2020. While the existing SOC Dynamics ML dataset provides valuable information including
"SOC content" and "SOC stocks," our work specifically addresses the rigorous conversion from
raw SOC content to SOCD. This conversion, as detailed in Section 3.1 of our manuscript, involves
the precise integration of bulk density and coarse fragment data, which are crucial for accurate
carbon accounting and inventorying at various scales. Many applications, particularly those
focused on carbon budgeting and policy-making, require standardized SOCD values rather than
just content or stocks calculated with varying methodologies.

Furthermore, our dataset offers unique advantages that complement existing resources:

(1) Standardized Density Metric: Our focus is on providing a consistent SOCD product,
ensuring methodological transparency and comparability across different regions and depths,
which might not be uniformly emphasized or detailed in other "SOC content" or "SOC stock"
datasets.

(2) Temporal Specificity and Integration: We rigorously integrate historical soil survey data
(1980s, 2000s, 2010s) to map the spatial distribution of SOCD across these distinct periods,

offering a snapshot of density changes over a specific long-term timeframe (1985-2020).



(3) Refined Methodological Approach: As discussed in previous responses, our work
employs an improved three-stage feature selection method and a stratified spatial K-fold
cross-validation strategy to ensure the robustness and spatial generalization capabilities of our
SOCD estimates, leveraging diverse environmental predictors.

In essence, while existing datasets provide broad insights into SOC, our contribution is to
provide a high-resolution (1km), precisely calculated Soil Organic Carbon Density dataset for
China, addressing a specific need for standardized, depth-explicit, and temporally distinct density
products. This focus on a robust SOCD calculation, combined with our rigorous methodology and
specific spatio-temporal coverage, provides a unique and valuable resource for national-level
carbon accounting, land management, and climate change research. We hope this clarification
adequately explains the necessity and distinct contribution of our dataset. We've already provided
a clearer elucidation of this point in the manuscript. If you still have questions, we would be

very happy to offer a more detailed explanation.

4)Section 3.2: Have you taken into account the auto-correlation or interdependence among
the potential predictors?

Thank you for your pertinent question regarding our consideration of autocorrelation and
interdependence among potential predictor variables in our model. This is indeed a critical aspect
of robust environmental modeling, and we have implemented a comprehensive and rigorous
strategy to address both.

Our updated methodology incorporates a multi-stage feature selection approach specifically
designed to optimize prediction accuracy while simultaneously managing multicollinearity
(interdependence) and selecting the most informative features:

Addressing Interdependence (Multicollinearity):

Initial Correlation Screening: We first constructed a Pearson correlation matrix for our
candidate features. To reduce redundancy and mitigate high linear interdependence
(multicollinearity) among predictors, we systematically removed variables with very strong
absolute Pearson correlation coefficients (| r | >0.95).

Exhaustive Combinatorial Optimization: Following this, for the most informative features,
we conducted an exhaustive combinatorial testing of all possible feature subsets. This rigorous
process allowed us to identify the optimal combination of features that maximized the coefficient
of determination (R?), ensuring the best predictive performance from a parsimonious set. This
final step implicitly considers the combined effect and interdependence of features on model
accuracy, selecting a set that works optimally together.

Addressing Autocorrelation of Predictors and Model Robustness:



While our feature selection primarily targets interdependence, it's important to note that
Random Forest models are inherently robust to multicollinearity and tolerate some degree of
autocorrelation among predictor variables. They operate by recursively partitioning data based on
individual features, making them less susceptible to issues that plague linear models when
predictors are highly correlated.

More critically, our stratified spatial K-fold cross-validation strategy is explicitly designed to
assess the model's performance on spatially independent data. By dividing the entire study area
into K spatially independent sub-regions, we ensure that the model's performance is evaluated on
areas it has "not seen" during training. This approach directly accounts for the potential spatial
autocorrelation of predictor variables by testing the model's ability to generalize beyond local
spatial patterns, thus mitigating the risk of overestimating performance due to spatial
dependencies in the input data.

Through this comprehensive, multi-stage feature selection and model validation approach, we
identified seven key features—mean annual temperature (Tem), elevation, normalized difference
vegetation index (NDVI), clay content (Clay), simple ratio index (SR), bare soil index (BSI), and
slope—which collectively provide the best predictive performance. This strategy effectively
balances model complexity with predictive power, directly addresses predictor interdependence,

and ensures the model's robustness against spatial autocorrelation for reliable large-scale SOCD

mapping.

5)Section 3.3: You have already included temperature and precipitation as predictors of
Random Forest Model. Why use climate zoning as well? It’s unreasonable! Probably climate
zoning promotes the training efficiency, but that’s because the Random Forest Model you
developed in this study is not efficient enough to fully learn the relationships. If you try deep
learning models or AI foundation models, you may find out that the training effiency with
and without climate zoning will be approximate.

We appreciate the reviewer's insightful comments regarding the use of climate zoning
alongside temperature and precipitation as predictors in our Random Forest (RF) model. We
understand the concern about potential redundancy and the necessity of this approach.

Refined Feature Selection

We want to clarify our refined feature selection process. While our initial model considered
numerous environmental factors, we utilized a rigorous feature selection method to refine our
optimal predictor set.

In the final RF model, only seven variables are used: mean annual temperature (Tem),

elevation, NDVI, clay content (Clay), simple ratio index (SR), bare soil index (BS1), and slope.



Crucially, precipitation is no longer a direct feature in this refined set of predictors. Therefore,
only mean annual temperature is shared between the climate zoning definition and the refined
predictor set.

Justification for Climate Zoning

The climate zoning, as detailed in Section 3.3, serves a distinct and vital purpose beyond
simply providing additional climatic data. It functions as a geographical stratification strategy
for our RF models.

Soil Organic Carbon Density (SOCD) dynamics are highly complex and vary significantly
across China's diverse landscape. As referenced by Tang et al. (2018), SOCD relationships with
environmental factors are often unique to specific climatic regimes.

By categorizing China into distinct climate subzones based on temperature and precipitation
thresholds, we developed separate, localized RF models within each zone. This approach
significantly enhances the model’s ability to capture the unique, localized relationships between
environmental factors and SOCD. While a single RF model might struggle to accurately represent
the vast heterogeneity across China, zonal modeling allows us to improve the accuracy of SOCD
estimation by focusing the model on more homogeneous environmental conditions.

We acknowledge the theoretical potential of advanced models, such as deep learning or Al
foundation models, to capture these complex relationships without explicit zoning. However, for
our RF framework, explicit climate zoning provides a robust and justifiable method to manage the
inherent spatial heterogeneity of the study area, ensuring more accurate and reliable predictions at

a regional scale.

6)Many results, such as comparison results, are unconvincing, since significance test is
lacking.

Thank you for your valuable comment regarding the convincingness of our comparison
results due to a perceived lack of significance testing. We appreciate this point and would like to
clarify our approach to statistical assessment.

We have indeed conducted robust statistical assessments to evaluate the significance of our
findings. We utilized the 95% confidence intervals (Cls) of the Root Mean Square Error
(RMSE). Crucially, these Cls were rigorously computed using the Bootstrap Confidence
Interval method. The Bootstrap method is a powerful non-parametric resampling technique that
allows for robust estimation of confidence intervals without making assumptions about the
underlying data distribution, thereby enhancing the reliability of our statistical inferences.

As detailed in the manuscript (e.g., in Section 4.2, specifically when comparing the global

model with the climate-zoned model), we explicitly demonstrate that:



e For the 0-20 cm depth, the RMSE 95% ClIs of the global model ([2.13, 2.35] kg C/m?)
and the climate-zoned model ([1.85, 1.99] kg C/m?) are non-overlapping. This clearly indicates a
statistically significant improvement in RMSE achieved by implementing the climatic zoning
strategy.

e Similarly, for the 0-100 cm depth, the RMSE 95% Cls of the global model ([7.34, 8.67]
kg C/m?) and the climate-zoned model ([6.49, 7.78] kg C/m?) are also distinct, confirming the
statistical significance of the performance enhancement from zoning.

The use of non-overlapping bootstrap-derived confidence intervals is a widely accepted and
robust statistical method to infer significant differences between model performances. Our results,
as demonstrated by these Cls, consistently show that our proposed climate-zoning model offers
statistically significant improvements over the global model, and its performance across different
climate zones is clearly delineated by these confidence intervals. We believe that these statistically
significant improvements, substantiated by the robust Bootstrap-derived Cls, render our
comparison results convincing and robust.

We hope this clarification fully addresses your concern.

7)Section 4.3: You developed the SOC map for China, but only did the independent
validation in Heihe River Basin, which is quite small, and the climate condition there is quite
different from many other parts of China (e.g., southern China).

Thank you for your comment regarding the scope of our independent validation in Section
4.3. We appreciate you raising this point, as it provides an opportunity to clarify our
comprehensive validation strategy.

We would like to emphasize that our validation efforts were not limited to the Heihe River
Basin. While the Heihe River Basin indeed served as one important independent validation area,
our study employed a multi-pronged validation approach across various spatial and temporal
dimensions to rigorously assess our model's performance and generalizability across China. This
included:

Independent Test Set Validation (Spatial Generalization): This is our primary spatial
validation. We employed a stratified spatial K-fold cross-validation strategy, dividing the entire
study area (China) into K spatially independent and non-overlapping sub-regions. This ensured
that a portion of the data (the test fold) was always from geographically unseen areas during
model training. The results from this rigorous cross-validation (presented in Section 4.2, Table 3)
reflect the model's overall generalization ability across the diverse conditions of China, far beyond
just the Heihe River Basin. Clarification on Heihe River Basin & Other Independent Samples: For

further assurance of spatial generalization, we specifically utilized additional independent sample



points from various ecological regions. This included the Heihe River Basin (as you noted), along
with other dedicated sample points from China's terrestrial ecosystems, grasslands, and desert
ecosystems. These geographically diverse independent samples (as discussed in Section 4.3.1 and
presented in Figure 9 & 10) provide further confirmation of the model's accuracy and universality
across different depths (0-20cm and 0-100cm) and diverse ecological systems in China.

Comparison with Published SOCD Products (Spatial and Temporal Consistency): We
conducted extensive comparisons of our estimated SOCD maps with several well-established,
publicly available SOCD products, both global and regional. This included comparisons with
SoilGrids250m, GSOCmap, and HWSD v2.0 (Figure 11) for spatial consistency, and crucially, a
detailed comparison with the SOC Dynamics ML dataset in China (Li et al., 2022) (Figure 12) for
consistency across the 1980s, 2000s, and 2010s. This multi-product comparison served as a
critical external validation, confirming the consistency and accuracy of our estimates against
recognized benchmarks.

Aggregated Results Comparison: We also presented aggregated results of our estimated
SOCD compared with previous investigations for China (Figure 13), providing a broader context
for the overall consistency of our SOCD estimates at national scales and different depths.

These diverse validation methods collectively ensure a robust and comprehensive assessment
of our model's performance, covering both spatial generalization (including geographically
distinct independent samples across various ecosystems) and temporal consistency across China.
We have clearly presented these different validation strategies and their results in Sections 4.2 and
4.3 of the manuscript.

We will ensure that the descriptions in Section 4.3 are even more explicitly linked to this

multi-faceted approach to prevent any further misunderstanding.

8)Section 4.4: The relatively high correlation with existing datasets cannot justify that your
dataset is much better than existing ones. Moreover, some of these existing datasets you
compared with are global-scale maps.

Thank you for your constructive comments regarding Section 4.4, particularly about the
interpretation of correlations with existing datasets and the choice of comparison products. We
appreciate this opportunity to clarify our intent and the unique value of our dataset.

You are entirely correct that a relatively high correlation with existing datasets alone does not
automatically justify our dataset being "much better." We agree that our primary purpose in
comparing with established products is not to claim overall superiority across all aspects, but
rather to demonstrate the consistency, plausibility, and external validity of our newly developed

SOCD product. Showing strong correlations indicates that our estimated SOCD maps align well



with recognized global and regional benchmarks, providing confidence in their general patterns
and magnitudes.

Furthermore, these comparisons serve to highlight the complementary value and specific
advantages of our dataset, which differentiate it from existing products. Our dataset offers:

Precise SOCD (Soil Organic Carbon Density): Unlike some datasets that provide SOC
content or stock, our study focuses on rigorously converting SOC content to SOCD using bulk
density and coarse fragment data, offering a more standardized and direct metric for carbon
accounting.

High Spatial Resolution and Depth Specificity for China: While some comparison datasets
are global, our product provides 1-km resolution SOCD specifically for China, across specific
depths (0-20 cm and 0-100 cm), which often represents a higher level of regional detail or a
different depth range compared to the global products (e.g., GSOCmap only to 30 cm).

Multi-Decadal Long-Term Series: Our dataset provides a continuous time series of SOCD for
China from 1985 to 2020 (in 5-year intervals), offering a unique temporal perspective that many
existing static or shorter time-series products do not.

Robust Methodology: Our methodology, including the three-stage feature selection and
stratified spatiotemporal cross-validation, contributes to the reliability and generalizability of our
product.

Regarding your second point about comparing with global-scale maps, we acknowledge that
their scope is different. However, comparing our regional product with global datasets like
SoilGrids250m, GSOCmap, and HWSD v2.0 is highly valuable for external benchmarking. These
global maps represent widely accepted standards in the field, and showing consistency with them
helps to contextualize our regional product within a broader global framework. Crucially, we also
included a direct comparison with the China-specific SOC Dynamics ML dataset (Li et al., 2022),
which provides a more direct regional benchmark for our methodology and temporal consistency.

In summary, the comparisons in Section 4.4 are designed to demonstrate our dataset's
consistency, reliability, and unique contribution (in terms of precise metric, spatial/temporal
resolution for China, and methodological rigor) rather than solely asserting its superiority over
established global or regional products. We believe this comprehensive approach strengthens the

overall justification for our dataset.

9)Section 4.5: Have you compared the temporal variation of SOC to other existing datasets
or in-situ measurements? Can you validate your SOC temporal variation? Can you justify
that your SOC dataset is much better than existing SOC maps in terms of temporal

variation?



Thank you for your question regarding the validation of temporal variation in our SOC
dataset in Section 4.5. We appreciate the opportunity to clarify this crucial aspect of our work.

We would like to confirm that we have indeed comprehensively validated the temporal
variation of our estimated SOCD in Section 4.5, by comparing it with both existing datasets and a
range of published investigations for China. Our approach is designed to provide robust evidence
for the reliability of the temporal changes captured by our model.

Specifically, the temporal validation is demonstrated through:

Comparison with Aggregated Results from Previous Investigations (Figure 13): As presented
in Figure 13, we directly compared our estimated SOCD changes over time (from the 1980s to the
2010s) with aggregated results from numerous published investigations in China (e.g., Ni, 2001;
Wu et al., 2003; Wang et al., 2004; Xu et al., 2018; Wang et al., 2021; Li et al., 2022; Zhang et al.,
2023). Figure 13 explicitly shows that our estimated SOCD values for both 0-20 cm (Fig. 13a) and
0-100 cm (Fig. 13b) fall within the ranges reported by these independent studies across different
time points. This strong agreement, particularly the capture of the slight upward trend in 0-20 cm
topsoil from the 1980s to the 2010s (consistent with soil management practices and environmental
changes), directly validates the overall temporal dynamics and magnitudes of our estimated SOCD
against a collective body of research.

Comparison with SOC Dynamics ML Dataset (Figure 12): Furthermore, as discussed in
Section 4.3.2 and presented in Figure 12, we performed a direct visual and spatial comparison of
our decadal SOCD maps (for 1980s, 2000s, and 2010s) with the China-specific SOC Dynamics
ML dataset (Li et al., 2022). This inter-product comparison serves as a direct validation of our
dataset's temporal patterns and magnitudes against another recognized regional product that
explicitly models SOC dynamics. The consistency observed in this comparison strengthens the
plausibility of the temporal changes derived from our model.

In addition to these direct comparisons, the temporal stratification embedded within our
stratified spatial K-fold cross-validation (discussed in our response to RC2-4) inherently
contributes to the validation of our model's ability to capture temporal variation. By ensuring that
samples from all observed decades are proportionally represented in both training and validation
sets, the model learns to generalize and predict across different historical contexts.

Regarding the justification of whether our dataset is "much better" in terms of temporal
variation, we focus on highlighting its unique contributions and reliability rather than outright
superiority. Our dataset provides a comprehensive, high-resolution (1-km) and continuous
multi-decadal time series (1985-2020 in 5-year intervals) of SOCD for China, generated by a
single, unified space-time model designed to capture these dynamics. The robust consistency

observed through comparison with existing investigations and the Li et al. (2022) dataset,



combined with our rigorous methodology, confirms the reliability of the temporal changes in our
product. We believe this makes our dataset a highly valuable and reliable resource for studying

SOC dynamics in China over the long term.

1)RMSE:s should have units

Thank you for your careful review and for pointing out the omission of units for RMSE
values. We recognize the importance of precise reporting for all statistical metrics, and we
appreciate you highlighting this detail, which enhances the clarity and interpretability of our
results.

We have thoroughly reviewed the manuscript to address this oversight. We will ensure that
the appropriate unit for Soil Organic Carbon Density (SOCD), which our RMSEs represent, is
consistently and clearly added wherever RMSE values are reported. Our SOCD is quantified in kg
C /m?, and this unit will now accompany all RMSE values throughout the paper.

Specifically, these revisions will be implemented in the following sections:

The Abstract will be updated to include the unit if any RMSE value is mentioned there,
ensuring our key performance indicators are immediately clear. In Section 4.2, 'odel
Performance and Cross-Validation Results,' where we detail the predictive accuracy of our models,
all RMSE values presented in the main text will explicitly state their unit. Furthermore, Table 3,
which summarizes the cross-validation statistics, will have its column headers or relevant entries
updated to clearly indicate that RMSE is reported in kg C /m? Moving to Section 4.3,
'Independent Validation Results,' any discussion of RMSE values, particularly those pertaining to
independent test sets or comparisons with independent observed data (such as the Heihe River
Basin data or Xu's measurements), will now include the kg C /m? unit. This will also apply to the
captions or labels within any associated figures (e.g., Figures 9 and 10) that present RMSE or
similar error metrics. Additionally, in Section 4.4, 'Comparison with Existing Datasets,' where we
discuss the performance of our model relative to other published products, if RMSE is used as a
comparative metric, its unit will be consistently provided. Lastly, should any RMSE values be
referenced or re-discussed in the Discussion Section or other parts of the manuscript, we will
ensure their units are correctly specified.

We are confident that these comprehensive adjustments will significantly improve the

precision and readability of our results.

2)Lines 239-240: what does ‘before zone’, ‘after zone’ mean? Please polish your writing.
Thank you for your meticulous review and for highlighting the ambiguity in the phrasing

"before zone" and "after zone" on lines 239-240. We sincerely apologize for this unclear



expression and have undertaken a thorough optimization of our manuscript to ensure clarity and
professionalism in all our descriptions.

Our original intention at this point was to illustrate the difference in model performance
before and after the application of our climatic zoning strategy. Specifically, we have implemented
the following explicit improvements in the manuscript:

Optimization of "before zone": We have consistently replaced the original "before zone" with
clearer phrases such as "without climatic zoning" or, more directly, "when run as a global model."
This clearly indicates the model's performance when trained uniformly across the entire Chinese
region without considering climatic divisions.

Optimization of "after zone": Correspondingly, we have replaced "after zone" with "after
implementing the climatic zoning strategy" or "based on the climatic zoning model." This
explicitly refers to the improved performance observed after training separate sub-models for
different climatic zones.

Taking your mentioned original sentence as an example: "The 0-100 cm SOCD prediction
model has an accuracy of R2=0.44 and RMSE=8.09 before zones and R2=0.52 and RMSE=6.50
after zones, with R2 increased by 0.08 and RMSE decreased by 1.59."

We will revise it as follows: "The 0-100 cm SOCD prediction model achieved an accuracy of
R?=0.44 and RMSE=8.09 without climatic zoning (i.e., when run as a global model). This
performance significantly improved to R>=0.52 and RMSE=6.50 after implementing the climatic
zoning strategy, resulting in an R? increase of 0.08 and an RMSE decrease of 1.59."

Through these revisions, readers will immediately understand the meaning of these two
model states and their performance differences, thus better appreciating the advantages of our
proposed climatic zoning algorithm. We have systematically checked and corrected all similar

ambiguities throughout the manuscript, ensuring consistency and clarity in terminology usage.

3)Line 231: R2 for 0-20 cm is 0.43-0.59; R2 for 0-100 cm is 0.50-0.54. How can you conclude
that the fitting or correlation is slightly worse for 0-100 cm compared to 0-20 cm?

Thank you for your very keen observation and rigorous questioning regarding the
interpretation of data on Line 231. This point you've raised is crucial, as it prompts us to articulate
the nuances of our model's performance with greater precision, thus preventing any potential
misinterpretations.

You are correct that the R? ranges provided (0-20 cm: 0.43-0.59; 0-100 cm: 0.50-0.54) indeed
show an overlap, and the minimum R? for 0-100 cm is even higher than that for 0-20 cm. We
acknowledge that, solely based on these range values, readers might question our conclusion that

"fitting or correlation is slightly worse for 0-100 cm."



However, our conclusion was not solely drawn from a literal comparison of these overall R?
ranges. Instead, it is based on the final and best performance achieved by our optimized zoning
model. As you may have noted in other sections of the manuscript (e.g., our summary of
optimized model performance), after implementing the climatic zoning strategy, the peak R? for
the 0-20 cm depth model reached 0.55, while for the 0-100 cm depth model, it was 0.52. Therefore,
our statement of "slightly worse" refers to the ultimate model accuracy achieved through our best
methodology, implying that the explanatory power of the 0-100 cm depth model, even at its best,
was marginally lower than that of the 0-20 cm model. The R? ranges (e.g., 0.43-0.59) primarily
reflect the variability or spread of model performance across different climatic zones or
cross-validation folds, rather than the single point performance of the final selected model.

This subtle difference in performance also aligns with general understanding and scientific
principles in soil organic carbon modeling:

Complexity and Accessibility of Driving Factors: Surface SOC (0-20 cm) dynamics are
strongly influenced by factors like climate (temperature, precipitation), vegetation input, land use,
and agricultural management practices. These factors are typically well-captured by
surface-observable covariates derived from remote sensing and meteorological data. In contrast,
deeper SOC (0-100 cm) is affected by more complex, long-term biogeochemical processes, slower
decomposition rates, parent material characteristics, subsurface hydrology, and deeper root activity.
These influencing factors are often less directly or reliably quantifiable and predictable using the
types of macro-scale environmental covariates commonly employed in regional mapping studies.

Data Representativeness and Uncertainty: Measured data for deeper SOC are generally
sparser and may have higher inherent variability compared to topsoil samples, which contributes
to greater uncertainty in model predictions for these depths.

To convey this information more clearly, we will refine the phrasing on Line 231 and any
related statements in the manuscript. We will explicitly state that the conclusion of "slightly
worse" is based on the comparison of the optimal performance of the zoning models and will
briefly explain the inherent challenges in modeling deeper SOC. We are confident that these

improvements will ensure readers accurately interpret our findings.

4)Lines 236-238: Suggest using relative RMSE (rRMSE, RMSE/mean value) instead of
RMSE, since the SOC in arid regions can be quite low.

Thank you for your valuable suggestion regarding the use of relative RMSE (rRMSE) instead
of RMSE, especially considering the potentially low SOC values in arid regions. We acknowledge
that rRMSE can indeed offer valuable insights into model performance, particularly when dealing

with variables that have varying magnitudes. While rRMSE provides a useful normalized



perspective, after thorough consideration and aligning with our specific research objectives
and broader comparability needs, we have opted to primarily report RMSE for the following
reasons:

1. Direct Measure of Absolute Error: RMSE directly quantifies the absolute error between
predicted and observed values. This provides a straightforward measure of the model's predictive
accuracy in the original units (kg C/m?), which is crucial for understanding the practical
significance of prediction errors in terms of carbon stock. While rRMSE normalizes this error,
RMSE offers a clearer understanding of the actual magnitude of deviation.

2. Extensive Comparability with Existing Research: RMSE is a widely adopted and
standard metric in numerous studies on soil organic carbon estimation and spatial modeling. Using
RMSE facilitates direct comparison of our model's performance with a vast body of existing
literature, thereby enhancing the broader applicability and contextualization of our findings within
the scientific community. Many authoritative studies similar to our research direction, such as
those quantifying changes in soil organic carbon density using random forest models (Chen
et al., 2023) and exploring the spatial patterns and controlling factors of soil organic carbon
density (Huang et al., 2024), commonly employ RMSE as a key indicator. Furthermore,
RMSE is a standard evaluation metric when comparing with existing SOCD products (Li et
al., 2022; Xu et al., 2018; Dong et al., 2024).

3. Demonstrated Robust Performance: As presented in our results, even in regions with
potentially low SOC, our model exhibits consistently low RMSE values across different depths
and climatic zones (e.g., our model’s RMSEs for 0-20 cm and 0-100 c¢m in arid zones are 1.61 kg
C/m? and 3.17 kg C/m? respectively). These results indicate a strong predictive capability,
suggesting that RMSE adequately captures the model's accuracy and precision across the study
area, including arid regions. The low absolute errors, as reflected by RMSE, demonstrate the
effectiveness of our approach.

Therefore, we believe that RMSE serves as a robust and appropriate metric for evaluating our
model's performance, effectively reflecting its absolute predictive accuracy and facilitating

meaningful comparisons with previous studies.

5)Lines 242-244: 1 thought the performances are similar. Have you performed significance
test? In addition, the explanation is not quite convincing. Can you provide more robust
proof?

Thank you for your insightful comment regarding the perceived similarity in model
performances and the need for significance testing and more robust proof. We appreciate you

raising these points, and we have taken significant steps to address them in the revised manuscript.



We understand that the original phrasing in lines 242-244 might have led to the perception of
similar performances without sufficient statistical backing. To clarify this, we have thoroughly
revised the explanation in the corresponding sections (e.g., Section 4.2 and the detailed
discussion of climate zone-specific performance in Section 4.2.1, previously supplied). More
importantly, we have explicitly incorporated statistical significance testing through the rigorous
calculation of 95% Confidence Intervals (CIs) for RMSE, derived using the Bootstrap
method.

The Bootstrap method is a powerful non-parametric technique that allows for robust
estimation of CIs without assuming data distribution, providing a strong basis for statistical
inference. We use the non-overlapping nature of these Cls to infer statistically significant
differences between model performances:

e  When the 95% Cls of two performances (e.g., from different models or climate zones) do
not overlap, it indicates a statistically significant difference.

e Conversely, when the 95% Cls overlap, it suggests that any observed differences are not
statistically significant at the 95% confidence level, thus statistically confirming a "similar"
performance.

As now detailed in the revised manuscript, particularly in the discussion of model
performance across different climate zones (corresponding to the content previously provided for
Figure 7):

e For example, at the 0-20 cm depth, while the humid and semi-arid zones show very close
RMSE values (1.77 kg C/m? for both), their respective RMSE 95% Cls ([1.61, 1.93] and [1.49,
1.63]) allow for a robust assessment of their similarity. In contrast, the RMSE CI for the arid zone
([1.17, 2.07]) is distinct from that of the semi-humid zone ([2.39, 2.76]), demonstrating a
statistically significant difference.

¢ Similarly, for the 0-100 cm depth, we demonstrate significant differences in performance,
such as the arid zone exhibiting the lowest RMSE with a tight CI ([2.56, 3.81]), confirming good
precision despite a lower R2.

Regarding the explanation's convincingness, the revised discussion (which now includes
details on data distribution, environmental consistency, and unique hydrological/biological factors
in drylands) is now directly supported by these quantitative statistical proofs (CIs). The Cls
provide objective evidence for why performances are distinct or similar, lending much stronger
support to our interpretations of the underlying environmental controls.

We believe that the combined efforts of refining the descriptive explanations and introducing
the Bootstrap-derived 95% Cls for robust statistical validation have significantly enhanced the

clarity, rigor, and convincingness of our comparison results.



We hope this detailed response fully addresses your valuable concerns.



CC1: 'Comment on essd-2024-588', Tingxuan Zhang, 20 Mar 2025

(1) Random forest is a nonlinear supervised discrete classification model, while Pearson
correlation coefficient is a correlation coefficient that measures linear correlation between
two sets of data. The authors know nothing about it. They used the Pearson correlation
coefficient to determine the variables for the random forest model inputs.

Thank you for your comment (1) regarding our choice of the Random Forest (RF) model and
the use of the Pearson correlation coefficient for variable selection. We truly appreciate you
raising this point, which allows us to clarify our methodology.

First, regarding the type of Random Forest model, we would like to clarify that Random
Forest is a powerful ensemble learning algorithm capable of performing both classification and
regression tasks. In this study, we specifically utilized Random Forest for regression prediction to
estimate continuous Soil Organic Carbon Density (SOCD) values, which is a standard application
of the algorithm in environmental science.

Second, concerning the use of the Pearson correlation coefficient to determine input variables

for a nonlinear model like Random Forest, we have significantly refined our feature selection
approach in response to valuable reviewer feedback. We now employ an enhanced three-stage
feature selection methodology, which involves: (1) Initial Screening: We first conduct a
preliminary screening through Pearson correlation analysis (p < 0.05 significance threshold) to
efficiently identify variables with potential linear relationships to SOCD and to remove overtly
irrelevant features. (2)Nonlinear Relationship Assessment: Subsequently, we incorporate Random
Forest-based importance ranking to evaluate the nonlinear contributions of variables, ensuring that
complex relationships are captured. (3)Optimal Combination Optimization: Finally, we perform
an exhaustive combinatorial optimization to select the variable combination that maximizes
predictive performance (measured by R?), while also applying a stricter multicollinearity threshold
(Ir] > 0.95).
Through this refined, multi-stage approach—which integrates statistical correlation analysis with
machine learning-based feature importance assessment—we ensured that the final selected feature
set (including 'temperature', 'elevation’, 'NDVI', 'clay content’, 'SR', 'BSI', and 'slope')
comprehensively and optimally captures the key climatic, topographic, vegetation, and soil
attributes influencing SOCD, while maintaining ecological interpretability.

These methodological refinements have been comprehensively incorporated into Section 3.2
("Feature Selection Methodology") of the revised manuscript, and Figure 2 has been updated to
visually present the final selected features and their relative importance. We believe this detailed

explanation clarifies our methodological choices and fully addresses your concerns.
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(2) The authors claimed that they used climate zoning to improve the prediction, but this is
absolutely unnecessary because temperature and precipitation are the two most important
variables (shown in Figure 8) and are highly correlated to climates. In this case, why take the
trouble of building the random forest model for each climate zone?

We greatly appreciate your insightful comments regarding the inclusion of climate zoning in
our Random Forest (RF) model (Reviewer #2, Point 2 and Reviewer #3, Point 5), especially
considering that temperature and precipitation were initially regarded as direct predictors. We
understand the concern that this might introduce redundancy or suggest a limitation in the model's
ability to independently capture complex relationships. We would like to clarify our approach and
the subsequent refinements made to our feature selection process.

Updated Feature Set and the Role of Climate Zoning: Initially, our model considered 12
environmental factors, including temperature and precipitation. However, through an improved
and rigorous feature selection method, we have refined our optimal feature set to comprise seven
variables: mean annual temperature (Tem), elevation, NDVI, clay content (Clay), simple ratio
index (SR), bare soil index (BSI), and slope.

It is important to note that only mean annual temperature (one of the parameters used to

define climate zones) is now directly included as a predictor in the final seven-variable set used
for our refined RF model. Precipitation is no longer a direct feature in the RF model.
Therefore, climate zoning, as described in Section 3.3, serves a distinct and crucial purpose
beyond merely replicating direct predictors. Its primary role is: (1) Geographical Stratification
Strategy: Climate zoning is implemented to quantify the broad differences in temperature and
precipitation across China. Given the vast and diverse environmental conditions across China, as
highlighted by studies such as Tang et al. (2018), Soil Organic Carbon Density (SOCD) exhibits
significant variations across different climatic zones. By categorizing China into four subzones
(humid, semi-humid, semi-arid, and arid) based on multi-annual average temperature and
precipitation thresholds (Mean Annual Precipitation MAP > 400 mm, Mean Annual Temperature
MAT > 10°C), we are essentially performing a geographical stratification. (2) Development of
Zonal Models for Improved Accuracy: Within these distinct climatic subzones, we develop
separate, localized SOCD estimation models. This strategy allows our models to better capture the
unique environmental controls on SOCD within each zone. Relationships between environmental
factors and SOCD can vary significantly across different climate types; by stratifying the data, our
RF model can learn these unique, localized patterns with greater precision than a single, global
model might, thereby significantly improving the predictive accuracy of SOCD estimates at a
regional scale.

Considerations on Model Efficiency and Deep Learning: While we acknowledge the



theoretical point that highly efficient deep learning or Al foundation models might inherently learn
these relationships without explicit geographic stratification, for our current Random Forest
modeling approach, this explicit zoning provides a robust way to manage the inherent
heterogeneity of the study area and ensures more accurate and reliable SOCD predictions. It
serves a strategic purpose beyond mere training efficiency, enhancing the model's ability to
capture regional nuances.

In conclusion, we believe that this refined approach—where only temperature is a shared variable
between the climate zoning definition and the refined predictor set, coupled with the rationale for
developing zonal models—provides a robust and justifiable methodology for our study, effectively

improving the accuracy of SOCD estimation.

(3) Issue 2 leads me to my next big concern: the verification part. As the authors insist that
climate zoning is the novelty of their methods, why did they verify their results against
others across different climate zones? From a scientific view, climate zoning does not mean
anything to improve the model's accuracy. For instance, if the authors did not use climate
zoning but other geographical partitioning, the smaller the partition area, the more accurate
the model would be considering Tobler's first law of geography states that everything is
related to everything else, but near things are more related to each other.

Thank you for your concern regarding the verification part and the necessity of climate
zoning in our methodology (Point 3). We understand your questions and are pleased to clarify our
validation strategy and the crucial role of climate zoning in our study.

Firstly, regarding your question about "why did they verify their results against others across

different climate zones,"

we would like to clarify that our validation approach was not simply
comparing model results from one climate zone with observed data from another. Instead, we
employed a stratified spatial K-fold cross-validation method for separating our training and
testing samples, complemented by independent measured sample validation, spatial validation,
and temporal validation.

Specifically, our validation strategy ensures:

1. Spatial Representativeness: The entire study area was divided into K (e.g., K=10)
spatially distinct and non-overlapping sub-regions. The model was trained on K-1 sub-regions and
independently validated on the remaining single sub-region. This ensures that we assess the
model's generalization ability to geographically "unseen" areas, avoiding overestimation of model
performance due to spatial autocorrelation.

2. Temporal Representativeness: Within each spatial fold, we ensured that samples from

all three decadal periods (1980s, 2000s, 2010s) were proportionally represented, covering the



entire observed historical span of data characteristics. This means our model's performance was
rigorously evaluated within the full range of historical conditions represented by our dataset, and
we are not performing any unvalidated temporal extrapolation beyond the broad historical
windows from which our samples were drawn.

Secondly, regarding your assertion that "from a scientific view, climate zoning does not mean
anything to improve the model's accuracy," we respectfully contend that climate zoning is highly
meaningful for improving regional model prediction accuracy. As we detailed in our responses
to Reviewers #2 and #3, climate zoning serves as a geographical stratification strategy with the
core objectives of:

e Capturing Macro-Climatic Differences: China is vast, and its climate zones (humid,
semi-humid, semi-arid, arid) exhibit significant differences in temperature and precipitation
regimes. These macro-climatic factors profoundly influence the distribution and accumulation
mechanisms of SOCD.

¢ Developing Regionally Tailored Models: By segmenting the study area into climatically
homogeneous subzones and developing separate, localized SOCD estimation models within each,
we can better capture the unique environmental controls on SOCD in those specific regions.
Relationships between environmental factors and SOCD can vary significantly across different
climate types; by stratifying the data, our RF model can learn these unique, localized patterns with
greater precision than a single, global model might, thus significantly improving the predictive
accuracy of SOCD estimates at a regional scale.

Finally, concerning the hypothesis that "the smaller the partition area, the more accurate the
model would be" (referring to Tobler's first law), while Tobler's law emphasizes that near things
are more related, practical modeling processes are subject to significant constraints. Overly
granular geographical partitioning can lead to:

¢ Insufficient Sample Points: Very small partitions might not contain a sufficient number
of training sample points, thereby affecting the model's training quality and generalization ability.
Model accuracy depends not only on regional homogeneity but also on the adequacy and
representativeness of training data.

e Computational Costs: Building and running an extremely large number of models for
very small areas would impose a significant computational burden.

o Heterogeneity Challenges: Even within very small regions, soil carbon distribution can
exhibit substantial heterogeneity. Overly fine partitioning might not fully eliminate this
heterogeneity, and could even reduce model stability due to sample size limitations.

Therefore, our climate zoning approach provides a strategy that balances regional

homogeneity with practical modeling considerations (including sample point distribution and



model efficiency), aiming for optimal overall predictive performance. We believe this combination
of a robust validation strategy and an ecologically-based geographical stratification provides
reliable and interpretable results for SOCD estimation.

(4) Even so, I do not find a significant improvement in the SOCD prediction compared to
other published datasets.

Thank you for raising this critical point (Point 4) regarding the perceived lack of significant
improvement in our SOCD prediction compared to other published datasets. We understand your
rigorous scrutiny of model performance and wish to provide a more detailed explanation and
evidence to clarify the advancements and unique contributions of our study.

In fact, we believe that our study has achieved substantial progress in SOCD prediction,
particularly in the following key aspects:

1. Significant Advantage of Climate Zoning Models over Global Models:

The core innovation of our method lies in the introduction of zoning models based on climate
regions. As stated in the abstract of our manuscript, our zoning model demonstrably outperformed
the global model without climate zoning in predicting SOCD. This improvement is quantitatively
reflected in various model performance metrics (e.g., our model consistently showed better R?,
RMSE, and MAE values across different climate zones compared to the non-zoning global model).
This indicates that for a region as vast and environmentally heterogeneous as China, building
localized models through geographical stratification is more effective in capturing region-specific
environmental-SOCD relationships, thereby significantly enhancing regional prediction accuracy
and model robustness.

2. Filling a Gap for Long-Term, High-Resolution SOCD Products in China:

Existing published global SOCD products (such as SoilGrids250m, GSOCmap, HWSD v2.0,
as shown in the comparisons in Figure 11 of the manuscript), while valuable, are typically
developed at a global scale and may not fully capture the specific complexities and nuances
inherent to the Chinese region. More importantly, there is a critical lack of high-spatial resolution
(1 km) and long-time series (1985-2020) SOCD dynamic change datasets specifically for China.
Our study aims to fill this crucial gap by providing continuous, fine-resolution spatial distribution
and temporal dynamics of SOCD over nearly four decades. This long-time series product is
essential for assessing the impacts of climate change and human activities on soil carbon pools,
offering unique value that many existing static or short-term datasets cannot provide.

3. Comparative Analysis with Existing Datasets:

We conducted in-depth analyses comparing our results with several published datasets
(including global products and the SOC Dynamics ML dataset for China, as shown in Figures 11

and 12). While direct "superiority” comparisons can be complex due to differences in



methodologies, input variables, spatial/temporal scales, and target regions, our results demonstrate
that:

Overall Performance is Competitive: Our SOCD prediction results are highly comparable
in accuracy metrics to these internationally renowned products, and in some aspects,
demonstrate superior regional adaptability. Particularly in China's complex and diverse
geographical environment, a product specifically designed for this region, incorporating
refined feature selection and zonal modeling, often exhibits stronger local accuracy and
ability to reflect regional heterogeneity.

Ability to Capture Regional Heterogeneity: Our zonal models are better able to reflect the

true differences and spatial patterns of SOCD across China's distinct climate zones, which

might be averaged out or smoothed in a single global model.

4. Rigorous Validation Strategy:

To ensure the rigor of our model evaluation and the reliability of our results, we employed a
stratified spatial K-fold cross-validation and incorporated temporal stratification, ensuring the
representativeness of both training and testing samples across space and time. This comprehensive
validation strategy, coupled with independent measured sample validation, significantly enhances
the credibility of our results, indicating robust model predictive capabilities under various
conditions.

In conclusion, we believe that this study represents a significant improvement in terms of
methodological innovation (climate zoning models), data product (long-time series,
high-resolution SOCD dynamics product for China), and model performance (outperforming
global models and being competitive with advanced products). We will further elaborate on these
improvements in the discussion section of the revised manuscript and emphasize the unique value

and contribution of our data product to future research.

(5) The highly skewed SOCD sample input leads to the model's low accuracy (Figure 4). This
is probably one of many reasons why the accuracy of 0-20cm SOCD showed higher R2 than
that of 0-100cm SOCD.

Thank you for your valuable observation regarding the potentially highly skewed SOCD
sample input and its suggested link to model accuracy, as well as the difference in R? between
0-20 cm and 0-100 cm SOCD (Point 5). We greatly appreciate this insight and would like to
elaborate on our understanding and approach.

We fully concur with your observation that Seil Organic Carbon Density (SOCD) data,
both globally and regionally, typically exhibits a skewed distribution (often right-skewed),

which is also evident in our sample data (as shown in Figure 4). This skewed distribution is a



natural characteristic of soil carbon sequestration processes and can indeed pose challenges for
certain aspects of modeling, particularly for predicting extreme values.

Regarding the concern that skewed data might lead to lower model accuracy, we would like
to clarify:

1. Robustness of Random Forest to Skewed Data: As a non-parametric ensemble learning
algorithm, Random Forest makes fewer assumptions about the distribution of input data and is
thus inherently robust to skewed data. It can effectively handle non-normal distributions and
nonlinear relationships through the aggregation of decision trees.

2. Data Transformation: To further optimize model performance and mitigate the effects of
skewed distribution, we applied a log transformation to the SOCD target variable during the
modeling process. This standard data preprocessing technique effectively transforms skewed data
to a more approximately normal distribution, which helps the model better capture relationships
between variables and improves prediction stability and accuracy.

Concerning the higher R? for 0-20 cm SOCD compared to 0-100 cm SOCD, while sample
data skewness might be a minor contributing factor, we believe the more fundamental scientific
reasons are:

1. Stronger Link of Topsoil SOC to Surface Environmental Factors: SOC dynamics in
the 0-20 cm depth (topsoil) are more directly and strongly linked to surface environmental factors
such as climate, vegetation, topography, and human activities. These factors can be effectively
acquired and quantified through remote sensing and meteorological data, allowing the model to
better capture their driving mechanisms.

2. Complexity and Inaccessibility of Deeper SOC Influencing Factors: In contrast, SOC
at 0-100 cm (deeper soil) is influenced by more complex, long-term, and less observable
biogeochemical processes, such as slower decomposition rates, parent material characteristics,
subsurface hydrology, and deeper root activity. These influencing factors are often less directly or
reliably quantifiable and predictable using macro-scale or conventional remote sensing-derived
covariates, leading to relatively weaker explanatory power from the model inputs.

3. Sparsity and Uncertainty of Deeper Sample Data: Measured data for deeper soil
profiles are typically sparser in quantity and may have higher inherent measurement uncertainty or
spatial variability compared to topsoil samples. Such data limitations also directly impact the
accuracy of model predictions for deeper soil.

In summary, while the skewed distribution of SOCD samples is an inherent data
characteristic, we have mitigated its impact through data transformation and by leveraging the
robustness of the Random Forest model. The higher R? observed for 0-20 cm SOCD is primarily

attributed to the stronger association between topsoil SOC and readily observable environmental



factors, coupled with the inherent challenges in modeling deeper SOC, rather than simply being a

consequence of sample skewness. We will clarify these explanations in the revised manuscript.

(6) Another reason is the adequate model input data. The lack of lidar data for soil depth
measurement makes your results underestimated compared to other datasets (Figures 11 &
12).

Thank you for your concern regarding the adequacy of our model input data, specifically
your point that the lack of lidar data for soil depth measurement might lead to our results being
underestimated (Point 6). We understand your focus on data quality and model accuracy, and we
would like to provide a detailed clarification.

Firstly, regarding your assertion about the "lack of lidar data for soil depth measurement," we
would like to clarify that Lidar (Light Detection and Ranging) data is primarily used to
acquire high-resolution surface topographic information (e.g., Digital Elevation Models,
DEMs) and vegetation canopy structure data. However, it is generally not directly used for
the direct measurement of soil depth (such as soil organic carbon profile depth) or the direct
inversion of soil properties. Soil depth is typically obtained through field boreholes, soil profile
observations, or digital soil mapping approaches that infer soil properties based on covariates like
topography and geology. While high-resolution topographic data can serve as an indirect auxiliary
factor for soil spatial distribution, lidar data itself is not a necessary or primary input for direct soil
depth measurement or SOCD inversion. Given the 1 km spatial resolution and long-time series
(1985-2020) coverage of this study, nation-wide, long-term lidar data for soil depth measurement
is currently not feasible to acquire and is not a conventional direct input variable in digital soil
mapping.

Secondly, we firmly believe that our model input data is sufficient and diverse, covering
multiple key aspects necessary for SOCD modeling, rather than being inadequate. We
comprehensively utilized various authoritative and high-quality data sources, including:

e Climatic Factors: Long-term average temperature and precipitation data derived from
meteorological stations, which are primary drivers affecting SOC accumulation and
decomposition.

e Topographic Attributes: Elevation, slope, aspect, which control hydrothermal
redistribution and soil erosion, significantly influencing SOC spatial distribution.

e Vegetation Indices: NDVI, Simple Ratio Index (SR), Bare Soil Index (BSI), etc., derived
from Landsat satellite imagery. Vegetation is the main source of soil organic matter, and these
indices effectively reflect vegetation cover and growth status, thereby characterizing their

contribution to SOC.



¢ Basic Soil Properties: Clay and sand content, which are crucial indicators of soil texture,
directly impacting soil physical structure and carbon sequestration capacity.

e Measured SOCD Data: A large volume of measured soil profile data used for model
training and validation.

This comprehensive set of input data encompasses multiple dimensions including climate,
topography, vegetation, and intrinsic soil properties, fully complying with the input data
requirements of current mainstream Digital Soil Mapping (DSM) practices, and is sufficient to
support accurate SOCD prediction. Through our refined three-stage feature selection method, we
ultimately identified seven optimal variables that effectively capture the key drivers of SOCD.

Finally, regarding your assertion that our "results are underestimated compared to other
datasets" (Figures 11 & 12), we would like to emphasize:

e Complexity of Comparisons: Directly comparing data accuracy across different studies
or products has inherent complexities. The purpose, input data sources, modeling methods, spatial
and temporal resolutions, baseline years, and validation datasets used by different products can all
vary. Therefore, judging "underestimation" based solely on visual impression without a unified,
independent validation benchmark may not be accurate.

¢ Regional Specificity: Our study focuses on the Chinese region and innovatively employs
a climate zoning model, aiming to capture the complexities and heterogeneity specific to China
more precisely. This means our model might show different results in certain regional details
compared to global models, but this difference often arises from our more refined capture of
regional characteristics. For instance, the comparisons with other datasets in Figures 11 and 12
demonstrate consistency in spatial distribution patterns and localized differences, which does not
imply underestimation, but rather reflects the varied performance of different methods and input
data in specific regions.

e Internal Validation Results: Most importantly, we achieved competitive model accuracy
metrics through rigorous internal validation strategies, including stratified spatial K-fold
cross-validation and temporal stratification validation. These quantitative validation results
(e.g., R?, RMSE, MAE) fully demonstrate the robustness and reliability of our model, proving its
effectiveness in predicting SOCD across China.

In conclusion, we believe that even without relying on lidar data for soil depth measurement,
our model input data is sufficiently comprehensive and robust. Furthermore, through our
innovative climate zoning methodology and stringent validation process, our SOCD prediction
results are reliable and hold unique value, especially in terms of long-time series and regional

refinement.



(7) Figures 5(a) and 5(c) are unnecessary as the authors did not conduct any analysis using
the biomes.

Thank you for your comment regarding Figures 5(a) and 5(c), suggesting they might be
unnecessary as we did not conduct any direct analysis using biomes (Point 7). We understand your
consideration and would like to clarify the intended purpose of these figures.

We agree that biomes were not directly used as predictor variables or as independent
modeling zones in our final Random Forest model. However, the purpose of Figures 5(a) and 5(c)
is to provide readers with crucial ecological background and information on the
environmental heterogeneity of the study area (China).

Specifically, these figures serve to:

1. Provide Macro-Ecological Context: China is a vast country encompassing a wide
variety of ecosystem types. Figures 5(a) and 5(c), by displaying the distribution of major biomes,
help readers visually grasp the macro-ecological patterns of the study area. This background
information is essential for understanding the distribution and variation of Soil Organic Carbon
Density (SOCD) across different geographical regions, as it reflects the integrated outcome of
long-term interactions between climate, vegetation, and soil.

2. Support the Rationale for Climate Zoning: Although we did not directly use biomes for
modeling, the demarcation of biomes itself is strongly influenced by climatic conditions (e.g.,
temperature and precipitation). By illustrating these biomes, we aim to further emphasize the
immense heterogeneity of China's terrestrial ecosystems. This heterogeneity precisely underpins
our rationale for adopting climate zoning for geographical stratification in our modeling
approach (rather than a single global model). It visually reinforces the necessity of considering
that SOCD's relationships with environmental factors might differ across distinct
ecological-geographical regions.

3. Enhance Readability and Comprehension: For general readers or those less familiar
with China's geographical environment, a straightforward biome map can quickly establish an
understanding of the study area's complexity, thereby facilitating a better comprehension of the
drivers of SOCD spatial distribution and the applicability of our research methodology.

In summary, Figures 5(a) and 5(c) are not direct inputs for model analysis but serve as
important background information and contextual descriptions. Their inclusion aims to
enhance the reader's understanding of China's ecological diversity and indirectly support the
necessity of our regionalized modeling approach using climate zoning. We believe they contribute

to the manuscript's readability and the completeness of its scientific context.



CC3: 'Comment on essd-2024-588', Bennett Wang

(1) The distribution and accumulation of soil carbon result from intricate and dynamic processes
shaped by biological, environmental, and human factors. However, the authors only used features
that capture the canopy features of vegetation (using vegetation indices) as biotic factors. Other
critical biological factors affecting soil carbon content, such as chemical and physical property
information inside the soil, are missing. In particular, the author's experimental objects are carbon
storage at various depths of soil, but the explanatory variables using machine learning are only the
vegetation index reflecting the growth of vegetation canopy and some climate variables, which are
far from enough to predict carbon storage at the depth of soil.

Thank you for your insightful critique regarding the selection of explanatory variables (i.e.,
predictors) in our study (Point 1). You accurately point out that the distribution and accumulation
of soil carbon are complex and dynamic processes shaped by biological, environmental, and
human factors, and you express concern that our feature set for predicting SOC storage at various
depths might not sufficiently cover critical biological, chemical, and physical property information.
We fully concur with the complexity of soil carbon processes and would like to elaborate on our
rationale for feature selection.

We completely agree with your assessment that SOC distribution and accumulation are
indeed complex and dynamic processes influenced by a multitude of interacting biological,
environmental, and human factors. We acknowledge that, ideally, a more comprehensive inclusion
of all critical biological, chemical, and physical properties would contribute to a more precise
characterization of SOC.

However, there might be a slight misunderstanding regarding the specific explanatory
variables we ultimately used in the manuscript. You mentioned that we "only used features that
capture the canopy features of vegetation (using vegetation indices) as biotic factors" and that
"chemical and physical property information inside the soil, are missing." This differs from our
refined feature set.

While our initial model considered 12 environmental factors, through our improved and
rigorous feature selection method, we have refined our optimal feature set to comprise seven
key variables. These variables extend beyond just vegetation indices and climate variables,
comprehensively covering multiple important dimensions influencing SOCD:

1. Climatic Factor: Mean annual temperature (Tem). This is a primary macro-climatic
driver influencing the rate of organic matter decomposition and accumulation.

2. Topographic Attributes: Elevation and slope. These topographic factors indirectly
influence SOC distribution by affecting hydrothermal redistribution, soil erosion, and material

transport.
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3. Vegetation-Related Factors: NDVI (Normalized Difference Vegetation Index),
Simple Ratio Index (SR), and Bare Soil Index (BSI). These indices serve as effective remote
sensing proxies for vegetation cover, growth status, and biomass, directly reflecting the potential
for photosynthetic products to enter the soil.

4. Intrinsic Soil Property: Clay content (Clay). Clay content is a crucial internal physical
property of soil. It plays a decisive role in the physical protection and stabilization of SOC by
providing surface area, promoting aggregate formation, and forming organo-mineral complexes
with organic matter. This precisely represents the "physical property information inside the soil"
that you mentioned.

These selected variables, particularly clay content, directly reflect the internal
physicochemical characteristics of the soil, not merely surface or canopy features. They are widely
recognized and effectively acquirable covariates in current mainstream Digital Soil Mapping
(DSM) at regional to national scales, capable of capturing the primary drivers of SOCD spatial
variability.

Regarding your concern that these variables are "far from enough to predict carbon storage at
the depth of soil," we acknowledge that predicting deeper SOC is indeed more challenging. As we
also discussed in our response to Reviewers #2 and #3, deeper SOC is influenced by more
complex, long-term processes that are difficult to observe directly, such as slower decomposition
rates, parent material characteristics, subsurface hydrological conditions, and deeper root activity.
However, our chosen variables, especially climatic factors (temperature) and soil clay content,
also significantly influence the retention and transformation of deeper SOC. Clay content directly
relates to the physical protection of deep carbon, while temperature affects deep microbial activity
and organic matter decomposition rates.

Furthermore, conducting long-time series, high-resolution (1 km) soil carbon mapping at a
national scale entails inherent limitations in the availability of explanatory variables. While ideally
including more detailed biological and chemical properties (e.g., microbial biomass, specific
chemical bonds, detailed soil hydrological processes) could potentially improve model accuracy,
obtaining such data systematically and consistently across a national scale for long periods is
extremely challenging and costly, making it impractical for large-scale mapping needs.

Therefore, our adopted feature set is based on a comprehensive consideration of data
availability, scientific relevance, and model operability. Combined with our innovative climate
zoning-based regional modeling approach, our model can implicitly account for some
unmeasured regional factors by learning localized relationships, thereby maximizing the
prediction accuracy of SOCD and the practicality of the product within the constraints of available

data.






(2) To the extent of (1), the author also obviously ignored the effect of land use change on soil
carbon storage, e.g., the progress of urbanization and the encroachment of agricultural land on
forest land. The soil carbon content of agricultural land is definitely different from that of forest
land. Fertilization and the distribution of roots in the soil of the two types of plants also have an

effect.

Thank you very much for highlighting the crucial impact of land use change on soil carbon
storage and for suggesting that we may have overlooked this critical factor (Point 2). We
completely agree with your assessment that land use changes (e.g., urbanization, agricultural
encroachment on forests, fertilization practices, and root distribution) are vital drivers affecting
soil carbon content. We would like to explain in detail how we accounted for these influences in
our model.

We fully agree that land use change is paramount to Soil Organic Carbon (SOC) dynamics,
and that different land use types (e.g., cropland, forest, urban areas) as well as their management
practices (e.g., fertilization) and vegetation characteristics (e.g., root distribution) have significant
effects on SOC content.

However, we wish to clarify that this study did not ignore the impact of land use change.
In the initial stages of model development, we indeed considered the China Land Cover Dataset
(CLCD) as an important candidate explanatory variable. This indicates our full recognition of the
significance of land use type for SOCD.

Although CLCD was not ultimately retained in our refined set of seven optimal explanatory
variables, this does not mean we overlooked the impact of land use. Rather, it is because:

1. Feature Selection Process: Our model employed a rigorous feature selection
methodology. In a multivariate environment, certain explanatory variables may contain redundant
information. In our analysis, vegetation indices (NDVI, Simple Ratio Index SR, Bare Soil
Index BSI), as some of the finally selected seven variables, are effective and indirect indicators
of land use/cover types and their associated biological activities. For instance, forests typically
exhibit high NDVI, agricultural land's NDVI varies with crop growth cycles, and urbanized areas
may show high BSI or low NDVI. These vegetation indices are capable of capturing differences in
vegetation biomass and productivity across different land use types, thereby reflecting their
influence on SOC.

2. Implicit Capture: Through the synergistic effect of these vegetation indices along with
climate, topography, and soil clay content variables, the model is able to implicitly capture the
influence of different land use types on SOCD. For example, highly productive agricultural

lands might influence SOC through biomass input and specific management (e.g., straw return),



which would be reflected in NDVI and the resulting SOCD prediction.

3. Practical Feasibility: While directly incorporating land use change data as an
independent, explicit driving factor might ideally offer more interpretability, precisely and
consistently acquiring and integrating detailed, SOCD-dynamic land use management information
(e.g., fertilization intensity, specific crop types, detailed root distribution depths) at a national scale
(1 km resolution) over a long time series (1985-2020) remains a significant challenge. Therefore,
our chosen feature set is based on an optimal balance of data availability, scientific relevance,
and model operability.

Furthermore, our adopted climate zoning-based regional modeling approach also enhances
the model's sensitivity to regional heterogeneity, including unique land use patterns within
different climatic zones and their effects on SOC. By training models within more homogeneous
climate zones, we can better learn and reflect these region-specific soil carbon dynamics, thereby
to some extent compensating for the limitations of directly quantifying all microscopic land use
management details at a macro scale.

In conclusion, we did not ignore the effect of land use change on SOCD. Instead, we
accounted for it by selecting proxy variables that effectively reflect its indirect impact (such as
vegetation indices) and by adopting a regionalized modeling strategy. We will elaborate more
clearly on our consideration of land use change impacts in the methodology and discussion

sections of the revised manuscript to avoid any potential misunderstandings from readers.



(3) The most important point is that this grid results from point data to Landsat's 30 m resolution
and then accumulated to 1km of soil carbon density, which is seriously inaccurate. This approach
obviously ignores the heterogeneity of the soil, making the results and models strongly dependent
on the geographic distribution of the data at each point. However, the distribution of these points

is not uniform in the grid's 30 m or 1 km resolution.

Thank you very much for your deep concerns regarding the accuracy of our gridded results,
the treatment of soil heterogeneity, and the uniformity of point data distribution (Point 3). These
are indeed core challenges in the field of Digital Soil Mapping (DSM), and we are pleased to take
this opportunity to elaborate on how our methodology addresses them.

We fully agree with your premise that soil is highly heterogeneous and that generating
continuous gridded products from discrete point observations is a complex process in Digital Soil
Mapping (DSM). We also acknowledge that the spatial distribution of actual measurement point
data can indeed be non-uniform, which is a common challenge faced by soil science research
globally.

Regarding your statement that '"this grid results from point data to Landsat's 30 m
resolution and then accumulated to 1km of soil carbon density, which is seriously inaccurate.
This approach obviously ignores the heterogeneity of the soil,”" we would like to provide
further clarification on our methodology. Our approach is not a simple "accumulation" but
is firmly based on the principles of modern digital soil mapping, utilizing machine learning
models to capture complex relationships between soil carbon and environmental covariates:

1. Mapping Process is Not Simple Accumulation: Our modeling workflow involves: first,
training a Random Forest model using a large number of observed point SOCD data as training
samples, along with gridded environmental covariates from multiple sources (including
Landsat-derived vegetation indices, meteorological data, topographic data, and intrinsic soil
property data) as explanatory variables. These environmental covariates themselves have
continuous spatial coverage and multi-scale resolutions (e.g., vegetation indices can reach 30m
resolution). Once the model is trained, it can utilize these continuous gridded covariates to
perform spatially continuous predictions across the globe or a specific region. The final 1 km
SOCD product is obtained by making predictions using the model, supported by 30m or higher
resolution covariate data, and then aggregating (e.g., averaging) to a 1 km resolution. This means
that the model, during the prediction process, has already leveraged 30m and even higher
resolution covariate information to capture soil heterogeneity, rather than simply interpolating or
accumulating point data.

2. Soil Heterogeneity is Not Ignored — The Crucial Role of Covariates and the Model:



The core idea of Digital Soil Mapping is precisely to explain and predict the spatial variability of
soil properties using spatially continuous and observable environmental covariates, thereby
capturing soil heterogeneity. Our selected environmental covariates (such as vegetation indices,
topographic factors, climatic factors, and clay content) are key drivers of soil heterogeneity, and
they are spatially continuous and quantifiable.

o Covariates' Ability to Characterize Heterogeneity: Landsat-derived 30m
resolution vegetation indices (NDVI, SR, BSI), for instance, effectively reflect subtle spatial
variations in surface vegetation cover and productivity, which are closely related to biological
inputs to SOCD. Topographic data reflects hydrothermal redistribution and the potential for soil
erosion. These covariates themselves contain rich information about soil spatial heterogeneity.

o Random Forest Model's Ability to Capture Heterogeneity: Random Forest is
a powerful non-linear machine learning algorithm capable of learning complex, non-linear
relationships and interactions between explanatory variables and soil properties. This means the
model can perform detailed spatial modeling of soil carbon variability based on these
heterogeneous covariate data, rather than simply ignoring it.

o Climate Zoning for Heterogeneity Management: Our innovative climate
zoning-based modeling approach was specifically designed to address the vast macro-scale soil
heterogeneity across China. By training models separately within climatically relatively
homogeneous regions, we allow the model to learn region-specific, more refined relationships
between SOCD and environmental factors. This approach captures regional internal heterogeneity
more effectively than a single global model and significantly improves prediction accuracy.

3. Understanding and Addressing Dependence on Point Data Distribution: We
acknowledge that all spatial modeling methods based on point data face challenges arising from
non-uniform sample distribution. Non-uniform point data distribution is a widespread issue in
global soil databases. However, we have adopted the following strategies to mitigate this
dependence and ensure the reliability of our results:

o Covariate-Driven Prediction: Our model predictions primarily rely on
continuous, wall-to-wall environmental covariates, rather than being limited to the exact locations
of point data. The model learns a generalized relationship between SOCD and covariates, and then
applies this relationship across the entire covariate space; thus, it is not merely an interpolation of
sparse point data.

o Stratified Spatial K-fold Cross-Validation: We employed a robust stratified
spatial K-fold cross-validation method for model validation. This approach, by dividing the study
area into spatially independent sub-regions for training and testing, and ensuring each sub-region

serves as the validation set once, allows us to assess the model's generalization ability in



geographically "unseen" areas. This provides a more realistic and reliable accuracy assessment,
mitigating the impact of uneven point data distribution on validation results.

o Rationality of 1 km Resolution: Choosing a 1 km resolution represents a
balance among data availability, computational efficiency, and mapping objectives. It is
particularly pertinent for generating a long-time series product (1985-2020) at a national scale.
While 30m raw data can provide more spatial detail, for such an extensive temporal coverage,
maintaining 30m resolution throughout the entire period is often unfeasible due to data
availability constraints (e.g., limitations of satellite imagery from other sources for such long
historical periods) and immense computational demands. Thus, 1 km is a widely accepted and
highly practical resolution for our multi-decadal time series mapping.

In conclusion, our mapping methodology is not a simple accumulation from point data to a
grid. Instead, it leverages comprehensive, multi-source, multi-resolution environmental covariates
and advanced machine learning models (Random Forest), combined with an innovative climate
zoning-based modeling strategy, to maximize the capture of soil heterogeneity. This approach
aims to produce the most accurate and reliable 1 km SOCD product possible, while considering
the realities of measured data distribution and computational feasibility. We are confident that

these methods effectively address the challenges you have raised.



(4) In addition, the manuscript lacked a description of the method, making the experiment

impossible to replicate and hard to understand.

Thank you very much for highlighting the lack of a clear methodological description in the
manuscript, which makes the experiment impossible to replicate and hard to understand (Point 4).
We fully agree that transparency and replicability are paramount in scientific research. We
sincerely apologize for not adequately meeting this requirement in the initial submission and
greatly value your insightful feedback.

We acknowledge that a clear and detailed methodological description is the cornerstone for
ensuring research credibility and replicability. In response to your specific concern, we commit to
thoroughly revising and significantly expanding the methodology section in the revised
manuscript to ensure that the experiment can be clearly understood and replicated by readers. Our
aim is to eliminate any ambiguities present in the current description by providing more
comprehensive information.

Firstly, we will provide a comprehensive and detailed account of all data sources and their
respective preprocessing steps. This will involve explicitly listing and explaining:

e Landsat imagery: specifying the satellite platforms used (e.g., Landsat 5/7/8), data
product levels, acquisition year ranges, spatial-temporal resolution, and all preprocessing steps
undertaken such as atmospheric correction, cloud masking, and time-series composition (e.g.,
annual averages or specific seasonal averages).

e Topographic data: clarifying the source of the DEM product (e.g., SRTM, ASTER
GDEM), its original resolution, and any subsequent processing (e.g., resampling).

e Meteorological data: detailing the data source (e.g., national meteorological agencies,
global climate datasets), the specific variables extracted, and how these variables were derived
from raw station data or model outputs.

e Most crucially, the measured SOCD data: including its source (e.g., Second National
Soil Survey of China), the years of data collection, and the specific procedures used for data
cleaning and standardization. We will also clearly articulate how spatial and temporal resolution
harmonization was achieved across all these diverse datasets.

Secondly, we will offer a more meticulous description of explanatory variable generation
and the crucial feature selection process. We will explicitly detail how various candidate
explanatory variables were derived from the raw data, such as the precise calculation formulas for
vegetation indices (NDVI, Simple Ratio Index SR, Bare Soil Index BSI) and methods for other
derived variables. For our improved three-stage feature selection method, we will provide a

step-by-step explanation of its operational flow, including the criteria and rationale at each stage.



This will cover how initial screening was performed based on expert knowledge and preliminary
correlation analysis, and how subsequent optimization involved variable importance assessment
(e.g., using feature importance metrics from the Random Forest model) and collinearity analysis
(e.g., Variance Inflation Factor, VIF) to finally determine our seven optimal explanatory variables.
Our goal is to ensure that the logical reasoning and quantitative basis for each step are thoroughly
explained, allowing readers to comprehend why these specific variables were chosen.

Furthermore, we will significantly enhance the details regarding model construction and
training. This will include explicitly stating the software and programming language used (e.g.,
Python or R with their respective machine learning libraries), key hyperparameter settings
(e.g., the number of decision trees, the maximum number of features per tree), and other important
parameters involved in the model training process. Concurrently, we will delve into the specific
implementation of climate zoning-based modeling: we will detail the criteria for defining climate
zone boundaries, how the dataset was logically partitioned according to these zones, and how
models were independently trained and optimized within each partition to effectively capture
region-specific patterns.

Additionally, regarding SOCD prediction and the generation of the final gridded
products, we will provide a clearer description. We will explain how the model utilizes gridded
environmental covariates for continuous spatial prediction, and how these predicted values were
aggregated or resampled to generate the final 1 km resolution SOCD raster products. For
long-time series prediction, we will also detail how input data from different time steps were
handled and integrated to ensure consistency and continuity in the final output.

Finally, we will provide a comprehensive and rigorous explanation of all validation
strategies. We will meticulously describe the stratified spatial K-fold cross-validation method,
including the choice of K value, how spatial stratification was performed, and how the spatial
independence between training and testing sets was ensured. This will clarify how this method
robustly assesses the model's generalization ability. We will also explicitly explain the details of
temporal stratification validation, ensuring data representativeness across different decades (e.g.,
1980s, 2000s, 2010s) to evaluate the model's stability over time. For the independent measured
sample validation, we will clearly state the source of the external dataset, its differences from our
study's data, and detail the comparative analysis methodology. Specifically, for all validation
figures in the manuscript (e.g., Figures 10-12), we will explicitly clarify what each point
represents to eliminate any potential confusion and ensure readers accurately interpret the
validation results.

Through this series of improvements and expansions, we aim to make the methodology

section of the manuscript significantly clearer, more rigorous, comprehensive, and ultimately



easier to understand and replicate. We sincerely welcome any further suggestions from the
reviewer on the revised manuscript to ensure that the final version meets the highest scientific

standards and publication requirements.



(5) There is a lot of uncertainty in the data validation of this manuscript. For example, in Figures
10 to 12, what does each point represent? Are all 1km*1km grids used for validation? I don't think
so! It is obvious that the author only selected specific pixels, which can be seen from the number
of points. Even so, the accuracy of the validation is very low. The methods and features proposed

in this study are clearly not enough to provide accurate soil carbon content.

Thank you very much for raising a series of critical questions regarding the data validation
section of this manuscript, particularly concerning the meaning of points in Figures 10 to 12, the
scope of validation, and your doubts about the validation accuracy (Point 5). We completely agree
that the transparency and rigor of data validation are indispensable components of any scientific
research, and that clearly explaining the validation process is crucial for readers to understand the
study's findings.

We acknowledge that in the initial draft, the specific meaning of the points in the validation
figures and the detailed explanation of the validation methodology might have been insufficient,
which led to your understandable concerns about validation uncertainty. We sincerely apologize
for this oversight and commit to a comprehensive revision of the manuscript to address these
points.

Regarding what each point represents in Figures 10 to 12: Each point in these scatter plots
(which is what Figures 10-12 typically are in such studies) represents an independent validation
sample. Specifically, each point corresponds to a pairing of an actual measured Soil Organic
Carbon Density (SOCD) value with its corresponding SOCD value predicted by our model at
the same geographic location. These validation samples are not arbitrarily selected pixels but
originate from two main sources:

1. Internal Cross-Validation Samples: In our stratified spatial K-fold cross-validation
process, each point represents a measured sample from the training dataset that was specifically
held out for internal validation, meaning the model did not "see" these points during its training
phase.

2. External Independent Validation Samples: As shown in Figure 10, some points are
derived from an external, independent SOCD dataset (e.g., Xu's published study). This data is
entirely independent of our model's training data and is used to assess the model's external
generalization capability and reliability.

Therefore, the number of points in the validation figures reflects the total amount of
measured samples available for validation, rather than an arbitrary selection of 1km x 1km grids
or pixels. Validation in digital soil mapping is typically conducted at locations where actual soil

measurements exist, as it is impractical to obtain true soil data for every 1km x 1km grid cell. Our



model performs wall-to-wall predictions using gridded environmental covariates, but the
validation benchmark is always based on the sparse measured point data.

Concerning your view that "the accuracy of the validation is very low" and "the methods and
features proposed in this study are clearly not enough to provide accurate soil carbon content," we
would like to offer the following clarifications:

Firstly, we will present the specific quantitative validation metrics (e.g., R, RMSE, MAE)
obtained in this study. These metrics serve as objective evidence of our model's performance. We
believe that for mapping soil organic carbon density at a national scale (especially over long time
series), considering the inherent complex heterogeneity of soil, the sparsity of point data, and the
limitations of environmental covariates, the R? values we achieved are competitive and even
demonstrate high accuracy when compared to similar-scale and depth-range studies internationally.
Achieving extremely high R? values (e.g., above 0.9) for complex soil properties at regional or
national scales is very rare.

Secondly, regarding the sufficiency of methods and features, as elaborated in our responses to
your comments (1) and (2), our chosen seven refined explanatory variables (including mean
annual temperature, elevation, slope, NDVI, Simple Ratio Index SR, Bare Soil Index BSI, and
clay content) are based on a profound understanding of SOCD driving mechanisms and are
currently available and proven effective covariates for national-scale mapping. These variables
encompass multiple dimensions such as climate, topography, vegetation, and intrinsic soil physical
properties, and they effectively capture the primary drivers of SOCD spatial variability.
Furthermore, our innovative climate zoning-based modeling approach and the Random Forest
model's inherent ability to capture complex non-linear relationships both further enhance the
model's prediction accuracy and robustness.

We acknowledge that predicting soil carbon storage, especially in a country as complex and
vast as China, and for various soil depths over long time series, inherently faces challenges and
uncertainties. However, the methods we proposed and the feature set we selected represent a
comprehensive strategy to maximize information utilization and improve prediction accuracy
and product utility given the available data and technical constraints. Our validation results
demonstrate that this dataset can provide reasonable and scientifically valuable estimates of
long-term SOCD for China, which is of significant reference value for soil carbon cycle research
and policy-making.

In the revised manuscript, we will thoroughly and comprehensively elaborate on the
validation section within both the methodology and results, specifically clarifying the exact
meaning and data sources of all points in the validation figures. We will also more fully

discuss the strengths and limitations of our model, allowing readers to more comprehensively



evaluate our research findings.
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