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(1) The distribution and accumulation of soil carbon result from intricate and dynamic processes

shaped by biological, environmental, and human factors. However, the authors only used features

that capture the canopy features of vegetation (using vegetation indices) as biotic factors. Other

critical biological factors affecting soil carbon content, such as chemical and physical property

information inside the soil, are missing. In particular, the author's experimental objects are carbon

storage at various depths of soil, but the explanatory variables using machine learning are only the

vegetation index reflecting the growth of vegetation canopy and some climate variables, which are

far from enough to predict carbon storage at the depth of soil.

Thank you for your insightful critique regarding the selection of explanatory variables (i.e.,

predictors) in our study (Point 1). You accurately point out that the distribution and accumulation

of soil carbon are complex and dynamic processes shaped by biological, environmental, and

human factors, and you express concern that our feature set for predicting SOC storage at various

depths might not sufficiently cover critical biological, chemical, and physical property information.

We fully concur with the complexity of soil carbon processes and would like to elaborate on our

rationale for feature selection.

We completely agree with your assessment that SOC distribution and accumulation are

indeed complex and dynamic processes influenced by a multitude of interacting biological,

environmental, and human factors. We acknowledge that, ideally, a more comprehensive inclusion

of all critical biological, chemical, and physical properties would contribute to a more precise

characterization of SOC.

However, there might be a slight misunderstanding regarding the specific explanatory

variables we ultimately used in the manuscript. You mentioned that we "only used features that

capture the canopy features of vegetation (using vegetation indices) as biotic factors" and that

"chemical and physical property information inside the soil, are missing." This differs from our

refined feature set.

While our initial model considered 12 environmental factors, through our improved and

rigorous feature selection method, we have refined our optimal feature set to comprise seven

key variables. These variables extend beyond just vegetation indices and climate variables,

comprehensively covering multiple important dimensions influencing SOCD:

1. Climatic Factor: Mean annual temperature (Tem). This is a primary macro-climatic

driver influencing the rate of organic matter decomposition and accumulation.

2. Topographic Attributes: Elevation and slope. These topographic factors indirectly

influence SOC distribution by affecting hydrothermal redistribution, soil erosion, and material

transport.
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3. Vegetation-Related Factors: NDVI (Normalized Difference Vegetation Index),

Simple Ratio Index (SR), and Bare Soil Index (BSI). These indices serve as effective remote

sensing proxies for vegetation cover, growth status, and biomass, directly reflecting the potential

for photosynthetic products to enter the soil.

4. Intrinsic Soil Property: Clay content (Clay). Clay content is a crucial internal physical

property of soil. It plays a decisive role in the physical protection and stabilization of SOC by

providing surface area, promoting aggregate formation, and forming organo-mineral complexes

with organic matter. This precisely represents the "physical property information inside the soil"

that you mentioned.

These selected variables, particularly clay content, directly reflect the internal

physicochemical characteristics of the soil, not merely surface or canopy features. They are widely

recognized and effectively acquirable covariates in current mainstream Digital Soil Mapping

(DSM) at regional to national scales, capable of capturing the primary drivers of SOCD spatial

variability.

Regarding your concern that these variables are "far from enough to predict carbon storage at

the depth of soil," we acknowledge that predicting deeper SOC is indeed more challenging. As we

also discussed in our response to Reviewers #2 and #3, deeper SOC is influenced by more

complex, long-term processes that are difficult to observe directly, such as slower decomposition

rates, parent material characteristics, subsurface hydrological conditions, and deeper root activity.

However, our chosen variables, especially climatic factors (temperature) and soil clay content,

also significantly influence the retention and transformation of deeper SOC. Clay content directly

relates to the physical protection of deep carbon, while temperature affects deep microbial activity

and organic matter decomposition rates.

Furthermore, conducting long-time series, high-resolution (1 km) soil carbon mapping at a

national scale entails inherent limitations in the availability of explanatory variables. While ideally

including more detailed biological and chemical properties (e.g., microbial biomass, specific

chemical bonds, detailed soil hydrological processes) could potentially improve model accuracy,

obtaining such data systematically and consistently across a national scale for long periods is

extremely challenging and costly, making it impractical for large-scale mapping needs.

Therefore, our adopted feature set is based on a comprehensive consideration of data

availability, scientific relevance, and model operability. Combined with our innovative climate

zoning-based regional modeling approach, our model can implicitly account for some

unmeasured regional factors by learning localized relationships, thereby maximizing the

prediction accuracy of SOCD and the practicality of the product within the constraints of available

data.





(2) To the extent of (1), the author also obviously ignored the effect of land use change on soil

carbon storage, e.g., the progress of urbanization and the encroachment of agricultural land on

forest land. The soil carbon content of agricultural land is definitely different from that of forest

land. Fertilization and the distribution of roots in the soil of the two types of plants also have an

effect.

Thank you very much for highlighting the crucial impact of land use change on soil carbon

storage and for suggesting that we may have overlooked this critical factor (Point 2). We

completely agree with your assessment that land use changes (e.g., urbanization, agricultural

encroachment on forests, fertilization practices, and root distribution) are vital drivers affecting

soil carbon content. We would like to explain in detail how we accounted for these influences in

our model.

We fully agree that land use change is paramount to Soil Organic Carbon (SOC) dynamics,

and that different land use types (e.g., cropland, forest, urban areas) as well as their management

practices (e.g., fertilization) and vegetation characteristics (e.g., root distribution) have significant

effects on SOC content.

However, we wish to clarify that this study did not ignore the impact of land use change.

In the initial stages of model development, we indeed considered the China Land Cover Dataset

(CLCD) as an important candidate explanatory variable. This indicates our full recognition of the

significance of land use type for SOCD.

Although CLCD was not ultimately retained in our refined set of seven optimal explanatory

variables, this does not mean we overlooked the impact of land use. Rather, it is because:

1. Feature Selection Process: Our model employed a rigorous feature selection

methodology. In a multivariate environment, certain explanatory variables may contain redundant

information. In our analysis, vegetation indices (NDVI, Simple Ratio Index SR, Bare Soil

Index BSI), as some of the finally selected seven variables, are effective and indirect indicators

of land use/cover types and their associated biological activities. For instance, forests typically

exhibit high NDVI, agricultural land's NDVI varies with crop growth cycles, and urbanized areas

may show high BSI or low NDVI. These vegetation indices are capable of capturing differences in

vegetation biomass and productivity across different land use types, thereby reflecting their

influence on SOC.

2. Implicit Capture: Through the synergistic effect of these vegetation indices along with

climate, topography, and soil clay content variables, the model is able to implicitly capture the

influence of different land use types on SOCD. For example, highly productive agricultural

lands might influence SOC through biomass input and specific management (e.g., straw return),



which would be reflected in NDVI and the resulting SOCD prediction.

3. Practical Feasibility: While directly incorporating land use change data as an

independent, explicit driving factor might ideally offer more interpretability, precisely and

consistently acquiring and integrating detailed, SOCD-dynamic land use management information

(e.g., fertilization intensity, specific crop types, detailed root distribution depths) at a national scale

(1 km resolution) over a long time series (1985-2020) remains a significant challenge. Therefore,

our chosen feature set is based on an optimal balance of data availability, scientific relevance,

and model operability.

Furthermore, our adopted climate zoning-based regional modeling approach also enhances

the model's sensitivity to regional heterogeneity, including unique land use patterns within

different climatic zones and their effects on SOC. By training models within more homogeneous

climate zones, we can better learn and reflect these region-specific soil carbon dynamics, thereby

to some extent compensating for the limitations of directly quantifying all microscopic land use

management details at a macro scale.

In conclusion, we did not ignore the effect of land use change on SOCD. Instead, we

accounted for it by selecting proxy variables that effectively reflect its indirect impact (such as

vegetation indices) and by adopting a regionalized modeling strategy. We will elaborate more

clearly on our consideration of land use change impacts in the methodology and discussion

sections of the revised manuscript to avoid any potential misunderstandings from readers.



(3) The most important point is that this grid results from point data to Landsat's 30 m resolution

and then accumulated to 1km of soil carbon density, which is seriously inaccurate. This approach

obviously ignores the heterogeneity of the soil, making the results and models strongly dependent

on the geographic distribution of the data at each point. However, the distribution of these points

is not uniform in the grid's 30 m or 1 km resolution.

Thank you very much for your deep concerns regarding the accuracy of our gridded results,

the treatment of soil heterogeneity, and the uniformity of point data distribution (Point 3). These

are indeed core challenges in the field of Digital Soil Mapping (DSM), and we are pleased to take

this opportunity to elaborate on how our methodology addresses them.

We fully agree with your premise that soil is highly heterogeneous and that generating

continuous gridded products from discrete point observations is a complex process in Digital Soil

Mapping (DSM). We also acknowledge that the spatial distribution of actual measurement point

data can indeed be non-uniform, which is a common challenge faced by soil science research

globally.

Regarding your statement that "this grid results from point data to Landsat's 30 m

resolution and then accumulated to 1km of soil carbon density, which is seriously inaccurate.

This approach obviously ignores the heterogeneity of the soil," we would like to provide

further clarification on our methodology. Our approach is not a simple "accumulation" but

is firmly based on the principles of modern digital soil mapping, utilizing machine learning

models to capture complex relationships between soil carbon and environmental covariates:

1. Mapping Process is Not Simple Accumulation: Our modeling workflow involves: first,

training a Random Forest model using a large number of observed point SOCD data as training

samples, along with gridded environmental covariates from multiple sources (including

Landsat-derived vegetation indices, meteorological data, topographic data, and intrinsic soil

property data) as explanatory variables. These environmental covariates themselves have

continuous spatial coverage and multi-scale resolutions (e.g., vegetation indices can reach 30m

resolution). Once the model is trained, it can utilize these continuous gridded covariates to

perform spatially continuous predictions across the globe or a specific region. The final 1 km

SOCD product is obtained by making predictions using the model, supported by 30m or higher

resolution covariate data, and then aggregating (e.g., averaging) to a 1 km resolution. This means

that the model, during the prediction process, has already leveraged 30m and even higher

resolution covariate information to capture soil heterogeneity, rather than simply interpolating or

accumulating point data.

2. Soil Heterogeneity is Not Ignored – The Crucial Role of Covariates and the Model:



The core idea of Digital Soil Mapping is precisely to explain and predict the spatial variability of

soil properties using spatially continuous and observable environmental covariates, thereby

capturing soil heterogeneity. Our selected environmental covariates (such as vegetation indices,

topographic factors, climatic factors, and clay content) are key drivers of soil heterogeneity, and

they are spatially continuous and quantifiable.

o Covariates' Ability to Characterize Heterogeneity: Landsat-derived 30m

resolution vegetation indices (NDVI, SR, BSI), for instance, effectively reflect subtle spatial

variations in surface vegetation cover and productivity, which are closely related to biological

inputs to SOCD. Topographic data reflects hydrothermal redistribution and the potential for soil

erosion. These covariates themselves contain rich information about soil spatial heterogeneity.

o Random Forest Model's Ability to Capture Heterogeneity: Random Forest is

a powerful non-linear machine learning algorithm capable of learning complex, non-linear

relationships and interactions between explanatory variables and soil properties. This means the

model can perform detailed spatial modeling of soil carbon variability based on these

heterogeneous covariate data, rather than simply ignoring it.

o Climate Zoning for Heterogeneity Management: Our innovative climate

zoning-based modeling approach was specifically designed to address the vast macro-scale soil

heterogeneity across China. By training models separately within climatically relatively

homogeneous regions, we allow the model to learn region-specific, more refined relationships

between SOCD and environmental factors. This approach captures regional internal heterogeneity

more effectively than a single global model and significantly improves prediction accuracy.

3. Understanding and Addressing Dependence on Point Data Distribution: We

acknowledge that all spatial modeling methods based on point data face challenges arising from

non-uniform sample distribution. Non-uniform point data distribution is a widespread issue in

global soil databases. However, we have adopted the following strategies to mitigate this

dependence and ensure the reliability of our results:

o Covariate-Driven Prediction: Our model predictions primarily rely on

continuous, wall-to-wall environmental covariates, rather than being limited to the exact locations

of point data. The model learns a generalized relationship between SOCD and covariates, and then

applies this relationship across the entire covariate space; thus, it is not merely an interpolation of

sparse point data.

o Stratified Spatial K-fold Cross-Validation: We employed a robust stratified

spatial K-fold cross-validation method for model validation. This approach, by dividing the study

area into spatially independent sub-regions for training and testing, and ensuring each sub-region

serves as the validation set once, allows us to assess the model's generalization ability in



geographically "unseen" areas. This provides a more realistic and reliable accuracy assessment,

mitigating the impact of uneven point data distribution on validation results.

o Rationality of 1 km Resolution: Choosing a 1 km resolution represents a

balance among data availability, computational efficiency, and mapping objectives. It is

particularly pertinent for generating a long-time series product (1985-2020) at a national scale.

While 30m raw data can provide more spatial detail, for such an extensive temporal coverage,

maintaining 30m resolution throughout the entire period is often unfeasible due to data

availability constraints (e.g., limitations of satellite imagery from other sources for such long

historical periods) and immense computational demands. Thus, 1 km is a widely accepted and

highly practical resolution for our multi-decadal time series mapping.

In conclusion, our mapping methodology is not a simple accumulation from point data to a

grid. Instead, it leverages comprehensive, multi-source, multi-resolution environmental covariates

and advanced machine learning models (Random Forest), combined with an innovative climate

zoning-based modeling strategy, to maximize the capture of soil heterogeneity. This approach

aims to produce the most accurate and reliable 1 km SOCD product possible, while considering

the realities of measured data distribution and computational feasibility. We are confident that

these methods effectively address the challenges you have raised.



(4) In addition, the manuscript lacked a description of the method, making the experiment

impossible to replicate and hard to understand.

Thank you very much for highlighting the lack of a clear methodological description in the

manuscript, which makes the experiment impossible to replicate and hard to understand (Point 4).

We fully agree that transparency and replicability are paramount in scientific research. We

sincerely apologize for not adequately meeting this requirement in the initial submission and

greatly value your insightful feedback.

We acknowledge that a clear and detailed methodological description is the cornerstone for

ensuring research credibility and replicability. In response to your specific concern, we commit to

thoroughly revising and significantly expanding the methodology section in the revised

manuscript to ensure that the experiment can be clearly understood and replicated by readers. Our

aim is to eliminate any ambiguities present in the current description by providing more

comprehensive information.

Firstly, we will provide a comprehensive and detailed account of all data sources and their

respective preprocessing steps. This will involve explicitly listing and explaining:

 Landsat imagery: specifying the satellite platforms used (e.g., Landsat 5/7/8), data

product levels, acquisition year ranges, spatial-temporal resolution, and all preprocessing steps

undertaken such as atmospheric correction, cloud masking, and time-series composition (e.g.,

annual averages or specific seasonal averages).

 Topographic data: clarifying the source of the DEM product (e.g., SRTM, ASTER

GDEM), its original resolution, and any subsequent processing (e.g., resampling).

 Meteorological data: detailing the data source (e.g., national meteorological agencies,

global climate datasets), the specific variables extracted, and how these variables were derived

from raw station data or model outputs.

 Most crucially, the measured SOCD data: including its source (e.g., Second National

Soil Survey of China), the years of data collection, and the specific procedures used for data

cleaning and standardization. We will also clearly articulate how spatial and temporal resolution

harmonization was achieved across all these diverse datasets.

Secondly, we will offer a more meticulous description of explanatory variable generation

and the crucial feature selection process. We will explicitly detail how various candidate

explanatory variables were derived from the raw data, such as the precise calculation formulas for

vegetation indices (NDVI, Simple Ratio Index SR, Bare Soil Index BSI) and methods for other

derived variables. For our improved three-stage feature selection method, we will provide a

step-by-step explanation of its operational flow, including the criteria and rationale at each stage.



This will cover how initial screening was performed based on expert knowledge and preliminary

correlation analysis, and how subsequent optimization involved variable importance assessment

(e.g., using feature importance metrics from the Random Forest model) and collinearity analysis

(e.g., Variance Inflation Factor, VIF) to finally determine our seven optimal explanatory variables.

Our goal is to ensure that the logical reasoning and quantitative basis for each step are thoroughly

explained, allowing readers to comprehend why these specific variables were chosen.

Furthermore, we will significantly enhance the details regarding model construction and

training. This will include explicitly stating the software and programming language used (e.g.,

Python or R with their respective machine learning libraries), key hyperparameter settings

(e.g., the number of decision trees, the maximum number of features per tree), and other important

parameters involved in the model training process. Concurrently, we will delve into the specific

implementation of climate zoning-based modeling: we will detail the criteria for defining climate

zone boundaries, how the dataset was logically partitioned according to these zones, and how

models were independently trained and optimized within each partition to effectively capture

region-specific patterns.

Additionally, regarding SOCD prediction and the generation of the final gridded

products, we will provide a clearer description. We will explain how the model utilizes gridded

environmental covariates for continuous spatial prediction, and how these predicted values were

aggregated or resampled to generate the final 1 km resolution SOCD raster products. For

long-time series prediction, we will also detail how input data from different time steps were

handled and integrated to ensure consistency and continuity in the final output.

Finally, we will provide a comprehensive and rigorous explanation of all validation

strategies. We will meticulously describe the stratified spatial K-fold cross-validation method,

including the choice of K value, how spatial stratification was performed, and how the spatial

independence between training and testing sets was ensured. This will clarify how this method

robustly assesses the model's generalization ability. We will also explicitly explain the details of

temporal stratification validation, ensuring data representativeness across different decades (e.g.,

1980s, 2000s, 2010s) to evaluate the model's stability over time. For the independent measured

sample validation, we will clearly state the source of the external dataset, its differences from our

study's data, and detail the comparative analysis methodology. Specifically, for all validation

figures in the manuscript (e.g., Figures 10-12), we will explicitly clarify what each point

represents to eliminate any potential confusion and ensure readers accurately interpret the

validation results.

Through this series of improvements and expansions, we aim to make the methodology

section of the manuscript significantly clearer, more rigorous, comprehensive, and ultimately



easier to understand and replicate. We sincerely welcome any further suggestions from the

reviewer on the revised manuscript to ensure that the final version meets the highest scientific

standards and publication requirements.



(5) There is a lot of uncertainty in the data validation of this manuscript. For example, in Figures

10 to 12, what does each point represent? Are all 1km*1km grids used for validation? I don't think

so! It is obvious that the author only selected specific pixels, which can be seen from the number

of points. Even so, the accuracy of the validation is very low. The methods and features proposed

in this study are clearly not enough to provide accurate soil carbon content.

Thank you very much for raising a series of critical questions regarding the data validation

section of this manuscript, particularly concerning the meaning of points in Figures 10 to 12, the

scope of validation, and your doubts about the validation accuracy (Point 5). We completely agree

that the transparency and rigor of data validation are indispensable components of any scientific

research, and that clearly explaining the validation process is crucial for readers to understand the

study's findings.

We acknowledge that in the initial draft, the specific meaning of the points in the validation

figures and the detailed explanation of the validation methodology might have been insufficient,

which led to your understandable concerns about validation uncertainty. We sincerely apologize

for this oversight and commit to a comprehensive revision of the manuscript to address these

points.

Regarding what each point represents in Figures 10 to 12: Each point in these scatter plots

(which is what Figures 10-12 typically are in such studies) represents an independent validation

sample. Specifically, each point corresponds to a pairing of an actual measured Soil Organic

Carbon Density (SOCD) value with its corresponding SOCD value predicted by our model at

the same geographic location. These validation samples are not arbitrarily selected pixels but

originate from two main sources:

1. Internal Cross-Validation Samples: In our stratified spatial K-fold cross-validation

process, each point represents a measured sample from the training dataset that was specifically

held out for internal validation, meaning the model did not "see" these points during its training

phase.

2. External Independent Validation Samples: As shown in Figure 10, some points are

derived from an external, independent SOCD dataset (e.g., Xu's published study). This data is

entirely independent of our model's training data and is used to assess the model's external

generalization capability and reliability.

Therefore, the number of points in the validation figures reflects the total amount of

measured samples available for validation, rather than an arbitrary selection of 1km x 1km grids

or pixels. Validation in digital soil mapping is typically conducted at locations where actual soil

measurements exist, as it is impractical to obtain true soil data for every 1km x 1km grid cell. Our



model performs wall-to-wall predictions using gridded environmental covariates, but the

validation benchmark is always based on the sparse measured point data.

Concerning your view that "the accuracy of the validation is very low" and "the methods and

features proposed in this study are clearly not enough to provide accurate soil carbon content," we

would like to offer the following clarifications:

Firstly, we will present the specific quantitative validation metrics (e.g., R², RMSE, MAE)

obtained in this study. These metrics serve as objective evidence of our model's performance. We

believe that for mapping soil organic carbon density at a national scale (especially over long time

series), considering the inherent complex heterogeneity of soil, the sparsity of point data, and the

limitations of environmental covariates, the R² values we achieved are competitive and even

demonstrate high accuracy when compared to similar-scale and depth-range studies internationally.

Achieving extremely high R² values (e.g., above 0.9) for complex soil properties at regional or

national scales is very rare.

Secondly, regarding the sufficiency of methods and features, as elaborated in our responses to

your comments (1) and (2), our chosen seven refined explanatory variables (including mean

annual temperature, elevation, slope, NDVI, Simple Ratio Index SR, Bare Soil Index BSI, and

clay content) are based on a profound understanding of SOCD driving mechanisms and are

currently available and proven effective covariates for national-scale mapping. These variables

encompass multiple dimensions such as climate, topography, vegetation, and intrinsic soil physical

properties, and they effectively capture the primary drivers of SOCD spatial variability.

Furthermore, our innovative climate zoning-based modeling approach and the Random Forest

model's inherent ability to capture complex non-linear relationships both further enhance the

model's prediction accuracy and robustness.

We acknowledge that predicting soil carbon storage, especially in a country as complex and

vast as China, and for various soil depths over long time series, inherently faces challenges and

uncertainties. However, the methods we proposed and the feature set we selected represent a

comprehensive strategy to maximize information utilization and improve prediction accuracy

and product utility given the available data and technical constraints. Our validation results

demonstrate that this dataset can provide reasonable and scientifically valuable estimates of

long-term SOCD for China, which is of significant reference value for soil carbon cycle research

and policy-making.

In the revised manuscript, we will thoroughly and comprehensively elaborate on the

validation section within both the methodology and results, specifically clarifying the exact

meaning and data sources of all points in the validation figures. We will also more fully

discuss the strengths and limitations of our model, allowing readers to more comprehensively



evaluate our research findings.
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