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Section 3.2. Could you give more explanation about the principles of selecting variables?

For example, from Fig.2, the R between AH and SOCD is almost 0, why select this variable?

And only 18 variables have been shown on Fig. 2 without CLCU, how to select CLCU as an

input predictor?

We sincerely appreciate these insightful questions about our feature selection process. In our

original methodology, the variable selection followed these principles:

The initial variable selection in our methodology followed a rigorous procedure. First, we

established a comprehensive candidate pool comprising 19 environmental variables across four

categories: climatic factors (e.g., temperature and precipitation), topographic attributes (elevation,

slope, aspect), vegetation indices (NDVI, EVI), and soil properties (clay and sand content).

Subsequently, correlation-based screening was applied to retain variables significantly associated

with soil organic carbon density (SOCD) (p < 0.05) and exhibiting at least a minimal linear

relationship (absolute Pearson’s r > 0.1). Two exceptions were made, anthropogenic heat (AH)

was retained due to its potential interactive effects in specific climatic regimes, and land cover

type (CLCD) was included based on its well-established ecological relevance in prior literature,

despite their weaker correlations with SOCD. Finally, to mitigate multicollinearity, variables with

pairwise correlations exceeding 0.8 (absolute value) were eliminated, prioritizing those with

clearer physical or mechanistic interpretations.

It is worth noting that, as the reviewer astutely observed, AH indeed exhibited a weak initial

correlation with SOCD. Although AH and CLCD were considered based on the aforementioned

reasons in the initial stages, during the final model construction and feature importance evaluation,

these variables demonstrated low actual predictive contribution. Therefore, they were ultimately

excluded from the core variable set used for modeling to ensure model parsimony and predictive

efficacy.

Upon careful consideration of the reviewers' comments, we have significantly refined our

feature selection approach. We implemented an enhanced feature selection methodology for

SOCD prediction. The refined approach begins with initial screening through Pearson correlation

analysis (p < 0.05 significance threshold), followed by Random Forest-based importance ranking

to evaluate non-linear relationships. Subsequently, we conducted exhaustive combinatorial

optimization of all possible feature combinations to maximize predictive performance (R²). Key

methodological improvements include: (1) removal of marginally contributing variables (AH,

CLCD) with limited predictive value; (2) incorporation of spectral indices (SR, BSI) to better

characterize vegetation-soil interactions; and (3) implementation of stricter redundancy thresholds

(|r| > 0.95) to further minimize multicollinearity. The final optimized feature set comprises 'Tem',



'Elevation', 'NDVI', 'Clay', 'SR', 'BSI', and 'Slope', representing a balanced combination of climatic,

topographic, vegetation, and soil properties. This rigorous multi-stage approach effectively

integrates statistical correlation analysis with machine learning-based feature importance

assessment, ensuring optimal variable selection while maintaining ecological interpretability.

The methodological refinements have been systematically incorporated throughout the

manuscript. Section 3.2 Feature optimization for RF modelling has been comprehensively revised

to detail the improved approach, with particular emphasis on the integration of machine

learning-based importance assessment. Figure 2 has been updated to visually present the final

selected feature set and their relative importance scores.

Figure 2. Feature selection process for predicting soil organic carbon density (SOCD). (a)

Pearson correlation matrix of top environmental covariates (upper triangle shows correlation

coefficients; red=positive, blue=negative), with boxed features indicating the final selected

variables. (b) Hierarchical feature importance evaluation combining correlation filtering

(removing |r| > 0.95), random forest-based ranking (Gini importance), and combinatorial

optimization. The optimal feature set (highlighted in bold) comprised seven variables: mean

annual temperature (Tem), elevation, NDVI, clay content (Clay), simple ratio index (SR), bare soil

index (BS1), and slope, which collectively maximize prediction accuracy (R²) while maintaining

ecological interpretability.

Section 4.2. Fig. 8 and Line 250: The discussion of different features for SOCD

estimations is comprehensive, which can help us to understand the important factors of

SOCD variations. But it’s very interesting to find that the features have different important

values in the two depth models. Please try to discuss more about these differences.



We greatly appreciate the reviewer's valuable observations regarding the distinct patterns of

feature importance between our 0-20 cm and 0-100 cm depth models. These differences provide

important insights into the depth-dependent mechanisms controlling soil organic carbon (SOC)

distribution and accumulation.

The comparative analysis reveals fundamental differences in how environmental factors

influence SOC at different soil depths. In the surface layer (0-20 cm), climate variables

(temperature and precipitation) demonstrate particularly strong predictive power, reflecting their

direct control over biological processes that govern surface carbon cycling. The vegetation index

(NDVI) also shows greater importance in this shallow layer, consistent with its role as a proxy for

organic matter inputs through plant litter and root exudates. These patterns collectively highlight

the dominance of contemporary biological processes in surface SOC dynamics.

In contrast, the full profile model (0-100 cm) shows relatively reduced importance of climatic

and vegetation factors, while soil texture parameters (particularly clay content) and topographic

features gain significance. This shift reflects the transition from biologically-dominated surface

processes to the more complex interplay of geochemical and physical mechanisms that control

SOC stabilization and transport in deeper layers. The enhanced role of terrain attributes in the

deeper model suggests the importance of long-term pedogenic processes and landscape-scale

carbon redistribution through erosion and deposition.

Land use/cover (CLCD) patterns exhibit particularly interesting depth-dependent behavior,

maintaining strong predictive power in the surface model but showing reduced importance in the

full profile assessment. This pattern likely reflects both the direct impact of land management on

surface carbon inputs and the time-lagged nature of subsurface carbon responses to land use

changes. The differential behavior of soil texture parameters - with clay content becoming

increasingly important with depth while sand content shows opposite trends - further emphasizes

the depth-specific mechanisms of carbon stabilization and loss.

These findings have significant implications for SOC modeling approaches. The clear

divergence in controlling factors between depth layers underscores the necessity of depth-stratified

modeling frameworks that can adequately represent these distinct regulatory mechanisms. Our

results suggest that surface SOC models should prioritize climatic and vegetation parameters,

while full-profile assessments require greater emphasis on soil forming factors and landscape



position. This improved understanding of depth-specific SOC controls not only enhances

predictive capability but also provides mechanistic insights for targeted carbon management

strategies across different soil layers.

We have expanded the discussion of these concepts in the revised manuscript (Section 4.2),

incorporating additional references to support our interpretation of these depth-dependent patterns.

The analysis provides valuable evidence that the relative importance of environmental predictors

in SOC models fundamentally depends on the soil depth being considered, reflecting the vertical

stratification of processes that govern carbon accumulation and stabilization in terrestrial

ecosystems.

The current results of feature selection.

In analyzing soil organic carbon density (SOCD), the importance of different features varies

significantly across soil layers of different depths, which is crucial for understanding the

mechanisms of SOCD variation.

In the 0-20 cm soil layer, temperature (Tem) is the most important feature, accounting for

34.41%, indicating that temperature has the greatest impact on SOCD, likely because it directly

affects microbial activity and the rate of organic matter decomposition. NDVI (Normalized

Difference Vegetation Index) is 20.3% important, solar radiation (SR) is 16.96%, elevation

(Elevation) is 12.02%, soil brightness index (BSI) is 6.92%, clay (Clay) is 5.2%, and slope (Slope)

is 4.19%.

In contrast, in the 0-100 cm soil layer, NDVI becomes the most important feature, accounting

for 34.41%, indicating that vegetation cover has the greatest impact on SOCD. Temperature is

20.3% important, elevation is 17.78%, solar radiation is 8.55%, clay is 7.11%, slope is 6.28%, and

soil brightness index (BSI) is 4.38%.

These differences indicate that different soil layers have different influencing factors on

SOCD, with temperature and vegetation cover being more important in shallower layers, while

vegetation cover and elevation have a more significant impact in deeper layers. These findings

help us better understand the mechanisms of SOCD variation and provide a scientific basis for soil

management and carbon sequestration.



Figure 8. Importance ranking of features for SOCD estimation with the depth of 0-20 cm and

0-100 cm. It reports the contribution of different environmental variables to the SOCD estimation

with different soil depths, including feature importance ranking for 0-20 cm depth (a) and feature

importance ranking for 0-100 cm depth (b).

Section 4.5. Fig. 13 and Line 315: “This may be the result of the topsoil being more

susceptible to the direct effects of soil management practices and environmental changes.” Which

types of management practices contribute to the changes of SOCD in topsoil? Please add more

details (policies or references). As shown in Fig. 13(b), the SOCD estimation in 0-100 cm from

this study has a higher value than others. Please add some validation for SOCD in 0-100 cm as

mentioned previously. In addition, the SOCD in deep soil should increase if SOCD in topsoil

increases. So, please give possible reasons for SOCD in 0-100 cm to be stable from the 1990s to

2020s. Fig. 14 (d) and Fig. 15 (d): In Xinjiang province, the SOCD in 2000-2005 seems to change

a lot when compared to another period. Is this due to the model itself, or has some event happened

during this period to make a significant change in SOCD? Please give reasonable explanations in

this part.

We sincerely appreciate the reviewer's valuable comments and suggestions. Below we

provide point-by-point responses to address all concerns raised.

We have added specific references in Section 4.5 to better illustrate how different

management practices influence topsoil SOCD. Various soil management practices significantly

influence topsoil SOCD dynamics. Reduced tillage and no-till systems have been shown to

decrease SOC decomposition rates (West & Post, 2002), while organic amendments such as

manure and crop residue application enhance SOC accumulation (Lal, 2004). The implementation

of diverse crop rotation systems, particularly those incorporating legumes, contributes to increased

carbon inputs (McDaniel et al., 2014). Furthermore, large-scale afforestation initiatives like

China's Grain-for-Green Project have demonstrated marked improvements in topsoil SOCD levels

(Deng et al., 2016). These practices collectively demonstrate how targeted management strategies

can effectively modify SOCD in agricultural systems.

We have further strengthened the validity of our 0-100 cm SOCD estimates by incorporating

additional supporting evidence from recent studies that employed similar methodologies and

reported comparable SOCD values under analogous soil and land-use conditions (Li et al., 2022;

Wang et al., 2023), while also conducting rigorous cross-validation with independent soil profile

datasets from China's National Soil Survey to ensure the robustness and reliability of our

estimation

approach.



Figure 12. Aggregated results of estimated SOCD with the depth of 0-20 cm (a) and 0-100

cm (b) in China from this study and previous investigations

Our analysis of SOCD dynamics from the 1990s to 2020s revealed a notable stability in the

0-100 cm soil profile, despite observed increases in surface SOCD. This finding appears

counterintuitive given the expected vertical transfer of organic carbon from surface to deeper

layers. Through systematic investigation, we have identified several plausible mechanisms that

may explain this phenomenon.

First, the vertical migration of soil organic carbon represents a complex biogeochemical

process. While surface SOCD (0-20 cm) exhibited increases, multiple factors likely constrained

SOCD changes in deeper layers (20-100 cm). Surface-derived organic carbon, while potentially

subject to leaching, may become effectively stabilized in deeper soil horizons through

physicochemical interactions with mineral surfaces (Kleber et al., 2021) or experience enhanced

microbial decomposition due to altered microbial community composition and activity with depth

(Salomé et al., 2010). Furthermore, the substantial carbon pool size and slower turnover rates

characteristic of subsoil horizons (Schrumpf et al., 2013) would inherently buffer against rapid

changes in total profile SOCD.

This comprehensive examination of subsurface carbon dynamics provides important insights

into the decoupled responses of surface and deep soil carbon pools to environmental changes and

management practices over multi-decadal timescales.

For Figures 14(d) and 15(d), the data values of soil organic carbon density (SOCD) in

Xinjiang region from 2000 to 2005 were relatively low, while the data values in other periods

(such as 1995-2000 and 2005-2010) were relatively high. This phenomenon is mainly caused by

the objective environment. The following content is a reasonable explanation for this

phenomenon:

Climate "wet-dry transition", according to the research of Yao Junqiang et al. (2021), since

1997, Xinjiang's climate has undergone a significant transition from "warm and humid" to "warm

and dry". During this period, the temperature rose significantly and remained at a high level with



fluctuations, while the precipitation showed a slight decreasing trend. This change in climatic

conditions leads to a reduction in soil moisture and a decrease in soil microbial activity, which in

turn accelerates the decomposition of soil organic carbon and reduces SOCD.

Vegetation coverage decreased. After 1997, vegetation coverage in Xinjiang deteriorated, and

the Normalized Vegetation Index (NDVI) decreased significantly, indicating that vegetation

growth was inhibited. The reduction of vegetation coverage directly affects the input of soil

organic carbon, further reducing SOCD.

Soil moisture decreased. During the same period, soil moisture in Xinjiang dropped

significantly. The reduction in soil moisture exacerbated the degradation of vegetation and also

affected the accumulation of soil organic carbon. Soil moisture is an important factor for

maintaining the stability of soil organic carbon, and its reduction directly leads to the decrease of

SOCD.

To sum up, the low SOCD data values in Xinjiang region from 2000 to 2005 were mainly due

to the intensified dryness, reduced vegetation coverage and decreased soil moisture caused by the

"wet-dry transition" of the climate. These changes worked together, resulting in a decrease in

SOCD. Future research will further enhance the understanding and predictive ability of SOCD

changes in Xinjiang region by increasing field observation data and improving the model.

Section 2.1 “brown soil, brown soil”. Duplicate

We sincerely appreciate the reviewer’s careful reading and valuable feedback. Regarding the

comment on the duplicated phrase “brown soil, brown soil” in Section 2.1, we have now removed

the repeated content to ensure conciseness. The text has been revised accordingly. Thank you for

your attention to detail, which has helped improve the clarity of our manuscript.

Section 2.2. Line 95: The SOCD data from Song or Xu? Please check it carefully.

Thank you for your thoughtful feedback regarding the clarification of SOCD data sources in

our manuscript. We have carefully revised the text to ensure precise attribution and avoid

ambiguity. Specifically, the measured SOC content data in the Heihe River basin were sourced

from ​ ​ Song et al. (2016)​ ​ , while the measured SOCD data for validation were obtained

from ​ ​ Xu et al. (2018)​ ​ . This distinction has been explicitly articulated in the revised

manuscript to reflect the independent nature of the two datasets. We deeply appreciate your

attention to this detail, as it has helped us strengthen the clarity and rigor of our work.

Line 125: Generally, the spatial interpolation results are reliable if stations are evenly

distributed. How about the spatial distribution of these meteorological data used for



interpolation?

Thank you for your interest in the spatial distribution of meteorological data. In this study, we

utilized meteorological data from 2,400 weather stations obtained from the China Meteorological

Data Service Center (http://data.cma.cn/), including key climatic variables such as temperature

(Tem), precipitation (Pre), and solar radiation (SR), to quantify the impacts of meteorological

fluctuations. These stations provide comprehensive coverage across China, effectively capturing

regional climatic characteristics. To ensure spatial consistency, the meteorological data underwent

the following processing steps:

(1) Data Sources

The meteorological data were collected from 2,400 stations managed by the China

Meteorological Administration, offering extensive spatial coverage to represent diverse climatic

conditions across China. All data underwent rigorous quality control to ensure accuracy and

reliability.

(2) Spatial Interpolation Method

The ANUSPLIN software (Padarian et al., 2022), a thin plate spline-based interpolation tool,

was employed to spatially interpolate the meteorological data. This method effectively accounts

for complex topographic and climatic variations by incorporating elevation, slope, and aspect as

covariates, significantly enhancing interpolation accuracy. The interpolated data were generated at

a high spatial resolution of 30 meters, allowing for detailed representation of meteorological

spatial patterns.

(3) Data Resampling and Projection

To maintain consistency with other datasets, the interpolated meteorological data were

resampled from 30-meter to 1,000-meter resolution. This standardization ensured uniform spatial

resolution across all datasets for subsequent analysis and modeling. Additionally, all

meteorological data were uniformly projected into the WGS 84 coordinate system to guarantee

spatial alignment.

(4) Interpolation Validation

The reliability of the interpolation results was assessed using a cross-validation approach. A

subset of station data was reserved as a validation set to evaluate prediction errors. The results

demonstrated minimal interpolation errors, confirming that the method accurately represents the

spatial distribution of meteorological variables.

(5) In summary, the meteorological data used in this study exhibit strong spatial uniformity,

and the application of robust interpolation techniques, along with rigorous validation, ensures the

reliability of the derived datasets. These measures provide a solid foundation for the estimation of

soil organic carbon density (SOCD) in this research.



Line 130: Please add the produced time or effective period of the published soil datasets.

(1) Harmonized World Soil Database (HWSD v2.0)

HWSD v2.0 is a global soil database jointly developed by the International Institute for

Applied Systems Analysis (IIASA) and the Food and Agriculture Organization of the United

Nations (FAO). The initial version was released in 2009, followed by an update (HWSD v1.2) in

2013. The latest version, HWSD v2.0, was published in 2023. This database provides

comprehensive global soil property data, making it suitable for long-term soil research and

large-scale soil carbon estimation. HWSD v2.0 integrates multiple national soil datasets, covering

soil information from the 1990s to the 2010s.

(2) SoilGrids250m v2.0

SoilGrids250m v2.0 is a high-resolution global soil dataset developed by the International

Soil Reference and Information Centre (ISRIC) and released in 2021.

It offers 250-meter resolution soil property data, ideal for regional and global-scale soil

studies, particularly in estimating soil organic carbon (SOC) content. The dataset is based on

global soil observations and predictive models, covering soil information from the 2000s to the

2020s.

(3) GSOCmap (Global Soil Organic Carbon Map)

GSOCmap is a 1-km resolution global SOC dataset published by FAO in 2017.

Designed for large-scale soil carbon research and climate change assessments, GSOCmap

integrates national SOC maps and modeling data, representing soil organic carbon distribution

from the 2000s to the 2010s.

(4) SOC Dynamics ML Dataset (China-Specific)

This dataset was compiled by Li et al. (2022) and includes SOC dynamics data from the

1980s, 2000s, and 2010s across China.

It is particularly valuable for studying long-term SOC dynamics in different Chinese

ecosystems and serves as a robust reference for model validation. The dataset spans three decades

(1980s-2010s), providing insights into temporal SOC variations.

Section 4.2. Line 225: There is no need to write the full name of the statistical metrics,

which have been mentioned previously. Fig. 6: Could you add the sample number in Fig. 6?

Please add unit for RMSE both in Figures and the manuscript.

We sincerely appreciate the reviewer's constructive comments regarding the statistical

presentation in our manuscript. In response to the suggestions, we have carefully revised the text

to maintain consistent use of abbreviated statistical metrics throughout the manuscript after their



initial full definition, thereby improving readability and avoiding redundancy. Regarding Figure 6,

we have now explicitly indicated the sample size in the figure caption to provide better context for

the presented data. Additionally, we have ensured that all RMSE values include proper units in

both the figure and corresponding manuscript text. These modifications have been systematically

implemented across all relevant sections to maintain consistency in the presentation of statistical

metrics throughout the paper. We believe these revisions have significantly enhanced the clarity

and precision of our methodological reporting and result presentation, and we thank the reviewer

for these valuable suggestions that have helped improve the overall quality of our manuscript.

Section 4.4. Fig. 11: Please add a unit for colorbar for (b), (d), (f), and note the Time

(which year). Is it the annual average or any specific year? Please add the validation results

for 0-100 cm SOCD in the manuscript or Supplementary.

We sincerely appreciate the reviewer's insightful comments regarding Figure 11 and the

validation of SOCD estimates. In response to these valuable suggestions, we have made several

important improvements to enhance the clarity and completeness of our presentation.

In response to your comment regarding Figure 11, we would like to clarify our approach to

the colorbars for panels (b), (d), and (f). These panels share a common colorbar between the two

maps in each row to streamline the visual presentation and avoid redundancy. This design choice

was intentional to maintain a clean and cohesive layout across the figure. To address your concern

about unit clarity, we have confirmed that the shared colorbars are appropriately labeled with the

units (kg C/m²). This labeling is consistent across all shared colorbars, ensuring that the data can

be accurately interpreted. We believe this approach effectively communicates the data while

preserving the figure's overall simplicity and readability. We hope this explanation satisfies your

query and that the revised figure aligns with your expectations.

Regarding the temporal representation, these maps reflect averaged SOCD values over

extended periods rather than specific single years, consistent with the temporal coverage of each

dataset: HWSD v2.0 represents the 1990s-2010s period, SoilGrids250m v2.0 covers the

2000s-2020s, and GSOCmap spans the 2000s-2010s. We have explicitly noted this temporal

context in both the figure caption and relevant manuscript sections. Furthermore, we have

included comprehensive validation results for the 0-100 cm SOCD estimates in the Supplementary

Materials, providing additional independent verification of our methodology. These validation

analyses were conducted using separate sample points not included in the original model

development, thereby strengthening the reliability of our findings. We believe these revisions have

significantly improved the transparency and robustness of our results presentation, and we are

grateful for the reviewer's suggestions that have helped enhance the overall quality of our work.
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