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Dear Editor, 

 

Thank you very much for your thorough review and valuable comments on our 

manuscript. Your insightful feedback has significantly contributed to improving the 

quality and clarity of our work. In response to your suggestions, we have rigorously 

revised the manuscript. The key modifications include: 

 

(1) Methodological Refinements: 

• Introduced a comparative analysis between time-series Landsat-derived LAI 

and stage-averaged LAI at field scale. 

• Added a dedicated section on feature selection methodology (Section 5.1). 

(2) Methodological Refinements: 

• Added relevant references to substantiate our approach and enhance the 

credibility of our methodology, providing stronger support for our research 

findings. 

 

The detailed point-to-point responses are as follows. Texts in black are the reviewer’s 

comments; those in blue are our responses to the reviewer’s comments; and those in 

red and italics are the revised texts appeared in the revised manuscript.  

 

 

Thanks, 

 

All our best, 

 

Xin Du 

 



The authors developed a deep learning model using a GRU architecture to predict crop 

yield, utilizing only two predictors: LAImean1 and LAImean2. Given the simplicity of 

these two predictors, it raises questions about how they can achieve high prediction 

accuracy. The authors should provide a more detailed explanation of the underlying 

reasons or mechanisms that enable such effective performance with just these two 

variables. 

 

Reply: Thanks for your suggestion. We have further clarified the reasons behind our 

use of two predictors (LAImean1 and LAImean2) in the revised manuscript. In addition, we 

have conducted a field-scale comparative analysis (Section 3.2 and 3.3.2) that directly 

evaluates the information loss from reducing full LAI time series to two stage-averaged 

features and the practical trade-offs involved. 

 

1. Time series vs. two-stages validation 

For each sample plot in 2022 and 2023, we first identified all available Sentinel-2 

observation dates and calculated their corresponding Development Stage Values (DVS). 

We then built two GRU model variants: (a) a full time series GRU that uses DVS-

aligned LAI sequences derived from the simulated soybean growth dataset, (b) a 

simplified GRU that uses two stage-averaged LAI features (LAImean1 (emergence to 

flowering), LAImean2 (flowering to maturity). 

 

Validation against in-situ yield observations (Fig. 5 and Fig. A4) showed that the time-

series GRU model achieved slightly better accuracy (RMSE = 224.81 kg ha⁻¹, MRE = 

7.50%), while the stage-averaged model remained competitive (RMSE = 287.44 kg ha⁻¹, 

MRE = 10.02%). The difference in MRE is around 3% across both years. 

 

2. Why two Stage-Averaged LAI remain effective 

In the revised manuscript, we have also added a new section in the Discussion (Section 

5.1: Selection of model input features) to elaborate on the design and evaluation of 

candidate predictors. 

 

We systematically evaluated a broad set of candidate predictors (LAI-based, 

transpiration-based (TRA), and soil moisture-based (SM) and four summary statistics 

(mean, max, median, cumulative sum) across vegetative, reproductive, and full-season 

segments (new Section 5.1), following the methodology present by Ren et al. (2023b). 

 

Notably, the results indicate that the two LAI-derived metrics—LAImean1 and 

LAImean2—outperformed those derived from either a single phenological stage or the 

entire growing season in terms of correlation with yield. This supports the findings of 

Ren et al. (2023b) highlighting the complementary value of combining vegetative and 

reproductive stage indicators. Conceptually, LAImean1 captures vegetative vigor 

(establishment and biomass accumulation, Kodadinne Narayana et al., (2024)), while 

LAImean2 reflects reproductive canopy status — together they summarize the two most 



yield-informative phases and mitigate the redundancy present in full sequences. 

 

3. Practical Constraints on Full Time-Series Feature Use 

Although full LAI sequences outperform stage-averaged inputs at local scale, their 

application at regional scale is constrained by (a) strong spatiotemporal heterogeneity 

of Sentinel-2 image availability (Fig. A1), which requires constructing a specific time-

series input for every site impartial, and (b) resource-intensive in computational and 

data-management for many different sequence-patterns. The two stage-averaged design 

is a phenology-informed compromise that preserves most predictive power while 

ensuring scalability and robustness to data gaps. 

 

4. Exclusion of TRA and SM Features 

While transpiration and soil moisture are relevant agronomic variables, they were 

ultimately excluded due to: 

• Lack of high-resolution, high-frequency remote sensing products (especially for 

TRA); and 

• Weak or inconsistent correlations with yield in our dataset, possibly due to 

indirect or stage-specific effects. 

 

In summary, our comparative experiment, expanded feature evaluation, and the 

discussion on practical limitations demonstrates that (a) the two stage-averaged LAI 

features are a computationally efficient choice for regional yield mapping, and (b) full 

time-series inputs offer modest accuracy gains that are best exploited at local scales or 

in contexts with dense, regular observations. We have added these results and the 

associated discussion in Section 4.2, Section 5.1, and Figures 5, A4, and A1. We also 

acknowledged the limitations on the two-stage average LAI in Section 5.4 and discus 

future improvements (Lines 637 – 642). 

 

We believe these additions and clarifications, supported by relevant literature, 

strengthen the methodological transparency and scientific rigor of our study. By 

selecting LAImean1 and LAImean2, we aimed to balance physiological interpretability with 

practical feasibility, ensuring that the model remains efficient and scalable for regional 

to continental applications using remotely sensed data. 

 

Thank you again for your valuable feedback. We look forward to your further comments 

and suggestions. 

 

Below is a part of the revised manuscript for your reference: 

 

3.2 Development of the Grated Recurrent Unit model (GRU) 

Trained on the simulated dataset, the GRU constructed based on TensorFlow 2.6 

linked simulated environmental inputs to yield outputs. For field scale yield estimation, 



we first identified all available Sentinel-2 observation dates for each sample plot based 

on its corresponding Sentinel-2 tiles in 2022 and 2023 (Table 1), and computed the 

development stage value (DVS) for each date (Section 3.3.1). As LAI is a key 

biophysical indicator of soybean photosynthetic capacity and productivity (Malone et 

al., 2002; Shi et al., 2025), we extracted LAI values at the corresponding DVS from the 

soybean growth dataset to construct DVS-aligned LAI time-series. These DVS-aligned 

LAI were served as inputs to the GRU model, with simulated yield used as the target 

variable. 
Table 1 DOY of available Sentinel-2 images for LAI extraction. 

Sentinel-2 tiles DOY 

Available Sentinel-2 data in 2022 

51UYP 118, 128, 138, 143, 158, 213, 218, 228, 253, 263, 268 

52TCT 105, 128, 138, 143, 158, 170, 193, 213, 218, 228, 235, 238, 245, 253, 263, 

270 

52TDQ 105, 117, 130, 140, 160, 222, 245, 250, 265, 270 

52TES 102, 110, 117, 130, 140, 162, 172, 187, 202, 207, 220, 240, 245, 252, 257, 

262, 270 

52TFR 104, 117, 129, 139, 159, 167, 187, 222, 229, 252, 257, 262, 269 

52TGS 107, 114, 119, 129, 161, 187, 222, 229, 232, 252, 257, 262, 269 

Available Sentinel-2 data in 2023 

51TWN 98, 103, 108, 113, 118, 121, 126, 138, 143, 148, 153, 163, 193, 211, 218, 226, 

231, 248, 253, 263, 268 

51TYM 98, 103, 113, 123, 128, 138, 143, 148, 193, 218, 248, 253, 258, 263, 273 

52TCT 98, 103, 125, 130, 138, 143, 173, 183, 193, 218, 235, 245, 250, 255, 263 

52TDP 102, 122, 127, 142, 165, 170, 187, 230, 245, 250, 255, 272 

52TDQ 112, 117, 130, 142, 165, 245, 250, 257, 272 

52TDT 105, 130, 137, 142, 147, 167, 177, 232, 245, 250, 255, 265, 272 

However, the spatiotemporal variability of Sentinel-2 image availability across 

regions posed challenges for regional-scale yield modelling, as constructing separate 

GRU models for each date combination demands considerable computational and 

storage resources. Accounting for the computational efficiency of the model in large 

areas, two stage-averaged LAI include LAImean1 (mean value of LAI during vegetative 

growth: emergence to flowering) and LAImean2 (mean value of LAI during reproductive 

growth: flowering to maturity), were calculated as inputs, while simulated yields acted 

as outputs. Boken and Shaykewich, (2002) has demonstrated the feasibility of 

estimating crop yield using average features derived from a specific phenological stage 

or from the entire growing season. To evaluate the effectiveness of the two stage-

averaged LAI in soybean yield estimation, we applied the GRU model trained by the 

two stage-averaged LAI to yield estimation at the field scale for comparison with model 

based on DVS-aligned LAI time-series, and further extended its application to the 

regional scale. 

3.3.2 Model estimations of soybean yield 

DVS-aligned LAI values derived from available Sentinel-2 data (Table 1) were 

firstly used as input of the GRU model for yield estimation at field scale. Meanwhile, 

averaged LAI values during the vegetative (LAImean1) and reproductive (LAImean2) 

growth stages were calculated and used as model input for estimations at both field and 

regional scales.  

4.2 Yield estimation at field scale 



The field scale performance of GRU models using full DVS-aligned LAI and two 

stage-averaged LAI was validated against in-situ measurement from 2022 and 2023 

(Fig. 5). The estimated yields exhibited strong agreement with observed yield, with R2 > 

0.65 (p < 0.01) in all scenarios. Validation results (Fig. 5 and Fig. A4) showed that the 

DVS-aligned GRU model achieved slightly better accuracy (RMSE = 224.81 kg ha⁻¹, 

MRE = 7.50%), while the stage-averaged model remained competitive (RMSE = 

287.44 kg ha⁻¹, MRE = 10.02%). The difference in MRE was around 3% across both 

years, suggesting that the simplified approach using two stage-averaged LAI was a 

feasible alternative for yield estimation.  

 
Figure 1: Scatterplots between estimated and observed soybean yield for 2022 and 2023. (a) and (b) show results 

for 2022 and 2023, respectively, using the full DVS-aligned LAI; (c) and (d) show results for 2022 and 2023, 

respectively, using two stage-averaged LAI. Error-bars represent one standard deviation indicating the 

uncertainty of yield estimations. The dashed line represents 1:1 line. ** denotes statistical significance at p < 0.01.  

5.1 Selection of model input features 

In this study, two stage-averaged LAI (LAImean1 and LAImean2) were selected as 

alternative input features to DVS-aligned LAI for soybean yield estimation. Although 

full LAI sequences yielded higher accuracy at local scale (Fig. 5 and Fig. A4) , their 

regional application was limited by (a) strong spatiotemporal heterogeneity of Sentinel-

2 image availability (Fig. A1), which required constructing a specific time-series input 

for every site impartial, and (b) resource-intensive in computational and data-

management costs associated with model training and maintaining models for many 

different sequence-patterns. The two stage-averaged LAI features are a 

computationally efficient solution for regional yield mapping, while full time-series 

inputs offer modest accuracy gains that are best exploited at local scales or where dense, 

regular observations are available. 

For further analysis, we systematically evaluated a broad set of candidate features 

derived from LAI, transpiration (TRA), and surface soil moisture (SM) extracted from 

the simulated soybean growth dataset. To develop a unified model suitable for long-



term and large-scale soybean yield estimation, we employed statistical summaries of 

these features rather than time-series features tied to specific image acquisition dates 

(as done by Du et al., (2025)). For each variable, four statistical descriptors— 

including mean, maximum, median, and cumulative sum—were calculated separately 

for the vegetative growth stage, the reproductive growth stage, and the whole growing 

season, following the approach of Ren et al., (2023b).  

As shown in Fig. 11, LAI-derived features exhibited consistently strong correlations 

with simulated yield (r = 0.54 to 0.88), reflecting the role of LAI as a critical proxy for 

canopy development, light interception, and biomass accumulation (Cao et al., 2025; 

Shi et al., 2025). The multi-spectral retrieval of LAI therefore effectively characterizes 

both structure and physiological status of the crop canopy, supporting its dominant 

predictive power in our feature set.  

Notably, the two stage-averaged LAI (LAImean1 and LAImean2) exhibited stronger 

correlations with yield than features derived from either single phenological stage or 

the entire growing season, which is consistent with Ren et al., (2023b). Conceptually, 

LAImean1 captures vegetative vigor (establishment and biomass accumulation, 

Kodadinne Narayana et al., (2024)), while LAImean2 reflects reproductive canopy status. 

These two features jointly summarize the two most yield-informative phases and 

mitigate the redundancy present in full sequences. Among the candidate features, mean-

based features outperformed maximum, median, and cumulative counterparts. This 

likely due to their lower sensitivity to extreme values and day-to-day fluctuations, 

making them a more stable and representative indicator of canopy conditions across 

the two growth periods.  

While some TRA-based features (e.g., TRAsum) showed relatively high correlation 

with yield, they were excluded owing to practical constraints. Current TRA retrieval 

methods primarily rely on thermal-infrared remote sensing, which typically has coarse 

spatial and temporal resolution (Hou et al., 2018; Zhang, 2003) limiting its utility for 

high-resolution, regional mapping. Similarly, SM-related features showed weak or 

inconsistent correlations with yield across growth stages in our simulations, indicating 

a limited direct influence on soybean yield production under modeled conditions. 

In summary, to optimize model inputs for efficient, large-scale applications, and to 

facilitate the generation of soybean yield dataset, the two stage-averaged LAI features 

(LAImean1 and LAImean2) were selected. This selection balances physiological relevance 

and temporal specificity with strong predictive performance and practical feasibility, 

enabling competitive yield estimation using only two interpretable, remotely sensed 

retrievable predictors. 



 

Figure 2: The absolute Pearson correlation coefficients between each candidate feature and simulated soybean 

yield, grouped by growth stages: (a) vegetative growth stage; (b) reproductive growth stage; (c) vegetative growth 

stage combined reproductive growth stage and (d) whole growing season, respectively. 

5.4 Limitations and future developments 

Third, using the two stage-averaged LAI introduces additional sources of 

uncertainty in yield estimation. Excessive temporal aggregation inevitably obscures 

growth dynamics. Different growth trajectories can produce similar stage-based LAI 

yet correspond to different yields, increasing the risk of non-unique LAI for spatially 

yield mappings. This simplification also limits the modelling capacity of GRU 

architectures, which are specifically designed to exploit sequential dependencies in 

time series inputs. Future work can explore hybrid approaches that combine stage-

based summaries with higher-frequency or full-season time series of vegetation 

indicators to improve both interpretability and yield prediction robustness.   

 



 

Figure A1: Spatial distribution of the number of available Sentinel-2 images per pixel for each year: vegetative 

growth stage (top) and reproductive growth stage (bottom) (a) and yearly averages for each growth stage with 

error-bars representing spatial standard deviation across pixels within the study area (b). 

 

Figure A2: Comparison between estimated and observed yield (2022 + 2023). (a)shows the estimates using the 

full DVS-aligned LAI and (b) shows the results using two stage-averaged LAI. The error-bars represent one 

standard deviation indicating the uncertainty of yield estimations. Dashed lines represent 1:1 line. ** denotes 

statistical significance at p < 0.01. 
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