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Dear Reviewer, 

 

Thank you very much for your thorough review and constructive feedback on our 

manuscript. We have carefully addressed each comment and suggestion to refine our 

work, enhance its clarity and strengthen its scientific contribution. The key revisions 

include: 

 

(1) The abstract was refined to emphasize the research goals, methodology, and key 

findings more clearly. 

(2) The introduction was improved by better structuring the background information, 

and clearly stating the novelty of the proposed hybrid framework for soybean yield 

estimation. 

(3) The clarity and presentation of figures were improved by enhancing the resolution 

and redesigning the layout. 

(4) The Discussion and Conclusion section was revised to better highlight the 

advantages of the research and provide a more concise summary of the key findings, 

emphasizing the effectiveness of the proposed hybrid framework. 

 

The detailed point-to-point responses are as follows. Texts in black are the reviewer’s 

comments; those in blue are our responses to the reviewer’s comments; and those in 

red and italics are the revised texts appeared in the revised manuscript.  

 



This study presents a well-structured and logically organized framework for high-

resolution soybean yield estimation. The combination of process-based modeling with 

deep learning offers a novel perspective for enhancing agricultural monitoring 

capabilities. The objectives are clearly articulated, with a strong focus on improving 

soybean yield data accuracy to support agricultural decision-making and production 

optimization. The methodological approach is rigorous, leveraging diverse production 

scenarios to train the GRU model and applying time-series Sentinel-2 data for large-

scale yield estimation. The evaluation using in-situ measurements and government 

statistical data provides strong validation, and the reported accuracy metrics indicate 

reliable model performance across spatial and temporal scales. There are some 

suggestions as follows, which can be considered for further improvement of the 

manuscript. 

 

Reply: Thank you for your thorough review and recognition of our work. We have 

carefully considered them in our revisions to enhance the quality and clarity of the 

manuscript.  

 

The research is well-founded and presents significant innovations. However, the 

abstract and introduction sections could benefit from more professional and polished 

language to enhance readability and better highlight the study’s contributions. 

Refining the writing style would improve clarity, strengthen the articulation of the 

research objectives, and more effectively emphasize the novelty of the proposed 

hybrid framework. 

 

Reply: Thank you for your insightful comments and suggestions. In response to your 

valuable feedback, we have carefully refined the abstract and introduction sections to 

enhance the readability of the manuscript.  

 

In the revised sections, we have improved the description of the technological 

background, providing a clearer discussion of data-driven and knowledge-driven 

approaches in crop yield estimation, along with their respective limitations. The 

revision ensures a more seamless transition into our research objectives and highlights 

the advantages of the proposed hybrid model for yield estimation. These 

modifications improve the overall coherence of the manuscript and better emphasize 

its scientific contributions.  

 

Abstract. Accurate monitoring of crop yield is critical for ensuring food security. 

While various yield datasets covering Northeast China exist, they were produced at a 

coarse spatial resolution and remain inadequate for capturing small-scale spatial 

heterogeneity. Current yield estimation methods, such as machine learning models 

and the assimilation of remotely sensed biophysical variables into crop growth models, 

are heavily reliant on ground observations and computationally expensive. To address 

these limitations, we propose a hybrid framework that couples the World Food Studies 

Simulation Model (WOFOST) and a Gated Recurrent Unit (GRU) model to generate 



a high-resolution (20 m) soybean yield dataset in Northeast China from 2019 to 2023 

(NortheastChindaSoybeanYield20m). First, to generate a comprehensive training 

dataset, WOFOST was employed to simulate diverse soybean growth scenarios by 

accounting for variations in climates, crop varieties, soil types and agro-

managements practices. The GRU model was then trained to establish relationships 

between model simulated leaf area index (LAI) and soybean yield. The trained model 

was applied to estimate soybean yield in Northeast China using time-series LAI 

derived from Sentinel-2 at key growth stages. The accuracy of estimates was 

evaluated using in-situ measurements and government statistical data. The overall 

accuracy was 287.44 kg ha-1 and 272.36 kg ha-1 in the root mean squared error 

(RMSE) for field and regional scale, respectively. The model exhibited consistent 

interannual stability, with mean relative error (MRE) averaging 11.46 % and 7.94% 

at the municipal scale and the provincial scale, respectively. The dataset effectively 

captured spatiotemporal yield variability, offering potentials for optimizing soybean 

production, guiding precise agriculture practices, and informing agricultural policy. 

The NortheastChinaSoybeanYield20m dataset is publicly available at 

https://doi.org/10.5281/zenodo.14263103 (Xu et al., 2024). 

 

1 Introduction 

Soybean is a crucial crop for both food and oil production, providing more than a 

quarter of the world's edible protein (Graham and Vance, 2003). Global demand for 

soybean is projected to increase by 46 % by 2050, driven by rapid population growth 

(Falcon et al., 2022). As an major traded agricultural commodity, soybean production 

in key exporting nations has wide-reaching effects on international markets, and can 

significantly influence agricultural economies worldwide (Qiao et al., 2023). Notably, 

China is the world's largest consumer of soybeans (FAOSTAT, 2022), and its soybean 

demand relies heavily on international trade (Zhao et al., 2023). Consequently, 

accurate monitoring of soybean yield is vital for promoting sustainable agriculture, 

ensuring food security, and maintaining economic stability from regional to global 

scale. Moreover, effective yield monitoring and mapping supports farmers by 

informing field management practices, bolstering agricultural insurance and 

enhancing poverty alleviation initiatives (Zhuo et al., 2022). 

Remote sensing data provides time-series observations for crop yield estimation 

across multiple scales (e.g., field, regional and national) (Dong et al., 2020; Hunt et 

al., 2019; Zhao et al., 2023b). Current methodologies for yield estimation can be 

broadly categorized as data-driven or knowledge-driven approaches. 

Data-driven methods leverage satellite-derived variables such as leaf area index 

(LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and 

vegetation indices (VIs) to establish linear or nonlinear relationships with measured 

crop yield (Ang et al., 2022; Xie et al., 2019). Machine learning algorithms such as 

Random Forest (RF), and Artificial Neural Networks (ANN), due to their ability to 

process large dataset and model complex nonlinear interactions, have been widely 

applied in crop yield estimations (Pang et al., 2022; Tian et al., 2021; Yildirim et al., 

2022). These methods can extract effective information from multi-source structured 

https://doi.org/10.5281/zenodo.14263103


or unstructured data without manual intervention. However, they are heavily reliant 

on extensive ground-truth training data, which is challenging to collect over large 

areas and high time intervals (Cao et al., 2021). Additionally, these models often 

overlook the impacts of environmental factors on crop growth, such as the influence of 

early-season soil moisture on root establishment or the effect of high temperatures 

during flowering on pod set, and are lack of interpretability, as they cannot explain 

the causal relationship between input features and outputs, leading to poor spatial-

temporal generalization (Gevaert, 2022). 

In contrast, knowledge-driven crop growth models simulate crop development 

from sowing to harvest based on agronomic mechanisms (Kaur and Singh, 2020). 

Common model types include light-use efficiency models (e.g., SAFY (Duchemin et al., 

2008)), soil-driven models (e.g., AquaCrop (Steduto et al., 2009)), and atmospheric-

driven models (e.g., WOFOST (Diepen et al., 1989)). These models integrate 

environmental factors (e.g., climate conditions and soil characteristics) with crop 

physiological processes (Gaso et al., 2024). Climate variables like temperature, 

precipitation, and solar radiation are critical in regulating essential physiological 

processes such as photosynthesis, respiration and transpiration, which influence the 

rate and duration of crop growth stages (Misaal et al., 2023). Climate anomalies 

during specific growth stages may disrupt biochemical processes, ultimately affecting 

yield formation. Similarly, soil properties influence crop productivity by regulating 

water retention, aeration, and nutrient uptake (Muhuri et al., 2023). Despite their 

mechanistic rigor, applications of crop models over large area are typically 

constrained by (1) insufficient spatial-temporal input data, and (2) parameter 

uncertainty, which can propagate errors into yield estimations (Dokoohaki et al., 

2021). To overcome these challenges, data assimilation techniques to integrate remote 

sensing observations (e.g., LAI) into crop growth models have been developed to 

enhance spatial representativity (Huang et al., 2024). However, high resolution 

remote sensing data drastically increases computational cost, limiting the scalability 

of these approaches for regional or national mappings efforts (Huang et al., 2019).  

Given the limitations above, integrating data-driven and knowledge-driven 

models has emerged as a critical strategy to enhance spatial-temporal generalization 

and mitigate sparse training data challenges in crop yield estimations. Hybrid 

frameworks coupling crop growth model with machine learning algorithm, such as 

those proposed and evaluated by Ren et al., (2023b) and Xie and Huang, (2021), are 

gaining tractions. These approaches utilized simulated outputs from crop growth 

models (e.g., meteorological, soil, crop physiological, and management factors) as 

inputs for machine learning, reducing reliance on limited ground observations Many 

studies have demonstrated hybrid methods are able to enhance yield estimation due to 

three benefits (Feng et al., 2020; Xie and Huang, 2021; Yang et al., 2021). The 

simulations from crop growth model can provide biophysical constraints to machine 

learning, ensuring agronomic plausibility. The crop growth models generate synthetic 

training datasets to address data scarcity. Finally, the machine learning improves the 

computational efficiency compared to traditional data assimilation techniques (Xie 

and Huang, 2021). However, exiting studies generally extracted input features (e.g., 



LAI, and soil moisture) across the entire growth cycle or on coarse temporal scales, 

increasing computational costs of model calculation and obscuring stage-specific 

physiological response (Pinke and Lövei, 2017; Wang et al., 2015). Additionally, 

while deep learning models, such as Long Short-Term Memory (LSTM) and GRU 

model excel at modelling temporal dependencies, their integration into hybrid 

frameworks have not been widely explored.  

Critically, the primary soybean-producing regions of China lack a publicly 

available high-resolution yield dataset to analyse spatiotemporal production patterns, 

hindering precision agriculture and policy optimization. To address this, we 

developed a hybrid model coupling the World Food Studies (WOFOST) crop growth 

model with a GRU deep learning method to estimate soybean yield in Northeast 

China. The objectives include: (1) Design a hybrid framework integrating WOFOST-

simulated growth scenarios with GRU-based temporal feature extraction; (2) 

Generate a high-resolution (20 m) soybean yield dataset in Northeast China 

(NortheastChinaSoybeanYield20m) from 2019 to 2023; (3) Evaluate the accuracy of 

the dataset across field, municipal, and provincial scales using in situ and statistical 

benchmarks. The WOFOST model first simulated a multi-scenario soybean growth 

(varying climate, soil, crop varieties and management conditions) to train the GRU 

model. The time series Sentinel-2 data, capturing soybean growth development, were 

then input into the GRU model to estimate yield. This approach prioritizes stage-

specific physiological dynamics which balancing computational efficiency and spatial 

granularity, providing a critical advancement for scalable agricultural monitoring. 

 

Figure 1: where is the soybean classification map from? What is the accuracy? 

 

Reply: Thank you for the comments.  

 

The soybean map in Figure 1 was derived from existing study of Zhao et al., (2022) 

using an optimal identification feature (OIF) knowledge graph coupled with a 

moment-preserving segmentation method. The study classified maize, soybean, and 

rice in the Northeast China. The soybean distribution maps from 2019 to 2023 were 

collected in this study. The overall accuracy and the producer accuracy for maize, 

soybean and rice was higher than 90 % and 93 %, respectively, with a Kappa 

coefficient greater than 0.90. 

 

In the revision, details on soybean classification maps were presented in Section 2.2.5. 

We have added additional information to Figure. 1, including the source of the 

classification map and classification accuracy. 

 

Figure 1: Location of the study area and the distribution of sample plots in two years 

(2022 and 2023) and selected meteorological stations. The soybean distribution map 

was obtained from Zhao et al., (2022) using a moment-preserving segmentation 

method, achieving an overall accuracy over 90% for soybean in 2023 (Details are 

provided in Section 2.2.5). 



 

2.2.5 Crop distribution data 

The soybean distribution maps for the study area (2019 – 2023) were obtained 

from Zhao et al., (2022), which employed a novel methodology for crop type 

identification. The study proposed an optimal identification feature (OIF) knowledge 

graph coupled with a moment-preserving segmentation method to classify crop types 

without ground-truth data. The method achieved overall accuracy above 90% and 

producer’s accuracy exceeding 93% for maize, soybean and rice, with a Kappa 

coefficient greater than 0.90. 

 

Zhao, L., Li, Q., Chang, Q., Shang, J., Du, X., Liu, J., and Dong, T.: In-season crop 

type identification using optimal feature knowledge graph, ISPRS Journal of 

Photogrammetry and Remote Sensing, 194, 250–266, 

https://doi.org/10.1016/j.isprsjprs.2022.10.017, 2022. 

 

Figure 5 appears blurry, which affects the clarity and readability of the presented data. 

I suggest organizing box plots and histograms as subfigures. 

 

Reply: Thanks for your suggestion. In response, we have reorganized the histograms 

(a) and the box plots (b) as subfigures to present the data more effectively. We believe 

these adjustments improve the visualization and overall presentation of the results. 

 

 

Figure 2: (a) Histogram statistics of simulated soybean yield where the gray area in 

the histogram represents 95 % confidence intervals; (b) distribution of simulated 

soybean yield compared with other datasets where A represents simulated yield in this 

study (n = 171,360), B represents statistical yield from 1980 to 2022 (n = 961), C 

represents specific measurements from the literature (Chen et al., 2011; Fan et al., 

2012; Liu et al., 2005, 2008; Liu and Herbert, 2002; Wang et al., 2020, 2024; Zheng 

and Zhang, 2021) (n = 138) and D represents measurements in 2022 and 2023 

carried by this study (n = 39).  

 

The discussion on the advancements of the proposed method is embedded within the 

“Limitations and future developments” section. To better highlight the strengths of 

this study, I recommend extracting this content into a standalone subsection. This 



would allow for a clearer and more structured presentation of the method’s advantages, 

making it easier for readers to appreciate its contributions in comparison to existing 

approaches. 

 

Reply: Thank you for your suggestion.  

 

(1) In the revised version, we have introduced Section 5.2 "Advancements in this 

Study" to provide a clearer discussion of the method’s advantages. We have 

improved the logical coherence and academic professionalism of the content in 

Discussion to enhance readability.  

(2) Furthermore, we have included a comparative analysis between our research 

findings and existing methodologies, which better demonstrates the superiority of 

our approach in terms of accuracy, computational efficiency, and large-scale 

applicability. 

 

Below is the revised content: 

 

5.2 Advancements in this study 

Accurate monitoring of soybean yield is crucial for food policy decision-making 

and security assessment. While previous studies have primarily explored the impact of 

environmental factors such as climate on soybean productivity (Guo et al., 2022; 

Zhao et al., 2023a), few efforts have focused on producing high-resolution soybean 

yield dataset for China’s major soybean-producing regions. To address this gap, our 

study produced the NortheastChinaSoybeanYield20m dataset, a 20-meter resolution 

dataset generated through a hybrid framework integrating the mechanistic WOFOST 

crop growth model and a GRU deep learning algorithm. Unlike purely data-driven 

approaches that rely on extensive ground data, our approach leveraged both data 

mining capabilities and mechanistic modelling, which improve the model’s 

interpretability and enhances its potential for transferability across regions. The 

integration of the WOFOST model ensured the simulation of diverse production 

scenarios under varying climate, soil, crop variety and management conditions, 

providing a robust synthetic training data for the GRU network. This combination 

allowed the model to generate well, even in areas with limited observational data, 

therefore overcoming common limitations related to data scarcity and high 

computational costs. Accuracy assessments using both in-situ and statistical yield 

data confirmed that the generated NortheastChinaSoybeanYield20m dataset delivered 

reliable yield estimates across field and regional scales (Fig. 5 and 6). The results 

also verified the model’s stability across time and space, reinforcing its potential for 

large-scale agricultural monitoring and strategic planning. 

When compared to previous studies using integrated remote sensing data and 

process-based model to estimate soybean yield, for instance, Baup et al., (2015) 

reported estimation error ranging from 2% to 18%, our method achieved comparable 

levels of accuracy. It also outperformed existing field-scale studies (e.g., RMSE = 

400.946 kg ha-1 in Ren et al., (2023) and MRE of 29.73% in Du et al., (2014)) and 



municipal-scale models (e.g., RMSE = 16 % in Von Bloh et al., (2023)). Furthermore, 

the NortheastChinaSoybeanYield20m dataset showed improved performance relative 

to similar high-resolution soybean yield products from other countries (e.g., annual 

30 m soybean yield mapping in Brazil, with R2 values between 0.31 and 0.71 and 

RMSEs ranging from 275 to 740 kg ha-1 (Song et al., 2022). 

Although studies based on UAV and RGB data have demonstrated even higher 

soybean yield estimation accuracy (Li et al., 2021, 2024), such methods are often 

constrained by high costs and limited spatial coverage, making them impractical for 

large-scale applications. In contrast, the method developed in this study offers a well-

balanced solution that combines computational efficiency, high spatial resolution, and 

strong predictive accuracy. Our approach offers scalable and practical solution for 

producing high-resolution, large-scale crop yield datasets. 

 

The conclusion effectively summarizes the study but could be further refined to better 

highlight the innovation in dataset construction and its practical applications in 

agricultural management. 

 

Reply: Thank you for your valuable feedback. In the revised version, we have 

enhanced the conclusion to emphasize the novel aspects of our approach, particularly 

the integration of the WOFOST model with deep learning, as well as the practical 

implications of the NortheastChinaSoybeanYield20m dataset for agricultural 

management. 

 

Here is the revised conclusion.  

 

This study generated a high-resolution (20 m) soybean yield dataset for Northeast 

Chinda from 2019 to 2023 (NortheastChinaSoybeanYield20m) using a hybrid 

framework that couple the WOFOST crop growth model with a Gated Recurrent Unit 

(GRU) deep learning algorithm. The framework leveraged a comprehensive soybean 

growth dataset simulated by WOFOST, which accounted for diverse production 

scenarios, including variations in climates, crop varieties, soil types and agro-

managements practices. This approach effectively reduces reliance on ground 

observation data, which demonstrating enhanced spatiotemporal generalization 

capabilities.  

The dataset was conducted using multi-source remote sensing data, with 

Sentinel-2 derived time-series LAI as the primary input. Yield estimations showed 

robust performance at both field and municipal scales, achieving RMSE of 287.44 kg 

ha-1 and 272.36 kg ha-1, respectively. To address spatial discontinuities in Sentinel-2 

data, corrections using MODIS LAI-derived yield maps effectively mitigated seam 

effects, achieving complementary benefits in temporal and spatial resolution. The 

final dataset exhibits high temporal stability and spatial continuity, with mean relative 

errors (MRE) averaging of 11.46 % at the municipal scale and 7.94 % at the 

provincial scale. 

The NortheastChinaSoybeanYield20m dataset successfully captures fine-scale 



spatiotemporal variations in soybean yield, offering potentials for optimizing 

production strategies, guiding precision agriculture, and enhancing food security and 

policy. 

 


