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Dear Reviewer, 

 

Thank you very much for your thorough review and constructive feedback on our 

manuscript. We have carefully addressed each comment and suggestion to refine our 

work, enhance its clarity and strengthen its scientific contribution. The key revisions 

include: 

 

(1) The description of the data has been thoroughly revised to eliminate any 

ambiguity and prevent potential misinterpretations by users, ensuring greater clarity 

and accuracy in the presentation.  

(2) We have added more details of the method to enhance the scientific rigor of the 

article.  

(3)  Many paragraphs, sentences, and figures have been revised to improve readability, 

conciseness, and clarity.  

 

The detailed point-to-point responses are as follows. Texts in black are the reviewer’s 

comments; those in blue are our responses to the reviewer’s comments; and those in 

red and italics are the revised texts appeared in the revised manuscript.  

 

  



I am very familiar with the WOFOST model and the dataset used by the author. It is 

not a good simulation project, not only because the simulation accuracy did not meet 

industry standards, but also because the author withheld many critical details and 

settings of the WOFOST in the manuscript, which makes it difficult for me to assess 

the rationality and scientific validity of the simulation. Earth System Science Data, as 

the name suggests, focuses on the application of datasets, but the author's 

professionalism in describing and processing the dataset is not good. Moreover, the 

description of CRU is severely inadequate. After reading the entire manuscript, I still 

do not understand the role of the CRU used by the author in this study. 

 

Reply: We greatly appreciate the thoughtful and constructive feedback provided by 

the reviewer. We have carefully considered all the comments and have made 

substantial revisions to the manuscript to address the concerns raised, especially in the 

areas of dataset descriptions, simulation details and model contributions. 

 

(1) Clarification of WOFOST Model and Dataset Details: We acknowledge the 

concern regarding the lack of critical details about the WOFOST model and its 

settings. In the revised manuscript, we have made significant improvements in the 

description of the dataset used, especially for the soil data (Section 2.2.3) and 

statistical data (Section 2.2.6). Specifically, we have provided more detailed 

information on the model's input parameters, for example, a more detailed explanation 

was provided on how soil parameter values were obtained, complete crop parameter 

settings were included (Table A1), and the production scenarios considered when 

setting agro-management parameters were discussed. These changes aim to improve 

the transparency and scientific rigor of our simulation process, allowing for a better 

assessment of the model's rationality and scientific validity. 

(2) Revision of GRU Model Description: A major revision was made in the section 

describing the GRU model. In the previous version, the role and contribution of the 

GRU model were not sufficiently highlighted. In the revised manuscript, we have 

provided a more detailed and comprehensive description of how the GRU model was 

integrated with the WOFOST model. Specifically, we have clarified how it interacts 

with the outputs of the WOFOST model and how the GRU model utilizes remote 

sensing data as input to estimate soybean yield (Section 3.2). The connection between 

the two models is now described in greater detail (Figure 2), outlining the specific 

features that were used in the GRU model training, as well as how to estimate 

soybean yield using remote sensing data. 

(3) Yield Estimation Accuracy Comparison: In response to your comments on the 

accuracy of the yield estimation, we have revised the section to include more detailed 

comparisons with other studies at various spatial scales. We have compared the 

performance of our method with studies conducted at both field and municipal scales, 

highlighting the improved accuracy of our estimates. Additionally, we have expanded 

the discussion on the comparison of our dataset with soybean yield datasets from 

other countries to better demonstrate the higher precision of our estimates. This 

comparison includes a detailed analysis of RMSE and R2 values, supporting the claim 



that our method provides reliable and accurate yield estimates (Section 5.2). 

 

We believe these revisions address the concerns raised and significantly enhance the 

quality and clarity of the manuscript. We sincerely hope that the updated version 

meets your expectations and are confident that the improvements made will contribute 

to a better understanding of our approach. 

 

Below, we provide a detailed point-by-point response to address the specific concerns 

you raised: 

 

1. The study spanned from 2019 to 2023, but the sampling data was only from 2022 

and 2023 (Fig.1). The author should explain this issue in the text. 

 

Reply: Thank you very much for the suggestion. In the revised manuscript, we have 

clarified that although the study spanned from 2019 to 2023, field observations were 

not conducted from 2019 to 2021 due to resource limitations. As a result, the sampling 

data for this study were collected only in 2022 and 2023. (Section 2.2.1) 

 

Due to limitations of resources and personnel, in-situ measurements were not 

available during the earlier years (from 2019 to 2021). Field-scale yield data was 

separately collected through field investigation in September 2022 and 2023. 

 

2. The soil data should be described in more detail, for example, which soil 

parameters were used in this study. 

 

Reply: Thanks for your suggestion. We have provided a more detailed description of 

the soil data used in this study. For our study, we did not use the soil attribute data 

(such as chemical characteristics) in this analysis, focusing only on the spatial 

distribution of soil types to characterize the soil types in the study region. This 

clarification has been added to the revised manuscript (Section 2.2.3). 

 

Soil data was obtained from the 1:1000,000 Chinese soil database, established by 

the Institute of Soil Science, Chinese Academy of Sciences (Shi et al., 2004). The 

dataset consisted of two parts: soil spatial data (digital soil maps) and soil attribute 

data. In this study, the 1:1000,000 soil spatial data was obtained. The spatial 

database was developed by digitizing, mosaicking, and reassembling sheets from the 

1:1,000,000 Soil Map of the People's Republic of China (National Soil Survey Office, 

1995), with the Genetic Soil Classification of China (GSCC) soil families as the 

fundamental mapping units. The final dataset includes 909 soil types and over 94,000 

polygons. The dataset was utilized to determine the dominant soil types within the 

study area, serving as the basis for assigning soil parameter settings according to 

literatures. 

 

3. The author used statistical data from 1980 to 2022, but the study's time scale is 



from 2019 to 2023. This is confusing for the readers. Please provide an 

explanation. 

 

Reply: Thanks for your suggestion. We have clarified the use of statistical data in the 

revision. In this study, the statistical data served two main purposes. Firstly, to ensure 

that the multi-scenarios soybean growth dataset, which was constructed in this study, 

accurately represented a wide range of soybean production conditions, the statistical 

data from 1980 to 2022 were all used to validate the reasonableness of the model 

simulations. Secondly, statistical data from 2019 to 2022 were specifically applied to 

evaluate accuracy of soybean yield estimation at the regional scale. This distinction 

has been clearly explained in the revised manuscript to avoid any confusion for the 

readers (Section 2.2.6). 

 

Crop yield records (1980-2022) were obtained from the Statistical Yearbooks 

published by the Statistic Bureau of Heilongjiang (http://tjj.hlj.gov.cn), Jilin 

(http://tjj.jl.gov.cn), Liaoning (https://tjj.ln.gov.cn) and Inner Mongolia Autonomous 

Region (https://tj.nmg.gov.cn) to validate the crop yield estimates. Because the 2022 

Statistical Yearbook was not fully released, yield records for that year cover only a 

subset of cities. The statistical data served two main purposes, model simulation 

validation and regional-scale accuracy evaluation in this study. To ensure the multi-

scenario soybean growth dataset capture the full range of production conditions that 

across multi-years meteorological data, various soil types, multiple soybean varieties 

and different agro-managements, the yield records from 1980 to 2022 along with 

published yield data and field samples were used to assess the reasonableness of 

simulated yields. For the spatial validation, regionally aggregated statistical yield 

data (2019 – 2022) were applied to evaluate the accuracy of the hybrid framework at 

municipal and provincial scales. 

 

4. The technology roadmap that needs improvement. 1) The author mentioned agro-

management data in Figure 2, but it is not mentioned in Section 2.2 Data 

collections. 2) The sampling data mentioned in the Data collections section is not 

reflected in the figures, as well as meteorological data from National 

Meteorological Information Center. 3) The method of combining remote sensing 

data and model output through GRU is described too simplistically. 4) The author 

allocates a large proportion of the figures to how WOFOST conducts simulations, 

but this is not the focus of this study. The focus of this study should be on how to 

use models and remote sensing coupled for yield estimation, just as the author 

introduces in the research objective: "Designing a hybrid model coupling crop 

growth model and deep learning model for soybean yield estimation." The 

technology roadmap should more detailed display the research focus. 

 

Reply: Thank you for pointing this out. We have made substantial revisions to 

improve the technology roadmap, addressing the points raised: 

(1) The study primarily simulated different soybean agro-management scenarios by 



setting different planting dates. The agro-management data was collected 

alongside in-situ measurements. We have now included an explanation of the 

agro-management data collection process in Section 2.2.1 to ensure consistency 

between the figure and the text. 

 

Due to limitations of resources and personnel, in-situ measurements were not 

available during the earlier years (from 2019 to 2021). Field-scale yield data was 

separately collected through field investigation in September 2022 and 2023. In each 

year, a total of 21 and 18 sample plots were selected, respectively (Fig. 1). Within 

each sample plot that was around 100 m × 100 m in area, nine quadrats with area of 

1 m × 1 m were selected randomly for destructive sampling of yield in soybean. The 

central location of each quadrat was recorded using a GPS device with accuracy of 1 

m. The harvested beans were then oven-dried about 72 hours in Hailun Agricultural 

Ecology Experimental Station, Chinese Academy of Sciences to determine the yield. 

Finally, the average yield for the selected nine quadrats represents the soybean yield 

of the sample plot. In addition, soybean planting dates for different regions were 

collected through field surveys, providing agro-management data for this study. 

 

(2) The sampling data were used to validate soybean yield estimation accuracy at the 

field scale, while the meteorological data from the National Meteorological 

Information Center were used as input for the WOFOST model to provide 

essential weather parameters. Both of these datasets are represented in the revised 

figure (field measured samples and meteorological station data, respectively), and 

their roles have been explicitly described in the text. 

(3) We have revised the flowchart to better represent the hybrid model's structure. The 

updated version now clearly distinguishes two main components: the first part 

describes the construction of the hybrid model, combining WOFOST and GRU 

for yield estimation, while the second part focuses on how remote sensing data are 

used in conjunction with this hybrid model to estimate soybean yield at the 

regional scale. We have provided more detail in the flowchart regarding how 

remote sensing data are integrated as inputs into the GRU model and how they 

contribute to spatial yield predictions. 

(4) We agree that the focus of the study should be on the coupling of remote sensing 

data with models for yield estimation, as stated in the research objectives. 

Therefore, the updated technology roadmap places greater emphasis on this aspect, 

reducing the proportion dedicated to the WOFOST model and highlighting how 

the hybrid model (WOFOST + GRU) is used for yield estimation. This revision 

better aligns the roadmap with the research focus and research objectives, as well 

as the methodology described in the manuscript. 



 
Figure 1: The flowchart of the overall yield estimation methodology in this study. 

5. Which sub-model of PCSE did the author use? LINTUL3 or Wofost72_PP? 

 

Reply: Thanks for your suggestion. As soybean cultivation in Northeast China is 

primarily rainfed, the water-limited mode (Wofost72_WLP_CWB) of the WOFOST 

model was used for soybean simulation in this study, utilizing version 5.5 of the 

Python Crop Simulation Environment (PCSE) framework. Details have been added in 

the revised manuscript. (Section 3.1) 

 

To generate the dataset, we employed the World Food Studies Simulation Model 

(WOFOST) (Diepen et al., 1989), implemented via the Python Crop Simulation 



Environment framework (PCSE, v5.5). The WOFOST model is well-suited for large-

scale simulations and has been extensively validated (Huang et al., 2015). Given that 

soybean cultivation in the study region is predominantly rainfed, we adopted the 

water-limited mode (Wofost72_WLP_CWB) for simulations. 

 

6. As far as I know, VAP is not included in the ERA5 dataset. How did the author 

obtain the VAP data? 

 

Reply: Thank you for pointing out this. The study only used the daily aggregated air 

temperature data at 2 meters from the ERA5 dataset to calculate the spatial 

distribution of soybean phenology, which was used to guide the acquisition of remote 

sensing data. For the meteorological parameters required by the WOFOST model 

(including VAP), all data were sourced from meteorological station data rather than 

ERA5. This clarification has been added to the manuscript. (Section 2.2.2) 

 

The climate reanalysis data was obtained from the ERA5-land Daily Aggregated - 

ECMWF Climate Reanalysis Product. The data was only used to calculate soybean 

phenology for preparation of yield estimations. It was a global climate reanalysis 

product that provides continuous climate data at a resolution of 0.1° × 0.1° (e.g., air 

temperature and atmospheric pressure) starting from 1950. The daily aggregated air 

temperature data at 2 m above the surface of land measured in kelvin (K) during the 

soybean growth periods from 2019 to 2023 was collected in this study from the 

Google Earth Engine (http://earthengine.google.com). The product was resampled to 

20 m using bilinear interpolation model to match with the resolution of satellite 

imagery data. 

The meteorological parameters required in WOFOST is shown in Table 1. To 

capture regional climate variability (e.g., temperature extremes, rainfall patterns), 

meteorological data of the selected 51 meteorological stations spanning 42 years 

(1980-2021) were compiled. These data – including daily temperature, precipitation, 

and solar radiation – were preprocessed into the model’s required input format (e.g., 

daily time steps, unit conversions) to ensure compatibility. 

 

7. Line 209-215: The description of the calculation process for soil parameters is too 

simplistic; a detailed calculation process should be provided. For example, which 

parameters from the Chinese soil database were used in the study, and what 

theories/formulas were utilized to calculate the SMW, SMFCF, SM0, and K0 

required by the WOFOST model? Is Table 2 a lookup table? Where did it come 

from? 

 

Reply: Thanks for your suggestion. In the revised version of the manuscript, we have 

provided more detailed information on the soil parameter settings. Based on the soil 

spatial data, we found that the main soil types in the study area can be categorized as 

sandy loam, light loam, medium loam, and heavy loam. The parameter settings for 

these different soil types were primarily obtained from existing literature. Table 2 is 



not a lookup table, but a compilation of the parameters based on previous studies. We 

have now indicated the sources of the soil parameters presented in Table 2 in the 

manuscript. (Section 3.1.1) 

 

The soil parameters in the WOFOST mainly include soil moisture content at 

wilting point (SMW), field capacity (SMFCF) and saturation (SM0) as well as 

hydraulic conductivity of saturated soil (K0). Based on the 1:1,000,000 Chinese soil 

database, the study area predominantly comprises loam soil that is further classified 

into sandy, light, medium and heavy loam. The parameters for sandy, loam and 

medium loam were sourced from Du et al., (2025), while the parameters for heavy 

loam came from Sun et al., (2022). All soil parameter values, summarized in Table 2, 

were integrated into the model to evaluate the influence of soil variability on soybean 

yield (Du et al., 2025; Sun et al., 2022). 

 

8. Line 215: The description of Table 3 is redundant. It suffices to directly list the 

values and sources of the WOFOST crop parameters. Table 4 should list all crop 

parameters in WOFOST, not just the main crop parameters. 

 

Reply: Thanks for your suggestion. We have removed Table 3 and its accompanying 

description. Instead, we have provided a complete list of the WOFOST crop 

parameters and their corresponding values as suggested (Table A1). This change 

ensures a more comprehensive and concise presentation of the crop parameters used 

in the study. 

 

In this study, the soybeans were classified into five types including early, 

medium-early, intermediate, medium-late and late maturity according to Qu et al., 

(2023). In the WOFOST model, soybean phenology is governed by temperature-driven 

parameters: the minimum (TBASEM) and maximum (TEFFMX) threshold 

temperature for emergence, and accumulated thermal time (TSUMEM: sowing to 

emergence; TSUM1: emergence to anthesis; TSUM2: anthesis to maturity). These 

thermal parameters are cultivar-sensitive and were set based on historical 

meteorological data and field phenology records, validated against field observations 

(Qu et al., 2023). Remaining crop parameters (e.g., SLATB: specific leaf area) were 

assigned default values or optimal values from Sun et al., (2022). Full parameter 

specifications are provided in Table A1. 

 

Table A1 Values of crop parameters in WOFOST. 

Parameter Description Units Value Source 

Crop initial parameters 

TDWI Initial total crop dry weight kg ha-1 120 Default value in 

WOFOST 

RGRLAI Maximum relative increase 

in LAI 

ha ha-1 d-

1 

0.01 Default value in 

WOFOST 

Parameters for emergence 

TBASEM Minimum threshold 

temperature for emergence 

℃ 8.0 Qu et al., (2023) 



TEFFMX Maximum threshold 

temperature for emergence 

℃ 22.0 Qu et al., (2023) 

TSUMEM Accumulated temperature 

from sowing to emergence 

℃ 70.0 Qu et al., (2023) 

Phenological parameters 

DLO Optimal daylength for 

development 

h -99 Default value in 

WOFOST 

DLC Critical daylength h -99 Default value in 

WOFOST 

TSUM1 Cumulative temperature 

from emergence to anthesis 

℃ 450 (early 

maturity) 

480 (medium-

early maturity) 

520 (intermediate 

maturity) 

540 (medium-late 

maturity) 

580 (late maturity) 

Qu et al., (2023) 

TSUM2 Cumulative temperature 

from anthesis to maturity 

℃ 660 (early 

maturity) 

770 (medium-

early maturity) 

870 (intermediate 

maturity) 

960 (medium-late 

maturity) 

1000 (late 

maturity) 

Qu et al., (2023) 

Green area parameters 

TBASE Lower threshold 

temperature for aging of 

leaves 

℃ 7.0 Default value in 

WOFOST 

SPAN Life span of leaves growing 

at 35 ℃ 

d 23 Default value in 

WOFOST 

SLATB00 Specific leaf area at DVS = 

0.00 

ha kg-1 0.00140 Default value in 

WOFOST 

SLATB045 Specific leaf area at DVS = 

0.45 

ha kg-1 0.00250 Default value in 

WOFOST 

SLATB090 Specific leaf area at DVS = 

0.90 

ha kg-1 0.00250 Default value in 

WOFOST 

SLATB200 Specific leaf area at DVS = 

2.00 

ha kg-1 0.00070 Default value in 

WOFOST 

Assimilation parameters 

KDIFTB00 Extinction coefficient for 

diffuse visible light (DVS = 

0) 

- 0.80 Default value in 

WOFOST 

KDIFTB200 Extinction coefficient for 

diffuse visible light (DVS = 

2) 

- 0.80 Default value in 

WOFOST 

EFFTB0 Light use efficiency of a 

single leaf (T = 0 ℃) 

kg ha-1 h-

1 J-1 m2 s-

1 

0.40 Default value in 

WOFOST 

EFTB40 Light use efficiency of a 

single leaf (T = 40 ℃) 

kg ha-1 h-

1 J-1 m2 s-

1 

0.40 Default value in 

WOFOST 

AMAXTB00 Maximum leaf CO2 

assimilation rate (DVS = 0) 

kg ha-1 h-

1 

29.00 Default value in 

WOFOST 

AMAXTB170 Maximum leaf CO2 

assimilation rate (DVS = 

1.7) 

kg ha-1 h-

1 

25.31 Sun et al., (2022) 



AMAXTB200 Maximum leaf CO2 

assimilation rate (DVS = 2) 

kg ha-1 h-

1 

0.00 Default value in 

WOFOST 

TMPFTB00 Reduction factor of AMAX 

(T = 0 ℃) 

- 0.00 Default value in 

WOFOST 

TMPFTB10 Reduction factor of AMAX 

(T = 10 ℃) 

- 0.30 Default value in 

WOFOST 

TMPFTB20 Reduction factor of AMAX 

(T = 20 ℃) 

- 0.60 Default value in 

WOFOST 

TMPFTB25 Reduction factor of AMAX 

(T = 25 ℃) 

- 0.80 Default value in 

WOFOST 

TMPFTB30 Reduction factor of AMAX 

(T = 30 ℃) 

- 1.00 Default value in 

WOFOST 

TMPFTB35 Reduction factor of AMAX 

(T = 35 ℃) 

- 1.00 Default value in 

WOFOST 

Conversion of assimilates into biomass 

CVL Conversion efficiency of 

assimilates into leaf tissue 

kg kg-1 0.72 Default value in 

WOFOST 

CVO Conversion efficiency of 

assimilates into storage 

organs 

kg kg-1 0.48 Default value in 

WOFOST 

CVR Conversion efficiency of 

assimilates into root tissue 

kg kg-1 0.72 Default value in 

WOFOST 

CVS Conversion efficiency of 

assimilates into stem tissue 

kg kg-1 0.69 Default value in 

WOFOST 

Maintenance respiration parameters 

Q10 Relative change in 

respiration rate per 10 ℃ 

temperature increase  

- 2.0 Default value in 

WOFOST 

RML Ralative maintenance 

respiration rate of leaves 

kg CH2O 

kg-1 d-1 

0.03 Default value in 

WOFOST 

RMO Ralative maintenance 

respiration rate of storage 

organs 

kg CH2O 

kg-1 d-1 

0.017 Default value in 

WOFOST 

RMR Ralative maintenance 

respiration rate of toots 

kg CH2O 

kg-1 d-1 

0.01 Default value in 

WOFOST 

RMS Ralative maintenance 

respiration rate of stems 

kg CH2O 

kg-1 d-1 

0.015 Default value in 

WOFOST 

Partitioning parameters 

FRTB00 Fraction of total dry matter 

to roots at DVS = 0 

kg kg-1 0.62 Sun et al., (2022) 

FRTB075 Fraction of total dry matter 

to roots at DVS = 0.75 

kg kg-1 0.35 Default value in 

WOFOST 

FRTB100 Fraction of total dry matter 

to roots at DVS = 1 

kg kg-1 0.15 Default value in 

WOFOST 

FRTB150 Fraction of total dry matter 

to roots at DVS = 1.5 

kg kg-1 0.00 Default value in 

WOFOST 

FRTB200 Fraction of total dry matter 

to roots at DVS = 2.0 

kg kg-1 0.00 Default value in 

WOFOST 

FLTB00 Fraction of total dry matter 

to leaves at DVS = 0 

kg kg-1 0.70 Default value in 

WOFOST 

FLTB100 Fraction of total dry matter 

to leaves at DVS = 1.0 

kg kg-1 0.70 Default value in 

WOFOST 

FLTB115 Fraction of total dry matter 

to leaves at DVS = 1.15 

kg kg-1 0.60 Default value in 

WOFOST 

FLTB130 Fraction of total dry matter 

to leaves at DVS = 1.3 

kg kg-1 0.43 Default value in 

WOFOST 

FLTB150 Fraction of total dry matter 

to leaves at DVS = 1.5 

kg kg-1 0.15 Default value in 

WOFOST 

FLTB200 Fraction of total dry matter 

to leaves at DVS = 2.0 

kg kg-1 0.00 Default value in 

WOFOST 



FSTB00 Fraction of total dry matter 

to stems at DVS = 0 

kg kg-1 0.30 Default value in 

WOFOST 

FSTB100 Fraction of total dry matter 

to stems at DVS = 1.0 

kg kg-1 0.30 Default value in 

WOFOST 

FSTB115 Fraction of total dry matter 

to stems at DVS = 1.15 

kg kg-1 0.25 Default value in 

WOFOST 

FSTB130 Fraction of total dry matter 

to stems at DVS = 1.3 

kg kg-1 0.10 Default value in 

WOFOST 

FSTB150 Fraction of total dry matter 

to stems at DVS = 1.5 

kg kg-1 0.10 Default value in 

WOFOST 

FSTB200 Fraction of total dry matter 

to stems at DVS = 2.0 

kg kg-1 0.00 Default value in 

WOFOST 

FOTB00 Fraction of total dry matter 

to storage organs at DVS = 

0 

kg kg-1 0.00 Default value in 

WOFOST 

FOTB100 Fraction of total dry matter 

to storage organs at DVS = 

1.0 

kg kg-1 0.00 Default value in 

WOFOST 

FOTB115 Fraction of total dry matter 

to storage organs at DVS = 

1.15 

kg kg-1 0.15 Default value in 

WOFOST 

FOTB130 Fraction of total dry matter 

to storage organs at DVS = 

1.3 

kg kg-1 0.47 Default value in 

WOFOST 

FOTB150 Fraction of total dry matter 

to storage organs at DVS = 

1.5 

kg kg-1 0.75 Default value in 

WOFOST 

FOTB200 Fraction of total dry matter 

to storage organs at DVS = 

2.0 

kg kg-1 1.00 Default value in 

WOFOST 

Death rate parameters  

PERDL Maximum relative death 

rate of leaves due to water 

stress 

kg kg-1 d-

1 

0.03 Default value in 

WOFOST 

RDRRTB00 Relative death rate of roots 

at DVS = 0 

kg kg-1 d-

1 

0.00 Default value in 

WOFOST 

RDRRTB150 Relative death rate of roots 

at DVS = 1.5 

kg kg-1 d-

1 

0.00 Default value in 

WOFOST 

RDRRTB151 Relative death rate of roots 

at DVS = 1.51 

kg kg-1 d-

1 

0.02 Default value in 

WOFOST 

RDRRTB200 Relative death rate of roots 

at DVS = 2.0 

kg kg-1 d-

1 

0.02 Default value in 

WOFOST 

RDRSTB00 Relative death rate of stems 

at DVS = 0 

kg kg-1 d-

1 

0.00 Default value in 

WOFOST 

RDRSTB150 Relative death rate of stems 

at DVS = 1.5 

kg kg-1 d-

1 

0.00 Default value in 

WOFOST 

RDRSTB151 Relative death rate of stems 

at DVS = 1.51 

kg kg-1 d-

1 

0.02 Default value in 

WOFOST 

RDRSTB200 Relative death rate of stems 

at DVS = 2.0 

kg kg-1 d-

1 

0.02 Default value in 

WOFOST 

Water use parameters 

CFET Correction factor 

transpiration rate 

- 1.0 Default value in 

WOFOST 

DEPNR Crop group number for soil 

water depletion 

- 5.0 Default value in 

WOFOST 

IAIRDU Air ducts in roots present 

(=1) or not (=0) 

- 0 Default value in 

WOFOST 

IOX Oxygen stress effect 

enabled (=1) or not (=0) 

- 0 Default value in 

WOFOST 

Rooting parameters 



RDI Initial rooting depth cm 10 Default value in 

WOFOST 

RRI Maximum daily increase in 

rooting depth 

cm d-1 1.2 Default value in 

WOFOST 

RDMCR Maximum rooting depth cm 120 Default value in 

WOFOST 

 

9. Line 235: What’s the setting of the fertilizer application rate and timing in the 

WOFOST? 

 

Reply: Thanks for your suggestion. We would like to clarify that in this study, no 

fertilizer applications were considered. This decision was based on the fact that 

soybean cultivation in the study area already followed established fertilizer 

management practices implemented by the local government, ensuring that nutrient 

stress did not significantly affect crop growth. Therefore, the WOFOST model was 

not configured with specific fertilizer application rates or timings for this study. The 

study simulated different agricultural management practices by varying the planting 

dates. This has been explained in the revised manuscript. (Section 3.1.1) 

 

Planting date is the major agro-management factors for soybean in the study area. 

The difference of planting date can significantly impact on soybean growth 

development, pod count, and biomass accumulation (Urda et al., 2024). Four planting 

dates 20 April, 30 April, 10 May, and 20 May to reflect the typical sowing window 

(late April to late May) of the study area were set for model simulation according to 

Mei et al., (2024). 

 

10. Line 244: After reading Section 3.2 Development of the Grated Recurrent Unit 

model (GRU), I am still unclear about the role of GRU in this study. The author's 

explanation of the principles of GRU is unclear. It does not directly describe how 

GRU combines the output of the WOFOST model with remote sensing data, as 

shown in the technical roadmap. Figure 3 lacks self-explanatory power, leaving it 

unclear what exactly the inputs and outputs of the GRU are. 

 

Reply: Thanks for your suggestion. In the revised version, we further clarified the 

role of the GRU model. The GRU was used for soybean yield estimation at the 

regional scale in this study. Since the internal structure of the GRU model was not 

adjusted in this study, we reduced the description of the GRU model's principles and 

instead focused more on its application in yield estimation. We removed the 

description of the GRU cell structure in Figure 3 and replaced it with a more detailed 

explanation of how the GRU model was trained using the soybean growth dataset 

simulated by the WOFOST model, enabling it to quickly estimate soybean yield at the 

regional scale. Additionally, we specified the inputs and outputs of the GRU model. In 

this study, the GRU model uses the average LAI values at different soybean growth 

stages as input features and soybean yield as the output. The trained GRU model was 

then integrated with remote sensing data to estimate soybean yield at the regional 

scale, using the features derived from the remote sensing data as inputs (Section 3.2). 



A GRU (Grated Recurrent Unit) model, a streamlined variant of recurrent neural 

networks (RNNs), was employed to be trained using the multi- scenarios simulated 

dataset for large-scale soybean yield estimation. Unlike LSTM (Long short-term 

memory), GRU simplifies gating mechanisms to two adaptive gates, update and reset 

gates (Cho et al., 2014). The update gate retains the past information for future 

calculations. The reset gate aims to remove irrelevant historical context for 

simplifying the new candidate hidden states. Using the two gates together is benefit to 

balance long-term dependency capture and computational efficiency (Peng and Yili, 

2022; Zhang et al., 2022). This design mitigates vanishing gradient issues while 

accelerating model training, making GRU particularly effective for time-series yield 

estimation (Gopi and Karthikeyan, 2023; Ren et al., 2023b).  

Trained on the multi-scenarios simulated dataset, the GRU constructed based on 

TensorFlow 2.6 linked simulated environmental inputs to yield outputs. Accounting 

for the computational efficiency of the model in large areas, two key features include 

LAImean1 (mean LAI during vegetative growth: emergence to flowering) and LAImean2 

(mean LAI during reproductive growth: flowering to maturity), were calculated to 

reflect photosynthetic capacity and yield potential. These two LAI metrics served as 

inputs, while simulated yields acted as outputs. The multi-scenarios simulated dataset 

was partitioned using 10-fold cross-validation, with hyperparameters (e.g. learning 

rate and batch size) optimized using a grid search to achieve minimal root mean 

squared error (RMSE, Eq. (5)) (Açikkar, 2024).  

Once trained, the GRU model taken Sentinel-2-derived LAI time series as inputs 

to generate 20 m yield maps. 

 

11. Why is MODIS data mentioned again in Line 315? MODIS data was not 

mentioned in the data collection section. 

 

Reply: Thank you for pointing out this. This is a writing error, and we apologize for 

the confusion. The term "MODIS data" in Line 315 actually refers to the MODIS LAI 

product (MCD15A3H), which was used in the study. We have corrected this in the 

revised manuscript to avoid any misunderstanding. (Section 3.3.2) 

 

For large area estimations, a total of 194 Sentinel-2 tiles were required to fully 

cover the study area. Affected by cloud cover, the frequency of available data varied 

across each tile. Therefore, the yield maps often exhibited discontinuities along the 

edges of different tiles (“seaming effects”). This seaming effect could obscure real 

yield variations. To address this issue, a bias correction method proposed by Azzari et 

al., (2017) was applied. The overall framework is to use yield estimation based on 

MODIS LAI to correct the yield estimation from Sentinel-2. MCD15A3H generally 

provided more continuous estimation results of LAI due to its higher temporal 

resolution (4-day composites) and broader coverage. Yield maps were generated from 

the trained GRU taking MCD15A3LAI products as inputs. Sentinel-2 yield maps were 

adjusted by adding the difference between MODIS-derived mean yield and initial 

Sentinel-2 mean yield for each tile. This process minimized seams while preserving 



fine-scale yield variability within tiles. 

 

12. As shown in Figures 6, 7, and A2, the model simulation accuracy is below 

industry standards. 

 

Reply: Thank you for pointing this out. We have made clarifications in the revised 

manuscript. While the accuracy of our model may appear to be below industry 

standards in Figures 6, 7, and A2, we have provided a more comprehensive evaluation 

of its performance in comparison to other studies. The comparison between the 

performance of our study with that of other studies at multi-scales (field and 

municipal scale) showed that our method outperformed existing approaches in terms 

of accuracy. Moreover, we compared our results with soybean yield datasets from 

other countries with similar resolution. Results showed that our dataset demonstrated 

superior accuracy. We acknowledge that some studies based on UAV and RGB data 

have reported higher accuracy for soybean yield estimation. However, these methods 

are limited by challenges related to data acquisition and high costs, making them 

suitable only for individual plant or field scale analysis. This limits their applicability 

for large-scale studies. 

The primary goal of this study is to provide a hybrid modeling approach that 

enables rapid and large-scale soybean yield estimation. The method we produced 

balances computational efficiency, accuracy, and high resolution, making it suitable 

for regional-scale applications. This approach represents a practical solution for large-

scale yield estimation despite the lower accuracy compared to some high-cost 

methods. 

Details of revision could be found in Section 5.2. 

 

Accurate monitoring of soybean yield is crucial for food policy decision-making 

and security assessment. While previous studies have primarily explored the impact of 

environmental factors such as climate on soybean productivity (Guo et al., 2022; 

Zhao et al., 2023a), few efforts have focused on producing high-resolution soybean 

yield dataset for China’s major soybean-producing regions. To address this gap, our 

study produced the NortheastChinaSoybeanYield20m dataset, a 20-meter resolution 

dataset generated through a hybrid framework integrating the mechanistic WOFOST 

crop growth model and a GRU deep learning algorithm. Unlike purely data-driven 

approaches that rely on extensive ground data, our approach leveraged both data 

mining capabilities and mechanistic modelling, which improve the model’s 

interpretability and enhances its potential for transferability across regions. The 

integration of the WOFOST model ensured the simulation of diverse production 

scenarios under varying climate, soil, crop variety and management conditions, 

providing a robust synthetic training data for the GRU network. This combination 

allowed the model to generate well, even in areas with limited observational data, 

therefore overcoming common limitations related to data scarcity and high 

computational costs. Accuracy assessments using both in-situ and statistical yield 

data confirmed that the generated NortheastChinaSoybeanYield20m dataset delivered 



reliable yield estimates across field and regional scales (Fig. 5 and 6). The results 

also verified the model’s stability across time and space, reinforcing its potential for 

large-scale agricultural monitoring and strategic planning. 

When compared to previous studies using integrated remote sensing data and 

process-based model to estimate soybean yield, for instance, Baup et al., (2015) 

reported estimation error ranging from 2% to 18%, our method achieved comparable 

levels of accuracy. It also outperformed existing field-scale studies (e.g., RMSE = 

400.946 kg ha-1 in Ren et al., (2023) and MRE of 29.73% in Du et al., (2014)) and 

municipal-scale models (e.g., RMSE = 16 % in Von Bloh et al., (2023)). Furthermore, 

the NortheastChinaSoybeanYield20m dataset showed improved performance relative 

to similar high-resolution soybean yield products from other countries (e.g., annual 

30 m soybean yield mapping in Brazil, with R2 values between 0.31 and 0.71 and 

RMSEs ranging from 275 to 740 kg ha-1 (Song et al., 2022). 

Although studies based on UAV and RGB data have demonstrated even higher 

soybean yield estimation accuracy (Li et al., 2021, 2024), such methods are often 

constrained by high costs and limited spatial coverage, making them impractical for 

large-scale applications. In contrast, the method developed in this study offers a well-

balanced solution that combines computational efficiency, high spatial resolution, and 

strong predictive accuracy. Our approach offers scalable and practical solution for 

producing high-resolution, large-scale crop yield datasets. 

 

13. By the way, Line 240:” 3.1.2 Multi-scenarios crop simulations”, author said:” The 

four different types of model parameters were arranged and combined to generate 

various simulation scenarios”. Where could I read the scenario settings and the 

results of this part in the manuscript? 

 

Reply: Thanks for your suggestion. In the revised version, we have provided a more 

detailed description of Section 3.1.2: Multi-scenario crop simulations. The study 

simulated different soybean growth scenarios by fully configuring four input 

parameters of the WOFOST model: meteorological parameters, soil parameters, crop-

specific parameters, and agro-management parameters. The meteorological 

parameters were derived from observational data collected over 42 years from 51 

meteorological stations, while 4 soil types, 5 crop varieties, and 4 agro-managements 

were defined. By combining different parameter types (similar to the lookup table 

approach), we inputted these parameter combinations into the WOFOST model to 

simulate various scenarios. To more clearly describe the scenario simulation process, 

we have added a Table 3 in the revision, which outlines the scenario settings in detail. 

Furthermore, we have corrected a numerical error in the revised version. The total 

number of simulated scenarios generated by the parameter combinations was 171,360, 

rather than 80,000 as previously stated. We sincerely apologize for the oversight in the 

earlier version. We have conducted a thorough review of the revised version to ensure 

that similar errors have been avoided and the accuracy of the content is maintained. 

 

Following parameter preparation, the four parameter categories, including 



meteorological (51 stations × 42 years), soil (4 types), crop-specific (5 varieties) and 

agro-management (4 planting dates), were systematically combined to create 171,360 

unique scenarios (Table 1). These scenarios were executed in the WOFOST 

simulations, yielding a dataset of 171,360 various simulations that quantify yield 

responses to diverse agricultural production conditions.  

 

Table 1 Scenarios for WOFOST simulations 

Parameters Number of categories Details 

Meteorological parameters 51×42 Meteorological data from 51 

stations over 42 years (1980 – 2021) 
Soil parameters 4 Sandy loam, light loam, medium 

loam and heavy loam 

Crop-specific parameters 5 Early maturity, medium-early 

maturity, intermediate maturity, 

medium-late maturity and late 
maturity 

Agro-management parameters 4 Four planting dates 20 April, 30 
April, 10 May, and 20 May 

 


