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Dear Reviewer,

Thank you very much for your thorough review and valuable comments on our
manuscript. Your insightful feedback has significantly contributed to improving the
quality and clarity of our work. In response to your suggestions, we have rigorously
revised the manuscript to address each comment and suggestion. The key
modifications include:

(1) Data Description Revisions: the data sections (e.g., field measurements, remote
sensing data, and statistical sources) have been thoroughly revised to eliminate
ambiguity and ensure reproducibility. Clarifications have been added to prevent
misinterpretations on the datasets, including explicit dentitions of sampling protocols
and spatial-temporal resolution.
(2) Methodological Enhancements: Additional details on the hybrid approach, such as
descriptions of scenario parameterization, temporal feature extraction and
computational have been added to strengthen methodological transparency and rigor.
(3) Readability Improvements: Key paragraphs and sentences have been restructured
for logical flow. Figures or tables have been refined to align with revised text,
ensuring visual clarity and consistency with results.

The detailed point-to-point responses are as follows. Texts in black are the reviewer’s
comments; those in blue are our responses to the reviewer’s comments; and those in
red and italics are the revised texts appeared in the revised manuscript.

We will attach a clean version (Manuscript_Clean_Version.docx) as well as a tracking
enabled version (Manuscript_Marked_Version.docx) with editing marks for your
reference.



I am very familiar with the WOFOST model and the dataset used by the author. It is
not a good simulation project, not only because the simulation accuracy did not meet
industry standards, but also because the author withheld many critical details and
settings of the WOFOST in the manuscript, which makes it difficult for me to assess
the rationality and scientific validity of the simulation. Earth System Science Data, as
the name suggests, focuses on the application of datasets, but the author's
professionalism in describing and processing the dataset is not good. Moreover, the
description of CRU is severely inadequate. After reading the entire manuscript, I still
do not understand the role of the CRU used by the author in this study.

Reply: Thank you for your thorough review and valuable feedback.

We sincerely appreciate your expertise and the time invested in evaluating our work.
Below, we address your concerns point by point:

(1) "The simulation accuracy did not meet industry standards, and critical
details/settings of WOFOST were withheld, making it difficult to assess scientific
validity."

We acknowledge your concern and regret any lack of clarity about the WOFOST
model and its reparameterization in our original manuscript.

In the revised manuscript, key edits to improve transparency include:
(a) Additional Details Added: detailed description on the soil data (Section 2.2.3)

and statistical data (Section 2.2.6) was added. We also have provided more
detailed information to explicitly outline the WOFOST parameterization,
including soil properties (Line 217 – 225), crop variety parameters (e.g.,
TSUM1, TSUM2, Table A1), and agro-management scenarios (e.g., planting
date, Line 238 – 245).

(b) Model Calibration and Validation: we have revised the section 5.2 to include
more detailed comparisons with existing studies at various spatial scales. For
instance, our accuracy at the municipal-scale was RMSE of 272.36 kg ha-1
outperformed the 420 kg ha-1 reported by Von Bloh et al., (2023). Additionally,
we have expanded the discussion on the comparison of our dataset with
soybean yield datasets from other countries, demonstrating the higher
precision of our estimates. The comparisons include a detailed analysis of
RMSE, supporting the claim that our method provides reliable and accurate
yield estimates (Line 469 – 478).

(c) Supplementary Material: A table of WOFOST input parameters is provide in
Supplementary Table S1 to enhance reproducibility.

(2) "The description of CRU is severely inadequate, and the dataset’s role in the
study is unclear."



We apologize for the initial oversight.
In the revised manuscript, we have enhanced the description on the WOFOST- GRU
integration. We have detailed and clarified the coupling mechanism between the GRU
and WOFOST models including generating input features from time-series LAI data,
and explicitly outlining the training workflow (Section 3.2, Line 264 – 279). Figure 2
has been revised to explicitly illustrate the flow of data between WOFOST
simulations, remote sensing inputs, and GRU-based yield estimation.

(3) "The dataset description lacks professionalism, and the manuscript does not
align with Earth System Science Data’s focus.”

We have rigorously revised the manuscript to emphasize: (a) Dataset Documentation,
the “data availability” has been revised to detail file formats, data spatial-temporal
resolution. Metadata with these information has been added to the dataset hosted on
Zenodo. (b) Application Focus, we have revised the conclusions to synthetically
illustrate the innovation of the method for dataset construction and demonstrate the
dataset’s utility for agricultural management practise (e.g., optimizing sowing date for
maxing yield), aligning with the journal emphasis on actionable Earth system data.

We are grateful for your critique, which has significantly strengthened our work. We
hope these revisions address your concerns raised and significantly enhance the
quality and clarity of the manuscript.

Below, we provide a detailed point-by-point response to address the specific concerns
you raised:

1. The study spanned from 2019 to 2023, but the sampling data was only from 2022
and 2023 (Fig.1). The author should explain this issue in the text.

Reply: Thank you very much for the suggestion.

In the revised manuscript, we have clarified that although the study spanned from
2019 to 2023, field observations were not conducted from 2019 to 2021 due to
resource limitations. As a result, the sampling data for this study were collected only
in 2022 and 2023 (Line 106 - 108).

Due to resources and personnel constraints, in-situ yield measurements were
unavailable for the initial years (2019 - 2021). Field-scale yield data was collected
through field surveys in September 2022 and 2023, with 21 and 18 sample plots
surveyed annually, respectively.

2. The soil data should be described in more detail, for example, which soil
parameters were used in this study.



Reply: Thanks for your suggestion.
As suggested, we have provided a more detailed description of the soil data used in
this study. For our study, we did not use the soil attribute data (such as chemical
characteristics) in this analysis, focusing only on the spatial distribution of soil types
to characterize the soil environment in the study region. This clarification has been
added to the revised manuscript (Section 2.2.3).

Soil data was obtained from the 1:1000,000 Chinese Soil Database, accessible via the
Geographic Data Sharing Infrastructure and the Global Resources Data Cloud
platform (www.gis5g.com). The dataset adopted the traditional “Chinese soil
classification system”, with subcategories serving as the foundational mapping unit.
It categorized soil hierarchically into 12 soil orders, 61 soil types, and 227
subcategories, providing comprehensive coverage of China’s soil diversity. The
dataset consisted of two components: spatial data for vector layers delineating soil
type distributions at the national scale, and attribute data that include key chemical
properties (e.g., pH, organic matter) and physical characteristics (e.g., texture, bulk
density). In this study, the 1:1000,000 soil spatial data was obtained to map soil types
for the study area, enabling integration with agro-ecological variables (e.g., crop
suitability, irrigation requirements) in the hybrid yield estimation framework.

3. The author used statistical data from 1980 to 2022, but the study's time scale is
from 2019 to 2023. This is confusing for the readers. Please provide an
explanation.

Reply: Thanks for your suggestion.

We have clarified the use of statistical data in the revision. In this study, the statistical
data served two main purposes. Firstly, to ensure that the multi-scenarios soybean
growth dataset, which was constructed in this study, accurately represented a wide
range of soybean production conditions, the statistical data from 1980 to 2022 were
all used to validate the reasonableness of the model simulations. Secondly, statistical
data from 2019 to 2022 were specifically applied to evaluate accuracy of soybean
yield estimation at the regional scale.

This distinction has been clearly explained in the revised manuscript to avoid any
confusion for the readers (Section 2.2.6).

The crop yield records (1980-2022) were obtained from the Statistical Yearbook
published by provincial authorities: Heilongjiang (http://tjj.hlj.gov.cn), Jilin
(http://tjj.jl.gov.cn), Liaoning (https://tjj.ln.gov.cn) , and Inner Mongolia Autonomous
Region (IMAR , https://tj.nmg.gov.cn). Due to the incomplete publication of the 2022
Statistical Yearbook, municipal-level yield for that year were limited to a subset of
cities. The statistical data were used for model simulation validation and regional-

http://tjj.hlj.gov.cn
http://tjj.jl.gov.cn
https://tjj.ln.gov.cn
https://tj.nmg.gov.cn


scale yield accuracy evaluation. The multi-scenario soybean growth dataset,
simulated using multi-years meteorological data, various soil types, multiple soybean
varieties and different agro-managements, required validation against real production
conditions. The historical statistics (1980 – 2022), supplemented by published yield
datasets and field samples, were used to evaluate the plausibility of the simulated
dataset validated the reasonableness of the model simulations. For validating yield
estimates at regional scale, data from 2019 to 2022 employed to quantify estimation
errors at regional scales.

4. The technology roadmap that needs improvement. 1) The author mentioned agro-
management data in Figure 2, but it is not mentioned in Section 2.2 Data
collections. 2) The sampling data mentioned in the Data collections section is not
reflected in the figures, as well as meteorological data from National
Meteorological Information Center. 3) The method of combining remote sensing
data and model output through GRU is described too simplistically. 4) The author
allocates a large proportion of the figures to how WOFOST conducts simulations,
but this is not the focus of this study. The focus of this study should be on how to
use models and remote sensing coupled for yield estimation, just as the author
introduces in the research objective: "Designing a hybrid model coupling crop
growth model and deep learning model for soybean yield estimation." The
technology roadmap should more detailed display the research focus.

Reply: Thank you for pointing this out.

We have made substantial revisions to improve the technology roadmap, addressing
the points raised:
(1) The study primarily simulated different soybean agro-management scenarios by

setting different planting dates as literatures have highlight the importance of
planting date on soybean yield. In addition, for large-scale estimation modeling,
it's more practical to focus on broader factors like planting dates rather than
detailed management measures. The agro-management data was collected
alongside in-situ measurements. We have now included an explanation of the
agro-management data collection process in Section 2.2.1 (Line 112 - 114) to
ensure consistency between the figure and the text.

Due to resources and personnel constraints, in-situ yield measurements were
unavailable for the initial years (2019 - 2021). Field-scale yield data was collected
through field surveys in September 2022 and 2023, with 21 and 18 sample plots
surveyed annually, respectively (Fig. 1). Each plot covered an area of approximately
100 m × 100 m, within which nine randomly distributed 1 m × 1 m quadrats were
selected for destructive soybean yield sampling. The central geo-location of each
quadrat was recorded using a GPS device with accuracy of 1 m. Harvested beans for
each quadrat were then oven-dried 72 hours to determine moisture-free yield, which
was processed at the Hailun Agricultural Ecology Experimental Station, Chinese



Academy of Sciences. Finally, the mean yield of the nine quadrats was calculated to
represent the plot-level yield. Additionally, soybean planting dates across regions
were collected through field surveys to support agro-management parameterization
in the model.

(2) The sampling data were used to validate soybean yield estimation accuracy at the
field scale, while the meteorological data from the National Meteorological
Information Center were used as input for the WOFOST model to provide
essential weather parameters. Both of these datasets are represented in the revised
figure (field measured samples and meteorological station data, respectively), and
their roles have been explicitly described in the text.

(3) We have revised the flowchart to better represent the hybrid model's structure. The
updated version now clearly distinguishes two main components: the first part
describes the construction of the hybrid model, combining WOFOST and GRU
for yield estimation, while the second part focuses on how remote sensing data are
used in conjunction with this hybrid model to estimate soybean yield at the
regional scale. We have provided more detail in the flowchart regarding how
remote sensing data are integrated as inputs into the GRU model and how they
contribute to spatial yield predictions.

(4) We agree that the focus of the study should be on the coupling of remote sensing
data with crop growth models for yield estimation, as stated in the research
objectives. Therefore, the updated technology roadmap places greater emphasis on
this aspect, reducing the proportion dedicated to the WOFOST model and
highlighting how the hybrid model (WOFOST + GRU) is used for yield
estimation. This revision better aligns the roadmap with the research focus and
research objectives, as well as the methodology described in the manuscript.



Figure 2: The flowchart of the overall yield estimation methodology in this study.

5. Which sub-model of PCSE did the author use? LINTUL3 or Wofost72_PP?

Reply: Thanks for your suggestion.

Our soybean simulations were conducted using the Wofost72_WLP_CWB (water-
limited mode) within the PCSE (v5.5.) for soil-water dynamics and crop responses to
water stress. This is because rainfed agricultural practices dominant in Northeast
China, where water availability rather than nutrient constraints is the major limiting
factor on crop growth.
Relevant edits have been revised in the revision (Line 197 – 199).

In this study, the World Food Studies Simulation Model (WOFOST) model (Diepen et
al., 1989) was employed to generate knowledge-based soybean growth dataset.



Detailed information about the model could be found in Huang et al., (2015). Since
rainfed agricultural practices dominant in Northeast China, the water-limited mode
of the WOFOST (Wofost72_WLP_CWB) was employed for soybean simulation
from the Python Crop Simulation Environment (PCSE) framework version 5.5.

6. As far as I know, VAP is not included in the ERA5 dataset. How did the author
obtain the VAP data?

Reply: Thank you for pointing out this.

The study only used the daily aggregated air temperature data at 2 meters from the
ERA5 dataset to calculate the spatial distribution of soybean phenology, which was
used to guide the acquisition time for remote sensing data. For the meteorological
parameters required by the WOFOST model (including VAP), all data were sourced
from meteorological station data rather than ERA5.

This clarification has been added to the manuscript in Line 132 – 137 and Line 211 –
212.

The climate reanalysis data was obtained from the ERA5-land Daily Aggregated
ECMWF product. The data was only used to calculate soybean phenology for
preparation of yield estimations. It was a global climate reanalysis product that
provided continuous climate data at a resolution of 0.1° × 0.1° (e.g., air temperature
and atmospheric pressure) starting from 1950. The daily aggregated air temperature
data at 2 m above the surface of land measured in kelvin (K) during the soybean
growth periods from 2019 to 2023 was collected in this study from the Google Earth
Engine (http://earthengine.google.com). The product was then resampled to 20 m
using bilinear interpolation model.

The meteorological parameters required in WOFOST is shown in Table 1. The
data was only provided by meteorological stations. To account for various
meteorological conditions, the meteorological data collected from the selected 51
meteorological stations over a period of 42 years (1980-2021) was all utilized to
provide values of these parameters. The meteorological inputs were then processed
into the format recognized by the model.

7. Line 209-215: The description of the calculation process for soil parameters is too
simplistic; a detailed calculation process should be provided. For example, which
parameters from the Chinese soil database were used in the study, and what
theories/formulas were utilized to calculate the SMW, SMFCF, SM0, and K0
required by the WOFOST model? Is Table 2 a lookup table? Where did it come
from?

Reply: Thanks for your suggestion.

http://earthengine.google.com


In the revised version of the manuscript, we have provided more detailed information
on the soil parameter settings (Line 217 – 225). Based on the soil spatial data, we
found that the main soil types in the study area can be categorized as sandy loam,
light loam, medium loam, and heavy loam. The parameter settings for these different
soil types were primarily obtained from existing literature. Table 2 is not a lookup
table, but a compilation of the parameters based on previous studies.

We have now indicated the sources of the soil parameters presented in Table 2 in the
manuscript.

The soil parameters in the WOFOST mainly include soil moisture content at wilting
point (SMW), field capacity (SMFCF) and saturation (SM0) as well as hydraulic
conductivity of saturated soil (K0). According to the 1:1000,000 Chinese soil
database, the soil texture in study area is predominantly loam soil, which can be
further divided into sandy loam, light loam, medium loam and heavy loam. Sun et al.,
(2022) found that the properties of typical heavy loam suitable for soybean cultivation
were similar to those provided in the model source file WOFOST Control
Centre/SOILD/EC2.NEW and further updated the soil parameters of heavy loam
based on this file by incorporating soil data observed at meteorological stations. The
parameters of sandy loam, light loam and heavy loam were collected from Du et al.,
(2025). The value settings of soil parameters for different soil types in the study area
was presented in Table 2 (Du et al., 2025; Sun et al., 2022). They were all used as
model inputs to consider the impact of different soil types on soybean production.

8. Line 215: The description of Table 3 is redundant. It suffices to directly list the
values and sources of the WOFOST crop parameters. Table 4 should list all crop
parameters in WOFOST, not just the main crop parameters.

Reply: Thanks for your suggestion. We have removed Table 3 and its accompanying
description. Instead, we have provided a complete list of the WOFOST crop
parameters and their corresponding values as suggested. Due to the length of the table,
it has been placed in the appendix (Table A1). This change ensures a more
comprehensive and concise presentation of the crop parameters used in the study.

In this study, the soybeans were classified into five types including early maturity,
medium-early maturity, intermediate maturity, medium-late maturity and late maturity
according to Qu et al., (2023). In the WOFOST model, soybean growth stages are
mainly determined by temperature-related parameters including the minimum and
maximum threshold temperature for emergence (TBASEM, TEFFMX, respectively),
accumulated temperature (Te) from sowing to emergence (TSUMEM), from
emergence to anthesis (TSUM1) and from anthesis to maturity (TSUM2). The
accumulated temperature for different growth stage is sensitive to crop varieties. They
were set according to the historical meteorological data and observation data of



soybean and had been validated using actual measurements of soybean development
periods in Qu et al., (2023). Other crop parameters were set used the default values of
the WOFOST model or the optimal values from the study of Sun et al., (2022). Values
of all crop parameters could be found in Table A1.
Table A1 Values of crop parameters in WOFOST.

Parameter Description Units Value Source
Crop initial parameters
TDWI Initial total crop dry weight kg ha-1 120 Default value in

WOFOST
RGRLAI Maximum relative increase

in LAI
ha ha-1 d-
1

0.01 Default value in
WOFOST

Parameters for emergence
TBASEM Minimum threshold

temperature for emergence
℃ 8.0 Qu et al., (2023)

TEFFMX Maximum threshold
temperature for emergence

℃ 22.0 Qu et al., (2023)

TSUMEM Accumulated temperature
from sowing to emergence

℃ 70.0 Qu et al., (2023)

Phenological parameters
DLO Optimal daylength for

development
h -99 Default value in

WOFOST
DLC Critical daylength h -99 Default value in

WOFOST
TSUM1 Cumulative temperature

from emergence to anthesis
℃ 450 (early

maturity)
480 (medium-
early maturity)
520 (intermediate
maturity)
540 (medium-late
maturity)
580 (late maturity)

Qu et al., (2023)

TSUM2 Cumulative temperature
from anthesis to maturity

℃ 660 (early
maturity)
770 (medium-
early maturity)
870 (intermediate
maturity)
960 (medium-late
maturity)
1000 (late
maturity)

Qu et al., (2023)

Green area parameters
TBASE Lower threshold

temperature for aging of
leaves

℃ 7.0 Default value in
WOFOST

SPAN Life span of leaves growing
at 35 ℃

d 23 Default value in
WOFOST

SLATB00 Specific leaf area at DVS =
0.00

ha kg-1 0.00140 Default value in
WOFOST

SLATB045 Specific leaf area at DVS =
0.45

ha kg-1 0.00250 Default value in
WOFOST

SLATB090 Specific leaf area at DVS =
0.90

ha kg-1 0.00250 Default value in
WOFOST

SLATB200 Specific leaf area at DVS =
2.00

ha kg-1 0.00070 Default value in
WOFOST

Assimilation parameters



KDIFTB00 Extinction coefficient for
diffuse visible light (DVS =
0)

- 0.80 Default value in
WOFOST

KDIFTB200 Extinction coefficient for
diffuse visible light (DVS =
2)

- 0.80 Default value in
WOFOST

EFFTB0 Light use efficiency of a
single leaf (T = 0 ℃)

kg ha-1 h-
1 J-1 m2 s-
1

0.40 Default value in
WOFOST

EFTB40 Light use efficiency of a
single leaf (T = 40 ℃)

kg ha-1 h-
1 J-1 m2 s-
1

0.40 Default value in
WOFOST

AMAXTB00 Maximum leaf CO2
assimilation rate (DVS = 0)

kg ha-1 h-
1

29.00 Default value in
WOFOST

AMAXTB170 Maximum leaf CO2
assimilation rate (DVS =
1.7)

kg ha-1 h-
1

25.31 Sun et al., (2022)

AMAXTB200 Maximum leaf CO2

assimilation rate (DVS = 2)
kg ha-1 h-
1

0.00 Default value in
WOFOST

TMPFTB00 Reduction factor of AMAX
(T = 0 ℃)

- 0.00 Default value in
WOFOST

TMPFTB10 Reduction factor of AMAX
(T = 10 ℃)

- 0.30 Default value in
WOFOST

TMPFTB20 Reduction factor of AMAX
(T = 20 ℃)

- 0.60 Default value in
WOFOST

TMPFTB25 Reduction factor of AMAX
(T = 25 ℃)

- 0.80 Default value in
WOFOST

TMPFTB30 Reduction factor of AMAX
(T = 30 ℃)

- 1.00 Default value in
WOFOST

TMPFTB35 Reduction factor of AMAX
(T = 35 ℃)

- 1.00 Default value in
WOFOST

Conversion of assimilates into biomass
CVL Conversion efficiency of

assimilates into leaf tissue
kg kg-1 0.72 Default value in

WOFOST
CVO Conversion efficiency of

assimilates into storage
organs

kg kg-1 0.48 Default value in
WOFOST

CVR Conversion efficiency of
assimilates into root tissue

kg kg-1 0.72 Default value in
WOFOST

CVS Conversion efficiency of
assimilates into stem tissue

kg kg-1 0.69 Default value in
WOFOST

Maintenance respiration parameters
Q10 Relative change in

respiration rate per 10 ℃
temperature increase

- 2.0 Default value in
WOFOST

RML Ralative maintenance
respiration rate of leaves

kg CH2O
kg-1 d-1

0.03 Default value in
WOFOST

RMO Ralative maintenance
respiration rate of storage
organs

kg CH2O
kg-1 d-1

0.017 Default value in
WOFOST

RMR Ralative maintenance
respiration rate of toots

kg CH2O
kg-1 d-1

0.01 Default value in
WOFOST

RMS Ralative maintenance
respiration rate of stems

kg CH2O
kg-1 d-1

0.015 Default value in
WOFOST

Partitioning parameters
FRTB00 Fraction of total dry matter

to roots at DVS = 0
kg kg-1 0.62 Sun et al., (2022)

FRTB075 Fraction of total dry matter
to roots at DVS = 0.75

kg kg-1 0.35 Default value in
WOFOST

FRTB100 Fraction of total dry matter kg kg-1 0.15 Default value in



to roots at DVS = 1 WOFOST
FRTB150 Fraction of total dry matter

to roots at DVS = 1.5
kg kg-1 0.00 Default value in

WOFOST
FRTB200 Fraction of total dry matter

to roots at DVS = 2.0
kg kg-1 0.00 Default value in

WOFOST
FLTB00 Fraction of total dry matter

to leaves at DVS = 0
kg kg-1 0.70 Default value in

WOFOST
FLTB100 Fraction of total dry matter

to leaves at DVS = 1.0
kg kg-1 0.70 Default value in

WOFOST
FLTB115 Fraction of total dry matter

to leaves at DVS = 1.15
kg kg-1 0.60 Default value in

WOFOST
FLTB130 Fraction of total dry matter

to leaves at DVS = 1.3
kg kg-1 0.43 Default value in

WOFOST
FLTB150 Fraction of total dry matter

to leaves at DVS = 1.5
kg kg-1 0.15 Default value in

WOFOST
FLTB200 Fraction of total dry matter

to leaves at DVS = 2.0
kg kg-1 0.00 Default value in

WOFOST
FSTB00 Fraction of total dry matter

to stems at DVS = 0
kg kg-1 0.30 Default value in

WOFOST
FSTB100 Fraction of total dry matter

to stems at DVS = 1.0
kg kg-1 0.30 Default value in

WOFOST
FSTB115 Fraction of total dry matter

to stems at DVS = 1.15
kg kg-1 0.25 Default value in

WOFOST
FSTB130 Fraction of total dry matter

to stems at DVS = 1.3
kg kg-1 0.10 Default value in

WOFOST
FSTB150 Fraction of total dry matter

to stems at DVS = 1.5
kg kg-1 0.10 Default value in

WOFOST
FSTB200 Fraction of total dry matter

to stems at DVS = 2.0
kg kg-1 0.00 Default value in

WOFOST
FOTB00 Fraction of total dry matter

to storage organs at DVS =
0

kg kg-1 0.00 Default value in
WOFOST

FOTB100 Fraction of total dry matter
to storage organs at DVS =
1.0

kg kg-1 0.00 Default value in
WOFOST

FOTB115 Fraction of total dry matter
to storage organs at DVS =
1.15

kg kg-1 0.15 Default value in
WOFOST

FOTB130 Fraction of total dry matter
to storage organs at DVS =
1.3

kg kg-1 0.47 Default value in
WOFOST

FOTB150 Fraction of total dry matter
to storage organs at DVS =
1.5

kg kg-1 0.75 Default value in
WOFOST

FOTB200 Fraction of total dry matter
to storage organs at DVS =
2.0

kg kg-1 1.00 Default value in
WOFOST

Death rate parameters
PERDL Maximum relative death

rate of leaves due to water
stress

kg kg-1 d-
1

0.03 Default value in
WOFOST

RDRRTB00 Relative death rate of roots
at DVS = 0

kg kg-1 d-
1

0.00 Default value in
WOFOST

RDRRTB150 Relative death rate of roots
at DVS = 1.5

kg kg-1 d-
1

0.00 Default value in
WOFOST

RDRRTB151 Relative death rate of roots
at DVS = 1.51

kg kg-1 d-
1

0.02 Default value in
WOFOST

RDRRTB200 Relative death rate of roots
at DVS = 2.0

kg kg-1 d-
1

0.02 Default value in
WOFOST

RDRSTB00 Relative death rate of stems kg kg-1 d- 0.00 Default value in



at DVS = 0 1 WOFOST
RDRSTB150 Relative death rate of stems

at DVS = 1.5
kg kg-1 d-
1

0.00 Default value in
WOFOST

RDRSTB151 Relative death rate of stems
at DVS = 1.51

kg kg-1 d-
1

0.02 Default value in
WOFOST

RDRSTB200 Relative death rate of stems
at DVS = 2.0

kg kg-1 d-
1

0.02 Default value in
WOFOST

Water use parameters
CFET Correction factor

transpiration rate
- 1.0 Default value in

WOFOST
DEPNR Crop group number for soil

water depletion
- 5.0 Default value in

WOFOST
IAIRDU Air ducts in roots present

(=1) or not (=0)
- 0 Default value in

WOFOST
IOX Oxygen stress effect

enabled (=1) or not (=0)
- 0 Default value in

WOFOST
Rooting parameters
RDI Initial rooting depth cm 10 Default value in

WOFOST
RRI Maximum daily increase in

rooting depth
cm d-1 1.2 Default value in

WOFOST
RDMCR Maximum rooting depth cm 120 Default value in

WOFOST

9. Line 235: What’s the setting of the fertilizer application rate and timing in the
WOFOST?

Reply: Thanks for your suggestion.

We would like to clarify that in this study, no fertilizer applications were considered.
For agricultural production management, literatures have highlight that the planting
date has a significant impact on soybean yield. The study simulated different
agricultural management practices by varying the planting dates. As soybeans in study
area are seldom subjected to nutrient stress according to the field surveys, the
WOFOST model was not configured with specific fertilizer application rates or
timings for this study. As when it comes to large-scale estimation modeling, focusing
too much on detailed management measures might not be practical. A more
generalized approach, taking into account broader factors like planting dates, can
provide a better balance between accuracy and feasibility for large-area predictions.

This has been explained in the revised manuscript (Line 238 – 245).

Research demonstrates that planting date significantly influences soybean yield
components, including pods per plant, seed count, and plant biomass, while also
affecting oil and protein content (Urda et al., 2024). When conducting large-scale
estimation modelling, prioritizing overly detailed management practices may lack
practicality. Furthermore, field surveys indicate that soybeans in study area rarely
experience nutrient stress. Given these findings, the simulations did not account for
fertilizer applications. To balance realism and scalability, agro-management
variability was represented solely through planting date adjustments. Since soybeans



in the study area are typically sown between late April and late May, so simulations
incorporated four planting scenarios: 20 April, 30 April, 10 May, and 20 May.
Overall, the simulations capture phenological variability while avoiding unnecessary
complexity in regional scale.

10. Line 244: After reading Section 3.2 Development of the Grated Recurrent Unit
model (GRU), I am still unclear about the role of GRU in this study. The author's
explanation of the principles of GRU is unclear. It does not directly describe how
GRU combines the output of the WOFOST model with remote sensing data, as
shown in the technical roadmap. Figure 3 lacks self-explanatory power, leaving it
unclear what exactly the inputs and outputs of the GRU are.

Reply: Thanks for your suggestion. In the revised version, we further clarified the
role of the GRU model in this study. The GRU was used for large-scale soybean yield
estimation in this study. Since the internal structure of the GRU model was not
adjusted in this study, we reduced the description of the GRU model's principles and
instead focused more on its application in yield estimation. We removed the
description of the GRU cell structure in Figure 3 and replaced it with a more detailed
explanation of how the GRU model was trained using the soybean growth dataset
simulated by the WOFOST model, enabling it to quickly estimate soybean yield at the
regional scale. Additionally, we specified the inputs and outputs of the GRU model. In
this study, the GRU model uses the average LAI values at different soybean growth
stages as input features and soybean yield as the output. The trained GRU model was
then integrated with remote sensing data for large-scale soybean yield mapping using
the features derived from the remote sensing data as inputs (Section 3.2).

After construction of soybean growth dataset, the GRU model was used for large-
scale soybean yield estimation. The GRU is a type of RNN model similar to LSTM.
It controls the flow of information through two gates, update and reset gates (Cho et
al., 2014). The update gate aims to control how much of the past information that are
retrained and will be used in the future calculation. The reset gate aims to evaluate
whether the remained previous information can be ignored in the new candidate
hidden state. The use of two gates maintains the balance between retaining the hold
hidden state and incorporating new information (Peng and Yili, 2022; Zhang et al.,
2022). This improves the training speed of the model and helps mitigate the vanishing
gradient problem during training. Since GRU can effectively capture long-term
dependencies in time series data, it has achieved good performance in applications of
crop yield estimation (Gopi and Karthikeyan, 2023; Ren et al., 2023b). The model
was constructed based on TensorFlow 2.6 in this study. More details about GRU
could be found in Cho et al., (2014).

The GRU model was trained based on the multi-scenario soybean growth
dataset generated by the WOFOST model. We firstly determined the features
sensitive to soybean yield, and then extracted the corresponding features and
soybean yield from soybean growth dataset, which were used as the GRU’s input



and output to train the GRU model. Through this approach, the connection
between the WOFOST model and the GRU model was effectively established. As a
crucial state variable in WOFOST, LAI signifies the photosynthetic capability of crops
and can effectively characterize the potential yield (Huang et al., 2015). Accounting
for the computational efficiency of the model in large areas, the average value of LAI
was used as the input feature of GRU. To better capture the growth dynamics of
soybean, the mean LAI at vegetative (from emergence to flowering) and reproductive
(from flowering to maturity) growth period in the soybean growth dataset were
calculated, represented as LAImean1 and LAImean2, respectively. The two stage LAI
values derived from the simulations, serving as temporal input features, were then
combined with model simulated soybean yield in knowledge base, serving as model
output, to train the GRU model. The simulated soybean growth dataset was splits into
training and testing datasets using 10-fold cross-validation for model training. The
hyperparameters of GRU was optimized using a grid search method (Açikkar, 2024).
The root mean squared error (RMSE, Eq. (5)) was applied to assess the predictive
performance of different set of hyperparameters. After optimization of each fold, the
hyperparameters that yielded the smallest predictive error were selected as the
optimal ones. The trained GRU model was then coupled with remote sensing data
for large-scale soybean yield mapping by inputting the feature variables inversed
with remote sensing data.

11. Why is MODIS data mentioned again in Line 315? MODIS data was not
mentioned in the data collection section.

Reply: Thank you for pointing out this. This is a writing error, and we apologize for
the confusion. The term "MODIS data" in Line 315 actually refers to the MODIS LAI
product (MCD15A3H), which was used in the study. We have corrected this in the
revised manuscript to avoid any misunderstanding (Line 317 - 322).

In this framework, the MODIS LAI data, MCD15A3H, was used for intercalibration.
Due to its higher temporal resolution and broader image coverage, MCD15A3H
generally provided more continuous estimation results. For correction, yield maps
were also generated using MODIS LAI products. We utilized the estimation results
from MODIS LAI to calibrate the mean yield for each Sentinel-2 tile. The difference
between the mean value of the yield derived from MODIS LAI for the region cover the
tile and the initial Sentinel-2 estimations was then added to the yield values from
Sentinel-2.

12. As shown in Figures 6, 7, and A2, the model simulation accuracy is below
industry standards.

Reply: Thank you for pointing this out.

We have made clarifications in the revised manuscript. While the accuracy of our



model may appear to be below industry standards in Figures 6, 7, and A2, we have
provided a more comprehensive evaluation of its performance in comparison to other
studies. The comparison between the performance of our study with that of other
studies at multi-scales (field and municipal scale) showed that our method
outperformed existing approaches in terms of accuracy. Moreover, we compared our
results with soybean yield datasets from other countries with similar resolution.
Results showed that our dataset demonstrated superior accuracy. We acknowledge that
some studies based on UAV and RGB data have reported higher accuracy for soybean
yield estimation. However, these methods are limited by challenges related to data
acquisition and high costs, making them suitable only for individual plant or field
scale analysis. This limits their applicability for large-scale studies.

The primary goal of this study is to provide a hybrid modeling approach that
enables rapid and large-scale soybean yield estimation. The method we produced
balances computational efficiency, accuracy, and high resolution, making it suitable
for regional-scale and field scale applications. This approach represents a practical
solution for large-scale yield estimation despite the lower accuracy compared to some
high-cost methods.

Details of revision could be found in Line 469 – 478.

Accurate monitoring of soybean yield is crucial for food policy decision-making and
security assessment. Previous studies have primarily focused on the impact of various
factors (e.g., climate) on soybean yield (Guo et al., 2022; Zhao et al., 2023a). To our
knowledge, high-resolution soybean yield dataset is currently unavailable in the main
production regions of China. The study combined crop growth model with deep
learning to construct a hybrid model driven by data and knowledge simultaneously
for soybean yield estimation. The model retained its data mining capabilities while
incorporating mechanistic constraints, thereby enhancing the model's interpretability
and transferability. Accuracy verification based on in-situ and statistical data showed
that the NortheastChinaSoybeanYield20m generated in this study accurately
estimated soybean yield at both field and regional scales (Fig. 5 and 6). Compared to
existing studies combining remote sensing with process-based model for soybean
yield estimation (e.g., Baup et al., (2015), reporting estimation errors of 2 -18% ),
our method achieved comparable ccuracy. Notably, our framework outperformed
existing approaches at both field and regional scales. At the field scales, the
assessments obtained RMSE of 287.44 kg ha-1 that surpass the RMSE of 400.946 kg
ha-1 reported by Ren et al., (2023a). At the municipal scale, the accuracy was RMSE
of 272.36 kg ha-1 that was lower than RMSE of 420.00 kg ha-1 reported by Von Bloh
et al., (2023). Additionally, the NortheastChinaSoybeanYield20m dataset
demonstrated superior accuracy compared to similar resolution soybean yield
datasets from other countries (Song et al., 2022). While UAV -based RGB data
achieved higher point-scale accuracy (Li et al., 2021, 2024), their reliance on costly,
localized data acquisition limits scalability. The method developed in this study
strikes a balance between computational efficiency, spatial resolution and accuracy,
offering a practical solution for large-scale yield estimation.



13. By the way, Line 240:” 3.1.2 Multi-scenarios crop simulations”, author said:” The
four different types of model parameters were arranged and combined to generate
various simulation scenarios”. Where could I read the scenario settings and the
results of this part in the manuscript?

Reply: Thanks for your suggestion.

In the revised version, we have provided a more detailed description of Section 3.1.2:
Multi-scenario crop simulations. The study simulated different soybean growth
scenarios by fully configuring four input parameters of the WOFOST model:
meteorological parameters, soil parameters, crop-specific parameters, and agro-
management parameters. The meteorological parameters were derived from
observational data collected over 42 years from 51 meteorological stations, while 4
soil types, 5 crop varieties, and 4 agro-managements were defined. By combining
different parameter types (similar to a lookup table approach), we inputted these
parameter combinations into the WOFOST model to simulate various scenarios. To
more clearly describe the scenario simulation process, we have added a Table 3 in the
revision, which outlines the scenario settings in detail. Furthermore, we have
corrected a numerical error in the revised version. The total number of simulated
scenarios generated by the parameter combinations exceeds 170,000, rather than
80,000 as previously stated. We sincerely apologize for the oversight in the earlier
version.

We have conducted a thorough review of the revised version to ensure that similar
errors have been avoided and the accuracy of the content is maintained.

After parameter preparation, a soybean growth dataset was constructed through
model simulations which accounted for the multi-scenarios in agricultural production.
The four different types of model parameters (meteorological parameters, soil
parameters, crop-specific parameters and agro-management parameters) were
arranged and combined to generate various simulation scenarios (Table 4). The
scenarios were then put into the model for simulation. Finally, a dataset containing
more than 170,000 (51×42×4×5×4) available simulations were generated.
Table 3 Scenarios for WOFOST simulations

Parameters Number of categories Details
Meteorological parameters 51×42 Meteorological data from 51 stations over

42 years (1980 – 2021)
Soil parameters 4 Sandy loam, light loam, medium loam and

heavy loam
Crop-specific parameters 5 Early maturity, medium-early maturity,

intermediate maturity, medium-late
maturity and late maturity

Agro-management parameters 4 Four planting dates 20 April, 30 April, 10
May, and 20 May


