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Abstract. Acritarchs are microfossils of unclear biological affinities, mostly considered to be algae, with great significance 16 

for studying the origin and evolution of early life on Earth. Acritarchs’ data are currently dispersed across various research 17 

institutions and databases worldwide, lacking unified integration and standardization. Palynodata was the largest database of 18 

acritarchs, containing 14 fields, 111 295 entries, 812 061 metadata items, and 7369 references. However, it lacked references 19 

post-2007 and excluded geographic data. Here, we collected and organized previous data, adding 29 fields, 4531 entries, 2 238 20 

366 metadata points, and 415 references, to build a “Global Acritarch Database” (GAD). The expanded database now contains 21 

a total of 43 fields, covering genera, species, and related geological information (geological timescale, location, modern 22 

latitude and longitude, paleolatitude and paleolongitude, stratum, and others), amounting to 115 860 entries, 3 050 852 23 

metadata, and 7791 references. Each entry is associated with fields that facilitate a better understanding of the geographical 24 

distribution and changes over geological timescales of acritarchs, thereby revealing their temporal and spatial distribution 25 

patterns and evolution throughout the history of the Earth. This article describes GAD version 1.0, which is available at 26 

https://doi.org/10.5281/zenodo.15208303 (Shu et al., 2025). 27 

1 Introduction 28 

Acritarchs are organic-walled cysts of unicellular protists, first defined by Evitt (1963) as a group of “unknown and possibly 29 

varied biological affinities consisting of a central cavity enclosed by single or multiple layers of walls, mainly composed of 30 

organic materials” (Yin, 2018). Evitt (1963) also noted that acritarchs are an informal, practical classification category with 31 

mailto:haijunsong@cug.edu.cn
mailto:haijunsong@cug.edu.cn


2 

 

no taxonomic ranks above the genus level, suggesting the use of the International Code of Botanical Nomenclature to name 32 

morphological genera and species without assigning them to a specific biological phylum (Wicander, 2002). Morphologically, 33 

acritarchs are typically single-celled microfossils ranging in size from a few micrometers to one millimeter. The most common 34 

shape is spherical, and they can be either smooth or covered with spines (Mendelson, 1987). Most of them have been interpreted 35 

as algal cysts (e.g., Colbath and Grenfell, 1995; Grey, 2005; Moczydłowska and Liu, 2022) while a few are related to non-36 

algal origins (e.g., Butterfield, 2005; Schrank, 2003; Servais et al., 1997). Particularly for Precambrain acritarchs, some 37 

specimens with dividing cells have been attributed to animal embryos/diapause cysts (Cohen et al., 2009; Xiao et al., 1998; 38 

Yin et al., 2007), giant sulphur bacteria (Bailey et al., 2007), or a holozoan affinity (e.g., Huldtgren et al., 2011; Yin et al., 39 

2020), which are important for understanding the origin and early evolution of animals. Following the foundational work of 40 

earlier researchers, Fensome et al. (1990) made significant advancements by compiling a comprehensive taxonomic index of 41 

acritarchs at the genus, species and infraspecific levels, thereby significantly enhancing the standardization of classification 42 

criteria within the field. Acritarchs have been discovered in sedimentary rocks from marine and terrestrial aquatic environments, 43 

with records from all continents, spanning from the Proterozoic to the present. The oldest and most well-preserved acritarchs 44 

are derived from approximately 1.8 billion years ago in Mesoproterozoic (Buick, 2010), with evidence suggesting these rocks 45 

existed as far back as 2.5 billion years ago (Buick, 2010; Gaucher and Sprechmann, 2009). Acritarchs are valuable for 46 

determining chronological ages and biostratigraphic correlations for their high abundance, taxonomic diversity, and global 47 

distribution patterns (Lei et al., 2012), especially in Proterozoic and Paleozoic strata where they are probably the only preserved 48 

fossils (Beraldi-Campesi, 2013; Wicander, 2002; Xiao and Narbonne, 2020). They are particularly valuable when combined 49 

with other fossil groups for regional and global paleobiogeography and paleoecology research (Dale, 2023; Lamb et al., 2009; 50 

Mudie et al., 2001). Additionally, acritarchs are primary producers at the base of the marine food chain in the Proterozoic and 51 

Paleozoic Eras (Wicander, 2002), and played an important role in the evolution of global marine ecosystems (Falkowski and 52 

Knoll, 2011). Given their significance, it is crucial to establish a global database. 53 

 54 

The compilation of acritarch databases dated back to the 1970s. Tappan and Loeblich (1973) pioneered systematic statistical 55 

work in this field by publishing a dataset covering the interval from 0-700 Ma. However, this early compilation exhibited 56 

relatively coarse temporal resolution and limited data. Even for the Ordovician, which had the highest data density, fewer than 57 

500 species were recorded. Between 1971 and 2010, John Williams compiled the “John William Index of Palaeopalynology”, 58 

which documented 1577 genera. A digitized version of this catalog is now archived in the Acritax online database 59 

(https://www.mikrotax.org/Acritax). In the 1990s, with support from the Geological Survey of Canada (GSC), the Palynodata 60 

database was developed, integrating extensive acritarch records. Its final version, released in 2006, was published as GSC 61 

Open File 5793 (http://geopub.nrcan.gc.ca/moreinfo_e.php?id=225704), containing 14 fields, 111 295 entries, 812 061 62 

metadata items, and 7369 references. 63 

 64 
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Despite advances in acritarch research, several challenges remain. First, the morphological diversity and complex classification 65 

of acritarchs have limited our understanding of this group (Agić et al., 2015; Arouri et al., 1999; Bernard et al., 2015; Butterfield 66 

and Rainbird, 1998; Javaux and Marshal, 2006; Moldowan et al.,1996; Wang et al., 2022; Williams, 1998). Second, although 67 

many acritarchs have been discovered, global spatial and temporal distribution remains uneven, with certain regions 68 

experiencing relatively weak research (Gray and Boucot, 1989; Huntley et al., 2006; Jacobson, 1979; Lei et al., 2013; Schreck 69 

et al., 2017). Additionally, existing acritarch databases are often limited to specific regions or periods and lack comprehensive, 70 

systematic, and complete global coverage (Anderson et al., 2017; Bernardi et al., 2011; Chamberlain et al., 2016; Servais et 71 

al., 2003; Williman and Moczydłowska, 2011). These limitations hinder further research on acritarchs in geological history. 72 

 73 

Here, we introduce a database that integrates global acritarch data from various geological periods, including genus, 74 

geographical distribution, and geological timescales. In the following sections, we provide information regarding data sources 75 

and selection criteria, review and clean the definitions behind entries, fields, and metadata, and outline the process. We explore 76 

the extensive compiled spatial and temporal trends, discuss the future uses and limitations of the dataset, and address the 77 

ongoing goals of the database. By leveraging this global database, we can better understand the diversity and evolutionary 78 

patterns of acritarchs and reveal the structure and function of biological communities in geological history. It not only provides 79 

references for oil and gas exploration but also promotes interdisciplinary research. Through in-depth data mining and analysis, 80 

we can explore the acritarchs’ stratigraphy, and environmental and ecological issues throughout the Earth’s history, ultimately 81 

providing new research ideas across different fields. 82 

2 Methods 83 

2.1 Compilation purpose  84 

The affinities of acritarchs are primarily linked to algae, suggesting that acritarchs were the main contributors to primary 85 

productivity in early oceans, paving the way for the subsequent rise of consumers (Agić, 2016; Daners et al., 2017). This 86 

implies that they played a crucial role in early marine environments and were important for maintaining ecological balance 87 

and carbon cycling. Quantitative analysis of fossils (e.g., acritarchs) from different strata allows better understanding of past 88 

changes in marine environments, including shifts in marine productivity, redox conditions, and carbon cycling. This aids in 89 

exploring the evolution of deep-time biological pumps and enhances our understanding of the processes and mechanisms 90 

behind the modern marine carbon cycle (Jia et al., 2022). Previous databases (Table 1), such as Palynodata 91 

(https://paleobotany.ru/palynodata, last access: 4 April 2025), containing a large number of acritarchs, exhibit several 92 

shortcomings: 1) the database only includes literature from 1842 to 2007, with no records for the following 17 years; 2) the 93 

numeric ages of strata in the database have not been updated; 3) despite including 14 fields, Palynodata lacks critical 94 

information such as latitude, longitude, lithology, stratigraphy, and paleogeography. In contrast, the Paleobiology Database 95 

(PBDB, https://paleobiodb. org/, last access: 4 April 2025) only collects a small amount acritarch data (866 entries in raw). In 96 

summary, previous databases exhibit issues such as incomplete data, difficulty in addressing fossil sampling biases, and 97 
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inapplicability for studying spatiotemporal changes. Therefore, we aim to build a global acritarch database (GAD) to advance 98 

research in this field. 99 

 100 

Table 1. GAD: Comparison of data sources from Palynodata, PBDB, this study. 101 

Data base N of all entries (i.e., rows) Proportion N of all metadata (i.e., cells with content) Proportion 

Palynodata 111 295 96.06% 812 061 26.62% 

PBDB 34 0.03% 425 0.01% 

This study 4531 3.91% 2 238 366 73.37% 

GAD 115 860 100% 3 050 852 100% 

 102 

2.2 Metadata fields and criteria 103 

GAD data come from PBDB, Palynodata, and published literature. From PBDB, 34 entries and 425 metadata points are sourced 104 

from seven studies. The main component of the database was derived from Palynodata (Kroeck et al., 2022; Palynodata Inc. 105 

and White, 2008; Strother, 2008) contains 14 fields, 111 295 entries, and 812 061 metadata points, but it has not been updated 106 

since 2007 and its location information is limited to textual descriptions. In this study, we searched recent publications through 107 

Google Scholar using keywords (such as acritarchs, organic-walled microfossils) and collected 415 additional studies from 108 

2008 to 2023. This collection includes 29 new fields, i.e. geological timescale (with uniform high-to-low levels: Eon, Era, 109 

Period, Epoch, and Age), modern latitude and longitude, paleolatitude and paleolongitude, stratigraphy, and lithology, totaling 110 

4531 entries and 2 238 366 metadata points. We have revised and updated the numeric age to the latest International 111 

Chronostratigraphic Chart (2023/09) (https://stratigraphy.org/). Some of the entries that have not been updated include data 112 

without temporal information, entries spanning multiple periods, and ambiguously described Precambrian data. The 113 

aforementioned three sources together form a new database, GAD, containing 115 860 entries, 43 fields, and 3 050 852 114 

metadata points. The database contains exclusively published data. The metadata primarily originated from original journal 115 

articles, supplements, or public repositories containing data tables. The included fields were organized to facilitate future 116 

updates of speciation/extinction models, taxonomic nomenclature corrections, data additions, and other research directions 117 

such as genus and species information, lithological details, geological timescales, and sampling locations, thereby enabling 118 

continual data updates. 119 

 120 

2.3 Data cleaning 121 

To maintain clarity and consistency in data description, an “entry” refers to each genus and species along with its related 122 

metadata as reported in the literature (i.e., a row), while a “field” refers to the metadata collected for each entry (i.e., a column) 123 

(Judd et al., 2022). 124 

 125 
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To ensure accurate publishing and better utilization of the data, we have cleaned the data using the following steps. 126 

 127 

(1) All entries are integrated into a single data table, including entries that lack at least one type of information such as “genus 128 

name without species name”, “genus and species name without temporal information” or “genus and species name without 129 

location information”. These were treated as separate entries to preserve them for possible future data replacements. Many 130 

Cambrian acritarch data were compiled by Palacios et al. (Palacios et al., 2009, 2012, 2014, 2017, 2020, 2021), Ordovician 131 

data by Le Hérissé et al. (Le Hérissé et al., 2007, 2014, 2015, 2017; Paris et al., 2007; Vecoli and Le Hérissé, 2003), and 132 

Silurian and Devonian data by Vavrdová et al. (Vavrdová and Dašková, 2011; Vavrdová and Svobodová, 2010; Vavrdová et 133 

al., 1996, 2011). Wherever possible, these compiled datasets were cross-checked with their original publications to ensure 134 

completeness, avoid errors, and fill in missing data or applicable fields. 135 

 136 

(2) Taxonomic field: acritarchs are generally considered form-taxa and are morphologically identified at the genus/species 137 

level. During data cleaning, we regulated the representation of “sp.” and punctuation marks, such as question marks, commas, 138 

parentheses, and minor spacing issues were removed to standardize the naming format and ensure proper characterization (Fig. 139 

1). Considering that this database contains biological fossils, outdated taxonomies or misspellings may have led to analytical 140 

errors. We traced back to original publication to validate taxonomic reliability for each taxonomic entry (those questionable 141 

or illegitimate taxa, invalidly named taxa, taxa retained in open nomenclature, etc.) and implemented PyRate to check for 142 

spelling errors and inconsistencies among the listed species (Silvestro et al., 2014, 2019). The function check_names was 143 

utilized, which requires a text file with one species name per line. In the returned file, ranks 0 and 1 indicated the most likely 144 

spelling errors, whereas ranks 2 and 3 represented genuinely different names. It is noteworthy that this algorithm does not 145 

check for synonyms. Ultimately, species data accounted for 90.7% of the database, with 19.4% represented by “sp.”. 146 

 147 

(3) Age (includes 12 separate columns collectively): during data integration, several entries lacked temporal information or 148 

had insufficient resolution. Therefore, temporal information at the stage level was supplemented to ensure consistent 149 

information retrieval (Fig. 2). If precise data were unavailable, the highest possible resolution level was retained, using the 150 

stage level as the primary reference, including numerical ages (in Ma), Period, and Stage information to provide relative ages. 151 

Ages were assigned by entering a numeric age and automatically matching to fill in relative age information, entering relative 152 

age information and automatically matching to fill in numeric age information, or retaining manually entered numeric and 153 

relative ages. If the numeric age was not recorded in the literature, it was manually set the age of the top and bottom of its 154 

strata using the latest International Chronostratigraphic Chart (2023/09). In the absence of a precise numerical age, a stage 155 

position (i.e., early, middle, or late) was used to further define the relative age and match it with the numerical age. Entries 156 

with numerical age records accounted for 89.9% of the database, and the remaining 11.1% (11 726 entries) lacked numeric 157 

age data (Table 2). Additionally, entries with genus and species names were resolved to the stage level once supplemented, 158 

and they accounted for 34.8% of the total data (excluding entries in which the numerical age could not be determined). 159 
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 160 

(4) Location (includes 9 separate columns collectively): during data integration process, it has been observed that only broad 161 

location information was available. To enhance the application of the data in the geospatial field, a minor location information 162 

field was added, specifically the “point” (the center point of text location information) determined by latitude and longitude 163 

(Fig. 1). After supplementation, latitude and longitude information accounts for 82.0% of the database. Modern latitude and 164 

longitude information were derived from detailed references to Google Maps (http://www.gditu.net). If location information 165 

was not recorded in the literature, it was left blank. When it was impossible to determine the precise location, the latitude and 166 

longitude information of the center point of the broader location were added to the remarks field, affecting 5972 entries. 167 

Paleolatitude conversion primarily relied on G-Plates (https://www.gplates.org/download/, version 2.5), and map alignment 168 

was performed using QGIS (https://qgis.org/download/, version 3.32.3). All maps were based on Scotese (2021).  169 

 170 

(5) Lithology and stratigraphy information covered only 0.11% and 2.7% of the total entries in the database, respectively, 171 

accounting for a very small proportion. The data on lithology and stratigraphy is the next priority for addition.  172 

 173 

(6) The reference field achieved 100% coverage in the database. It included the main (first) author, publication year, and 174 

journal. DOI of relevant literature were supplemented through Crossref (https://www.crossref.org/). Concurrently, for the 175 

convenience of machine reading, special characters, and garbled combinations in other applicable fields were deleted. 176 

 177 

Each field was evaluated based on a set of standardized criteria to ensure consistency throughout the process (Fig. 1). Any 178 

issues discovered during this process were corrected. A summary of entries by fields is shown in Table 2. 179 

 180 

 181 

Figure 1. Criteria are used to evaluate whether each entry matches a field. 182 

 183 

 184 

https://www.crossref.org/
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 185 

Figure 2. Specific supplementary process for stage level. 186 

 187 

Table 2.  Summary of entries by fields. 188 

Fields N of all entries Proportion Notes 

Taxon 

filed 

With species name 105 103 90.7% There are 20 374 indefinite species, 

accounting for 19.4% of “With species name”. 

Without species name 10 757 9.3% Refers to the genus level. 

Total 115 860 100%  

Age field With age  104 134 89.9% Include Entries 

N Proportion 

Eon level 104 134 100% 

Era level  101 149 97.1% 

System level 91 476 87.8% 
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Series level 60 286 57.9% 

Stage level 36 187 34.8% 

Substage level 5996 5.7% 

Without age 11 726 10.1% This includes all entries that cannot detect the 

numeric age. 

Include Entries 

N Proportion 

Eon level 2070 17.7% 

Era level  403 3.5% 

Cross level 2520 21.5% 

Not detected 7131 60.8% 

Total 115 860 100%  

Location 

field 

With modern latitude and 

longitude records 

94 997 82.0% This contains 1796 entries from oceans or 

seas, accounting for 1.9%, and 93 201 entries 

from continents, accounting for 98.1%. 

Without modern latitude 

and longitude records 

20 863 18.0% This includes 6264 entries that have location 

names but cannot determine latitude and 

longitude, accounting for 30.0%. 

Total 115 860 100%  

Others Lithological field 128 0.11%  

Occurrence 

status 

Incomplete 50 288 43.4% Judgment principle: whether there is a species 

name, numeric age, and modern latitude and 

longitude. 
Complete 65 572 56.6% 

Stratigraphic field 3122 2.7%  

Reference field 115 860 100%  

DOI 20 903 18.1%  
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3 Results 189 

3.1 Data statistics 190 

 191 

Figure 3. Classification of each field in database settings. 192 

 193 

Each entry in the GAD is associated with a set of fields, all of which represent information related to fossils. There are 39 194 

fields can be broadly divided into five categories (Fig. 3): (1) taxonomy, (2) age, (3) site, (4) reference, and (5) others. A basic 195 

description of these fields is summarised in Table 3, with details on how and why each field was assigned. 196 

 197 

Table 3. Detailed description and notes for each field. 198 

Category name Description of Category (Individual fields) Notes 

Taxonomy 

Genus name Genus names of biological fossils. Unified format, all data available. 

Species epithet Species epithet of biological fossils. It may contain blank spaces or sp. 

Subspecies  Subspecies names of biological fossils. It may contain blank spaces. 

Original genus name Record of genus name  

Acritarch 
Database

Taxonomy

•Genus name

•Species epithet

•Subspecies

•Original genus name

•Original species epithet

•Species ID

•Species name

• Identification

•Author

Age

•Eon, Era, Period, 
Epoch, Stage, 
Substage

•Min age(Ma)

•Max age(Ma)

•Old age name

•Young age name

•Young age(Ma)

•Old age(Ma)

Site

•Continent

•Ocean/Sea

•Country

•Location

•Location(detail)

•Longitude

•Latitude

•Paleolongitude

•Paleolatitude

Reference

•Doc #

•Doc ID

•Reference_no

•Ref ID

•Reference (Author and 
Year)

•Reference (Title and 
Journal)

•DOI

Others

•Formation

•Lithology

•Occurrence status

•Verification

•Original acquisition

•Notes
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Original Species epithet  Record of species epithet.  

Species name Species name of biological fossils.  

Species ID The serial number of the species.  

Author The name of indefinite species. It may contain blank spaces. 

Identification Used to explain “aff. /cf. /certain/…”. 

Age 

Eonothem/Eon The unit of time representing the longest time, typically 

used to describe geological periods exceeding billions of 

years. 

Source: International 

Chronostratigraphic Chart 

(2023/09) 

(https://stratigraphy.org/) Erathem/Era A unit of time under the Eon, typically referring to a large 

period lasting several hundred million years. 

System/Period A unit of time under the Era, typically indexed to a period 

of tens of millions year. 

Series/Epoch A unit of time under the Period, typically measured in 

millions to tens of millions of years. 

Stage/Age A unit of time under the Epoch, each stage typically 

represents a time span of several million years. 

Substage A unit of time under the Stage, usually used to describe a 

shorter period within the stage. 

Min Age (Ma) Numeric age of the lower boundary of stratigraphic age. 

Max Age (Ma) Numeric age of the upper boundary of stratigraphic age. 

Old Age Name The lower boundary of stratigraphic age. Keep the original division. 

Young Age Name The upper boundary of stratigraphic age. 

Old Age (Ma) Numeric age of the lower boundary of stratigraphic age. 

Young Age (Ma) Numeric age of the upper boundary of stratigraphic age. 

Site 

Continent The continent where the geographical location is located.  

Ocean/Sea The sea area where the geographical location is located.  

Country The country where the geographical location is located.  
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Location The major locations where the original data is used. Including sectors, may be precise 

to a province or country. 

Location (Detail) Fixed point determined by longitude and latitude.  

Longitude Longitude determined by location. If it is not represented in the 

literature, use the center of the 

“location” to represent it. 

Latitude Latitude determined by location. 

Paleolongitude The longitude of a certain period and location in 

geological history. 

According to modern latitude and 

longitude conversion. 

Paleolatitude The latitude of a certain period and location in geological 

history. 

Reference 

Doc # The serial number of literatures in Palynodata. Unified format, All data available. 

Reference (Author and 

Year) 

Literature information includes author, year, title, and 

journal. 

Reference (Title and 

Journal) 

DOI A permanent link to the literature. 

Ref ID The serial number of literatures in GAD. 

Doc ID The serial number of literatures in the database 

(Supplement for 2008-2023). 

Reference_no The serial number of literatures in PBDB. 

Others 

Formation Stratigraphic information of fossils. Insufficient data volume. 

Lithology Lithological information of fossils. 

Occurrence status Whether the information records are complete or not.  

Verification Returning to the original to verify information.  

Original acquisition Acquisition status of original literature.  

Notes Other remarks.  

Incidentally, “Nd” represents “Not Detected”, it’s just that the corresponding information cannot be obtained from the 

original literature. 

 199 
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3.2 GAD Statistics 200 

The GAD contains 115 860 entries from 7791 references, representing 1146 different sampling locations and records 201 

throughout geological history. Among these, 36 187 are marked as “stage level”, covering 101 out of the 102 stages in the 202 

Phanerozoic. In terms of biological fossil records, the database included 1456 genera and 9865 species (excluding those 203 

classified as sp.). During the process of correcting the numeric age, 7131 data points lacked a numeric age due to the inability 204 

to obtain geologic age from the original literature. The Paleozoic is the most well-represented, accounting for 70.9% of total 205 

entries (Table 4), followed by Mesozoic (13 044 entries) and Neoproterozoic (9040 entries). Regarding the spatial distribution 206 

of acritarchs, 93 201 entries originated from the continent, with a small portion from oceanic or marine areas accounting for 207 

1.9%. 208 

 209 

The sections below focus on fossil classification, literature sources, paleogeographic and spatiotemporal distribution trends. 210 

These examples illustrate the unique aspects of this compilation method and demonstrate the potential of the database for 211 

promoting research in paleoproductivity, paleoenvironment, and biological evolution.  212 

 213 

Table 4. Summary of the proportion of entries and sites by geologic era. 214 

Era All entries All sites 

N Proportion N Proportion 

Cenozoic 5997 5.9% 5466 6.2% 

Mesozoic 13 044 12.9% 11 911 13.5% 

Paleozoic 72 024 70.9% 61 717 69.6% 

Neo-Proterozoic 9040 8.9% 8162 9.2% 

Meso-Proterozoic 1251 1.2% 1167 1.3% 

Paleo-Proterozoic 196 0.2% 191 0.2% 

Total 101 552 100% 88 614 100% 

 215 

3.3 Taxonomy statistics 216 

At the genus level, the database includes 1456 genera and 9865 species (excluding sp.). The top ten genera, in terms of quantity 217 

that account for 36.0% of the total data volume, are Baltisphaeridium (7.0%), Micrhystridium (6.7%), Veryhachium (5.7%), 218 

Leiosphaeridia (3.9%), Multiplicisphaeridium (2.7%), Cymatiosphaera (2.7%), Tasmanites (2.1%), Leiofusa (1.8%), 219 

Acanthodiacrodium (1.8%), and Lophosphaeridium (1.5%), the specific number of entries can be obtained in the Figure 4. 220 

Baltisphaeridium (including 647 species accounting for 8076 entries in the database, with 337 entries having only the genus 221 

name and 1049 entries classified as sp.), the most abundant genus, has been present since the Precambrian (approximately 222 

1600 Ma) and is most prolific during the Paleozoic Era. 223 
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 224 

Figure 4. Statistical pie of the occurrence number of genera in the database. 225 

 226 

3.4 Literature sources and statistics 227 

Data in this database were obtained from 7791 references, spanning from 1842 to 2023. The temporal distribution of 228 

publication years is presented in Fig. 5. The average number of research outputs after 1930 (83.9 papers/per year) is an order 229 

of magnitude greater than that before 1930 (0.12 papers/per year). This difference is not significant in the number and was 230 

thus not displayed on the graph. Even the relatively lower research outputs of the 1950s and 2020s were more than 2.5-fold 231 

higher than the total output from the 1930s and 1940s combined over 20 years. More than half of research output occurred in 232 

the 1970s and 1980s, with 4320 papers accounting for 55.4% of the total. 233 

 234 

Figure 5. Statistics of publication distributions in the database. 235 
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3.5 Temporal distribution 236 

Figure 6a indicates that over a long timescale, data volume steadily increases during the Proterozoic but remains below 5000 237 

entries, peaking in the Ediacaran with 3137 entries. However, there are almost no records for the Paleoproterozoic, accounting 238 

for only 1.9% of the Proterozoic data. The Ordovician (Paleozoic) exhibits the highest number of entries at21 880, followed 239 

by a decline to the Carboniferous low point of 1682 entries. Subsequently, a minor peak occurs during the Cretaceous (5959 240 

entries) before the data volume dropped below 5000 entries. Figure 6b presents the maximum data volume of 4431 entries 241 

during the Tremadocian (Ordovician), whereas the minimum is zero during the Jiangshanian (Cambrian). Two significant 242 

increases in data density occur at the intersections of Stage 10 and the Tremadocian (Cambrian-Ordovician) and between the 243 

Dapingian and Darriwilian (Ordovician). Four significant decreases occur at the transition between the Darriwilian and Floian 244 

(Ordovician), Darriwilian and Sandbian (Ordovician), Lochkovian and Pragian (Devonian), and Famennian and Tournaisian 245 

(Devonian-Carboniferous). Such data distribution may be attributed to 1) limited research intensity and 2) low temporal 246 

resolution in the study area, both of which constrain the availability of material for analysis. 247 

 248 
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Figure 6. The number of entries from “have digital age” data split the “timescales include 2500 Ma” (a) and Phanerozoic (b) 249 

and binned by geologic stage. Each stage is divided into data with species name and data without species name for statistics 250 

according to the storage type of the genus and species field in the database. 251 

 252 

3.6 Spatial distribution 253 

The spatial distribution of data collection is uneven. In terms of its modern distribution (Fig. 7), the peak in the longitudinal 254 

distribution lies primarily between -10° to 30°, with a small amount collected between -50° to -90° and 90° to 130°. According 255 

to the latitudinal distribution, most of the data are from the Northern Hemisphere (Europe, China, and North America) and 256 

predominantly between 25° and 65°, accounting for 82.0% of the GAD. Figure 8 presents the modern geographic distribution 257 

by Era. Most Precambrian data, primarily source from China and Europe, accounted for 86.4% of the total, whereas most 258 

Phanerozoic data are from North America, Europe, Australia, and China, accounting for 93.2%. The Cenozoic and Paleozoic 259 

data exhibit the widest spatial distribution (-176.2° to 176.1°), with the Paleozoic containing the highest quantity of data (61 260 

717 entries, representing 69.6% of the total geographic data). 261 

 262 

The paleogeographic distribution of data across periods (Fig. 9) highlights how data are concentrated in different regions over 263 

time. The diagram indicates that most of the data from the Cambrian to the Quaternary are from shallow marine environments, 264 

favoring continental edges. As the continents migrated northward from the Mesozoic to the Cenozoic, records begin to 265 

concentrate in the mid-latitude regions in the Northern Hemisphere. Taking the peak values of each period as examples and 266 

starting with the Cambrian, the highest data concentration is observed between -35° and -45° (3688 entries), mainly in 267 

Gondwana and the Baltic, which shifted to -25° and -35° (3708 entries) by the Ordovician. In the Carboniferous, the highest 268 

data concentration is near -5°  to -15° (468 entries) in the North American and Eurasian plates. In the Permian, data are evenly 269 

distributed across the mid-latitude regions near the coast of the Tethys Ocean in both hemispheres. Thereafter, fossil records 270 

start to tilt towards the mid-latitude regions of the Northern Hemisphere (such as North America, Europe, and Asia) during the 271 

Mesozoic and Cenozoic. The highest data concentrations were between 25° and 35° during the Triassic, and moved to between 272 

35° and 45° and between 45° and 55° during the Jurassic-Cretaceous and Paleogene-Quaternary periods, respectively. 273 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB081i005p00921
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 274 

Figure 7. Spatial distribution of all data from the GAD. 275 

 276 
Figure 8. Summary of the spatial distribution of sampling sites by era (a–d), with the size of each point scaled to the number 277 

of occurrences at each site. All panels are plotted on the same scale. 278 
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 279 

Figure 9. Summary of the paleogeographic spatial distribution of sampling sites, (a-l) separated by geologic period. 280 

Histograms to the right of each map show the relative latitudinal distribution of all unique sampling sites within 10° bins, with 281 
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the horizontal axis representing the number of occurrences. The chronology number indicates the exact point in time for the 282 

map selection. For example, Ordovician: 461 Ma, representing the Middle Ordovician. All maps were based on Scotese (2021). 283 

 284 

3.7 Spatial-temporal trends in proxy values 285 

The large volume and consistent structure of data in GAD provide opportunities to investigate research trends in acritarchs 286 

(e.g., regional research focus, taxonomic variations). Figure 10 presents heatmaps for each time interval from database entries, 287 

where the data is temporally averaged by stage level and spatially into 10° paleolatitude bins. Vertical trends indicate the 288 

latitudinal gradient for any given “stage”, while horizontal trends indicate the temporal evolution of entries within latitudinal 289 

intervals. Notably, the data volume is predominantly observed in the mid-to-low latitudes of the Southern Hemisphere during 290 

the Paleozoic, with over 400 entries and peaks reaching above 1400. A clear migration pattern is observed, as the majority of 291 

data shift from the Southern Hemisphere to the Northern Hemisphere over time. Tectonic movements appear to be a significant 292 

contributing factor since the formation of Pangaea about 250 million years ago, the Gondwana gradually split apart. The plates 293 

of South America, Africa, Antarctica, Australia, and India have been drifting northward progressively, affecting the 294 

geographical pattern and biodiversity of the Earth (Park, 1988). However, spatial-temporal trend may be influenced by 295 

sampling biases arising from uneven research distribution, as well as inherent taxonomic uncertainties associated with 296 

acritarchs. The heat map (Fig. 10) clearly indicates that all entries exhibited discontinuous spatial and temporal coverage, but 297 

the Mesozoic (Cretaceous), Paleozoic (Ordovician and Devonian) generally exhibited good coverage, extending from 30° to -298 

90°. During the Mid-Cretaceous, coverage reached 90%. In contrast, the Paleozoic (Middle to Late Cambrian and Permian), 299 

Mesozoic (Jurassic), and Cenozoic exhibited highly discontinuous geographic coverage with a significantly reduced range. 300 

 301 

Figure 10. Summary of the spatial-temporal trends binned temporally by stage and spatially by 10° paleolatitudinal bins, cooler 302 

colors correspond with lower number of occurrence and vice versa. 303 
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4 Data availability 304 

All data for GAD (version 1.0) can be found on Zenodo: https://doi.org/10.5281/zenodo.15208303 (Shu et al., 2025). A static 305 

copy of GAD (version 1.0) is archived in the Geobiology database (https://geobiologydata.cug.edu.cn/, last accessed: 20 May 306 

2025). We will continuously update and enhance the database, and welcome collaboration with existing compilation authors 307 

to expand its content. 308 

5 Code availability 309 

All available example code and auxiliary functions have been uploaded on Zenodo: https://doi.org/10.5281/zenodo.15147118 310 

(Shu, 2025) 311 

6 Conclusions 312 

Global Acritarch Database (GAD) is a global acritarch database that integrates data from Palynodata and Paleobiology 313 

Database (PBDB), and additional published literature not included in previous collections. Building on the foundation of 314 

Palynodata, which originally contained 14 fields, 111 295 entries, 812 061 metadata points, and 7369 references, GAD added 315 

29 new fields, 4531 new entries, 2 238 366 new metadata points, and 415 new references, resulting in a database comprising 316 

115 860 entries, 43 fields, 3 050 852 metadata points, and 7791 references. GAD represents records from 1146 different 317 

sampling sites spanning geological history from the Precambrian to Phanerozoic. The fossil records include 1456 genera and 318 

9865 species (excluding sp.). Additionally, the database records information related to occurrences such as stratigraphy, 319 

lithology, and paleogeography. Among all entries, Paleozoic data are the most abundant, accounting for 70.9% of the total, 320 

followed by 13 044 Mesozoic, 9040 Neoproterozoic, 5997 Cenozoic, 1251 Mesoproterozoic, and 196 Paleoproterozoic entries. 321 

Regarding the spatial distribution of acritarchs, 93 201 are derived from continents and primarily concentrated in Europe, 322 

North America, China, and India, with the remaining 1.9% originating from oceanic or marine regions.  323 

 324 

Although substantial efforts have been made, the dataset remains incomplete. For example, information regarding the size 325 

dimensions of acritarchs, lithology, and strata are lacking and will be continuously supplemented in the future. Additionally, 326 

while meticulous care was taken to ensure accuracy, some errors may have been overlooked due to the sheer volume of 327 

data. When reusing GAD, we recommend citing both the GAD and original data sources to ensure proper attribution. Any 328 

issues or omissions discovered by the end users can be reported to us, and the relevant information will be updated in future 329 

versions of the database. GAD is expected to remain a valuable resource for ongoing and future research. 330 
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