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Summary of revisions: 

We have made five major revisions following the reviewers’ suggestions, including: (1) The 

uncertainty analysis of the mapped forest age was added. (2) The age comparisons between China's 

planted and natural forests were added. (3) The anlysis of the temporal dynamics of China’s forest 

ages was added. (4) The validations of the merged forest cover type dataset and orginal three forest 

cover products were added. (5) Many descriptions were revised and added to make the manuscript 

easier to understand. Moreover, we have followed the reviewers’ suggestions and provided feedback 

to the reviewers on a point-by-point basis (see responses below).  

 

 

Response to the reviewer 1’s comments 

Comments 1.1: 

The introduction should further emphasize the significance of time-series forest age data, 

particularly in the context of forest ecosystem dynamics, carbon cycle modeling, and long-term 

forest management, to highlight the necessity and scientific value of this study. 

Response:  

Thanks for your valuable comments and suggestions. It was revised.  

 

“Several forest age products have been developed for China (Zhang et al., 2017, 2014; Xiao et 

al., 2023; Shang et al., 2023; Cheng et al., 2024; Besnard et al., 2021). Early studies produced 

three sets of forest age products with a spatial resolution of 1000 meters for the years 2005 and 

2010 using the height-based method (Zhang et al., 2014; Zhang et al., 2017; Besnard et al., 2021). 

However, the 1000-meter resolution averages forest stands within each pixel, leading to 

overestimations of young forests and underestimations of old forests. In recent years, driven by the 

demand for precise simulation of forest carbon dynamics and the availability of high-resolution 

remote sensing data, several high-resolution forest age products have been successfully generated. 

For example, Xiao et al. (2023) estimated forest age in disturbance areas across China at a 30-

meter resolution in 2020 using the CCDC disturbance monitoring algorithm. Cheng et al. (2024) 

combined machine learning algorithms based on tree height, climate, and terrain with the 

LandTrendr disturbance monitoring algorithm to obtain forest age data for China in 2020. Our 

previous work (Shang et al., 2023) utilized machine learning algorithms and the COLD disturbance 

monitoring algorithm to estimate nationwide forest age at a 30-m resolution in 2019 (CAFA V1.0). 

Compared to earlier products that used the height-based method alone, integrating it to estimate 

forest age with the disturbance-based method for updating forest age significantly enhances 

reliability. However, significant discrepancies still exist among current forest age products, which 

provide data for single years only, thus overlooking substantial changes in forest age before and 

after disturbances. These omitted changes can have a large impact on forest carbon modeling. When 
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using single-year forest age data, process-based ecosystem models often underestimate the forest 

carbon uptake prior to the most recent forest disturbance and fail to account for the carbon release 

from multiple forest disturbances, leading to substantial uncertainties in forest carbon modeling 

(Yu et al., 2020; Zhang et al., 2025). In contrast, long-term forest age products can capture these 

carbon dynamics, making them more valuable for forest carbon modeling and forest management 

(Chorshanbiyev et al., 2024; Zhang et al., 2025). Therefore, it is urgent to generate long-term, high-

resolution forest age products to support China’s carbon neutrality researches (Besnard et al., 2021; 

Schumacher et al., 2020; Yu et al., 2020).”  

 

Comments 1.2: 

The source and spatiotemporal resolution of forest type data in Figure 1 need to be clarified. 

Please specify how this data was obtained and its respective temporal and spatial resolutions. 

Response:  

Thanks for your valuable comments and suggestions. Related descriptions were revised in the 

manuscript. 

 

“Figure 1: Spatial distribution of China's forest cover types in 2019 and six regions. The 

forest cover types were merged from three forest cover type products (Shang et al., 2023): 

GLC_FCS30 (Zhang et al., 2021c) at the 30 m resolution, GLASS-GLC (Liu et al., 2021) at the 30 

m resolution, and ESA CCI LC (ESA, 2017) resampled into the 30 m resolution from the 300 m 

resolution. EBF: evergreen broad-leaved forests, DBF: deciduous broad-leaved forests, ENF: 

evergreen coniferous forests, DNF: deciduous coniferous forests, MF: mixed forests. N: Northern 

region, NE: Northeast region, E: East China, S: South China, SW: Southwest region, NW: 

Northwest region. The map lines do not necessarily depict accepted national boundaries.”  

“2.2.3 Forest extent and forest cover type data 

The China Land Cover Dataset (CLCD) (Yang and Huang, 2021) was used to indicate the 

dynamic forest extent of the forest age product. This dataset provides annual land cover information 

including forest cover extent for China from 1985 to 2022 at a 30 m spatial resolution, generated 

using Landsat imagery and random forest classifiers. It also had a comparable reliability to 

Hansen’s Global Forest Change (GFC) dataset (Hansen et al., 2013) in terms of indicating forest 

changes (Yang and Huang, 2021). Several studies have also demonstrated that the CLCD offers 

higher accuracy than other land cover products across China (Zhang et al., 2022; Ji et al., 2024).  

A merged forest cover type dataset (Fig. 1) was used for forest age mapping, as forest age 

mapping requires forest cover types as inputs, which were not provided by the CLCD product. This 

dataset was merged from three forest cover type products (Shang et al., 2023): GLC_FCS30 from 

1985 to 2022 (Zhang et al., 2021c) at the 30 m resolution, GLASS-GLC from 1985 to 2020 (Liu et 

al., 2021) at the 30 m resolution, and ESA CCI LC from 1992 to 2019 (ESA, 2017) resampled into 
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the 30 m resolution from the 300 m resolution. There were four merging rules: first, a forest type 

was designated if at least two products identified the same forest cover type; second, if all three 

products had different types, the type from GLC_FCS30 was used, as it closely matched China's 

ninth forest resource report; third, if GLC_FCS30 indicated non-forest, the type from GLASS-GLC 

was used due to its higher spatial resolution than ESA CCI; last, if both GLC_FCS30 and GLASS-

GLC indicated non-forest, the type from ESA CCI was utilized. The merged dataset and the three 

forest cover type datasets were validated against the field forest cover type data from the SPPCB 

project (Fang et al., 2018), and the accuracy of the merged dataset improved significantly. 

Specifically, the Kappa coefficient of the merged dataset was 3.2% higher than that of GLC_FCS30, 

6.31% higher than GLASS-GLC, and 8.4% higher than ESA CCI LC.”  

 

 

Comments 1.3: 

The preprocessing steps of Landsat data (such as cloud and shadow removal) should be 

described in more detail to improve transparency and reproducibility.  

Response:  

Thanks for your valuable comments and suggestions. They were revised.  

 

“2.2.1 Landsat data 

Landsat Collection 2 Tier 1 surface reflectance data were used for forest age mapping in two 

parts: estimating the age of disturbed forests through forest disturbance monitoring, and modelling 

the age of undisturbed forests using machine learning methods combined with forest height data. 

For mapping the age of undisturbed forests or forests before disturbance, forest height data may 

not be available from existing China’s forest height products (see Section 2.2.3 for details). In such 

cases, Landsat data should also be used to retrieve forest height. 

This version of Landsat data includes all available images from Landsat 5-8 spanning from 

1986 to 2022, featuring multi-spectral bands such as blue (B), green (G), red (R), near-infrared 

(NIR), shortwave infrared 1 (SWIR1), and shortwave infrared 2 (SWIR2), along with quality control 

(QA) bands. These bands are essential for forest disturbance monitoring, forest height, and age 

mapping. Preprocessing was conducted using the QA band (QA_PIXEL) by applying bitwise 

operations to identify clouds and shadows in the image according to the QA descriptions (Zhu et 

al., 2015), and filtering out pixels affected by clouds and shadows (Zhang et al., 2024). A time series 

filter (Shang et al., 2022) was also used for screening the outliers in the Landsat time series data. 

For forest disturbance monitoring, the surface reflectance of the six spectral bands was employed 

using the mCOLD algorithm (Shang et al., 2025). In addition to surface reflectance, two vegetation 

indices, the Normalized Difference Vegetation Index (NDVI) and Near-Infrared Reflectance of 

Vegetation (NIRv), were utilized for forest height and age mapping. NDVI is an approximate 

indicator of vegetation greenness (Zeng et al., 2022; Zhu et al., 2016), while NIRv serves as an 
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approximate indicator of vegetation productivity (Badgley et al., 2017; Shang et al., 2023).”  

 

 

Comments 1.4: 

While the NDVI formula is well known, the calculation method for NIRv is not explicitly 

provided. It is recommended to include the formulas for both indices to facilitate a better 

understanding of their computation. 

Response:  

Thanks for your valuable comments and suggestions. The equations of NDVI and NIRv were 

added in section 3.1.3. 

 

“3.1.3 Mapping the age of undisturbed forests through random forests 

Random forests with boosting trees (Jahan et al., 2021) were also selected to map the age of 

undisturbed forests. This machine learning method showed the highest overall accuracy in forest 

age mapping at a 30 m spatial resolution among five stand growth equations and twelve machine 

learning methods (Lin et al., 2023). The model used fifteen inputs (Table 1): vegetation factors 

(forest height, NDVI, and NIRv), terrain factors (slope and aspect), climate factors (HAT, LAT, 

MAT, ATR, HAP, LAP, and MAP), and one soil factor (soil type). Tree height was selected due to 

its dominant role in forest age mapping (Lin et al., 2023), while NDVI and NIRv (Equations (1) and 

(2)) could reflect forest greenness and productivity. Terrain factors such as slope and aspect also 

affected forest growth (Lang et al., 2010). Temperature and precipitation were included as forest 

growth is sensitive to climatic conditions (Besnard et al., 2021). Soil type was also considered for 

its effect on vegetation growth. 

���� =  
�������������

�������������
              (1) 

���� =  ������ ∗ ����           (2) 

where, ������ represents the surface reflectance at the near-infrared band, and ������ represents 

the surface reflectance at the red band.” 

 

 

Comments 1.5: 

What are the plot sizes for the two types of sample datasets? Are they consistent? If not, could 

this discrepancy impact the accuracy or consistency of the forest age estimation? A discussion on 

this issue would be beneficial. 

Response:  

Thanks for your valuable suggestions. The SPPCB samples had consistent plot sizes (primarily 

1,000 m²), while the plot sizes of the literature-derived samples varied. 96.33% of samples had low 
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to median heterogeneity with acceptable age mapping errors, but the identified high-heterogeneity 

samples (3.67%) caused relatively larger mapping errors of 13.3 years. Related descriptions were 

also added to the discussion. 

 

“5.4 Limitations and future modifications 

…… 

Third, the varied plot sizes of reference samples may influence forest age mapping, particularly 

for the 2,183 samples derived from literature reviews. While SPPCB samples had consistent plot 

sizes (primarily 1,000 m²), the plot sizes of the literature-derived samples varied. To assess these 

impacts, we analyzed spatial heterogeneity using a 100 m × 100 m window—much larger than the 

SPPCB plot size—with forest height standard deviation (SD) as the key metric. The results indicated 

that 89.1% of samples had low heterogeneity (SD < 2 m), corresponding to a mean forest age 

mapping difference of 5.7 years, which was smaller than the mapping error of 7.91 years for 

undisturbed forests. Moderate heterogeneity (SD 2–3 m) affected 7.33% of samples, causing a 

comparable difference of 8.3 years. High heterogeneity (SD > 3 m) was found in 3.67% of samples, 

leading to relatively larger differences of 13.3 years. Although 96.33% of samples had low to 

median heterogeneity with acceptable mapping errors, the identified high-heterogeneity samples 

(3.67%) caused relatively larger mapping errors of 13.3 years. Therefore, future studies should 

consider filtering out high-heterogeneity samples in forest age mapping.”  

 

 

Comments 1.6: 

How was the quality of the forest disturbance samples ensured? Was independent validation 

performed? Providing relevant validation methods would enhance the credibility of the sample data. 

Response:  

Thanks for your valuable comments and suggestions. The quality of the forest disturbance 

samples was ensured through a multi-stage interpretation process involving multiple experts. In the 

first stage, samples were divided into sets of 1,000, with each set being independently interpreted 

by at least three of the 13 experts. This initial round identified samples with unanimous agreement 

among the experts, which were accepted as final. In the second stage, samples with partial agreement 

were reviewed by additional experts to reach a consensus. Finally, any remaining samples were 

voted on by all experts, with those receiving over 50% of the votes being accepted as final. 

The independent validation was mainly conducted in the first stage of the forest disturbance 

interpretation, showing a consistency rate ranging from 43% to 81%. Related descriptions were 

revised in the manuscript. 

 

“The reference forest disturbance samples (Fig. 2b) were used to validate the ages of forests 

disturbed at least once between 1986 and 2022. The age of these samples was derived from the 
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number of years since the disturbance event. The reference forest disturbance samples were 

interpreted through analysis of time series images from Google Earth, PlanetScope, Sentinel-2, or 

Landsat 5/7/8, with each event confirmed by at least two clear-sky images taken before and after 

the disturbance (Qiu et al., 2023; Shang et al., 2025). The interpretation of reference forest 

disturbance samples was performed in three stages. Initially, samples were divided into sets of 1,000, 

with each of the 13 experts independently interpreting three sets. This ensured that each set was 

reviewed by at least three experts. For each set, samples unanimously identified by three experts 

(consistency rate 43%–81%) were accepted as final. In the second stage, samples identified by two 

experts were reviewed by a fourth expert, while those with no consensus were reviewed by both a 

fourth and fifth expert. Samples confirmed by at least three experts were accepted as final. In the 

final stage, the remaining unconfirmed samples were voted on by all experts, with those receiving 

over 50% of the votes being accepted as final. A total of 12,328 forest disturbance samples were 

interpreted, with 4,168 samples having at least one forest disturbance. Of these, 2,157 samples 

experienced a single disturbance event between 1986 and 2022, 1,274 points had two disturbances, 

and 737 points were disturbed more than twice. ”  

 

 

Comments 1.7: 

The Liu and Potapov forest height products have differences in forest extent and definitions. 

How did the authors address this inconsistency? Additionally, it was mentioned that 0.32% of pixels 

lacked forest height values—what dataset was used as the baseline for defining forest areas in this 

case? 

Response:  

Thanks for your valuable comments. Liu's and Potapov's forest height products use the same 

definition of forests, but they have different forest extents. Liu's product has a smaller forest extent 

compared to Potapov's product because it uses a more rigorous quality control standard. Therefore, 

this study mainly used Liu's forest height product. When Liu's product was missing compared with 

the forest extent identified in the China Land Cover Dataset (CLCD) (Yang and Huang, 2021), 

Potapov's forest height product was used as a substitute. If both Liu's and Potapov's products were 

missing, a forest height inversion model was developed to estimate the forest height. 

The 0.32% of pixels with missing forest heights were identified using the CLCD dataset (Yang 

and Huang, 2021). Related descriptions in the manuscript were also revised. 

 

“2.2.4 Forest height data 

Two forest height products with the same forest definition at a 30-meter spatial resolution for 

the year 2019 (Potapov et al., 2021; Liu et al., 2022) were employed to map the age of undisturbed 

forests. Potapov et al. (2021) utilized machine learning methods with Landsat data and Global 

Ecosystem Dynamics Investigation (GEDI) footprint forest height data to generate a global forest 
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canopy height map at a 30-meter spatial resolution for the year 2019 (shortened to Potapov’s forest 

height product), while Liu et al. (2022) developed a neural network guided interpolation (NNGI) 

method to derive China’s forest height map at 30-meter spatial resolution for 2019 (shortened to 

Liu’s forest height product), using Landsat data along with GEDI and ICESat-2 footprint forest 

height data. Due to consideration of topographic influences and high-quality control standards, 

Liu’s forest height product exhibited higher accuracy but had a smaller forest extent in China than 

Potapov’s forest height product (Liu et al., 2022). Therefore, this study primarily used Liu’s forest 

height product. When Liu's product was missing compared with the forest extent identified in CLCD, 

Potapov's forest height product was used as a substitute.  

For forest pixels with missing forest heights from both Liu's and Potapov's two products (0.32% 

of pixels, based on the forest extent inCLCD), forest height was estimated using a machine learning 

method (detailed in Section 3.2.2) that integrates Landsat data, climate data, terrain data, and 

GEDI footprint forest height data. The input Landsat data consists of surface reflectance from 

Landsat 5, 7, and 8 and two calculated vegetation indices (NDVI and NIRv). The input data from 

GEDI, launched by NASA in December 2018 and covering the Earth's land surface from 51.6°N to 

51.6°S (Dubayah et al., 2020), primarily includes the L2A relative height data, which has 

demonstrated the best performance in global forest height mapping (Potapov et al., 2021).” 

 

 

Comments 1.8: 

Has the synthesized forest type distribution dataset undergone independent validation? 

Furthermore, is the definition and extent of forests in this dataset consistent with the CLCD dataset 

used in the study? Further clarification is needed. 

Response:  

Thanks for your valuable comments and suggestions. We added validations of the merged 

dataset and the three forest cover type datasets using the field survey data from the SPPCB project 

(Response Fig. 1). GLC_FCS30 had the highest accuracy indicated by the Kappa coefficient, and  

ESA CCI LC had the lowest accuracy among the three forest cover type dataset. Compared with the 

three original datasets, the accuracy of our merged forest cover type dataset improved significantly, 

with a 3.2% higher Kappa coefficient than GLC_FCS30, 6.31% higher than GLASS-GLC, and 8.4% 

higher than ESA CCI LC. 

The merged forest cover type dataset does differ from the CLCD dataset. CLCD is superior to 

the merged forest cover type dataset in the division of forest extent, while the merged forest cover 

type product was mainly used as inputs for forest age mapping.  

Related descriptions in the manuscript were also revised. 
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Response Fig. 1. Confusion matrix of the merged dataset and the three forest cover type datasets. 

a: GLC_FCS30, b: GLASS-GLC, c: ESA CCI LC, and d: the merged dataset. The colors 

indicate the number of sample points. 

 

     “2.2.3 Forest extent and forest cover type data 

The China Land Cover Dataset (CLCD) (Yang and Huang, 2021) was used to indicate the 

dynamic forest extent of the forest age product. This dataset provides annual land cover information 

including forest cover extent for China from 1985 to 2022 at a 30 m spatial resolution, generated 

using Landsat imagery and random forest classifiers. It also had a comparable reliability to 

Hansen’s Global Forest Change (GFC) dataset (Hansen et al., 2013) in terms of indicating forest 

changes (Yang and Huang, 2021). Several studies have also demonstrated that the CLCD offers 

higher accuracy than other land cover products across China (Zhang et al., 2022; Ji et al., 2024).  

A merged forest cover type dataset (Fig. 1) was used for forest age mapping, as forest age 

mapping requires forest cover types as inputs, which were not provided by the CLCD product. This 

dataset was merged from three forest cover type products (Shang et al., 2023): GLC_FCS30 from 

1985 to 2022 (Zhang et al., 2021c) at the 30 m resolution, GLASS-GLC from 1985 to 2020 (Liu et 

al., 2021) at the 30 m resolution, and ESA CCI LC from 1992 to 2019 (ESA, 2017) resampled into 

the 30 m resolution from the 300 m resolution. There were four merging rules: first, a forest type 

was designated if at least two products identified the same forest cover type; second, if all three 
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products had different types, the type from GLC_FCS30 was used, as it closely matched China's 

ninth forest resource report; third, if GLC_FCS30 indicated non-forest, the type from GLASS-GLC 

was used due to its higher spatial resolution than ESA CCI; last, if both GLC_FCS30 and GLASS-

GLC indicated non-forest, the type from ESA CCI was utilized. The merged dataset and the three 

forest cover type datasets were validated against the field forest cover type data from the SPPCB 

project (Fang et al., 2018), and the accuracy of the merged dataset improved significantly. 

Specifically, the Kappa coefficient of the merged dataset was 3.2% higher than that of GLC_FCS30, 

6.31% higher than GLASS-GLC, and 8.4% higher than ESA CCI LC.”  

 

 

Comments 1.9: 

Did the authors obtain a time-series forest height dataset for undisturbed areas?  

Response:  

Thanks for your valuable comments. No, we didn’t. For the undisturbed forests, only the forest 

height for the year 2019 was required to estimate the forest age in 2019 (“baseline” age), and the 

time series ages for these undisturbed forests were then updated based on the number of years since 

2019 (Fig. 4). 

 

 

Comments 1.10: 

Are the parameters of the random forest algorithm consistent across models? Were 

hyperparameter optimizations conducted? Detailed information on parameter selection and tuning 

methods should be provided. Additionally, what tools were used for data processing? More technical 

details would improve reproducibility. 

Response:  

Thanks for your valuable comments and suggestions. To clarify, different models indeed have 

distinct parameters. As illustrated in Table 2, we also performed sensitivity analysis to determine 

the optimal thresholds for the minimum leaf size and number of trees for each model. The minimum 

leaf size was varied from 1 to 30, with an interval of 5, while the number of trees was adjusted from 

50 to 300, with an interval of 50. The optimal thresholds were identified as those corresponding to 

the minimum RMSE of the mapped forest age.  

MATLAB was used as the tool for building the forest age mapping models and mapping the 

annual forest ages. Related descriptions in the manuscript were also revised, and Table 2 was also 

added to the manuscript. 

 

Table 2: Parameters of the forest age mapping models for different regions and forest cover types. 

EBF: evergreen broad-leaved forest, DBF: deciduous broad-leaved forest, ENF: evergreen 
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coniferous forest, DNF: deciduous coniferous forest, MF: mixed forest. N: Northern region, 

NE: Northeast region, E: East China, S: South China, SW: Southwest region, NW: 

Northwest region. 

Models (region and forest type) Minimum leaf size Number of trees Number of features 

NW-DNF 5 150 13 

NW-ENF 5 150 14 

NW-DBF 5 150 14 

NW-EBF/MF 5 100 14 

SW-DNF/MF 5 200 15 

SW-ENF 5 100 12 

SW-DBF 10 100 15 

SW-EBF 10 150 15 

S-DNF/MF 20 100 15 

S-ENF 5 100 14 

S-DBF 5 150 14 

S-EBF 10 100 14 

E-DNF/MF 20 50 14 

E-ENF 10 100 15 

E-DBF 10 100 14 

E-EBF 10 100 15 

NE-DNF 20 100 13 

NE-DBF 20 100 15 

NE-EBF/ENF/MF 5 200 14 

N-DNF 10 200 14 

N-DBF 5 150 14 

N-EBF/ENF/MF 5 150 15 

 

“Given the regional and forest cover type heterogeneity across China, this study divided the 

model construction into six regions and five forest cover types. An RF model was developed using 

MATLAB for each forest cover type within each region. In regions where certain forest cover types 

had fewer than 30 sample points, those regions were merged, resulting in a total of 22 forest age 

models. This stratified approach aims to enhance the accuracy of forest age mapping as forest types 

can also influence the accuracy of forest age mapping (Lin et al., 2023). For each forest cover type 

within a region, 70% of the randomly selected reference forest age samples were used for model 

training, while the remaining 30% were used for validation. To mitigate the effects of 

autocorrelation between the input factors, this study proposed an automatic iterative selection 

mechanism, aimed at reducing autocorrelation by minimizing the number of input factors. The 

process began by using all input factors to estimate forest age, followed by extracting the 



 11 / 20 

 

contribution weights of each factor. Factors with a contribution weight of less than 0.5% were 

removed. The remaining factors were then used to re-estimate forest age. This iterative process was 

repeated three times, with factors contributing less than 0.5% being excluded in each iteration, and 

the final model after three iterations was used for forest age estimation. In addition to input feature 

screening, we also performed sensitivity analysis to determine the optimal thresholds for the 

minimum leaf size and number of trees for each model. The minimum leaf size was varied from 1 to 

30, with an interval of 5, while the number of trees was adjusted from 50 to 300, with an interval of 

50. The optimal thresholds were identified as those corresponding to the minimum RMSE of the 

mapped forest age (Table 2). ”  

 

 

Comments 1.11: 

How was uncertainty evaluated? The paper does not mention relevant methods. It is 

recommended to include a quantitative analysis of uncertainty in forest age estimation. 

Response:  

Thanks for your valuable comments and suggestions. The uncertainty analysis was added.  

 

“3.3 Uncertainty analysis 

The uncertainty analysis primarily focused on the mapped ages of undisturbed forests in 2019 

using the height-based method, as the disturbance-based method generally has lower uncertainties 

in mapping forest ages compared to the height-based method (Shang et al., 2023). The uncertainties 

of the mapped forest ages mainly stem from the models and their inputs. Among the model inputs, 

forest height has the most significant impact on forest age mapping (see section 5.1 for details). 

Therefore, we concentrated solely on the uncertainty of input forest height in forest age mapping. 

The evaluation of the differences between the estimated and product-based forest heights and their 

impact on forest age mapping is discussed in section 5.2. To assess the uncertainties of the age 

mapping models, we kept the inputs constant while varying the forest heights estimated by forest 

stand growth equations. Based on Zhang's forest stand growth equations in China (Zhang et al., 

2014), we calculated the relative forest heights for the years 2017, 2018, 2020, and 2021, according 

to the region and forest types. These forest heights were then used as inputs to map forest ages, and 

their standard deviation was calculated to represent the uncertainties.” 

 

“4.1 China’s annual forest age at 30m resolution from 1986 to 2022 

…… 

The uncertainty analysis was performed on the mapped ages of undisturbed forests in 2019 

(Fig. 6). In most regions, the mapped forest age in 2019 exhibited relatively low uncertainty, with 

an average uncertainty of 8.7 years across China. However, the southwest region displayed higher 

uncertainty, exceeding 40 years in Tibet and certain mountainous areas of Sichuan province. This 
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elevated uncertainty may be attributed to the heightened sensitivity of age mapping models to forest 

height in the southwest region (see section 5.1 for details). Additionally, the significant increase in 

forest height with age, as described by the forest stand growth equations in these areas (Zhang et 

al., 2014), further contributed to the increased uncertainty. Despite these regional variations, the 

mapped forest age in 2019 was generally stable and characterized by small uncertainties.” 

 
Figure 6: Spatial distributions of the uncertainty of mapped forest age in 2019. The map lines do 
not necessarily depict accepted national boundaries. 

 

“5.4 Limitations and future modifications 

…… 

Fifth, other input data may also affect the forest age mapping. For instance, the original spatial 

resolution of the climate and soil data was larger than 30 meters, and these disparities in spatial 

resolution were likely to introduce uncertainty. However, due to the high spatial similarities of 

climate and soil within a small area, minimal variations are expected among nearby pixels. 

Moreover, the contributions of these input factors to forest age mapping were relatively small 

(section 5.1). Therefore, their impact on the accuracy of forest age mapping would not be 

significant.” 

 

 

Comments 1.12: 

It is suggested to increase the number of panels in Figure 5 to present more time-series forest 

age data and provide a more detailed analysis of its temporal dynamics to enhance the scientific 
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value of the dataset. 

Response:  

Thanks for your valuable comments and suggestions. The forest age maps for 2000 and 2010 

and the temporal dynamics of forest ages were also added to the manuscript. 

 

 

Figure 5: Spatial distribution of China's forest age in 2019 and other selected years (1986, 2000, 

2010, and 2022) in the CAFA V2.0 dataset. The map lines do not necessarily depict accepted 

national boundaries. 

 

“4.1 China’s annual forest age at 30m resolution from 1986 to 2022 

A dynamic forest age dataset (CAFA V2.0) covering the entire China from 1986 to 2022 (Shang 

et al., 2023), with a spatial resolution of 30 m, was generated by integrating forest disturbance 

mapping and random forests methods. Figure 5 illustrates the distribution of forest ages for the 

year 2019, alongside comparisons with data from 1986, 2000, 2010, and 2022. This forest age 

dataset indicates that China's forest age structure predominantly consists of young and middle-aged 

forests, with an average forest age of 58.1 ± 7.3 years in 2019. Old forests were predominantly 

found in the northeast, northwest, and southwest regions of China. These areas, characterized by 

high mountains and minimal human interference, were largely comprised of natural and secondary 

forests. In contrast, forests disturbed at least once during the period from 1986 to 2022 exhibited 

younger ages, generally below 37 years. Such forests were mainly concentrated in the southeast 

and central southern regions, where human disturbances were more prevalent. Furthermore, in the 

northeast, there were also young forests that had regenerated after extensive forest fires, such as 

the devastating forest fire that occurred on May 6, 1987 (Cahoon  Jr. et al., 1991). This fire caused 

varying degrees of damage across a vast area within China, impacting more than one million 

hectares of forests.  

According to the 2020 map of China's planted and natural forests (Cheng et al., 2023), natural 

forests were older than planted forests, with average ages of 69.9 ± 12.8 and 48.4 ± 6.9 years, 
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respectively. Regional variations were evident, with the age gap between natural and planted forests 

ranging from 3.5 to 20.2 years. Southwest China had the oldest natural forests (91.1 ± 21.6 years) 

and planted forests (74.8 ± 18.1 years), while East and South China showed lower average ages 

due to higher disturbance frequencies.  

The temporal dynamics of China’s forest ages were primarily influenced by both forest loss 

disturbances (such as forest fire, harvest, and other disturbances) and forest gain disturbances 

(such as afforestation and reforestation), which mainly led to a reduction in China's average forest 

age. From 1987 to 2022, the age reduction caused by forest disturbances showed a decreasing trend, 

with an average age reduction of -0.105 ± 0.027 years. However, in 1987, 2008, and 2021, the 

forest age reduction caused by disturbances was significant, indicating that there were more forest 

disturbances in these three years.” 

 

 

Comments 1.13: 

Which year does the validation result in Figure 6 correspond to? Please specify this to ensure 

a clear understanding of the temporal relevance of the validation. 

Response:  

Thanks for your valuable suggestions. The validation year is 2019, and the related descriptions 

were revised in the manuscript. 

 

 “4.2 Validation of the forest age maps 

The mapped forest age in 2019 was validated using 30% of two separate reference datasets 

(Fig. 6): one comprising 12,328 interpreted reference forest disturbance datasets and the other 

consisting of 5,304 forest field survey samples in China. For undisturbed forests, the field-surveyed 

age was transformed from the survey year to 2019 by adding the difference in years. For disturbed 

forests, the reference age in 2019 was determined by calculating the number of years since the last 

disturbance. Validation results indicated that the mapped age of disturbed forest exhibited a small 

error of ±2.48 years, while the mapped age of undisturbed forest from 1986 to 2022 had a relatively 

large error of ±7.91 years. Compared to version 1.0, the RMSE of CAFA V2.0 forest age for 

disturbed forests decreased by 1.15, and for undisturbed forests, the RMSE decreased by 0.49. ” 

 

 

Comments 1.14: 

The paper lacks a quantitative assessment and discussion of data uncertainty. It is suggested to 

incorporate uncertainty evaluation in the results or discussion sections to improve the study's 

completeness. 

Response:  
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Thanks for your valuable comments and suggestions. The uncertainty analysis was added.  

 

“3.3 Uncertainty analysis 

The uncertainty analysis primarily focused on the mapped ages of undisturbed forests in 2019 

using the height-based method, as the disturbance-based method generally has lower uncertainties 

in mapping forest ages compared to the height-based method (Shang et al., 2023). The uncertainties 

of the mapped forest ages mainly stem from the models and their inputs. Among the model inputs, 

forest height has the most significant impact on forest age mapping (see section 5.1 for details). 

Therefore, we concentrated solely on the uncertainty of input forest height in forest age mapping. 

The evaluation of the differences between the estimated and product-based forest heights and their 

impact on forest age mapping is discussed in section 5.2. To assess the uncertainties of the age 

mapping models, we kept the inputs constant while varying the forest heights estimated by forest 

stand growth equations. Based on Zhang's forest stand growth equations in China (Zhang et al., 

2014), we calculated the relative forest heights for the years 2017, 2018, 2020, and 2021, according 

to the region and forest types. These forest heights were then used as inputs to map forest ages, and 

their standard deviation was calculated to represent the uncertainties.” 

 

“4.1 China’s annual forest age at 30m resolution from 1986 to 2022 

…… 

The uncertainty analysis was performed on the mapped ages of undisturbed forests in 2019 

(Fig. 6). In most regions, the mapped forest age in 2019 exhibited relatively low uncertainty, with 

an average uncertainty of 8.7 years across China. However, the southwest region displayed higher 

uncertainty, exceeding 40 years in Tibet and certain mountainous areas of Sichuan province. This 

elevated uncertainty may be attributed to the heightened sensitivity of age mapping models to forest 

height in the southwest region (see section 5.1 for details). Additionally, the significant increase in 

forest height with age, as described by the forest stand growth equations in these areas (Zhang et 

al., 2014), further contributed to the increased uncertainty. Despite these regional variations, the 

mapped forest age in 2019 was generally stable and characterized by small uncertainties.” 
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Figure 6: Spatial distributions of the uncertainty of mapped forest age in 2019. The map lines do 
not necessarily depict accepted national boundaries. 

 

“5.4 Limitations and future modifications 

…… 

Fifth, other input data may also affect the forest age mapping. For instance, the original spatial 

resolution of the climate and soil data was larger than 30 meters, and these disparities in spatial 

resolution were likely to introduce uncertainty. However, due to the high spatial similarities of 

climate and soil within a small area, minimal variations are expected among nearby pixels. 

Moreover, the contributions of these input factors to forest age mapping were relatively small 

(section 5.1). Therefore, their impact on the accuracy of forest age mapping would not be 

significant.” 

 

 

 

Response to the reviewer 2’s comments 

Comments 2.1: 

How was the forest height estimated for years without GEDI footprints? Please explain clearly. 

Response:  

Thanks for your valuable suggestions. The forest height retrieval for years before 2019 at a 

specific forest type and region utilized the same model as 2019 but with varied inputs corresponding 

to their respective years. Related descriptions were revised in the manuscript.  
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“To reduce the discrepancy between the retrieved forest height and the 2019 forest height 

products, the input factors for the tree height model were based on the study by Liu et al. (2022), 

incorporating DEM, slope, aspect, temperature, precipitation, and NDVI data. Additionally, this 

study expanded the input factors by incorporating Landsat 8 surface reflectance and the calculated 

NIRv vegetation index, which approximates forest productivity (Badgley et al., 2019). This resulted 

in a total of 13 input factors used in the tree height model. The models were constructed separately 

for different environmental conditions and forest types across China. Specifically, six regions (East, 

South, North, Northeast, Northwest, and Southwest) and five forest types (EBF, ENF, DBF, DNF, 

and MF) were considered. Each model was trained using 70% of the filtered GEDI footprint forest 

height samples, with the remaining 30% used for validation. Since no GEDI footprint forest height 

samples were available prior to 2019, the forest height retrieval for years before 2019 at a specific 

forest type and region utilized the same model as 2019 but with varied inputs corresponding to their 

respective years. These forests, which required height retrieval, covered only a small portion of the 

total forest pixels, with an average of 0.42% (see details in Section 5.2).” 

 

 

Comments 2.2: 

Fig 6 and others:what does the circle size indicate? 

Response:  

Thanks for your valuable comments and suggestions. The size and color of the circle represent 

the number of samples at that location, and the related descriptions were revised in the manuscript. 

 

“Figure 6: Validation of China's forest age mapping in the CAFA V2.0 dataset. a is for the 

age validation of forests disturbed at least once from 1986 to 2022, and b is for the age validation 

of undisturbed forests. The size and color of the circle represent the number of samples at that 

location.”  

 

 

Comments 2.3: 

Fig 11: Add a validation figure for the result from this study as comparison.  

Response:  

Thanks for your valuable comments and suggestions, and it was added.  
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“Figure 12: Validation of the four forest age products using the same 30% reference forest age 

samples compared with the CAFA V2.0 product. a-d are the forest ages of Age2005, Age2010, 

Age2020, and Age2019 generated by Zhang et al. (2014), Besnard et al. (2021), Cheng et al. (2024), 

and Shang et al. (2023), respectively. Blue represents the CAFA V2.0 product, while yellow 

represents the four products. The age of 0 in Age2005, Age2010, and Age2020 indicate no available 

forest age in these products for the validated reference samples, and they are excluded from the 

fitting line and the calculations of R² and RMSE. To maintain consistency, the validation of the 

CAFA V2.0 product also excluded these reference samples.” 

 

 

Comments 2.4: 

Fig 13:Please also add a figure show the distribution of forest height and age samples over 

different years. 

Response:  

Thanks for your valuable suggestions. A subfigure of the spatial distribution of the survey years 

of samples used for comparison was added. 
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“Figure 14: The percentages of pixels needing forest height retrieval from 1986 to 2019 (a), 

comparisons of forest age mapping using the retrieved forest height versus forest height product in 

2019 (b), and the spatial distribution of the survey years of samples used for comparison (c).” 

 

 

Comments 2.5: 

Please also add a comparison between forest age map for planted forest and natural forest. 

Response:  

Thanks for your valuable comments and suggestions. It was added. 

 

“4.1 China’s annual forest age at 30m resolution from 1986 to 2022 

A dynamic forest age dataset (CAFA V2.0) covering the entire China from 1986 to 2022 (Shang 

et al., 2023), with a spatial resolution of 30 m, was generated by integrating forest disturbance 

mapping and random forests methods. Figure 5 illustrates the distribution of forest ages for the 

year 2019, alongside comparisons with data from 1986, 2000, 2010, and 2022. This forest age 

dataset indicates that China's forest age structure predominantly consists of young and middle-aged 

forests, with an average forest age of 58.1 ± 7.3 years in 2019. Old forests were predominantly 

found in the northeast, northwest, and southwest regions of China. These areas, characterized by 

high mountains and minimal human interference, were largely comprised of natural and secondary 

forests. In contrast, forests disturbed at least once during the period from 1986 to 2022 exhibited 

younger ages, generally below 37 years. Such forests were mainly concentrated in the southeast 

and central southern regions, where human disturbances were more prevalent. Furthermore, in the 

northeast, there were also young forests that had regenerated after extensive forest fires, such as 

the devastating forest fire that occurred on May 6, 1987 (Cahoon  Jr. et al., 1991). This fire caused 

varying degrees of damage across a vast area within China, impacting more than one million 

hectares of forests.  

According to the 2020 map of China's planted and natural forests (Cheng et al., 2023), natural 

forests were older than planted forests, with average ages of 69.9 ± 12.8 years and 48.4 ± 6.9 years, 
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respectively. Regional variations were evident, with the age gap between natural and planted forests 

ranging from 3.5 to 20.2 years. Southwest China had the oldest natural forests (91.1 ± 21.6 years) 

and planted forests (74.8 ± 18.1 years), while East and South China showed lower average ages 

due to higher disturbance frequencies.” 

 


