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Abstract. Long-term atmospheric ozone observations in Western North America (WNA) provide 20 
essential data for assessing tropospheric ozone trends. Backward atmospheric simulations based on 21 
these observations establish the source-receptor relationships (SRRs) to improve our understanding 22 
of the factors driving ozone trends across different regions, time periods, and atmospheric layers. 23 
In this study, we integrated 28 years of ozone observations (1994–2021) from ozonesondes, lidar, 24 
commercial aircraft, and aircraft campaigns across WNA, spanning the upper atmospheric 25 
boundary layer, free troposphere, and upper troposphere (i.e., 900 to 300 hPa). We integrated the 26 
multiplatform datasets using a data fusion framework to generate 553,608 gridded ozone receptors. 27 
For each receptor, we use the FLEXible PARTicle (FLEXPART) dispersion model, driven by 28 
ERA5 reanalysis data, to produce the SRRs calculations, providing global simulations at high 29 
temporal (hourly) and spatial (1° x 1°) resolution from the surface up to 20 km above ground level. 30 
This SRR database retains detailed information for each receptor, including the gridded ozone value 31 
product, which enables user to illustrate and identify source contributions to various subsets of 32 
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ozone observations in the troposphere above WNA over nearly 3 decades at different vertical layers 33 
and temporal scales, such as diurnal, daily, seasonal, intra-annual, and decadal. More generally, the 34 
calculated SRRs are applicable to any study looking to evaluate origins of airmasses reaching 35 
WNA. As such, this database can support source contribution analyses for other atmospheric 36 
components observed over WNA, if other co-located observations have been made at the spatial 37 
and temporal scales defined for some or all of the gridded ozone receptors used here.  38 
 39 
Short summary. Atmospheric observations show that free tropospheric ozone has increased across 40 
the Northern Hemisphere over the past three decades. The sources driving this increase remain 41 
unclear. In this study, we developed a source-receptor relationship database combining harmonized 42 
multiplatform ozone data and advanced atmospheric transport modeling. This database can identify 43 
the emission regions responsible for ozone increases and can also be used to analyze other co-44 
observed atmospheric constituents. 45 
 46 
1 Introduction 47 
         The IPCC Sixth Assessment Report concluded that free tropospheric (FT) ozone generally 48 
increased in the Northern Hemisphere from the mid-1990s through 2016 (Gulev et al., 2021). From 49 
a global perspective, Gaudel et al. (2020) reported increasing median FT ozone trends ranging from 50 
1.2 ppbv/decade over the Gulf of Guinea to 5.6 ppbv/decade over Southeast Asia. Building on this 51 
work, Chang et al. (2023) incorporated additional ozone data and identified a positive regional 52 
trend in median FT ozone over western North America (WNA), with an increase rate of 0.7 ± 0.3 53 
ppbv/decade (1994–2019). These positive trends in FT ozone raise growing concerns about their 54 
radiative effects and their potential to increase surface ozone levels in WNA, where FT influence 55 
is significant (e.g. Jaffe et al., 2018). Therefore, it is critical to understand the processes driving 56 
changes in FT ozone. 57 
         Previous studies have examined key factors influencing tropospheric ozone levels over WNA, 58 
including intercontinental transport of ozone from Asia (e.g., Jacob et al., 1999; Cooper et al., 59 
2010), stratospheric intrusions (e.g., Lin et al., 2012, 2015), wildfires (e.g., Jaffe et al., 2008, 2012), 60 
and transport from tropical marine environments (e.g., Grant et al., 2000; Cooper et al., 2011). 61 
While global-scale modeling studies suggest that increasing anthropogenic emissions contribute to 62 
rising FT ozone levels (e.g., Fiore et al., 2012), detailed analyses of atmospheric transport pathways 63 
and source attributions are limited. Such studies are essential to identify the drivers, such as source 64 
regions, most closely associated with observed ozone increases. This gap motivated the current 65 
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study, which applies a Lagrangian Particle Dispersion Modeling framework in backward mode to 66 
quantify source-receptor relationships (SRRs) for 553,608 ozone receptors which span altitudes 67 
from 900 hPa to 300 hPa across WNA over the period 1994–2021. 68 
         A similar SRR framework was used by Cooper et al. (2010) to explain increased FT ozone 69 
concentrations above WNA during April and May from 1995 to 2008. That study used an earlier 70 
version of the European Centre for Medium-Range Weather Forecasts (ECMWF) model with a 2° 71 
x 2° spatial resolution, generating SRRs up to 16 km above ground level. However, Cooper et al. 72 
(2010) focused exclusively on springtime. Chang et al. (2023) demonstrated that positive FT ozone 73 
trends over WNA are also present in summer and winter. Therefore, this study extends the analysis 74 
of Cooper et al. (2010) by simulating SRRs across all seasons over nearly three decades (1994–75 
2021) using an updated version of the ECMWF model The complete set of backward simulations, 76 
described herein, are archived for future use. Our high-resolution Lagrangian-based product 77 
provides an efficient alternative to computationally expensive chemical transport models for 78 
quantifying SRRs in the FT ozone observation dataset.   79 
         In addition to supporting ozone research for WNA, the SRRs calculated in this study are 80 
applicable to investigations of air mass origins and source contribution analyses for other 81 
atmospheric components observed in the region. These SRRs can be used in studies with co-located 82 
observations that align with the spatial and temporal scales defined for some or all of the gridded 83 
ozone receptors used here. Further potential applications are discussed in this paper. 84 
         The paper is organized as follows: Section 2 describes the receptor locations used in this 85 
study, followed by Section 3 which details the settings for the SRR simulations. Section 4 provides 86 
illustrations and examples of the model products, and Section 5 discusses additional applications 87 
of the data. Conclusions are provided in Section 6, and data set availability and formats are 88 
described in Section 7. 89 
 90 
2  Reconciliation of multiplatform ozone observations 91 
            To quantify trends and variability in free tropospheric ozone, a gridded ozone dataset was 92 
generated using a data fusion technique (Chang et al., 2022, 2023). We expand the previous fused 93 
dataset from Chang et al. (2023) to include observations from 900 to 300 hPa during 1994 to 2021 94 
using the same statistical method. This extension, which incorporates additional tropospheric ozone 95 
data spanning the upper atmospheric boundary layer, free troposphere, and upper troposphere, 96 
offers a more comprehensive characterization of tropospheric ozone variability and further supports 97 
the validation of previous results. By identifying and adjusting for inconsistencies due to differing 98 
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sampling frequencies and measurement uncertainties, this fused ozone observation product is 99 
expected to be regionally representative (Chang et al., 2022, 2024). Original ozone observations 100 
were obtained from various data platforms collected between 1994 and 2021, spanning altitudes 101 
from 900 to 300 hPa across WNA. These observations were integrated into 0.2° x 0.2° grid cells 102 
with 10-hPa vertical intervals over the WNA region. The new gridded ozone dataset (N = 553,608) 103 
includes time, latitude, longitude, altitude, and corresponding ozone values. Each grid cell from the 104 
data fusion product is treated as a receptor to generate SRRs.           105 

Specifically, the tropospheric ozone observations over WNA used in this study include: 1) 106 
ozonesonde records above Edmonton (1970–2021), Kelowna (2003–2017) and Port Hardy (2018–107 
2021) from the Canadian Ozonesonde Network (Environment and Climate Change Canada, 2022), 108 
and above Trinidad Head (California, 1997–2021) and Boulder (Colorado, 1967–2021) maintained 109 
by the NOAA Global Monitoring Laboratory (NOAA GML, 2022), with a roughly once-per-week 110 
sampling frequency; 2) lidar measurements above the Jet Propulsion Laboratory Table Mountain 111 
Facility (California, 2000-2021, NASA JPL 2022), with 2-5 profiles per week; 3) commercial 112 
aircraft observations operated by the IAGOS (In-Service Aircraft for a Global Observing System) 113 
program since 1994 (Boulanger et al. 2022);  and 4) approximately 200 flights from the NASA 114 
AJAX/SNAAX field campaigns (2011-2018, Iraci et al, 2021).  115 

The observational methods that produced the ozone data set have varying levels of 116 
accuracy (Tarasick et al., 2019), however, according to the well-known concept of error analysis 117 
(Taylor and Thompson, 1982), the random nature of the relatively small measurement errors is not 118 
expected to impact our ability to detect long-term ozone trends. For example, a sensitivity analysis 119 
of tropospheric ozone trends, accounting for varying levels of measurement uncertainty (e.g., 120 
adding 10% or 20% random uncertainty to each data point), was conducted by Gaudel et al. (2024). 121 
The results indicate that when the dataset time period is sufficiently long, the observed trends 122 
remain consistent. In other words, despite the fact that the greater data uncertainty resulted in higher 123 
trend uncertainty, trends can still be detectable under large random uncertainty (i.e., 20%). It should 124 
be noted that the modern ozone instrumental measurement uncertainty is typically much lower than 125 
the imposed uncertainty used in the above sensitivity analysis (Tarasick et al., 2019).  Similarly, 126 
Van Malderen et al. (2025) assessed the impact of measurement uncertainties on ozone 127 
observations in the free troposphere, assuming 2.5% for lidar, 5.5% for ozonesondes, and 5.5% for 128 
IAGOS. The impacts were minor compared to analyses that assumed no measurement uncertainty. 129 
Therefore, we consider this data fusion product, which integrates large datasets from multiple 130 
platforms spanning nearly three decades, to be robust for ozone trend analysis over WNA. 131 
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 132 

 133 
Figure 1: The distribution of defined data receptors from the data fusion product: (a) spatial 134 
pattern over WNA,  (b) number of receptors by month of year across 28 years, (c) number of 135 
receptors divided by vertical layers with 100 hPa intervals across 28 years.    136 
 137 
         Figure 1 shows the distribution of the data fusion product across WNA, along with monthly 138 
and vertical layer counts of receptors. For each receptor location, we conducted backward 139 
simulations of historical air mass dispersion and transport processes covering up to 15 days on a 140 
global scale. We retained all detailed simulation outputs for each receptor to allow users to select 141 
specific receptors as needed. Additional details are provided in the following sections. 142 
 143 

(a) Spatial distribution (b) Monthly number distribution

(c) Vertical number distribution
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3 Configuration of the SRR product 144 
           In this study, we developed the model product using a commonly-used Lagrangian Particle 145 
Dispersion Model, FLEXPART ("FLEXible PARTicle dispersion model", v10.4, Pisso et al., 146 
2019), driven by ECMWF reanalysis v5 (ERA5) data (Hersbach et al., 2020). This product is 147 
another key component of our SRR database and provides crucial support for understanding source 148 
contributions to the overall representative tropospheric ozone trends observed over the WNA 149 
region. 150 
           Specifically, the ERA5 reanalysis data has high spatial and temporal resolutions on the 151 
global scale, that is 0.25° x 0.25° spatial and hourly temporal resolution, and 137 vertical levels. 152 
The overall uncertainty estimates of ERA5 have been described by Hersbach et al. (2020) using 153 
ensemble spread and comparisons with observations. Their analysis, for example, showed that the 154 
global mean differences between the nine ensemble members and the control member for 155 
temperature, relative humidity, and the u-component of wind at the 500 hPa level were 0.006 K, 156 
0.3%, and 0.4 cm·s⁻ ¹, respectively for the year 2018. They showed that the magnitude of the 157 
ensemble spread is closely related to the quality of the observing system, and also demonstrated 158 
that ERA5 has a significant improvement over its previous generation (ERA-Interim). In an 159 
independent study, a cross-comparison among three widely used reanalysis datasets, including 160 
ERA5, was conducted by Wu et al. (2024). Their study indicated that, when compared to limited 161 
observations from field campaigns, the reanalysis datasets exhibited mean wind vector differences 162 
ranging from 2 to 4.5 m·s⁻ ¹, with ERA5 showing the closest agreement with observations. Many 163 
other studies have evaluated ERA5 from different perspectives, consistently highlighting its strong 164 
performance. These findings further reinforce the reliability of our source-receptor database. 165 
        FLEXPART is a Lagrangian particle dispersion model (LPDM) with the ability to study global 166 
transport in both forward and backward modes. In this study, we used the backward mode of 167 
FLEXPART to calculate SRRs describing the sensitivity of a receptor to a source (e.g. Seibert and 168 
Frank 2004). We released 10,000 trajectory particles from each receptor and simulated their 169 
backward 4D SRR fields. Stohl et al. (1998) simulated the long-range dispersion of tracer gases 170 
using FLEXPART v2.0 based on three large-scale tracer experiments. They compared the model 171 
results with tracer gas measurements from various locations and found that the model performed 172 
very well under fair meteorological conditions but was less accurate in the presence of fronts. 173 
Additionally, they mentioned that the coarse resolution of the meteorological inputs at that time 174 
limited the implementation of vertical wind fields, restricting potential improvements in model 175 
performance. Forster et al. (2007) evaluated FLEXPART v6.2 in terms of its convective transport 176 
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performance, finding good agreement at higher altitudes above the atmospheric boundary layer 177 
when convection was included in the model. At the time, they emphasized the need for tropospheric 178 
profile measurements. Furthermore, they compared forward and backward simulations and found 179 
only minor differences, which could be tolerated given the large overall uncertainties of convective 180 
parameterizations. Pisso et al. (2019) provided detailed descriptions of FLEXPART v10.4, 181 
including references to evaluations of several model components, such as the convection scheme 182 
and aerosol lifetime estimation. More recently, Bekel et al. (2024) evaluated and compared 183 
FLEXPART v11 and v10.4. While v11 introduces improvements, many key features of v10.4 and 184 
v11 exhibit comparable performance. Overall, in LPDMs, the meteorological driver plays a crucial 185 
role in determining the level LPDM performance, while differences among various LPDMs remain 186 
small (Hegarty et al., 2013). Based on the results from a wide range of studies, we consider 187 
FLEXPART-ERA5 to be one of the best current options for establishing our SRRs database. 188 
        In summary, we expect that the uncertainties associated with the multiplatform-fusion ozone 189 
product are primarily aleatoric (i.e. random), a concept well understood in statistical error analysis 190 
(Taylor and Thompson, 1982). The uncertainties associated with the FLEXPART-ERA5-based 191 
SRRs, which are separate from the random errors associated with the multiplatform-fusion ozone 192 
products, are also aleatoric and not systematically biased. A scientific application for integrating 193 
our native SRR database (combining the multiplatform-fusion ozone product and FLEXPART-194 
ERA5-based SRRs) at longer time scale (i.e. monthly and yearly) with a focus on different ozone 195 
level percentiles, which could further reduce errors, has been conducted by Ryoo et al. (in 196 
preparation). 197 
          Our SRR product spans a 28-year period from 1994 to 2021, with native hourly temporal 198 
resolution and 1° x 1° spatial resolution globally. We output 5 layers of SRRs from the surface up 199 
to 20 km to support the investigation of the different source regions associated with different 200 
altitudes and to understand their source contributions. The 5 layers include surface to 300 m a.g.l., 201 
300 m to 3 km a.g.l., 3 km to 8 km a.g.l., 8 km to 13 km a.g.l., and 13 km to 20 km a.g.l. We used 202 
the default FLEXPART schemes such as the Gaussian approximation of boundary layer turbulence 203 
and the Emanuel-based convection parameterization (Stohl et al., 2005). ERA5 provided 204 
meteorological variable inputs. We used Flex_extract v7.1.2 (Tipka et al. 2020) to extract ERA5 205 
global products for the FLEXPART simulations.  The output unit of the SRR field is s m3 kg-1, 206 
which represents the residence time weighted by the volume of air mass. FLEXPART offers several 207 
unit options. The primary consideration in selecting this specific unit is to facilitate users in 208 
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quantifying source contributions by region or atmospheric layer when linking our SRRs with 209 
emission rates, in addition to conducting residence time analysis.          210 
         This SRR database was implemented on NASA High End Computing (HEC) Pleiades 211 
Broadwell Nodes. The operational framework was set up on a monthly batch configuration, 212 
processing all receptors within a given month in one FLEXPART-ERA5 run using a single 213 
processor. Overall, the Langragian model framework used here is computationally efficient. Most 214 
individual runs required less than 100 hours to complete. Excluding the time required for 215 
downloading ERA5 data, approximately one month was needed to generate this comprehensive set 216 
of products.  217 
         The output field structure of the SRR product is a five-dimensional matrix (SRR 218 
(receptor,lat,long,height,time)). Details of the receptor information are stored into a separate file, 219 
as described in Section 2. Latitude and longitude are represented in 1° x 1° grid cells, and heights 220 
denote the five vertical layers as previously described. The time dimension extends from the 221 
observational receptors back 15 days with hourly outputs. Retaining detailed information allows 222 
users to customize the five-dimensional data to select specific receptors, geographic regions, 223 
vertical layers, or backward time intervals up to 15 days. Examples are provided in the next two 224 
sections. 225 
 226 
4 Product illustration 227 
         Figure 2 illustrates maps of SRRs summed up at a monthly scale for all ozone receptors. Pink 228 
dots mark receptor locations during this month, and the SRR fields represent the influence function 229 
values integrated across each vertical layer. Areas with higher values indicate greater source 230 
sensitivities to influencing the ozone values observed over WNA. Since ozone receptors are 231 
primarily located within the FT, high values are concentrated with the FT from 3-13 km above 232 
ground level, with additional influences seen from the lowest 300 m layer and the highest layer 233 
(13-20 km). By preserving the FLEXPART outputs in these five vertical layers, studies addressing 234 
a wide variety of processes and emission sectors can be devised using this model product. For 235 
example, aviation influences are expected in the 8-13 km layer (Ryoo et al., in preparation). 236 
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 237 

 238 
Figure 2: Monthly influences can be studied with this dataset. Aggregated SRRs of  FT ozone 239 
over WNA during July 2016 are shown for sources located in (a) the near-surface layer (0 - 240 
300 m a.g.l.); (b) boundary layer (300-3000 m a.g.l.); (c) a middle tropospheric layer (3 - 8 km 241 
a.g.l.); (d) an upper tropospheric layer (8 - 13 km a.g.l.); and (e) a stratospheric layer (13 -  20 242 
km a.g.l.). The pink dots represent the geospatial locations of all receptors available during 243 
July 2016.  244 
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 245 
         The SRR datasets retain detailed high-resolution information, which, when integrated over 246 
multiple years or decades, enables more robust statistical analyses to understand transport patterns. 247 
For instance, we present an example of SRR patterns aggregated over a 28-year period across 248 
various altitudes from two distinct receptor subsets: those associated with the lowest (cleanest) 249 
ozone levels (left column) and those with higher ozone levels (right column) (Figure 3). SRRs are 250 
aggregated monthly across various altitudes for cases when ozone values at the receptors are at 251 
their low and high percentiles, compared to those over the mid-year period (2004–2014). A more 252 
detailed statistical framework is outlined in Ryoo et al. (in preparation) to minimize the influence 253 
of varying numbers of receptors across months and years. All subsequent SRR illustrations given 254 
here are generated using the same algorithm applied in Figure 3. These visualizations allow us to 255 
compare the SRR patterns across the Northern Hemisphere during winter over the time period. The 256 
results demonstrate that this SRR product provides a valuable tool for examining how atmospheric 257 
transport patterns vary by altitude and across different subsets of in situ ozone observations over 258 
WNA. 259 
 260 
 261 
 262 
 263 
 264 
 265 
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 266 
Figure 3: Sensitivity of two FT ozone categories (< 5th percentile in panel (a) and > 66th 267 
percentile in panel (b)) are shown as a function of altitude during wintertime. Air parcels 268 
reaching WNA with very different amounts of ozone have origins in different regions of the 269 
Pacific and Asia.  270 
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         Our dataset of backward simulations can also be used to illustrate atmospheric transport 271 
pathways as a function of season. Figure 4 shows an example of aggregated analysis of the seasonal 272 
patterns at all altitudes for the entire 28-year period. A consistent feature across all seasons is the 273 
significant influence from the western North Pacific Ocean. However, panel (a) shows that the 274 
latitudinal extent of source locations for the cleanest parcels (ozone < 5th percentile) varies with 275 
season. Transport from the tropical North Pacific Ocean dominates in winter, but the influence 276 
widens in spring and ultimately includes broader mid-latitude regions during summer. In contrast, 277 
panel (b) shows that the air parcels containing the largest amounts of ozone (> 95th percentile) 278 
show some modest seasonal variation in longitudinal extent but originate from a wide range of 279 
latitudes in all seasons. 280 

Figure 4: Seasonal sensitivity of residence time of parcels containing (a) the cleanest FT ozone 281 
level (< 5th percentile) and (b) the highest FT ozone level (> 95th percentile) over WNA during 282 

https://doi.org/10.5194/essd-2024-571
Preprint. Discussion started: 3 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 

13 
 

the complete 28-year dataset, including winter (DJF), spring (MAM), summer (JJA), and fall 283 
(SON).   284 
 285 
 5 Discussion and additional applications  286 

The SRR database supports atmospheric transport studies, such as examining airmass 287 
influences across seasons, altitudes, and ozone mixing ratios (Section 4). Additionally, the 28-year 288 
SRR dataset offers the potential for correlation analyses with climate indices, providing valuable 289 
insights into the impacts of climate change on atmospheric transport and, consequently, FT ozone 290 
levels over WNA (Ryoo et al., in preparation). 291 

SRRs can also be linearly convolved with gridded emission source fields to explore the 292 
contributions of both anthropogenic and natural sources to ozone formation. For example, lightning 293 
nitrogen oxides (NOx) are a natural source of ozone formation. By convolving the SRR fields with 294 
the lightning NOx source rate, we can identify specific lightning regions that contribute to FT ozone 295 
levels over WNA. Figure 5 illustrates a related analysis. An increasing trend of SRRs across 296 
altitudes from 3 to 13 km, associated with the 66th to 95th percentiles of WNA ozone receptor 297 
levels, is shown in Figure 5 (a). To clarify whether lightning NOx sources align with the SRRs and 298 
whether the increased SRRs bring more lightning-related ozone formation to the downwind WNA 299 
FT ozone levels, we calculate the global lightning NOx flux rate using the Global Modeling 300 
Initiative (GMI) model (e.g., Bey et al., 2001; Kinnison et al., 2001). We compare the SRR fields 301 
with the lightning NOx flux rate fields over the Northern Hemisphere for the periods 1994–2006 302 
and 2007–2019 (middle row of Figure 5 (b and c)). Additionally, we computed a field of SRR 303 
multiplied by the lightning NOx flux rate to focus on the influence of source regions on the 66th to 304 
95th percentiles of WNA ozone levels (bottom row of Figure 5 (b) and (c)). Changes in this field 305 
between the two periods are shown (Figure 5 (d)), with higher values indicating regions where 306 
lightning activity may contribute to WNA ozone levels in terms of both magnitude and variation. 307 
Further detailed scientific analysis is warranted. 308 
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Figure 5: (a) SRRs within the 3 - 13 km layers as a function of time for receptors containing 309 
ozone amounts between the 66th and 95th percentile. (b) and (c) SRRs for two time periods 310 
(1994-2006 and 2007-2019) (top row); average lightning NOx concentrations, weighted by 311 
area and time over the Northern Hemisphere, as estimated by the GMI system (middle row); 312 
multiplication of top and middle row highlights areas of greatest potential influence (bottom 313 
row). (d) Differences between panels (b) and (c). 314 

 315 
By integrating gridded lightning NOx emissions with SRRs, users can better distinguish 316 

contributions from various geospatial locations. A similar approach, focusing on the impact of 317 
aircraft NOx emissions on FT ozone formation over WNA, is discussed in Ryoo et al. (in 318 
preparation). Another potential application involves linking fire-related trace gases (e.g., carbon 319 
monoxide (CO)) with SRRs to assess the influence of the changes of fire events on FT ozone levels 320 
over WNA. 321 
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It is important to note that the analysis described above does not account for chemical 322 
reactions (e.g., formation or loss processes). Instead, these analyses simply provide an initial 323 
indication of regions likely contributing to ozone formation in WNA. Ozone formed locally in 324 
regions with high NOx levels or during transport could be delivered to our ozone receptor locations, 325 
and therefore, higher SRR-weighted NOx emissions are indicative of regions with a potentially 326 
significant impact on FT ozone over WNA. While uncertainties remain, this approach provides a 327 
rapid and effective means to identify regions associated with FT ozone formation over WNA and 328 
to analyze how changes in source regions contribute to variations in downwind FT ozone levels. 329 

The SRR product in our archived database extends beyond ozone research, supporting 330 
transport and source attribution analyses for other atmospheric components observed over WNA at 331 
the spatial and temporal scales defined by the ozone receptor grids. For instance, IAGOS profiles 332 
(Section 2) have included CO measurements since 2001, and AJAX missions (Section 2) have 333 
collocated methane (CH4) observations. Additionally, all ozone observations are paired with co-334 
located water vapor measurements. For example, we can use the SRR database to understand 335 
decadal-scale changes in the source regions of moisture over western North America, such as 336 
variability in atmospheric rivers. 337 

Moreover, measurements not directly linked to the ozone observation platforms used in 338 
this study (Section 2) but aligned with the spatial and temporal framework defined by the ozone 339 
receptors, such as dust-related aerosol measurements in the FT over WNA, can also leverage the 340 
SRR database to analyze the transport and origin of diverse atmospheric constituents. 341 
 342 
6 Summary 343 
         Using the statistical technique established by Chang et al. (2022), we integrated and 344 
reconciled a gridded ozone database from various ozone observing platforms, covering 900 to 300 345 
hPa, primarily focused on the free-tropospheric and upper tropospheric layers, for nearly three 346 
decades (1994–2021). In conjunction with this fused dataset, we conducted backward simulations 347 
using the Lagrangian-based transport model FLEXPART to calculate source-receptor relationships 348 
(SRRs) for each gridded ozone data point. The FLEXPART model is an offline model driven by 349 
ERA-5 reanalysis data. FLEXPART-ERA5 is designed to deliver the SRR product at high temporal 350 
and spatial resolution on a global scale, with the available SRR information up to 15 days prior. 351 
         This SRR database, which combines the multiplatform-fusion ozone product and 352 
FLEXPART-ERA5-based SRRs,  was developed specifically to support multi-decadal analyses of 353 
airmasses containing a range of ozone values to advance the understanding of ongoing changes in 354 
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FT ozone, as most recently identified in Chang et al. (2023). It also supports the analysis of 355 
increased FT ozone trends across a range from synoptic dynamics to mesoscale processes in 356 
relation to various climate indicators (Ryoo et al., in preparation).  357 
         Our archived product includes both the Western North America (WNA) fused ozone data and 358 
SRR modeling output, providing a powerful resource for understanding atmospheric transport and 359 
emission source contributions to FT ozone levels over WNA under various scenarios. This product 360 
also holds potential for investigating other aspects of atmospheric components which are relevant 361 
to the receptor grid chosen here.  362 
 363 
7  Data and Code availability and File format 364 
         The model outputs, associated receptor data, and post-processing scripts will ultimately be 365 
available at NASA's DAAC/ASDC (https://asdc.larc.nasa.gov/project/WNA-BackTraj). For 366 
immediate needs during the review process, a representative subset of our data has been uploaded 367 
to the Zenodo repository (Cui et al., 2024). Specifically, the gridded receptor details are stored in a 368 
CSV file that includes columns for the year, month, day, hour, latitude, longitude, pressure, and 369 
corresponding ozone values. As outlined in Section 3, FLEXPART model outputs from each 370 
monthly batch run are stored in separate monthly folders in binary format. The 28 years of binary 371 
files occupy approximately 4 TB of storage. Post-processing scripts to read these binary files in 372 
various programming languages are available at https://www.flexpart.eu/wiki/FpOutput. 373 
Additionally, we have attached a MATLAB script with other archived files. For example, Ryoo et 374 
al. (in preparation) used this MATLAB script to convert binary files to NetCDF format and to 375 
reduce the domain from global to the Northern Hemisphere for further analysis. That 1° x 1° 376 
monthly output for the Northern Hemisphere is also archived at the same location.  377 
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