Supplement of

10

A dataset of ground-based vertical profile observations of aerosol, NO2 and HCHO from the hyperspectral vertical remote sensing network in China (2019-2023)

5 Peiyuan Jiao¹, Chengzhi Xing^{2*}, Yikai Li³, Xiangguang Ji⁴, Wei Tan², Qihua Li⁵, Haoran Liu⁵, and Cheng Liu^{1,2,6,7*}

¹Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China

²Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China

³School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China

⁴Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, Anhui, 230601, China ⁵Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China

15 ⁶Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

⁷Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China

Correspondence to: Chengzhi Xing (xingcz@aiofm.ac.cn); Cheng Liu (chliu81@ustc.edu.cn)

20 Table S1. The Sites location and their corresponding nearest China National Environmental Monitoring Center (CNEMC) stations.

	MAX-DOAS stations			The nearest CNEMCs		Distance (lan)
No.	Station(code)	Longitude(°E)	Latitude(°N)	Longitude(°E)	Latitude(°N)	Distance (km)
1	CAMS	116.32	39.94	116.34	39.93	2.52
2	IAP	116.37	39.97	116.40	39.98	1.92
3	NC	116.12	39.78	116.15	39.82	4.95
4	UCAS	116.67	40.40	116.63	40.33	9.80
5	WD	115.15	38.17	114.85	38.03	30.38
6	XH	116.97	39.76	117.30	39.72	28.58
7	SJZ	114.60	37.90	114.64	37.90	2.94
8	SXU	112.58	37.63	112.56	37.74	12.09
9	IMNU	111.68	40.80	111.66	40.80	2.52
10	DY	118.98	37.76	118.57	37.57	42.01
11	QD	120.67	36.34	120.61	36.44	11.54
12	TS	117.10	36.25	117.09	36.20	6.11
13	TA	117.06	36.20	117.09	36.20	2.49
14	SH_XH	121.43	31.17	121.41	31.17	2.11
15	SH_DL	120.97	31.09	120.98	31.09	0.02
16	NUIST	118.71	32.20	118.81	32.11	14.16
17	NB	121.89	29.75	121.84	29.91	18.60
18	HNI	122.67	30.86	121.80	31.05	86.33

19	LA	119.75	30.30	119.72	32.24	7.43
20	HNU	116.80	33.98	116.80	33.98	1.03
21	AHU	117.18	31.77	117.20	31.78	1.80
22	CF	117.18	32.21	117.27	31.94	30.59
23	IUE	118.05	24.61	118.10	24.57	6.03
24	GIG	113.35	23.15	113.32	23.13	4.23
25	SUST	113.99	22.59	114.03	22.62	4.22
26	SLS	99.72	28.00	99.71	27.83	19.61
27	CQ	106.50	29.60	106.46	29.57	5.57
28	LZU	103.85	36.04	103.83	36.05	2.10
29	XA	109.09	34.52	109.00	34.26	1.04
30	JHI	120.77	40.47	120.83	40.71	26.25
31	LNU	123.04	41.81	123.40	41.79	1.64
32	LY	112.45	34.67	112.44	34.67	1.58

Figure S1. Spring averaged aerosol extinction vertical profiles during 2019-2023.

Figure S2. Summer averaged aerosol extinction vertical profiles during 2019-2023.

Figure S3. Autumn averaged aerosol extinction vertical profiles during 2019-2023.

Figure S4. Winter averaged aerosol extinction vertical profiles during 2019-2023.

Figure S5. Diurnal variation of the spring averaged aerosol extinction vertical profiles during 2019-2023.

Figure S6. Diurnal variation of the summer averaged aerosol extinction vertical profiles during 2019-2023.

Figure S7. Diurnal variation of the autumn averaged aerosol extinction vertical profiles during 2019-2023.

Figure S8. Diurnal variation of the winter averaged aerosol extinction vertical profiles during 2019-2023.

Figure S9. Spring averaged NO2 vertical profiles during 2019-2023.

Figure S10. Summer averaged NO2 vertical profiles during 2019-2023.

Figure S11. Autumn averaged NO2 vertical profiles during 2019-2023.

Figure S12. Winter averaged NO2 vertical profiles during 2019-2023.

Figure S13. Diurnal variation of the spring averaged NO2 vertical profiles during 2019-2023.

Figure S14. Diurnal variation of the summer averaged NO2 vertical profiles during 2019-2023.

Figure S15. Diurnal variation of the autumn averaged NO2 vertical profiles during 2019-2023.

Figure S16. Diurnal variation of the winter averaged NO2 vertical profiles during 2019-2023.

Figure S17. Spring averaged HCHO vertical profiles during 2019-2023.

Figure S18. Summer averaged HCHO vertical profiles during 2019-2023.

Figure S19. Autumn averaged HCHO vertical profiles during 2019-2023.

Figure S20. Winter averaged HCHO vertical profiles during 2019-2023.

Figure S21. Diurnal variation of the spring averaged HCHO vertical profiles during 2019-2023.

Figure S22. Diurnal variation of the summer averaged HCHO vertical profiles during 2019-2023.

Figure S23. Diurnal variation of the autumn averaged HCHO vertical profiles during 2019-2023.

Figure S24. Diurnal variation of the winter averaged HCHO vertical profiles during 2019-2023.

Figure S25. Correlation of surface AEC measured at each site and PM2.5 measured by CNEMC.

		- 10
AHU -	0.8	1.0
CAMS -	0.88	
CF -	0.85	
CQ -	0.78	
DY -	0.9	
GIG -	0.81	0.0
HNI -	0.62	- 0.8
HNU -	0.75	
IAP -	0.85	
IUE -	0.69	
JHI -	0.87	
LA -	0.74	0.6
LNU -	0.73	- 0.6
LY -	0.77	
LZU -	0.8	
NB -	0.78	
NC -	0.87	
NUIST -	0.76	0.4
QD -	0.83	- 0.4
SH_DL -	0.77	
SH_XH -	0.77	
SJZ -	0.91	
SUST -	0.8	
SXU -	0.72	0.2
TA -	0.91	- 0.2
TS -	0.35	
UCAS -	0.91	
WD -	0.84	
XA -	0.9	
XH -	0.86	
	Correlation	- 0.0

Figure S26. Correlation of NO2 concentration measured by each site and CNEMC.

		- 1.0
AHU -	0.67	
CAMS -	0.73	
CF -	0.73	
CQ -	0.73	
DY -	0.74	
GIG -	0.49	- 0.8
HNI -	0.53	- 0.8
HNU -	0.73	
IAP -	0.7	
IUE -	0.84	
JHI -	0.87	
LA -	0.75	0.6
LNU -	0.97	- 0.6
LY -	0.67	
LZU -	0.7	
NB -	0.67	
NC -	0.7	
NUIST -	0.72	
QD -	0.84	- 0.4
SH_DL -	0.99	
SH_XH -	0.58	
SJZ -	0.77	
SUST -	0.56	
SXU -	0.76	
TA -	0.96	- 0.2
TS -	0.57	
UCAS -	0.68	
WD -	0.67	
XA -	0.82	
XH -	0.65	
	Correlation	- 0.0

Figure S27. Correlation of tropospheric NO2 VCD measured by each site and TROPOMI.

Figure S28. Correlation of tropospheric HCHO VCD measured by each site and TROPOMI