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1 Supplementary Text S1: Example application that would benefit from TRACEv1 10 

The Empirical Seawater Property Estimation Routines (ESPERs) (Carter et al., 2021a) provide an example of an 

application that needs computationally efficient and time-varying Canth estimates in the absence of transient tracer 

measurements.  A subset of these routines is trained from reference-year-adjusted DIC and produce DIC and pH 

estimates that account for both the reference year conditions and the Canth accumulation since the reference year.  

The Canth estimation strategy currently employed in these routines is both computationally inefficient when returning 15 

a small number of values (requiring up to a minute for the first Canth estimate) and becomes highly unreliable for 

generating plausible estimates beyond a narrow date range.  The accuracy of the Canth adjustments used by ESPER is 

also unassessed and presumed to be low. 

2 Supplementary Test S2: Construction of the neural network committees 

TRACEv1 relies on five sets of neutral networks that are formulated using identical architecture to the ESPER_NN 20 

(Empirical Seawater Property Estimation Routines with Neural Networks) routines of Carter et al. (2021a).  Each 

“neural network” is, more accurately, two committees of four feed-forward neural-networks each with up to two 

hidden layers, with the following number of neurons per layer: [20 -], [15 5], [10 10], and [5 15].  Neural network 

training is accomplished with a Levenberg-Marquardt backpropagation (using the train.m MATLAB function) with 

default settings: 70% of the data are used for training and 15%, each, used for testing and validation.  One 25 

committee is used in the Atlantic and the Arctic, with a second committee being used in the rest of the ocean.  When 

transitioning between the two committees in the South Atlantic and near the Bering Strait, a weighted average is 

taken between the committee results with the transitions in the weights occurring linearly over ~8° of latitude.   

All neural networks have only a single output.  The results from all members of the appropriate committee are 

averaged for the final neural network result.  All neural networks are trained with the following predictor 30 

information: user-provided longitude is converted within the routines to the cosine of the longitude expressed in 

positive °E after subtracting 20 °E (to align the minimum sensitivity with the narrow band of ocean south of Africa) 

and the sine of the Longitude expressed in positive °E minus 20 °E (to align the minimum sensitivity with the 



transition between the Indian and Pacific Oceans), S provided as a unitless number, and temperature is expressed in 

°C which is converted by TRACEv1 routines to potential temperature.  While S is predominantly available in global 35 

measurement repositories as a unitless number, supplying TRACEv1 with the modern convention of absolute 

salinities expressed as parts per thousand of the mass of seawater will not meaningfully change the estimated Canth.   

The rationales behind these neural network choices are similar to those given for the nearly-identical choices used 

by Carter et al. (2021) and the related choices used earlier by Bittig et al. (2018) for the CANYON-B routines that 

inspired ESPER_NN.   40 

 

We note that the neural network for α is fit to log10|α| instead of directly to α because small errors in small values of 

α have a comparable impact on the TTD age distribution and Canth estimates to larger errors in large values of α.    

3 Supplementary Text S3: Preformed property estimate errors are likely a small component of Canth 

estimate errors 45 

The TRACEv1 uncertainty tolerance for the TA0 estimate is large: an error of 10 µmol kg-1 in TA0 corresponds to 

TRACEv1 Canth estimate error of only ~0.4 µmol kg-1.  Considering that the neural network reconstruction error for 

the TA0 gridded training data is modest (bias=0.0 µmol kg-1, ±1s = 5 µmol kg-1) compared to the uncertainty in the 

underlying TA0 estimates of 9.4 µmol kg-1 (Carter et al., 2021b), and the sensitivities and reconstruction errors are 

significantly smaller still for Si0 and P0,  the contributions from preformed property estimates to Canth uncertainty are 50 

therefore thought to be small relative to other contributions (as was also found by He et al. (2018)).  This 

contribution is also implicitly incorporated into our model-derived uncertainty estimate when we use the neural 

networks trained on the Carter et al. (2021b) preformed property estimates—made for the real-world ocean— for 

GOBM model output with unknown and presumedly-different preformed properties unique to the GOBM 

circulation and biogeochemistry.  These uncertainties are therefore also implicitly included in the TRACEv1 55 

uncertainty estimates. 

4 Supplementary Text S4: Information about code speed optimization 

TRACEv1 takes ~0.06 seconds per estimate on a personal laptop.  Increasing the pH convergence tolerance in the 

CO2SYS calculation speeds the code by reducing the iterations required to converge on a final value while only 

changing the TRACEv1 Canth reconstruction RMSE at the 5th significant digit.  Recognizing that the carbonate 60 

chemistry of seawater is non-linear whereas DIC mixes conservatively, earlier versions of the code were designed to 

calculate Canth values for each of the atmospheric CO2 concentrations specific to each of the many ages that 

comprise a TTD age distribution before combining the distributions into a single fraction-weighted mean Canth 

estimate.  However, this approach generated estimates that were indistinguishable from the values obtained from the 

adopted method (within uncertainties) and required invoking the carbonate chemistry solver hundreds of additional 65 

times per calculation.  This significantly slowed the calculation without meaningfully improving fidelity. 

 



5 Supplementary Text S5: Model and OCIM information extraction methods 

The age (A) values are linearly interpolated by latitude, longitude, and depth from the 3-D OCIM grid with nearest 

neighbor extrapolation using “scatteredInterpolant.m.”  For this and subsequent gridded-value interpolations, the 70 

values with a 0° E < longitude < 20° E are copied to 360° E < longitude < 380° E and the values with a 340° E < 

longitude < 360° E are copied to -20° E<longitude< 0° E.  In addition, depths are divided by 25 m and latitudes 

multiplied by 4 such that properties tend to vary more equally for a given change in the various coordinates.  These 

measures are often essential for plausibly interpolating scattered 3-D data, but usually only provide a minor 

improvement when interpolating readily interpolated gridded values like the OCIM A estimates and the GOBM 75 

output. 

 

In order to subsample the GOBMs in a fashion that is consistent with the available real-world observations, modeled 

values of annually-averaged simulated CFC-11, CFC-12, and SF6 concentrations; temperature; salinity; and DIC are 

linearly interpolated from the 3-dimensional model grid to the sparse locations and times at which all three transient 80 

tracer measurements of interest are available in the GLODAPv2.2023 data product.  Rather than a 4-dimensional 

interpolation with time, the GOBM output from each year is used for 3-dimensional interpolations at locations 

measured in the same year.  The GOBM output comes from the NorESM RECCAP2 simulation suite (Müller, 

2023).  We use output from simulation “A” to estimate simulated measurements.  Simulation A aims to represent a 

variable forcing as represented by atmospheric reanalysis products along with continued Canth accumulation in the 85 

atmosphere and ocean.  Simulated Canth is then defined as the difference between this simulation and the “D” 

simulation that has identical physical forcing but fixed preindustrial atmospheric Canth (and therefore no marine Canth 

accumulation).  As a final step, the model transient tracer output is converted to partial pressure equivalents using 

the pCFCfromCFC.m function distributed alongside the TRACEv1 code (though never invoked by it), and 

simulated concentrations are converted to substance amount contents by dividing by the density of the seawater 90 

calculated from the modeled S and T.  For the reconstruction error analysis, annually-averaged output is extracted 

from 1980 and 2014 c.e. 

6 Supplementary Text S6: Model reconstruction estimate of TRACEv1 estimate uncertainty 

The α values fit to the NorESM output can be used directly—without invoking the neural networks used by 

TRACEv1 to remap α—to estimate Canth at the locations and times where the α values were fit to simulated transient 95 

tracer distributions and the interpolated OCIM age distribution.  These reconstructions show strong agreement with 

NorESM Canth distributions, with bias (±root-mean-squared, RMS) errors of ₋1.5 (±4.5) µmol kg₋1 (Table S1).  

Interestingly, these errors decrease slightly—to ₋1.2 (±4.1) µmol kg₋1—when the TRACEv1_Validation neural 

networks are used to reconstruct the α values at these same locations.  This improvement is likely found because the 

statistical smoothing across space (along a cruise) and time (between cruises) inherent to the neural network 100 

estimates is helpful for the Canth reconstruction.   

 

When applying the TRACEv1_Validation_NorESM to the full model grid from 1980 and 2014, the errors become 

−0.6 (±4.4) µmol kg₋1.  The overall inventory estimates (given in Table S1) are within 15% of the simulated values, 



though we caution that this is not a robust result with only 2 realizations from 1 model simulation set.  We note that 105 

the average year of the viable combinations of transient tracer measurements used to fit versions of TRACE (notably 

those that include the recent SF6 measurements) is 2012.4 c.e., so the smaller average absolute bias in 2014 could 

perhaps be explained by the measurements providing a stronger constraint for the ventilation history in this later 

period.  If correct, this would imply that new measurements remain useful for quantifying variability in the true 

ventilation history of the ocean interior, and that steady state circulation estimates (and thus projections) can only 110 

yield so much reconstruction fidelity.  An alternative explanation is that the inventory error is relatively consistent 

while the inventory is smaller in the previous period.  Based on these observations and limitations of a 

reconstruction of only a single model simulation, we assign an (±1σ) ±4.4 µmol kg₋1 Canth uncertainty to TRACEv1 

estimates, that grows to ±15 % of any estimate when this percentage is larger than ±4.4 µmol kg₋1.  This uncertainty 

estimate is combined with the Monte Carlo uncertainty estimate (Supplementary Text S7) using a formula provided 115 

in the main text. 

 

Table S1.  TRACEv1_validation_NorESM misfits for reconstructions of the NorESM Canth distributions.  Misfits 

are quantified directly from simulated transient tracer measurements interpolated from full 3-D gridded output 

(meas. direct α) to the locations and times of measurements in the real ocean, from these same values when the α 

has been reconstructed at these same locations using a neural network (meas. with NN), and for the full 3D model 

domain again using the NN to remap α (full grid with NN).  These last reconstructions are also used to calculate 

an error in the reconstructed full ocean Canth inventory in 1980 and 2014 given in PgC (and as a percentage of the 

total inventory in parentheses). 

Quantity Bias or error RMSE Units 

meas., direct α ₋1.5 4.5 µmol Canth kg₋1 

meas. with NN ₋1.2 4.1 µmol Canth kg₋1 

full grid, with NN (𝑢MR) ₋0.6 4.4 µmol Canth kg₋1 

Inventory in 1980 (modeled: 110 PgC) ₋11 (₋10%) - PgC (% of total) 

Inventory in 2014 (modeled: 197 PgC) ₋7 (-3%) - PgC (% of total) 

 

 

Figure S1. Root mean squared Canth error mapped regionally (for all estimates across depth) in NorESM model 

year 2014.5 c.e. 

 



We can examine the regional distribution of RMS (computed for all estimates vertically) residuals globally (Figure 120 

S1).  The largest errors are found in the Arctic and in marginal seas including the Baltic, Mediterranean, and the East 

Sea/Sea of Japan.  In most of these areas there are few training data, and similar neural networks have noted 

reconstruction errors in such locations previously (Carter et al., 2021a).  This provides a caution against using 

TRACEv1 in enclosed basins that lack the full suite of transient tracer measurements.  In addition, there is an 

indication that RMS reconstruction error increases near coastlines and especially in areas of strong upwelling.  This 125 

feature is even more noticeable at the ocean surface where there seems to be a pronounced over-estimation of Canth in 

upwelling regimes such as the California Current, the Eastern Tropical Pacific, the Peru Current, and the Benguela 

Current (Figure S2a).  This implies that the neural network fit of α is not well-capturing the shift in the Canth content 

that accompanies changes in S and T when upwelled water with lower Canth is brought to the surface.  Larger 

reconstruction errors in dynamic coastal environments are a common problem for Canth estimates where uncertainties 130 

of 50% have been reported (Feely et al., 2016).  The TRACEv1 reconstruction uncertainty seems to be closer to 

~30% in these areas (Figure 2b).  TRACEv1 uncertainty estimates do not account for this regionally-enhanced 

uncertainty.  It is likely that a broader transient tracer measurement training product and iteration on the fitting terms 

for the neural networks could allow better resolution of these dynamic features in future versions of TRACE.  

 

Figure S2. Map of the (a) surface Canth estimate error and (b) its value expressed as a percentage of the estimate. 
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7 Supplementary Text S7: Monte Carlo Analysis 

The Monte Carlo analysis uses 10 versions of TRACE, TRACEv1_MonteCarlo_1 through 

TRACEv1_MonteCarlo_10, which were trained using data with two sets of perturbations applied.  For each cruise 

in GLODAPv2.2023, relative perturbations were selected from a normally distributed population with a mean of 0 

and a standard deviation of 2% for CFCs and 3% for SF6 and added to the measurements.  However, when 2% of the 140 

CFC-11 or CFC-12 measurement is less than 0.005 pmol kg₋1, or when 3% of the SF6 measurement is less than 0.05 

fmol kg₋1, then we select random measurement perturbations from populations with standard deviations equal to the 

larger percentages implied by these two minimum-measurement error thresholds (up to 100% of the values for the 

smallest concentrations).  This perturbation represents systematic cruise-wide measurement uncertainty sources.  We 

similarly perturb each individual transient tracer measurement in the data product by a second unique perturbation 145 

selected for that measurement from the same population of offsets.  This perturbation represents measurement-

specific uncertainties. 

 

The Monte Carlo analysis reveals that the applied measurement uncertainties generate an additional ±2 µmol kg₋1 of 

RMS Canth estimate variability and a small (−0.2 µmol kg₋1) Canth bias.  On a global scale, this analysis induces an 150 

RMS global inventory estimate variability of ±0.6% from transient tracer measurement uncertainties and increases 

the overall inventory by 1.5%.  Interestingly, the measurement uncertainties induce a larger +0.8 µmol kg₋1 Canth bias 

if the OCIM A estimates are omitted from the fitting.  Omitting this constraint results in an inventory bias of +3.4 

and +6.4 PgC in 1980 and 2014, respectively.  The positive biases induced by transient tracer measurement errors 

are likely a consequence of the non-linearities between transient tracer concentration histories, apparent age, and 155 

atmospheric Canth accumulation. 

 

8 Supplementary Text S8: Age estimate comparisons 

TRACEv1 is used to reproduce the A data product of Jeannson et al. (2021) and it shows approximately comparable 

ages for the subset of the estimates that have more than 30 µmol kg₋1
 Canth (Figure S3a).  TRACEv1 ages are, if 160 

anything, on average younger than the TTD ages of Jeannson et al. (2021) obtained from SF6 by an average of 2.5 

years for this subset.  The largest differences are found in the deep Atlantic and Pacific where—like the OCIM A 

values—the TRACEv1 ages are younger in the Atlantic and older in the Pacific.  TRACEv1 A estimates are 

generally comparable to the OCIM A estimates, though they are younger on average, particularly for the water 

masses where the Canth is estimated to be between ~10 and 30 µmol kg₋1 (Fig. S3c).   165 

 



 

Figure S3. Two dimensional histograms in color comparing the distributions of age estimates from various 

approaches.  There is comparatively strong coherence between estimates in the well-ventilated waters with 

significant Canth (i.e., the warmest colors indicating bins with high data density are near ΔA=0).  For waters with 

less Canth the OCIM tends to have the oldest A estimates and TRACEv1 tends to have the youngest.   

 

9 Supplementary Text S9: Comparison to the GLODAPv2 gridded product 

 



 

Figure S4.  Inventory vs. depth in 2002 from the TRACEv1 and GLODAPv2 gridded (Lauvset et al., 2016) 

products.  

 

The published Canth distribution from the gridded GLODAPv2 data product (Lauvset et al., 2016) allows us to 170 

examine the source of the largest disagreement in greater detail.  Most of the disagreement is found at depth, with 

the gridded GLODAPv2 product showing greater anthropogenic carbon inventories below 500 m (Figure S4).  

There are several differences between TRACEv1 and the TTD approach of Lauvset et al. (2016) that could account 

for the differences in the inferred inventories in 2002: the inclusion of the “CO2 disequilibrium” adjustment in 

TRACEv1 (which lowers Canth estimates except following atmospheric xCO2 declines in some SSP projections), the 175 

use of OCIM A and the inclusion of SF6 as additional TTD fitting constraints by TRACEv1, differences between the 

shape of the TTDs fit, and the use of transient steady state by Lauvset et al. (2016) to adjust Canth values to their 

2002 values before gridding them to the GLODAPv2 grid vs. the use of neural networks with TRACEv1 to generate 

TTDs and Canth values for the GLODAPv2 grid.  Omission of the OCIM ages has modest impact on the calculated 

inventories (<+1 PgC in the model validation and +3.4 to +6.4 PgC from the Monte Carlo analysis), but the 180 

combination remains insufficient to account for the difference, so there must be another source of disagreement.  

Waugh et al. (2006) revised their TTD estimates, which are similar to the estimates from (Lauvset et al. 2016), lower 

by 20% after observing a consistent overestimate from their TTD approach when it was applied in a model 

environment with known Canth.  The disagreement was particularly strong in the Southern Ocean, and we note that 

this is one location where it can be unclear whether small transient tracer contents correspond to a large amount of 185 

old water mixed with a small amount of recent ventilation or a comparatively large fraction of water that was 

ventilated in the era when atmospheric transient tracer concentrations were first becoming measurable.  As the rise 

in atmospheric CO2 began well before the rise in transient tracer concentrations (Fig. 4a), these two interpretations 

result in different calculated Canth values.  The use of SF6, with a distinct atmospheric growth history from CFC-11 

and CFC-12, as an additional constraint by TRACEv1 presumably helps with this disambiguation somewhat.  It 190 

does not appear that TRACEv1 A estimates are significantly older than the ages obtained from other transient tracer 



TTD based estimates, as might be implied by TRACEv1 Canth inventory being smaller than the inventory from 

Lauvset et al. (2016) (Supplementary Text S8).  As there are multiple possible explanations, the primary source of 

the disagreement is unclear. 
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