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1 Abstract 15 

The ocean is one of the largest sinks for anthropogenic carbon dioxide (Canth) and its removal of carbon dioxide (CO2) 

from the atmosphere has been valued at hundreds of billions to trillions of US dollars in climate mitigation annually.  

The ecosystem impacts caused by planet-wide shifts in ocean chemistry resulting from marine Canth accumulation are 

an active area of research.  For these reasons, we need accessible tools to quantify ocean Canth inventories and 

distributions and to predict how they might evolve in response to future emissions and mitigation activities.  20 

Unfortunately, Canth estimation methods are typically only accessible to trained scientists and modelers with access to 

significant computational resources.  Here we make modifications to the transit-time-distribution approach for Canth 

estimation that render the method more accessible.  We also release software called “Tracer-based Rapid 

Anthropogenic Carbon Estimation version 1” (TRACEv1) that allows users—with one line of code—to obtain Canth 

and water mass age estimates throughout the global open ocean from user-supplied values of geographic location, 25 

pressure, salinity, temperature, and the estimate year.  We use this code to generate a data product of global gridded 

open-ocean Canth distributions (TRACEv1_GGCanth, Carter, 2025) that ranges from the preindustrial era through 2500 

c.e. under a range of shared socioeconomic pathways (SSPs, or atmospheric CO2 concentration pathways).  We 

estimated the skill of these estimates by reconstructing Canth in models with known distributions of Canth and transient 

tracers and by conducting perturbation tests.  In the model-based reconstruction test, TRACEv1 reproduces the global 30 

ocean Canth inventory to within ±10 % in 1980 and 2014.  We discuss implications and limitations of the projected 

Canth distributions and highlight ways that the estimation strategy might be improved.  One finding is that the ocean 

will continue to increase its net Canth inventory at least through 2500 due to deep ocean ventilation even with the SSP 

where intense mitigation successfully decreases atmospheric Canth by ~60 % in 2500 relative to the 2024 concentration.  

A notable limitation of this and similar projections made with TRACEv1 is that ongoing and potential future warming 35 

and changing oceanic circulation patterns with climate change are not captured by the method.   

 

2 Introduction 

Humans are emitting ~10 PgC as carbon dioxide gas (CO2) to the atmosphere every year and a portion of these 

emissions (~25 %) has entered the ocean (Friedlingstein et al., 2022).  Ocean carbon accumulation mitigates global 40 

warming by slowing atmospheric CO2 accumulation.  However—in a series of chemical processes known as ocean 

acidification—the elevated carbon content in seawater also shifts ocean carbonate chemistry toward lower pH and 

carbonate ion content and toward higher hydrogen ion (H+) content and CO2 partial pressure (pCO2).  These chemical 

shifts have varying and important impacts on marine organisms and potentially on entire ocean ecosystems  (Doney 

et al., 2009, 2020).  It is important to be able to distinguish between the ocean’s large natural background dissolved 45 

inorganic carbon (DIC) content and the excess anthropogenic carbon (Canth) if we are to understand the extent, climate 

impact, and likely future outcomes of ocean Canth accumulation. 

 

Ocean Canth is defined as the difference between the DIC in the modern ocean and the DIC that would be present if 

humans had never emitted CO2 (Sabine et al., 2004).  It is not a measurable quantity as defined.  Without a direct 50 

measure, Canth must be estimated, and there are numerous approaches to estimating Canth within the literature including 

global ocean biogeochemical model (GOBM) simulations (Khatiwala et al., 2013), data-assimilation-based ocean 
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circulation models coupled with air-sea exchange parameterizations (Devries, 2014), approaches that rely on 

preformed property estimates and remineralization ratios (Vázquez-Rodríguez et al., 2009) or empirical relationships 

(Touratier and Goyet, 2004; Yool et al., 2010), comparisons of repeated hydrographic sections (Carter et al., 2019; 55 

Gruber et al., 2019b; Müller et al., 2023), techniques such as the transit-time-distribution (TTD) or Green’s Function 

approaches that rely on transient tracers of air-sea exchange to infer histories of atmospheric contact and interior ocean 

circulation (Khatiwala et al., 2009; Waugh et al., 2006), as well as approaches that combine one or more of these other 

approaches (Sabine et al., 2004).  Isotopic approaches address the related, but not identical, question of “how much 

of the DIC in seawater is of anthropogenic origin (e.g., Eide et al. 2017)?”  Research continues to improve upon these 60 

methodologies and to better quantify their uncertainties, often using reconstructions of exactly-known model-

simulated Canth distributions (Carter et al., 2019; Clement and Gruber, 2018; He et al., 2018; Matsumoto and Gruber, 

2005; Waugh et al., 2006). 

 

There are several qualities that are desirable for Canth estimation strategies.  Foremost among these is accuracy, but it 65 

is also helpful for estimation approaches to be (1) accessible; (2) computationally efficient; and (3) able to return 

estimates for the past, present or future.   

1) Accessibility: Implementation of most Canth estimation strategies requires nuanced understanding of the 

methodology so that decisions can be made about the parameters used in forward or inverse models or how 

and whether to account for various biogeochemical processes (e.g., calcification, organic matter ballasting, 70 

or iron dynamics and limitation).  In addition, many Canth estimation strategies require the presence of 

collocated high-quality measurements of physical and biogeochemical properties (e.g., empirical multiple 

linear regression Canth change estimates) or transient tracer content measurements (e.g., TTD or Green’s 

Function based estimates).   

2) Computational efficiency: Some Canth estimation strategies require downloading and employing large sparse 75 

matrices (Davila et al., 2022) and others require iterative inverse model reconstructions or forward model 

simulations to be run with GOBMs (DeVries et al., 2017; Khatiwala et al., 2013).   

3) Able to be estimated for the past, present, or future: Many Canth estimation techniques are limited to a narrow 

time window.  For example, the “extended multiple linear regression” approaches are usually limited to the 

period spanned by repeated shipboard hydrographic measurements (Carter et al., 2019; Gruber et al., 2019a; 80 

Müller et al., 2023).  A related problem is the need to adjust a DIC dataset that was measured across years or 

decades to be specific to a single reference year or year of interest.  To make this adjustment, it is important 

to know how much the DIC value would have changed due to Canth accumulation between when it was 

measured and the reference year.  Simplistic adjustments invoking transient steady state (Gammon et al., 

1982) Canth accumulation are commonly employed (Carter et al., 2021a; Clement and Gruber, 2018; Lauvset 85 

et al., 2016; Müller et al., 2023), but are problematic for larger adjustments that are often associated with 

longer time gaps.  An example of an application that faces these challenges is given in Supplementary Text 

S1. 
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Here we describe, assess, and present results from a new method that we call “Tracer-based Rapid Anthropogenic 90 

Carbon Estimation version 1” or TRACEv1, which aims to provide Canth estimation that meets these needs without 

overly compromising on Canth estimate accuracy.  TRACEv1 is an approach that retains much of the skill of the more 

complex approaches and yet is quick, nearly global, easy to use, computationally efficient, able to generate plausible 

projections over a limited time horizon, and requires only coordinate information (longitude, latitude, and depth), 

salinity (S), temperature (T), the desired year for the estimate, and (for projections) the assumed shared-socioeconomic 95 

pathway (i.e., SSP, or atmospheric CO2 concentration over time).  

 

In this manuscript we present three products.  The first is the TRACEv1 code itself; the code is initially released only 

for the MATLAB computing language, though a Python port is planned.  The code contains subroutines that use neural 

networks to remap the preformed property estimates of Carter et al. (2021b) to the locations and conditions provided 100 

by users calling the TRACEv1 routine.  The second is an estimate of the likely uncertainties in TRACEv1 estimates 

based on an analysis of the errors found when the method is trained using transient tracer information extracted from 

a GOBM simulation—with a spatial and temporal distribution that mirrors the availability of CFC-11, CFC-12, and 

SF6 measurements in the real ocean—and is used to reconstruct the exactly-known GOBM Canth distributions.  The 

third is a data product of global Canth from TRACEv1 with varied 10-to-100-year resolution from 1750 through 2500.  105 

This product uses a variety of SSPs for projections after 2015. 

 

3 Methods 

First, we describe the conceptual framework for TRACEv1 and explain in detail how it works.  Then we introduce the 

observational datasets used to train TRACEv1 and explain how transit time distribution parameters and preformed 110 

properties are empirically fit and estimated on demand.  Finally, we explain how TRACEv1 is used to generate the 

TRACEv1_GGCanth product (Carter, 2025). 

 

3.1 Conceptual framework and historical context 

TRACEv1 emulates the inverse Gaussian (IG) TTD method for Canth estimation, but with several modifications.  115 

Traditionally, the TTD approach makes assumptions about the distribution of ages (length of time since seawater was 

last in contact with the atmospheric) of the various parcels of seawater that combine to produce the seawater observed 

in the ocean interior.  Assumptions are also needed about the degree of air-sea equilibration with transient tracers. 

These assumptions are collectively used to tune the age distribution to match transient tracer observations, and then 

similar assumptions are used to infer the Canth content that would be expected for that mixture of seawater from the 120 

distribution of ages and the known history of atmospheric CO2 accumulation (e.g., He et al. 2018).  TRACEv1 also 

follows these steps.  The most important modification is that we reduce the TTD shape to a single term (α), optimize 

this term to reflect transient tracer and modeled ideal age distributions as normal, and then train a neural network 

capable of predicting this term using only physical measurements of seawater and coordinate information.  This allows 

us to estimate Canth from a TTD without the need for collocated transient tracer observations at the time and place 125 

where the estimate is desired.   
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When optimizing α, CFC-11, CFC-12, and SF6 are dominant constraints for younger waters, while water mass ideal 

ages (A) (Thiele and Sarmiento, 1990)—taken from a model that assimilates transient tracer observations and 

measurements of the long-lived 14C radionuclide— are primarily included as a constraint for older water masses.  SF6 130 

measurements are particularly strong constraints for the youngest waters ventilated since the 1990s maxima in CFC-

11 and CFC-12 concentrations, but are only available for ~30 % of the measured bottles.  All available constraints are 

used for optimizing all water parcels, and the strong constraint for young (old) waters and weak constraint for old 

(young) waters provided by transient tracers (A) is a natural result of how the values and misfits of each constraint 

vary with the age of the water mass.  The transient tracer constraints therefore dominate in younger waters where the 135 

transient tracer measurements are largest while the A constraint dominates in water masses that are older than the 

advent of measurable atmospheric transient tracer concentrations in the 1940-1960s.  For water parcels older than 

~1940, there is essentially no sensitivity to the transient tracer information.  TRACEv1 is therefore more of an 

observation-based product in the surface ocean and an observation-tuned-model-based product in the deep ocean. 

 140 

Several recent developments have enabled TRACEv1:  First, the training data are taken from the recent 2023 update 

to the Global Data Analysis Project version 2 (GLODAPv2.2023) data product (Lauvset et al., 2024).  This data 

product contains >270k bottle measurements with both CFC-11 and CFC-12 and >70k more measurements with CFCs 

and SF6 measurements (Fig. 1); SF6 was first included in the 2022 GLODAP release (Lauvset et al., 2022).  CFC 

distributions have long been used to estimate Canth, and oceanographic SF6 measurements are available from many 145 

recent cruises owing to methodological developments by Tanhua et al. (2004) and advances allowing CFC and SF6 

measurements on the same samples (Bullister et al., 2006) implemented by transient tracer teams globally (Erickson 

et al., 2023).  Second, water mass ideal ages from the recently-released transport matrix solutions of the Ocean 

Circulation Inverse Model of (John et al., 2020) provide an additional constraint for TRACEv1.  TRACEv1 uses a 

preformed property data product (Carter et al., 2021b) to estimate the composition of seawater when it was last 150 

exchanging CO2 with the atmosphere.  Finally, the approach is assessed against newly simulated Canth, CFC, and SF6 

distributions (Müller, 2023) that were generated as part of the second Regional Ocean Carbon Cycle Assessment and 

Processes effort (RECCAP2, e.g., DeVries et al. 2023). The simulated CFC and SF6 distributions (Schwinger, 2024) 

were not previously published as part of the RECCAP2 data product or used by the analyses. 

 155 
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Figure 1.  Locations and years of measurements of CFC-11 and CFC-12 in the GLODAPv2.2023 data product 

(Lauvset et al., 2024). Dark borders around measurements indicate SF6 is available alongside CFC-11 and CFC12. 

 

3.2 How TRACEv1 works 

We begin with a summary of the TRACEv1 functions and then explain the various steps in greater detail:  The 

TRACEv1 code:  

1. uses a neural network to estimate an age distribution for seawater from a user-specified location, T, and S, 160 

and returns the mean age if this is a desired output;  

2. uses a record or projection of the atmospheric CO2 in the years leading up to the date of the desired estimate 

to determine an anthropogenic CO2 level for each component of the water mass mixture;  

3. convolves the age distribution with the component’s CO2 history to estimate a component-fraction-weighted 

mean atmospheric CO2 for the water parcel;  165 

4. uses another set of neural networks to estimate the preformed properties of this water mass mixture from the 

user-specified location, T, and S;  

5. estimates the degree of CO2 disequilibrium expected for the surface ocean when responding to rapid changes 

in atmospheric mole fraction of CO2,  xCO2; 

6. and solves for the Canth distribution as the difference between the DIC value that corresponds to the surface 170 

ocean equilibration level associated with the transient xCO2 and the DIC value that corresponds to a 

“preindustrial” atmospheric xCO2 of 280 ppm.  The TRACEv1 code allows users to substitute arbitrary 

reference preindustrial xCO2 values to obtain estimates that are comparable to literature estimates that have 

used alternative baselines, but all calculations provided herein are obtained using 280 ppm. 

 175 

Committees of neural networks (henceforth just “neural networks”) are used to estimate four pieces of information 

from S, T, and location information in a standard TRACEv1 estimate (and a fifth neural network is invoked when T 

information is not supplied by the user).  The neural networks are similar in construction to those used by the 

ESPER_NN routines (Carter et al., 2021a), and are described in more detail in Supplementary Text S2.  While the 



7 

 

ESPER_NN routines utilize many combinations of possible predictors, only S and T are chosen for the TRACE neural 180 

networks because they are among the most frequently available predictor measurements and because they collectively 

represent the density structure of the ocean.  Advection and diffusion along density layers in the ocean is the dominant 

mechanism by which Canth enters the ocean interior, and variations in density, both spatially and temporally, are 

therefore expected to correlate with the interior ocean distribution of Canth.  Three of the neural networks estimate 

preformed biogeochemical properties of the seawater (explained below) and the fourth is a parameter related to the 185 

TTD construction called α.  A fifth neural network allows T to be estimated from S if T is not provided as a user input.  

This is not the recommended use of TRACEv1; it is recommended that users who invoke this functionality perform 

validation of the estimates returned for their purposes and not rely on the validation provided in this paper, which is 

based on estimates obtained using both T and S. 

 190 

Preformed properties are estimates of the properties that interior ocean seawater mixtures had when they last were in 

contact with the atmosphere near the ocean surface.  These are the properties that impact air-sea gas exchange 

equilibrium processes when Canth was last able to change through contact with the atmosphere.  In TRACEv1 

preformed total titration seawater alkalinity content (TA0), preformed dissolved inorganic silicate content (Si0), and 

preformed dissolved inorganic phosphate content (P0) are collectively used with pCO2 as constraints for the carbonate 195 

chemistry of seawater near the sea surface.  These three quantities are estimated from three separate neural networks 

trained using latitude, longitude, depth, S, and T from the Lauvset et al. (2016) global gridded version of the 

GLODAPv2 data product as predictor information and the preformed property estimates of Carter et al. (2021b), 

estimated for the same gridded product, as target/validation data. Errors in preformed properties are small contributors 

to the overall Canth uncertainty (Supplementary Text S3). 200 

 

The fourth neural network estimates α, which is used to construct the TTD.  The TTD is an evolution of the “water 

mass age” concept (Bolin and Rodhe, 1973; Hall and Haine, 2002).  While a water mass age is an estimate of the 

average length of time since a given parcel of interior ocean seawater was last at the ocean surface, a TTD comes from 

the recognition that interior ocean seawater is better represented as a mixture of many different water parcels—each 205 

with a different history of atmospheric contact and interior ocean circulation—than as a single parcel of water with a 

single A.  One-dimensional pipe flow with diffusion results in a distribution of ages that can be well approximated 

using an inverse gaussian (IG) age-fraction distribution (Peacock and Maltrud, 2006; Waugh et al., 2003) and provides 

good agreement with available transient tracer data (Sonnerup et al., 2013; Stanley et al., 2012; Waugh et al., 2004).  

However, there are places in the ocean where comparatively “young” (i.e., recently ventilated) waters mix with very 210 

old deep waters in appreciable amounts (e.g., Antarctic Intermediate Water, which is formed through the mixing of 

fresh surface waters near the polar front with upwelling upper circumpolar deep water, see: Naveira Garabato et al., 

2009), and in these areas the one-dimensional pipe model age distribution is inadequate (Ito and Wang, 2017; Peacock 

and Maltrud, 2006).  With this and similar concerns driving innovation, many variants on the underlying TTD shape 

have been used.  However, our limited experimentation with these variants did not reveal any meaningful improvement 215 

over the simple IG distribution for reconstructing modeled Canth (Hall et al., 2002; Waugh et al., 2003, 2006) so we 
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retain the simple IG formulation.  Given the limited number of options tested, it is plausible that alternative age 

distributions could outperform the distribution fitting terms that we employ for TRACEv1.  This is particularly likely 

for A estimates, as erroneous transit time distribution shapes have been shown to be less problematic for Canth than for 

A due to the similarities between the atmospheric growth curves for transient tracers and Canth (Waugh et al., 2006). 220 

 

The traditional form of the inverse Gaussian for an arbitrary coordinate variable “x”  is: 

𝑓(𝑥) = √
𝜆

2𝜋𝑥3
𝑒
−𝜆(𝑥−𝜇)2

2𝑥𝜇2      (1) 

where 𝜇 is the mean and 𝜆 is the shape parameter.  However, in TTD literature, it is more common to specify this 

equation as: 225 

(𝑥) = √
Γ3

4𝜋Δ2𝑥3
𝑒
−Γ(𝑥−Γ)2

2𝑥Δ2      (2) 

 

where Γ is equivalent to μ and the new shape parameter Δ is related to 𝜆 by: 

𝜆 =
Γ3

2Δ2
       (3) 

Some consideration has been given in the literature to the ideal values for Δ and Γ for TTD analyses.  Based on the 230 

results of He et al. (2018), we choose a Γ=1 and Δ=1/1.3 (or ~0.77) and we find in our model-based assessments that 

this assumption performs equivalently (within uncertainties) to the common alternative assumption of Γ=Δ=1.  The 

standard form of the IG probability distribution with a Γ=1 and Δ~0.77 (Eqn. 2), or a 𝜇=1 and a 𝜆=3.4 (Eqn. 1), is 

evaluated from x=0.01 to x=5 (by increments of 0.01) using the “makedist” function in MATLAB. 

 235 

The predicted parameter α is used to convert a unitless IG distribution into an age distribution.  This α is used to 

identify the ages associated with this IG probability distribution, where the age values assigned to the 500 f(x) values 

equal [1:500]*α years.  The resulting age-probability distribution is then interpolated to integer ages for the most 

recent 1000 years.  When α is <2 it becomes impossible to interpolate across all 1000 years, but in these cases the 

missing values correspond to negligible fractional contributions and are neglected.  The sum of these interpolated 240 

contributions usually diverges slightly from 1 due to the discretization of the continuous probability distribution and 

the inability to interpolate to all years, so the non-neglected component fractions are further divided by their sum to 

ensure they add to unity.  Thus, when α is a large number the mean A of the Gaussian distribution is large (Fig. 2) and 

when α is smaller A is smaller.   

 245 
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Figure 2.  Three example ventilation-year distributions for a parcel of water observed in the year 2020.  The 

“Young,” “Default,” and “Old” mixtures in orange, blue, and yellow have mean ages of ~17, 91, and 460 years, 

respectively.  Fractions of a given color add up to 1 when summed across all years. 

 

Once the age distribution is known, the atmospheric CO2 record is convoluted into the age distribution as follows 

(Hall et al., 2002): First, the atmospheric record or projection is interpolated to obtain values for the year of the desired 

estimate minus the ages in the distribution.  Then for each of the (up to) 1000 fractions of the water mass, the fraction-

weighted mean ages (𝐴) and concentrations ([𝑋]) can be computed as fraction-weighted sums.  E.g. for gas X with 250 

atmospheric concentration [X] summed over the i=1:1000 years prior to the estimate of interest this would be computed 

as: 

[𝑋] = ∑ 𝑓𝑖[𝑋]𝑖
1000
𝑖=1      (4) 

 

For the 𝐴 calculation, [Xi] is replaced in this equation with i years.  The concentration values reflect complete air-sea 255 

equilibration, which is inconsistent with net ocean uptake of CO2 from air-sea gas exchange.  For example, in the 

Regional Carbon Cycles and Processes model simulations there is a 108 ±4 µatm increase in the surface ocean pCO2 

in 2018 relative to the preindustrial value compared to a 128.72 moles/mol change in the atmospheric xCO2 (DeVries 

et al., 2023; Müller, 2023).  Also, the air sea CO2 disequilibrium is thought to vary temporally (He et al., 2018) and be 

sensitive to the rate of atmospheric xCO2 change.  We therefore derive an empirical relationship between atmospheric 260 

xCO2 and the median model-observation-hybrid apparent surface ocean pCO2 record given by Jiang et al. (2023).  A 

variety of predictive relationships were tested, and the strongest predictive relationship (lowest RMSE) was obtained 

for: 
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𝑝CO2,oce.year = 𝑥CO2,atm.year − 0.144 ∗ (𝑥CO2,atm.year − 𝑥CO2,atm.year_minus_65)  (5) 

Equation (5) suggests the expected surface ocean pCO2 value in an arbitrary year 𝑝CO2,𝑜𝑐𝑒.𝑦𝑒𝑎𝑟 can be estimated as 265 

a function of the atmospheric xCO2 in that year (𝑥CO2,atm.year_minus_65) and the difference between that atmospheric 

value and the value in the atmosphere 65 years prior (𝑥CO2,atm.year).  Applying equation (5) to the xCO2 record 

before use in TRACEv1 meaningfully reduces the mismatch between the simulated surface ocean pCO2 and the 

atmospheric xCO2 (Fig. 3).  An additional constant offset of −5.37 µatm was found in the best fit relationship (not 

shown on the right side of equation 5), but this term likely reflects the water vapor correction between xCO2 and pCO2 270 

and, potentially, parameterized net model degassing of riverine carbon.  TRACEv1 neglects this constant offset 

because the code separately applies the water vapor correction for each parcel of seawater (Dickson et al., 2007) when 

converting between xCO2 and pCO2 and because including this term would have a nearly identical impact on 

preindustrial pCO2.   

 

Figure 3. A comparison between surface ocean pCO2 values in the model-based data product of Jiang et al. (2023) 

and (a.) the modeled atmospheric xCO2 value and (b.) the value obtained from equation (5).  Black 1:1 lines are 

provided for reference, and the colored dots indicate projected and historical values from 4 different SSPs. 

 275 

Once water-fraction-weighted mean pCO2 values 𝑝CO2𝑜𝑐𝑒. are estimated for a parcel of seawater, the expected 

equilibrium DIC value for the water parcel when last at the ocean surface is calculated using estimated TA0, Si0, and 

P0.  These calculations are repeated with both the 𝑝CO2𝑜𝑐𝑒. and a user-provided preindustrial xCO2 value (default is 

280 ppm, adjusted for water vapor), and their difference is attributed to Canth.  During fitting of the α values (described 

later) a similar procedure is followed for transient tracer observations with CFC and SF6 equilibrium constants ( 280 

Warner and Weiss, 1985; Bullister et al., 2002, respectively), though without adjustments for incomplete equilibration 

because the equilibrium timescales for these tracers are shorter than for CO2. 
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Carbonate chemistry calculations are computed with the CO2SYS code written for MATLAB (Van Heuven et al., 

2011) and modified herein to increase the tolerance for pH changes during iteration from 0.0001 to 0.001 when 285 

converging on a pH value (to speed up the calculation).  Carbonate dissociation constants from Lueker et al. (2000) 

are used with the total boron calculation from Uppström (1974) and the KF calculation from Perez and Fraga (1987).  

S and T values that are outside the viable range for these carbonate chemistry constants (S=19 to 48 and T=2 °C to 35 

°C) are overridden with the nearest viable S and T values.  This override has a minimal impact on most Canth 

calculations for common seawater types, but we caution here that TRACEv1 is not intended for use in freshwater or 290 

brackish environments.  Information on computing optimization is provided in Supplementary Text S4.    

 

3.3 Data and model output used to train and run TRACEv1 

The α parameter is fit to the CFC-11, CFC-12, and SF6 partial pressures that would be found in a gas phase in complete 

air-sea equilibrium with seawater with the measured composition, as well as to A from the “Ocean Circulation Inverse 295 

Model” (OCIM) transport matrix (John et al., 2020) when the zero-age boundary layer is set equal to the shallowest 

layer in the OCIM model.  For the real ocean, the transient tracer partial pressure values are taken as calculated from 

discrete seawater measurements in the GLODAPv2.2023 data product (Lauvset et al., 2024).  Collocated 

measurements of salinity and temperature are also extracted from this data product.  For the model reconstruction test, 

Canth, S, and T are taken from or computed from the NorESM RECCAP2 simulations (Müller, 2023).  In addition to 300 

the standard RECCAP2 outputs, this model was also used to simulate CFC-11, CFC-12, and SF6 through the start of 

2015 (Schwinger, 2024).  The approaches used to obtain scattered values from gridded model output and to obtain 

scattered ages from the OCIM transport matrix are given in Supplementary Text S5.   

 

 

Figure 4. (a.) The time history of atmospheric transient tracer and CO2 concentrations expressed as a 

percentage of their maximum deviation through 2020 c.e. from their assigned preindustrial values of 0 

ppmv for CFC-11, CFC-12, and SF6 and 280 ppmv for CO2. (b.) The 9 atmospheric CO2 concentration 

pathway options used by TRACEv1, with all but “Historical/Linear” being SSPs as given by Meinshausen 
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et al. (2020).  Both versions of SSP 3 7.0 fall nearly on top of each other on this plot and are assigned the 

same colors. 

 305 

TRACEv1 allows 9+ options for atmospheric CO2 projections/histories and relies on a single reconstruction of 

transient tracers (Fig. 4).  Observed atmospheric CFC and SF6 information (Fig. 4a) is taken from a data product 

compiled by the United States Geological Survey’s Groundwater Dating Laboratory (see: data availability)  The 

atmospheric xCO2 reconstruction starting in the year 1 c.e. and continuing through the year 1000 is taken from the 

synthesis by Frank et al. (2010) for all CO2 options.  Before the year 1 c.e. all reconstructions are set to a constant 310 

value of xCO2=277.14 ppmv equaling the atmospheric concentration in the year 1 c.e.  From 1001 and through 1959, 

all reconstructions follow the historical concentrations of the SSPs as defined by Meinshausen et al. (2020), which are 

identical over this time range.  From 1959 through 2022, the first option, which is called “Historical/Linear” and is 

the default option if no alternative is specified, uses the Mauna Loa measurements by Keeling et al. (1976) and 

Thoning et al. (1989), and if TRACEv1 is instructed to use this record to generate an estimate for a year that is after 315 

2022 then the slope from a linear trend fit to the last 10 years of the historical record is used to project to the year of 

the desired estimate.  The remaining 8 options are SSPs: 1-1.9, 1-2.6, 2-4.5, 3-7.0, 3-7.0-lowNTCF, 4-3.4, 4-6.0, and 

5-3.4-over, all as defined by Meinshausen et al. (2020).  The SSPs diverge from each other starting in 2017.  Between 

year 1959 and 2017 c.e. the SSP values have a small average bias of +0.6 ppmv compared to the historical Mauna Loa 

measurements with a root-mean squared disagreement of 0.8 ppmv.  Additional custom concentration pathways 320 

options can be added by appending a new column of atmospheric CO2 concentrations to a plain text file 

(CO2TrajectoriesAdjusted.txt) that is read by TRACEv1 and by entering the number of the new option in the 

TRACEv1 code (i.e., if a 10th option is added the CO2 pathway option for the “AtmCO2Trajectory” input would be 

10).  However, any user provided concentration pathways should be adjusted by equation 5 before appending them to 

this file.   325 

 

3.4 Fitting TRACEv1 parameters 

The parameters are optimized using a bounded minimum “search” function (“fminsearchbnd” in MATLAB) with an 

initial value of α=1, an upper bound of α=1000, and a lower bound of α=0.001.  This function uses a Nelder-Mead 

simplex algorithm (Lagarias et al., 2006) with iterative variations of the α term by 5 % to minimize a cost function.  330 

For each iteration of this solver, the j=3 (i.e., CFC-11, CFC-12, and SF6) transient tracer constraints and the A are first 

calculated as described in Eqn. 4.  The cost function that is minimized for this solver (𝜀2) is the sum of the squared 

normalized errors of the three partial pressures and A, or: 

𝜀2 = ∑ (
𝑝𝑋meas

𝑗
−𝑝𝑋calc

𝑗

𝑝𝑋ATM
𝑗 )

2
3
𝑗=1 + (

𝐴OCIM−𝐴calc

𝐴Max
)
2

     (5) 

Here the 𝑝𝑋meas
𝑗

 is the measured partial pressure of transient tracer j extracted from discrete GLODAPv2.2023 335 

product or (for the model validation experiments) from GOBM output; 𝑝𝑋calc
𝑗

 is the value calculated from α and the 

record of atmospheric trace gas concentrations as described above; and 𝑝𝑋ATM_2020
𝑗

 is the atmospheric partial 
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pressure of tracer j in the year 2020.  This third term is included to normalize the errors to a more comparable scale.  

Without this term, the pCFC-12 (SF6) errors would be assigned higher (lower) weight than the errors in the other two 

transient tracers due to their greater (smaller) atmospheric partial pressures.  Similarly, AOCIM is the interpolated OCIM 340 

age, Acalc is the calculated A, and Amax is the ideal age of the oldest grid cell found in the OCIM age calculations (1354 

years).   

 

This process is repeated for the observational record and for the model output.  The version of TRACEv1 that is trained 

on model output is referred to as TRACEv1_validation_NorESM, and details for this comparison are provided in 345 

Supplementary Text S6.  The version trained on real world observations is referred to as TRACEv1.  We generate 10 

versions of TRACEv1 in which we retrain TRACEv1 after perturbing the transient tracer measurements from each 

cruise in GLODAPv2.2023 by a cruise-wide relative offset and each measurement by measurement-specific random 

perturbations.  In Supplementary Text S7 we quantify the likely impact of measurement uncertainties in the transient 

tracer measurements on the final Canth estimates via Monte Carlo analysis. 350 

 

3.5 Canth data product creation 

We use the gridded, temporally-averaged GLODAPv2 data product Lauvset et al. (2016) for S, T, latitude, longitude, 

and depth and vary only the year of the estimate to equal [1750; 1800; 1850; 1900; 1950; 1980; 1994.5; 2000; 2002; 

2007.5; 2010; 2014.5; 2020; 2030; 2050; and 2100].  Estimates are only made using the historical/linear and SSP1-355 

1.9 reconstructions prior to 2010 (and we note that the SSPs are identical over this period).  In 2020 and thereafter, 

estimates are provided for each of the 9 CO2 concentration pathway options separately.  The estimates in 1994.5, 2002, 

2007, and 2014 are provided for comparison and interoperability with published literature distributions (Gruber et al., 

2019a; Lauvset et al., 2016; Müller et al., 2023; Sabine et al., 2004). 

 360 

We anticipate that the small differences between the 1750 and 1850 CO2 concentration estimates could prove useful 

for reconciling literature estimates of Canth that have been made to be specific to these two common choices of 

reference year.  Our Canth definition is specific to the 280 ppmv atmospheric concentration rather than to a specific 

year.  It is therefore possible for TRACEv1 to return very small negative Canth values, particularly for estimates 

following periods when CO2 reached minima of ~277±1 ppmv in the first, sixth, and eighteenth centuries c.e.  The 365 

last time the atmospheric CO2 concentration was believed to equal 280 ppmv was 1790 c.e. (Frank et al. 2010) and 

TRACEv1 allows users to specify an alternative reference concentration. 

 

4 Results and discussion 

We discuss the uncertainty assessment and compare TRACEv1 reconstructions to alternatives, discuss the TRACEv1 370 

projections through 2500, and highlight some areas where TRACEv1 is limited and might be improved.  We compare 

TRACEv1 A estimates to alternatives in Supplementary Text S8. 

 

4.1 Uncertainty estimation 
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In Supplementary Text S5 we describe the results of our uncertainty assessments from model reconstruction (MR) Canth 375 

distributions.  In Supplementary Text S6 we present the results of the Monte Carlo (MC) analysis.  Here, we combine 

the results of these analyses to estimate the uncertainty of TRACEv1 (𝑈𝑇𝑅𝐴𝐶𝐸𝑣1) estimates that results from several 

sources.  The model Canth reconstruction estimates reveal methodological uncertainties including the limitations of an 

IG TTD and the inaccuracies associated with using a neural network across a large geographical area, as well as the 

uncertainties that result from potential OCIM A distribution and preformed property distribution errors.  The Monte 380 

Carlo analysis reveals uncertainties that result from random uncertainties and cruise-wide offsets in transient tracer 

concentration measurements.  We add these uncertainties in quadrature to obtain the overall uncertainty estimate (±1σ) 

for TRACEv1 (UTRACEv1): 

 

𝑈TRACEv1 = √𝑢MC
2 + 𝑢MR

2      (6) 385 

 

Here, uMC is the Monte Carlo RMSE estimate of 1 µmol kg−1 for Canth and ±0.3 % for inventories, uMR is the uncertainty 

estimate from the model reconstruction of 4.4 µmol kg−1 for Canth and 15 % for inventories, conservatively chosen 

since the model reconstruction reproduces inventories to within 10 % in 1980 and 2014.  The uncertainty appears to 

grow with the estimate and over time, so 15 % of the estimated Canth is used when this value exceeds 4.4 µmol kg−1.  390 

These uncertainty estimates neglect the contribution of uncertainty in the S and T values used in the neural network to 

the overall Canth estimate uncertainty, which we believe to be small relative to UTRACEv1, but we note that users can 

conduct perturbation tests if they are supplying particularly uncertain S and T information.  UTRACEv1 is an optional 

output from TRACEv1.  In Supplementary Text S6 we show that reconstruction errors are significantly larger in 

marginal seas with few or no transient tracer measurements and are also elevated near coasts and in areas of strong 395 

upwelling.  UTRACEv1 should be considered an underestimate in these regions.  We do not attempt to estimate 

uncertainty in the optional A TRACEv1 output. 

 

4.2 Canth reconstructions and data product comparisons 

The reconstructions and projections from TRACEv1 (Table 1) match past anthropogenic inventory estimates obtained 400 

from analyses based on measurements of DIC changes and distributions (Fig. 5) in 1994 (118(±26) PgC from Sabine 

et al. (2004) vs. 127(±19) for TRACEv1), 2007 (118(±26)+29(±2.5)=147(±26) Pg C; Müller et al. (2023), updating 

Gruber et al. 2019a vs. 161(±24) for TRACEv1), and 2014 (118(±26)+29(±2.5)+27(±2.5)=174(±26) Pg C from Müller 

et al. 2023 vs. 182(±27) for TRACEv1).  The agreement with the DIC based approaches is reassuring, as there is little 

overlap in the data or methodologies used to generate the DIC-based estimates compared to the data and methods used 405 

to obtain the TRACEv1 routines: Müller et al. (2023), did not rely on transient tracer information and the data used in 

this study are, on average, more recent than the CFC-11 and CFC-12 information used by Sabine et al. (2004) (Fig. 

1).   
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The regional distribution of Canth inventory qualitatively matches prior estimates as well, with significantly higher 410 

column inventory estimates in the North Atlantic (Fig. 6; Table 1).  Similarly, there are areas of higher column 

inventories generally in the Southern Hemispheres of the other ocean basins as mode and intermediate waters are 

exported northward from the Southern Ocean. Within Figure 6, bathymetric features such as the Kerguelen Plateau 

and the Mid-Atlantic Ridge are visible when they displace waters that would otherwise contain meaningful quantities 

of Canth, and a band of low column inventories can be seen within the Antarctic Circumpolar Current where old deep 415 

waters upwell to near the ocean surface. 

 

 

Figure 5. Panel (a.) shows the global Canth inventory projected by TRACEv1 with a blue range indicating the 

uncertainty estimate.  Circles show estimates from literature data-based Canth distribution estimates with filled 

circles indicating estimates rooted primarily in DIC measurements and open circles indicating estimates rooted 

primarily in fitting transient tracer distributions.  Panel (b.) shows projected values through 2500 c.e. in solid lines 

for various SSPs as labeled.  Thin dotted lines indicate the inventories that would be obtained by projecting the 

2020 c.e. estimate using transient steady state assumptions (Gammon et al., 1982) with the atmospheric CO2 

concentrations from the SSPs of the same color line.  Both versions of SSP 3 7.0 fall nearly on top of each other on 

this plot and are assigned the same colors. 
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Figure 6.  Column inventory of Canth mapped for 2020 using TRACEv1 with the historical/linear atmospheric CO2 

pathway. 

 

 420 

Table 1.  TRACEv1 estimates of Canth inventories (in PgC ±1σ uncertainties) calculated by 

ocean basin calculated for the specified points in time.  The Atlantic becomes the Arctic at 

40° N whereas the Pacific transitions at 67° N.  The Southern Ocean is defined as the area in 

all basins south of 40° S. Anthropogenic inventories are small and negative in 1750 because 

of the ~200 year-long period with a <280 ppmv CO2 atmosphere prior to the Industrial Era. 

Year Pacific Atlantic Indian Arctic Southern Total 

1750 -3(±1) -2(±1) -1(±1) -1(±1) -2(±1) -8(±2) 

1800 -2(±1) -2(±1) -1(±1) 0(±1) -2(±1) -7(±1) 

1850 -1(±1) 0(±1) 0(±1) 0(±1) 0(±1) -1(±1) 

1900 4(±1) 4(±1) 2(±1) 2(±1) 4(±1) 18(±3) 

1950 15(±2) 14(±2) 7(±2) 6(±1) 14(±2) 56(±9) 

1980 25(±4) 24(±4) 13(±2) 9(±2) 24(±4) 95(±14) 

1994 35(±5) 32(±5) 17(±3) 11(±2) 32(±5) 127(±19) 

2000 39(±6) 35(±5) 19(±3) 13(±2) 35(±5) 140(±21) 

2002 40(±6) 37(±6) 20(±3) 13(±2) 37(±6) 147(±22) 

2007 44(±7) 40(±6) 21(±3) 15(±2) 40(±6) 161(±24) 

2010 47(±7) 42(±6) 22(±4) 15(±3) 42(±6) 168(±25) 

2014 50(±8) 45(±7) 24(±4) 16(±3) 46(±7) 182(±27) 

2020 56(±8) 50(±8) 27(±4) 18(±3) 50(±8) 201(±30) 

 

TRACEv1 has a more variable agreement with estimates based on transient tracer information.  The estimates are 

higher than—but within uncertainties of—the Green’s function fits of Khatiwala et al. (2009) and a TTD based 

inventory estimate (Waugh et al., 2006).  TRACEv1 estimates of 168(±25) PgC are within uncertainties of the 178 

PgC inventory of Davila et al. (2022) calculated in 2010 using the Total Matrix Intercomparison approach.  At 172 425 
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(±26) PgC, TRACEv1 estimates are near the OCIM estimates of DeVries (2014) of 160-166 PgC in 2012, though this 

not surprising since the A estimates implied by an OCIM solution were used as a fitting parameter for TRACEv1.  The 

TTD-based Canth inventory for 2002 in the gridded GLODAPv2 data product of Lauvset et al. (2016) is 179 PgC 

compared to a TRACEv1 estimate of 147(±22) PgC in the same year. In Supplementary Text S9 we show that the 

main disagreement between the TRACE estimates and the GLODAPv2 gridded product (Lauvset et al., 2016) is found 430 

in the deep ocean, where GLODAPv2 inventories consistently exceed TRACE inventories below ~500 m.  There are 

several possible reasons for this disagreement, but the true cause is unclear. 

 

4.3 Canth inventory projections 

Table 2. TRACEv1 projections of global ocean Canth inventories (in PgC) until the middle of the millennium if the indicated 

atmospheric CO2 concentration pathway is followed. 

 2020 2030 2050 2100 2200 2300 2400 2500 

Historical/Linear 201(±30) 236(±35) 315(±47) 545(±82) 1078(±162) 1623(±243) 2132(±320) 2591(±389) 

SSP_1_1.9 200(±30) 235(±35) 293(±44) 389(±58) 430(±64) 448(±67) 458(±69) 463(±69) 

SSP_1-2.6 200(±30) 236(±35) 310(±46) 450(±68) 588(±88) 662(±99) 706(±106) 731(±110) 

SSP_2-4.5 200(±30) 238(±36) 326(±49) 567(±85) 975(±146) 1254(±188) 1417(±213) 1512(±227) 

SSP_3-7.0 200(±30) 240(±36) 341(±51) 687(±103) 1570(±235) 2290(±343) 2730(±410) 2984(±448) 

SSP_3-7.0lowNTCF 200(±30) 240(±36) 341(±51) 683(±102) 1559(±234) 2281(±342) 2725(±409) 2982(±447) 

SSP_4_3.4 200(±30) 236(±35) 311(±47) 473(±71) 601(±90) 665(±100) 704(±106) 728(±109) 

SSP_4-6.0 200(±30) 237(±36) 329(±49) 602(±90) 1123(±169) 1504(±226) 1735(±260) 1871(±281) 

SSP_5-3.4over 200(±30) 240(±36) 346(±52) 535(±80) 663(±100) 721(±108) 754(±113) 772(±116) 

 435 

The Canth inventory projections (Table 2, Fig. 5b) indicate that even if humanity acts to rapidly reduce Canth in the 

atmosphere and manages to bring atmospheric xCO2 down to 337 µatm by the middle of the millennium in line with 

the ambitious SSP 1-1.9, the ocean will never—on this time horizon—cease to take up additional Canth, picking up an 

additional 5.4 PgC between 2400 and 2500 c.e.  This builds on the findings of Koven et al. (2022) and Jones et al. 

(2016) using full model simulations through 2300 c.e., and suggests that the impacts of ocean acidification are likely 440 

to continue to spread throughout the ocean depths even with a highly successful carbon management policy.  

Nevertheless, such action remains important for preventing ocean acidification because the degree of surface and 

interior ocean acidification depends strongly on which SSP we follow.  This is particularly true for the well-lit surface 

euphotic zone that is the base of most marine food webs: the relative proportion of marine Canth shifts increasingly 

from the surface ocean to the ocean depths over time (Fig. 7a), and this tendency becomes more pronounced the more 445 

rapidly and completely that atmospheric CO2 emissions are curtailed and reversed (Fig. 7b). Indeed, several SSPs 

show reduced surface Canth relative to modern values despite the continued ocean Canth accumulation.  An important 

caveat is that these findings do not consider the impacts of changes in heat and freshwater content, circulation, or 

changes in the ocean’s biological pump, and only reflect the impact expected from changing atmospheric xCO2 and 

ocean buffer capacity. 450 
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Figure 7.  (a.) The relative inventory of Canth vs. depth in various years of the historical/linear projection, expressed 

as the percentage of the total DIC inventory that is found within each 1 m interval.  Here, a shrinking surface value 

indicates a greater proportion of the signal is found at depth, but does not necessarily imply a lesser surface Canth.  

Panel (b.) shows the total inventory in 2500 vs. depth in solid lines for each of the CO2 concentration pathways 

used by TRACEv1, with the 2020 historical/linear inventory plotted as a dashed line for comparison.  Both versions 

of SSP 3 7.0 fall nearly on top of each other on this plot and are assigned the same colors. 

 

One intended use for TRACEv1 is adjusting DIC measurement to a reference year.  The simple approximation of 

transient steady state (Gammon et al., 1982) has been used in several recent studies (e.g., Lauvset et al. 2016; Clement 

and Gruber 2018; Carter et al. 2021a; Müller et al. 2023), and our projections show that this assumption performs 

plausibly for projections over short timescales.  However, we contend that TRACEv1 provides a superior means of 455 

adjusting DIC measurements to be appropriate for a reference year.  For example, the differences between modeled 

Canth between 1980 and 2014 in NorESM disagree with the differences between TRACEv1 estimates for those same 

years by an average of −0.1 (±3.0) µmol kg₋1.  The statistics are worse at −1.2 (±3.6) µmol kg₋1 when modeled 

differences are compared instead to the differences between the 1980 Canth values and the 1980 values scaled to 2014 

using transient steady state assumptions.  Thus, both adjustments are reasonable from 1980 to 2014, but the transient 460 

steady state adjustment tends to overpredict the change.  Also, unlike TRACEv1, transient steady state adjustments 

require an independent estimate of Canth (for the comparison above they were provided the exactly-correct model Canth 

distribution in the earlier year, though this is never known in the real ocean).  Finally, the transient steady state 

assumption is also known to break down if the atmosphere ceases to increase in its tracer concentration exponentially, 

and this occurs for CO2 in all SSPs by 2500 c.e. and in most of them much sooner (Meinshausen et al., 2020).  It can 465 

be seen in these cases that transient steady state results in large errors in the projected Canth inventories by mid-

millennium and even projects spurious decreases (Fig. 5b).   

 

4.4 Limitations and future directions 
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There are several notable limitations of the TRACEv1 method:  470 

1. It presumes fixed circulation and is unable to resolve most timescales and modes of Canth variability.   

2. It shows larger reconstruction errors in regions that lack training data, which is a common problem for neural 

networks and other regression strategies (e.g., Carter et al., 2021).  As transient tracer measurements with the 

strong SF6 constraint are still relatively rare (approximately 5 % of the GLODAPv2.2023 data product 

contains all three transient tracer measurements), it is likely that TRACE will improve as more such 475 

measurements become incorporated.  However, version 1 of TRACE should be used with caution in regions 

without training data, and this caution applies to many marginal seas (Figs. 1 and S1).   

3. TRACEv1 appears to overestimate Canth in surface waters where there is meaningful upwelling, though 

perhaps not by a larger extent than alternative Canth estimation strategies.  This is unfortunate because such 

surface waters are frequently found in areas of naturally low pH that are of interest for ocean acidification 480 

research.   

4. The method has not yet been well validated in a high-resolution model representation of a coastal 

environment, so its uncertainties are not well estimated outside of the open ocean.  While the circulation 

information encoded in TRACEv1 has been optimized within a limited parameter space, it is likely—based 

on past literature exploring many options for simplifying the complex distributions of myriad water types 485 

that mix in the ocean interior—that the comparatively simple single term that we employ herein to constrain 

interior ocean age distributions could be meaningfully improved.  We leave this to future work.   

5. Furthermore, the TTD approach is limited by the need for an assumed air-sea disequilibrium and the 

possibility that the degree of disequilibrium for transient tracers varies meaningfully over time and space and 

between CFCs and SF6 (Shao et al., 2013; Sonnerup et al., 2015) and differs from the related term for air-sea 490 

CO2 disequilibria, which seems likely due to the slow relaxation of CO2 disequilibria (Jones et al., 2014) and 

the faster rate of transient tracer equilibration (Wanninkhof 2014).  A common assumption of 100 % 

equilibration tends to result in TTD approaches overestimating the Canth (Waugh et al., 2006).  We include an 

empirical relationship intended to deal with this issue but note that its formulation remains somewhat ad hoc 

and based on model simulations of surface ocean conditions. 495 

6. TRACEv1 is aimed at resolving the accumulation of Canth under “steady state” circulation.  However, it is 

possible that it is able to resolve some non-steady-state components of Canth accumulation when it is called 

with time-varying temperature and salinity records as predictors.  It is yet untested to what degree this is an 

effective strategy for capturing such variability. 

 500 

We include the version number in TRACEv1 both to signal that future improvements are likely and to disambiguate 

the function from other software routines that might have similar names.  There are several ways that TRACEv1 might 

be improved.   

1. Some fitting strategies have shown improvements when the signal of interest is fit to the disagreement 

between observations and a model prior, instead of being fit directly to the signal.  This approach could 505 
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improve estimates if a model prior age distribution can be obtained and be re-gridded to global locations of 

interest in a computationally efficient manner.   

2. Further optimization of the shape of the TTD could result in improved Canth reconstructions.   

3. MATLAB is an open-source language, but it is not freely available.  It would therefore further improve the 

accessibility of Canth estimates if TRACEv1 were released in a freely-available computing package.  Prior 510 

experience suggests that a modest amount of script is required to convert neural-networks from MATLAB to 

Python, and somewhat less is required to transition the code to Julia.  This is left to future work.   

 

5 Data availability statement 

The gridded GLODAP product is available at https://glodap.info/.  The CFC and SF6 atmospheric record data product 515 

was obtained from the USGS Groundwater Dating Lab website 

https://water.usgs.gov/lab/software/air_curve/index.html.  The TRACEv1_GGCanth product is available at Zenodo 

https://doi.org/10.5281/zenodo.15003059 (Carter, 2025).  The NorESM modeled distributions of transient tracers are 

also available with Zenodo https://zenodo.org/records/14536027 (Schwinger, 2024). 

 520 

6 Code availability statement 

TRACEv1 code can be found and freely obtained at https://github.com/BRCScienceProducts/TRACEv1.   

 

7 Conclusions 

We present a new method called TRACEv1 for rapidly estimating the time varying Canth distribution throughout the 525 

open ocean, including detailed error estimates.  TRACEv1 is available as a function in the MATLAB programming 

language.  We further provide a data product with Canth distributions for a range of years (TRACEv1_GGCanth, Carter, 

2025) on the GLODAPv2 gridded product grid used by Lauvset et al. (2016).  We use this data product to examine 

how the Canth distribution varies with depth and time and show that the ocean can be expected to continue to increase 

its Canth inventory through 2500 c.e. for all SSPs.  We find that SSP_3-7.0 results in the largest projected 2500 ocean 530 

Canth inventory of 2984 (±448) PgC, and this represents a ~15-fold increase over the 2020 Canth inventory. 

 

There are several strengths of the TRACEv1 method, which relies on TTDs to estimate Canth distributions from a time-

evolving atmospheric CO2 trajectory.  The method is easy and quick to implement, shows fidelity to model 

reconstructions and agreement with recently published data-based estimates, and only requires S and T measurements 535 

and spatiotemporal coordinate information to produce an estimate.  It also provides means to plausibly adjust 

collections of DIC measurements collected over time to a common time by removing the influences of Canth changes.  

While the reconstruction fidelity of TRACEv1 estimates were quite high in a test using model output with exactly 

known Canth distributions, we nevertheless believe the primary advantage of TRACEv1 and the new data product is 

their accessibility.  540 
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