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Response to comments 

Manuscript ID: essd-2024-556 

Title: Reconstructed global monthly burned area maps from 1901 to 2020 

Journal: Earth System Science Data 

 

Dear editor and reviewers, 

In the revision, we carefully addressed the reviewers’ concerns (see point-by-point responses 

below) and revised the Main Text and Supplementary Information with blue for newly added 

and black for unchanged. 

 

Reviewer #2: 

General Comments 

Comment #1 

Earth System Science Data – Guo et al. – Feb 2025 

This study reconstructed global monthly burned area from 1901 to 2020 at 0.5°×0.5° resolution 

using machine learning models trained on satellite data (2003–2020). Separate models were 

developed for extreme and regular fires based on climate, vegetation, and human activity data. 

The models accurately captured spatial patterns, seasonal trends, and long-term changes in 

burned area. Results show a global decline in burned area from 1901–1978, an increase from 

1978–2008, and a stronger decline from 2008–2020. The reconstruction aligns well with 

charcoal records, offering a valuable tool for historical fire analysis. 

The manuscript is well written, and the simulation work—including data preparation, model 

selection, training, validation, and regional application—is rigorously conducted. It can be 

shown that the authors put quite a lot effort to build such machine learning and data driven 

pipeline. The use cases from such data asset construction are wide. The results are clearly 

presented through both text and figures, and the discussion addresses the burned area 

distributions, trends, limitations, and uncertainties. However, I have a few specific comments 

regarding the methods that I believe should be clarified in more detail in the Methods section. 

Therefore, I recommend a minor revision to further strengthen the manuscript prior to 

publication. 

Response #1 

We thank the reviewer for the constructive and positive comments. Following your insightful 

suggestions, we have carefully revised the manuscript. Please find the point-by-point responses 

below. 
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Specific Comments 

Comment #2 

Line 95 Please add more content / citations on how the burned area on cropland is excluded to 

eliminate agricultural fires in this study. 

Response #2 

As suggested, we revised the description in the Section 2.1 of Main Text. 

Line 95-96: “We excluded all burned pixels overlapping cropland classes in the CCI land‐

cover layer provided with FireCCI51 (Lizundia-Loiola et al., 2020) to remove agricultural fires 

from our analysis.” 

Comment #3 

Line 120 Please clarify how the reclassification is done to split them into five land use types 

(forest, shrub, natural grass, cropland and others). Was it via machine learning classifier? 

Response #3 

As suggested, we added description accordingly in the Section 2.1 of Main Text. 

Line 121: “The above five land use types were converted from the ESA CCI land cover maps 

based on the cross-walking table (Li et al., 2018). For the LUH2 dataset, we reclassified land 

use by summing forested primary land (primf) and potentially forested secondary land (secdf) 

to create a single “forest” category, and by summing all crop types (c3ann, c3per, c3nfx, c4ann, 

and c4per) to form the “cropland” category. To define natural grass and shrub, we first 

combined non-forested primary land (primn) and potentially non-forested secondary land 

(secdn) into a unified grass + shrub type. We then allocated this combined area back into 

separate grass and shrub categories based on their proportional distribution. For historical years 

before 1992, the proportional distribution was set the same as ESA CCI land cover in 1992, and 

for years in 1992-2020, the proportional distribution was set according to the corresponding 

year of ESA CCI land cover.” 

Comment #4 

Line 148 Is there reasoning why an initial classification has to be conducted to classify regions 

into non-BAF, moderate and extreme BAF? Why couldn't the parameterization be applied to 

all regions without this initial classification. Conducting such classification could introduce 

extra errors / uncertainties. Please add more content to clarify. 

Response #4 
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Thanks for the reviewer’s comment. We need this initial classification because of imbalanced 

samples. We explained it in Line 96-98 in Main Text: “The distribution of monthly burned 

area within half-degree grid cells manifests that split of regular and extreme burned area 

amplifies the kernel density of extreme burned area for better model training (Fig. S2).” 

Due to the imbalanced samples, too many grid cells with no BAF and regular BAF would lower 

the weights of extreme BAF in the model training, leading to underestimation of the large BAF 

and the total burned area. We thus excluded zero-BAF and conducted separate regression 

models for regular and extreme BAF. We added further clarification in the Section 2.1 of Main 

Text as follows: 

Line 96-98: “The monthly distribution of burned area within 0.5°×0.5° grid cells (Fig. S2) 

shows that if regular and extreme fires are modeled together (black curves), the abundant 

moderate values drown out the extremes (orange curves), causing total area to be 

underestimated. We thus first conducted classification and then trained separate models for 

regular and extreme burned fractions to enhance the representation of extreme events and 

improve regression performance.” 

Comment #5 

Line 152 I am not quite clear why 90th percentile instead of other percentiles is used to 

determine the extreme BAF. Please explain and clarify. 

Response #5 

As suggested, we added further clarification in the Section 2.1 of Main Text to explained why 

90th percentile was chosen in the classification. 

Line 96: “We used the 90th percentile of all burned area fractions in 0.5°×0.5° grid cells within 

a region as the threshold to define extreme fires. This percentile was chosen based on previous 

literature (Bowman et al., 2017; Cunningham et al., 2024; Lannom et al., 2014). It is high 

enough (≥ 90th) to distinguish moderate from extreme samples to train separate models for each 

category. Meanwhile, it is not too high (e.g., 95th or 99th) in regions with limited data (such as 

Europe and the Middle East) to ensure sufficient extreme samples for model training and 

evaluation.” 

Comment #6 

Line 167 From the content there are only 16 features plus some others in NHAF are used in the 

model. I am not sure why a recursive feature selection has to be performed. Recursive feature 

selection is usually applied when there is 1000+ variables used in GBM models. This process 

is necessary because the larger model package size would directly cause latency issues in the 
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live production env. In this case 16+ variables won't cause such issues plue the model will not 

be deployed onto live env. Is such feature selection necessary? 

Response #6 

We agree that recursive feature selection is essential when working with a small sample size 

and many candidate predictors. Here, we used it to prevent performance degradation that can 

occur when adding irrelevant features (Guyon and Elisseeff, 2003). Moreover, reducing the 

feature set enhances interpretability—facilitating the analysis of feature interactions via 

SHAP—and conserves computational resources. We added explanation in the Section 2.2 of 

Main Text as follows: 

Line 170: “The recursive feature elimination cross validation was applied to prevent model 

performance degradation if irrelevant features were added (Guyon and Elisseeff, 2003). 

Moreover, reducing the feature set could enhance model interpretability and conserve 

computational resources (Lundberg et al., 2020).” 

Comment #7 

Figure 2 For the global map of burned area difference please make it a separate figure as it is 

hard to see the small dots. And what is the unit? Is it a relevant difference? Please specify in the 

figure. 

Response #7 

As suggested, we split Figure 2 of the previous version into Figure R2 and Figure R3. The unit 

of the global map in Fig. R2 is fraction difference in 0.5°×0.5° grid cell, and it is not a relative 

difference. We clarified it in the caption of Fig. R2 in Main Text. 

Comment #8 

Figure 2 What does N mean here? Is it the data sample size for validation grids per year? Please 

specify. 

Response #8 

N represents number of grid cells with multi-year averaged BAF>0. We removed dots with both 

predicted and observed burned area fraction equal to 0 in the scatter plots of Fig. 2 because we 

aimed to emphasize the evaluation of model performance among grid cells with BAF>0. 

Therefore, N, R2, slope, p and RMSE denoted in scatter plots could be different from Fig. 2 in 

the original version. We clarified it in the caption (now Fig. 3 in Main Text). 
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Figure R2 (revised as Figure 2 in Main Text): Multi-year (2003-2020) averaged burned area 

difference between our predictions by the leave-one-year-out method and FireCCI51 

observations (predictions minus observations). (a) Map of burned area fraction difference in 

each 0.5°×0.5° grid cell. Burned area fraction difference is the ratio of burned area difference 

to total grid area within each 0.5°×0.5° cell, making it unitless and bounded between 0 and 1. 

(b) Latitudal sum of burned area difference using the burned area fraction difference map from 

(a) multiplied by the area of each 0.5°×0.5° grid cell. Both absolute (solid line) and relative 

(dashed line) differences are shown. 
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Figure R3 (revised as Figure 3 in Main Text): Scatter plots of multi-year (2003-2020) 

averaged burned area fraction (BAF) in each 0.5°×0.5° grid cell from predictions by the leave-

one-year-out method and FireCCI51 observations for each region (a-o). Dots represent grid 

cells with BAF>0 averaged over 2003-2020. N, R2, slope, p and RMSE respectively represent 

number of grid cells with multi-year averaged BAF>0, coefficient of determination, linear slope, 

p-value for linear correlation and rooted mean squared error between BAF from our predictions 

and observations. Burned area fraction is the ratio of burned area to total grid area within each 

0.5°×0.5° cell, making it unitless and bounded between 0 and 1. 

Comment #9 

Figure 3 It looks like figure (a) (c) (e) vs figure (b) (d) (f) are giving the same messages. Also 

it is hard to find any insight from figure (a) (c) (e). Consider removing or merging them with 

(b) (d) (f). 

Response #9 
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As suggested, we merge (b), (d), (f) into (a), (c), (e) as shown in Fig. R4. We revised the caption 

of this figure in Main Text accordingly as follows. 

 

Figure R4 (revised as Figure 4 in Main Text): Mean absolute SHAP value and the ranking of 

all input variables (Table 1) using the random forest classification models (a) and the LSTMs 

regression models for regular (b) and extreme (c) BAF, respectively, in each region. Numbers 

denoted in grids are the ranking of variables, and higher ranking represents relative higher mean 

absolute SHAP value in the corresponding GFED region. 

Comment #10 

Figure 5 It is hard to tell the accuracy difference in (a) (b) as most of them are dark red (are 

most of them 100% or 70%?). Please consider using a different color scale to make them more 

distinguishable. 

Response #10 

We changed the color scale as suggested (Fig. R5) in Main Text. 



8 
 

 

Figure R5 (revised as Figure 6 in Main Text): Fire occurrence comparison between two 

charcoal record databases and our prediction from 1901 to 2020. (a) Site accuracy map using 

Global Charcoal Database. The site accuracy (%) is equal to the number of records with 

predicted burned area dividing the number of all records multiplying by 100%. (b) The same 

as (a) but using Reading Palaeofire Database instead. (c) Accuracy time series using Global 
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Charcoal Database and Reading Palaeofire Database respectively. Note that only records with 

record year ± record age uncertainty overlapping with 1901-2020 are taken into consideration. 

Comment #11 

Figure 6 Again, (a) (b) (c) convey important messages of spatial distribution of burned areas. 

but they are too small in terms of figure size. Please make them bigger / clearer. 

Response #11 

We split the Fig. 6 in the previous version into Fig. R6 and Fig. R7 in the current version to 

make them bigger and clearer. We also revised their captions and citations accordingly in Main 

Text as follows: 
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Figure R6 (revised as Figure 7 in Main Text): Maps of burned area fraction difference 

between our predictions and other global burned area datasets. (a) Map of multi-year average 

(1982-2018) burned area fraction difference map between our predictions and FireCCILT11 

(the former minus the latter). (b, c) Same as (a) but using Global Annual Burned Area Maps 

(GABAM) (1985-2020) and Mouillot and Field (2005) (1901-1999) instead respectively. Note 

that there are several years (1986, 1988, 1990, 1991, 1993, 1994, 1997 and 1999) without 

available data before 2000 in GABAM. 
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Figure R7 (revised as Figure 8 in Main Text): Time series of annual total burned area across 

the globe (a) and in each region (b-o) from our predictions (red lines), Mouillot and Field (2005) 

(blue lines), FireCCILT11 (grey lines) and GABAM (purple lines). The breakpoints and 

significant slopes (p-value<0.05) were calculated by methods mentioned in Sect. 2.2. Note that 

there are several years (1986, 1988, 1990, 1991, 1993, 1994, 1997 and 1999) without available 

data before 2000 in GABAM, and thus breakpoint detection and linear slopes were applied after 

2000 for this dataset. 
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