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Abstract. Soil moisture (SM) data records longer than 30 years are critical for climate change research and various 

applications. However, only a few such long-term global SM datasets exist, and they often suffer from large biases, low 

spatial resolution, or spatiotemporal incompleteness. Here, we generated a consistent and seamless global SM product from 

1982 to 2021 using deep learning (DL) by integrating four decades of Advanced Very High Resolution Radiometer 

(AVHRR) albedo and land surface temperature products with multi-source datasets. Considering the temporal 15 

autocorrelation of SM, we explored two types of DL models that are adept at processing sequential data, including three long 

short-term memory (LSTM)-based models, i.e., the basic LSTM, Bidirectional LSTM (Bi-LSTM), and Attention-based 

LSTM (AtLSTM), as well as a Transformer model. We also compared the performance of the DL models with the tree-

based eXtreme Gradient Boosting (XGBoost) model, known for its high efficiency and accuracy. Our results show that all 

four DL models outperformed the benchmark XGBoost model, particularly at high SM levels (> 0.4 m3 m-3). The AtLSTM 20 

model achieved the highest accuracy on the test set, with a coefficient of determination (R2) of 0.987 and root mean square 

error (RMSE) of 0.011 m3 m-3. These results suggest that utilizing temporal information as well as adding an attention 

module can effectively enhance the estimation accuracy of SM. Subsequent analysis of attention weights revealed that the 

AtLSTM model could automatically learn the necessary temporal information from adjacent positions in the sequence, 

which is critical for accurate SM estimation. The best-performing AtLSTM model was then adopted to produce a four-25 

decade seamless global SM dataset at 5 km spatial resolution, denoted as the GLASS-AVHRR SM product. Validation of the 

GLASS-AVHRR SM product using 45 independent International Soil Moisture Network (ISMN) stations prior to 2000 

yielded a median correlation coefficient (R) of 0.73 and unbiased RMSE (ubRMSE) of 0.041 m3 m-3. When validated against 

SM datasets from three post-2000 field-scale COsmic-ray Soil Moisture Observing System (COSMOS) networks, the 

median R values ranged from 0.63 to 0.79, and the median ubRMSE values ranged from 0.044 to 0.065 m3 m-3. Further 30 

validation across 22 upscaled 9 km Soil Moisture Active Passive (SMAP) core validation sites indicated that it could well 

capture the temporal variations in measured SM and remained unaffected by the large wet biases present in the input 
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European reanalysis (ERA5-Land) SM product. Moreover, characterized by complete spatial coverage and low biases, this 

four-decade, 5 km GLASS-AVHRR SM product exhibited high spatial and temporal consistency with the 1 km GLASS-

MODIS SM product, and contained much richer spatial details than both the long-term ERA5-Land SM product (0.1°) and 35 

European Space Agency Climate Change Initiative combined SM product (0.25°). The annual average GLASS-AVHRR SM 

dataset from 1982 to 2021 is available at https://doi.org/10.5281/zenodo.14198201 (Zhang et al., 2024), and the complete 

product can be freely downloaded from https://glass.hku.hk/casual/GLASS_AVHRR_SM/. 

1 Introduction 

Soil moisture (SM) is an essential climate-sensitive variable that exhibits high spatial and temporal variability. It can be 40 

measured directly by in situ sensors or indirectly through model simulations or remote sensing techniques (Liang and Wang, 

2020). Accurate knowledge of the spatial and temporal distribution of SM can benefit applications across various Earth 

system domains, including climate, hydrology, and agriculture (Dorigo et al., 2017; Peng et al., 2021). While local- to 

regional-scale hydrological and agricultural applications like watershed runoff modeling, evapotranspiration estimation, and 

crop yield prediction demand SM products with high spatial resolution (≤ 1 km) (Hssaine et al., 2018; Schoener and Stone, 45 

2019; Zhuo et al., 2019), continental- to global-scale climate change-related applications, such as SM trend analyses and 

drought monitoring, generally require long-term data availability (> 30 years), in addition to moderate spatial resolution and 

high accuracy (Cheng et al., 2015; Grillakis, 2019). 

Long-term point-scale SM can be measured directly by in situ sensors, thus great efforts have been devoted worldwide to 

deploying and maintaining a series of operational SM networks. In situ SM datasets from some networks were shared by 50 

data organizations, which were then processed and released in a harmonized format to the public by the International Soil 

Moisture Network (ISMN) data repository (Dorigo et al., 2021). Still, these networks are too sparse, unevenly distributed in 

space, and each covers a different observation period, hindering their use in large-scale applications. Currently, large-scale 

SM products are typically obtained through model simulations or remote sensing techniques. Driven by long-term forcing 

variables, land surface models or data assimilation systems can simulate decades of spatiotemporally continuous SM 55 

products at the global scale, with an increasingly finer spatial resolution. Several commonly used SM products include those 

generated by the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) at 0.5° from 1980 

to the present (Gelaro et al., 2017), the Global Land Data Assimilation System version 2 (GLDAS-2) at 1°/0.25° from 1948 

to the present (Rodell et al., 2004), and the land component of the fifth generation of European ReAnalysis (ERA5-Land) at 

0.1° from 1950 to the present (Muñoz-Sabater et al., 2021). Yet, these SM products may suffer from large uncertainties that 60 

originated from defective forcing data or imperfect model parameterization (Ling et al., 2021). 

Alternatively, microwave remote sensing techniques have been utilized for SM retrieval since the 1970s (Schmugge et al., 

1974). Various global SM products have been developed from a range of active or passive microwave sensors, such as the 

advanced scatterometer aboard the Meteorological Operational Satellites (Bartalis et al., 2007), the microwave radiation 
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imager on Fengyun-3 satellites (Kang et al., 2021), and the L-band radiometers on the Soil Moisture and Ocean Salinity 65 

(SMOS) and Soil Moisture Active Passive (SMAP) satellites (Chan et al., 2018; Entekhabi et al., 2010; Kerr et al., 2012; 

Wigneron et al., 2021). However, the temporal coverage of these single-sensor SM products is typically short, as constrained 

by the operational lifespan of the satellites. In this context, the European Space Agency (ESA) Climate Change Initiative 

(CCI) program released a long-term global SM product spanning the period since 1978, which merged multiple active and 

passive microwave SM products retrieved from different satellite instruments (Dorigo et al., 2017). Despite being the longest 70 

satellite SM dataset currently available, the ESA CCI combined SM product has a relatively low spatial resolution (0.25°) 

and incomplete spatial coverage, which may restrict its usage in certain applications. According to Zheng et al. (2023), the 

percentage of missing data in the ESA CCI combined SM product ranges from 21.8% to 94.41% at the daily scale during the 

period from 2000 to 2020. 

In contrast, optical and thermal remote sensing techniques are characterized by long observation period, rich spectral bands, 75 

and high spatial resolution, but their relatively low sensitivity to SM poses challenges in deriving long-term global SM 

product solely from optical and thermal satellite observations. Over the past few decades, optical and thermal datasets have 

been extensively employed to downscale the coarse-scale microwave or model-simulated SM products. Most of these 

downscaling studies empirically or physically relate vegetation and temperature parameters to SM conditions based on the 

universal triangle concept (Gillies and Carlson, 1995; Merlin et al., 2012; Piles et al., 2011). A detailed review of the 80 

strengths and limitations of various SM downscaling algorithms can refer to Sabaghy et al. (2018). In recent years, machine 

learning models have gradually gained popularity in the downscaling of coarse-scale SM products, such as the SMAP, 

ERA5-Land, and ESA CCI SM products (Karthikeyan and Mishra, 2021; Zhang et al., 2023; Zheng et al., 2023), due to their 

flexibility to integrate multi-source datasets and ability to implicitly learn the non-linear relationships between SM and its 

influencing factors. However, the above-mentioned downscaling studies primarily concentrated on enhancing the spatial 85 

resolution of SM products, typically through integrating the fine-scale Moderate Resolution Imaging Spectroradiometer 

(MODIS) datasets, and there is still a lack of focus on developing long-term SM products or utilizing the four-decades 

Advanced Very High Resolution Radiometer (AVHRR) observations for long-term SM estimation. 

Compared with conventional machine learning models, deep learning (DL) models can automatically extract relevant 

features from raw datasets and learn complex non-linear relationships between variables, without the need for careful feature 90 

engineering (LeCun et al., 2015). Recently, significant progress has been made in applying DL techniques to a range of 

environmental remote sensing research areas, including land cover mapping, data fusion and downscaling, and 

environmental parameter retrieval (Yuan et al., 2020). In terms of SM retrieval, Fang et al. (2017) first utilized a long short-

term memory (LSTM) model to predict spatiotemporally continuous SM over the Continental U.S., with atmospheric 

forcings, modeled SM, and static attributes employed as input features, and the SMAP SM product serving as the training 95 

target. Since then, various DL models have been used in SM estimating (Gao et al., 2022; Sungmin and Orth, 2021), 

downscaling (Xu et al., 2022; Zhao et al., 2022), forecasting (Fang and Shen, 2020; Li et al., 2022), and gap-filling 

researches (Zhang et al., 2022; Zhou et al., 2023). Among them, the most frequently used DL models were the LSTM-based 
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models designed to capture temporal information from sequential data and the convolutional neural network (CNN) based 

models constructed to extract spatial patterns from grid data, alongside several other models such as the deep neural network 100 

and deep belief network. In those studies, input features might include brightness temperature, surface reflectance, 

meteorological forcings, terrain and soil properties, land cover, precipitation, and land surface temperature (LST), depending 

on the types of models they aimed to simulate, such as radiative transfer models, downscaling models, or land surface 

models, while the training target varied from point-scale in situ SM to coarse-scale microwave or simulated SM. Despite the 

diversity of data sources, research areas, and neural networks, all of those DL models achieved satisfactory performance, 105 

demonstrating their good fitting and generalization capabilities, as well as great potential for generating global SM products. 

Validation of those DL models against the ISMN in situ SM dataset showed that the average correlation coefficient (R) 

ranged from 0.672 to 0.715, and the unbiased root mean square error (ubRMSE) ranged from 0.041 to 0.061 m3 m-3 (Gao et 

al., 2022; Xu et al., 2022; Zhang et al., 2022). Nevertheless, there is still a lack of research that utilizes DL models to 

generate long-term global SM data records, as evident from Table 1. Besides, while Transformer has demonstrated 110 

effectiveness in domains like runoff modeling, drought forecasting, and crop mapping (Amanambu et al., 2022; Xu et al., 

2020; Yin et al., 2022), its application in SM estimation remains scarce. 

Table 1 Main characteristics of currently available long-term (> 30 years) global SM products. 

Category SM products Spatial 

resolution 

Temporal 

coverage 

Spatial 

integrity 

References 

Microwave ESA CCI 0.25° 1978–2022 incomplete Dorigo et al. (2017) 

Reanalysis GLDAS-2 1°/0.25° 1948–present Seamless Rodell et al. (2004) 

 MERRA-2 0.5° 1980–present Seamless Gelaro et al. (2017) 

 ERA5-Land 0.1° 1950–present Seamless Muñoz-Sabater et al. (2021) 

DL-based GLASS-AVHRR 5 km 1982–2021 Seamless This study 

In this context, we aim to develop a long-term global SM estimation framework based on deep learning using mainly the 

long-archived AVHRR satellite observations. Specifically, the AVHRR albedo and LST products from the Global LAnd 115 

Surface Satellite (GLASS) product suite, ERA5-Land reanalysis SM product, as well as auxiliary terrain and soil texture 

datasets are used as inputs, and the global 1 km GLASS-MODIS SM product generated by Zhang et al. (2023) is used as the 

target to train different types of DL models. In particular, three LSTM-based models, i.e., the basic LSTM, Bidirectional 

LSTM (Bi-LSTM), and Attention-based LSTM (AtLSTM), along with a Transformer model, all of which are adept at 

processing sequential data, are explored. Then the best-performing model is employed to generate a four-decade 120 

spatiotemporally continuous global SM dataset at 5 km resolution, denoted as the GLASS-AVHRR SM product. The 

specific objectives of this study are: 

(1) To develop a DL-based global SM estimation model using a large number of evenly distributed training samples 

across the globe, so as to derive a consistent and reliable long-term global SM product; 
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(2) To compare the performance of different DL models: the basic LSTM, Bi-LSTM, AtLSTM, and Transformer, with 125 

the benchmark XGBoost model, and to investigate the effect of input sequence length on model accuracy; 

(3) To fully evaluate the accuracy and spatiotemporal consistency of the derived long-term GLASS-AVHRR SM product 

through validation against in situ SM datasets at different spatial scales and intercomparison with other long-term 

global SM products. 

2 Datasets 130 

The multi-source datasets used in this study to develop the long-term SM estimation model are summarized in Table 2. The 

input variables were extracted from the GLASS-AVHRR albedo and LST products, the ERA5-Land reanalysis SM product, 

the Multi-Error-Removed Improved-Terrain (MERIT) DEM, and the SoilGrids datasets, respectively, while the target 

variable was obtained from the GLASS-MODIS SM product. This section also introduces the ISMN, COsmic-ray Soil 

Moisture Observing System (COSMOS), and SMAP Core Validation Sites (CVSs) in situ SM datasets used for validation, 135 

alongside the long-term ESA CCI SM product used for intercomparison. 

Table 2 Summary of the multi-source datasets used to develop the long-term SM product. 

Dataset Variable Temporal 

resolution 

Spatial 

resolution 

Usage References 

GLASS-AVHRR Albedo 8 d 5 km input Qu et al. (2014);Liu et al. (2013) 

 LST daily 5 km input Jia (2023) 

ERA5-Land SM hourly 0.1° input Muñoz-Sabater et al. (2021) 

MERIT DEM elevation, slope, aspect - 90 m input Yamazaki et al. (2017) 

SoilGrids clay, sand, silt - 250 m input Poggio et al. (2021) 

GLASS-MODIS SM daily 1 km target Zhang et al. (2023) 

2.1 GLASS-AVHRR albedo and LST products 

As part of the GLASS product suite, the GLASS-AVHRR albedo and LST products are generated mainly from the long-

archived AVHRR satellite observations dating back to the 1980s and are characterized by long-term temporal coverage, 140 

spatial continuity, and high accuracy (Liang et al., 2021). In particular, the GLASS-AVHRR albedo product was retrieved 

from the AVHRR surface reflectance through a direct estimation algorithm (Qu et al., 2014) and a spatiotemporal filtering 

algorithm (Liu et al., 2013). This product has been fully evaluated using ground measurements and alternative albedo 

products (He et al., 2014). The latest version (V5) of the GLASS-AVHRR albedo product at 5 km spatial resolution can be 

downloaded from http://www.glass.umd.edu/Albedo/MIX/. Here, the black-sky visible, near-infrared, and shortwave albedo 145 

were extracted and used as input variables, with the original 8-day temporal resolution interpolated to daily to align with the 

training target. Meanwhile, the global all-sky GLASS-AVHRR LST product was estimated using a surface energy balance-
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based algorithm (Jia, 2023), which will be released soon. The daily mean LST at 5 km resolution was also used here as an 

input variable. 

2.2 ERA5-Land SM product 150 

The ERA5-Land is a long-term state-of-the-art reanalysis dataset that includes multiple variables related to water and energy 

cycles spanning from 1950 to the present (Muñoz-Sabater et al., 2021). By combining the interpolated ERA5 atmospheric 

forcing with the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model, it achieves a 

seamless global coverage at an hourly temporal resolution and 0.1° spatial resolution. According to previous validation 

studies, while both the ERA5 and ERA5-Land reanalysis SM products typically showed high temporal correlations with in 155 

situ SM datasets, they often exhibited large biases as well (Gao et al., 2022; Li et al., 2020; Zheng et al., 2022). Here, the 

first-layer (0–7 cm) ERA5-Land SM product was downloaded from https://cds.climate.copernicus.eu/. The daily mean SM 

was then calculated and up-sampled to 5 km through bilinear interpolation before being used as an input variable for the 

model to provide SM background information. Moreover, the ERA5-Land SM product was also validated against in situ SM 

datasets and intercompared with the generated GLASS-AVHRR SM product. 160 

2.3 Terrain and soil texture datasets 

Topography and soil properties are the main factors that affect the spatial distribution of SM at fine scales. Here, we used the 

MERIT DEM (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/), a high accuracy DEM generated by integrating 

multiple spaceborne DEMs (Yamazaki et al., 2017). This dataset covers 90°N–60°S over land at a resolution of 90 m and 

shows significant improvement in flat regions compared to previous spaceborne DEMs, such as the Shuttle Radar 165 

Topography Mission DEM. After downloading the MERIT DEM, it was then used to derive elevation, slope, and aspect. 

Meanwhile, we also used the 250-m SoilGrids product (https://www.isric.org/explore/soilgrids), a high-resolution soil 

property dataset generated from global soil profiles and environmental variables using machine learning models (Poggio et 

al., 2021). Specifically, the mean sand, silt, and clay content of the top soil layer (0–5 cm) were extracted from the SoilGrids 

product. All of these terrain and soil texture variables were resampled to 5 km before being used as inputs to the SM 170 

estimation model. 

2.4 GLASS-MODIS SM product 

The training target used in this study was the global 1 km spatiotemporally continuous GLASS-MODIS SM product, which 

was generated using an XGBoost machine learning model that integrated the GLASS-MODIS albedo, LST, and leaf area 

index (LAI) products with multi-source datasets. In situ SM from the representative ISMN stations distributed globally was 175 

utilized by the XGBoost model as training target. A detailed description of the development and evaluation process of the 

GLASS-MODIS SM product can be found in Zhang et al. (2023). This product exhibits high spatial and temporal 

consistency with both the ESA CCI and SMAP/Sentinel-1 L2 Radiometer/Radar SM products, while maintaining a more 
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complete spatial coverage. The daily GLASS-MODIS SM product from 2000 to 2020 is freely available at 

http://glass.umd.edu/soil_moisture/. Here, we derived training samples from the 5 km resampled GLASS-MODIS SM 180 

product rather than directly using in situ SM as training target, as the global SM product could provide a much richer and 

representative training set than the sparse ISMN SM dataset. 

2.5 In situ SM datasets 

After generating the GLASS-AVHRR SM product using the developed DL model, three types of in situ SM datasets at 

different spatial scales were adopted to evaluate its accuracy and consistency. The characteristics of these in situ SM datasets 185 

are listed in Table 3, and the spatial distribution of the corresponding SM stations is shown in Fig. A1. The first type is the 

ISMN dataset, which consists of harmonized and quality-controlled in situ SM measurements collected from over 2800 

monitoring sites worldwide (Dorigo et al., 2021). This point-scale SM dataset covers a period from 1952 to the present, 

providing a valuable reference for validating satellite-based and model simulated SM products, despite the relatively poor 

spatial representativeness of some SM stations. There were 1672 ISMN stations available for validation during Period Ⅰ 190 

(2000–2018). Among them, 715 spatially representative stations were selected using the triple collocation method, as 

described in detail in Zhang et al. (2023). Although SM datasets from these representative stations were previously used as 

target to train the GLASS-MODIS SM estimation model, making them only partially independent, they can be used here to 

assess the consistency in accuracy between the GLASS-AVHRR and GLASS-MODIS SM products. Moreover, the 45 fully 

independent ISMN stations from Period Ⅱ (1982–1999) can be used to evaluate the accuracy of the GLASS-AVHRR SM 195 

product during the earlier years. The daily mean SM was calculated by averaging the hourly SM measurements at the top 

soil layer (0–5 cm) obtained from https://ismn.earth/, considering only those with a quality flag of “G”. 

The second type is the COsmic-ray Soil Moisture Observing System (COSMOS) SM dataset, which includes area-averaged 

SM measurements at the field scale from three COSMOS networks: COSMOS (Zreda et al., 2012), COSMOS-UK (Cooper 

et al., 2021), and COSMOS-Europe (Bogena et al., 2022). The COSMOS sensors detect low-energy cosmic-ray neutrons 200 

above the ground, which can be converted to SM within a footprint radius of 130 to 240 m and a penetration depth of 15 to 

83 cm, depending on factors such as air humidity, SM, and vegetation (Köhli et al., 2015). Although data from the COSMOS 

and COSMOS-UK networks had been integrated into the ISMN database, they were excluded from the training dataset of 

the GLASS-MODIS SM estimation model because their observation depths exceeded the 5 cm threshold. Recently, data 

from the COSMOS-Europe network have been released and can be accessed at https://doi.org/10.34731/x9s3-kr48. 205 

Collectively, these post-2000 SM datasets can serve as an independent source for validating the GLASS-AVHRR SM 

product at an intermediate scale. After filtering based on the quality flags and aligning with the GLASS-AVHRR SM 

product, there were 102 COSMOS, 45 COSMOS-UK, and 51 COSMOS-Europe stations available for validation. 

The third type is the SMAP/In situ core validation site (CVS) match-up dataset, which contains the up-scaled in situ SM 

measurements derived from multiple quality-controlled stations that have been aligned with SMAP SM products (Colliander 210 

et al., 2017). A total of 22 globally distributed CVSs were matched with the SMAP-Sentinel L2 SM product gridded at 9 km 
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resolution (SMAPL2SMSP9km). This independent 9 km SMAP CVS in situ dataset can be used to validate the GLASS-

AVHRR SM product with reduced impact of scale difference. It covers the period from 2015 to the present and can be 

downloaded from https://nsidc.org/data/nsidc-0712/versions/1. 

Table 3 Characteristics of three types of in situ SM datasets used in this study at different spatial scales. 215 

Dataset Group of stations No. of 

stations 

Spatial scale Sensing depth Time period References 

ISMN All ISMN (Period Ⅰ) 1672 Point-scale 0–5 cm 2000–2018 Dorigo et al. (2021) 

Representative ISMN 

(Period Ⅰ) 

715 2000–2018 

ISMN (Period Ⅱ) 45 1982–1999 

COSMOS COSMOS 102 130–240 m 15–83 cm 2008–2018 Zreda et al. (2012) 

COSMOS-UK 45 2013–2018 Cooper et al. (2021) 

COSMOS-Europe 51 2011–2018 Bogena et al. (2022) 

CVS SMAP CVS 22 9 km 0–5 cm 2015–2021 Colliander et al. (2017) 

2.6 ESA CCI SM product 

The European Space Agency (ESA) launched the Climate Change Initiative (CCI) SM project to develop the ESA CCI SM 

dataset, a global daily multi-decadal dataset aimed at supporting climate research (Dorigo et al., 2017). This dataset merged 

multiple microwave SM products into active-only, passive-only, and combined active-passive products, respectively. The 

evolution of the merging algorithm and break correction method are described in detail by Gruber et al. (2019) and 220 

Preimesberger et al. (2021). Here, we used the ESA CCI SM v7.1 combined product at a resolution of 0.25° 

(https://climate.esa.int/en/projects/soil-moisture/data/), which covered the period 1978–2021. Despite being the most widely 

used long-term satellite SM product, it suffers from spatial incompleteness due to the lack of satellite observations in the 

earlier years, the observation gaps in satellite orbits, and the physical limitations of microwave observations for SM retrieval 

over densely vegetated areas (Dorigo et al., 2017). In this study, the spatial consistency between the ESA CCI combined SM 225 

product and our GLASS-AVHRR product was investigated. 

3 Methods 

Figure 1 shows the flowchart of the proposed long-term global GLASS-AVHRR SM estimation framework, which consists 

of three main parts: data preprocessing and training samples preparation, model training and performance comparison, and 

generation and evaluation of the GLASS-AVHRR SM product. In particular, the multi-source datasets and their pre-230 

processing can refer to Sect. 2; the preparation of training samples, description of five data-driven models, and adopted 
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evaluation methods are given in Sect. 3; the detailed comparison of model performance and evaluation of the long-term SM 

product are presented in Sect. 4. 

 

Figure 1 Flowchart of the proposed long-term global GLASS-AVHRR SM estimation framework 235 

3.1 Training samples 

The global GLASS-MODIS SM product resampled at 5 km was used as the training target of the long-term SM estimation 

model, from which a large number of representative and evenly distributed training samples could be obtained. Considering 

that the size of training samples would be too large if all the pixels were included, these samples were selected at 25 km (5 

pixels) intervals along both the longitude and latitude, and a total of 135,360 pixels were chosen after excluding those with a 240 

large proportion of missing values. Based on the geographic coordinates of these pixels, the values corresponding to each 
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input feature as well as the target SM for the years 2005, 2010, and 2015 were extracted, which collectively formed the time-

series training samples. These samples were then randomly divided into training dataset, validation dataset, and test dataset 

in the ratio of 7:2:1 according to their locations. While the training and validation datasets were used to train and tune the 

hyperparameters of the models, the accuracy of the models was evaluated on the test dataset. Note that, the input features 245 

need to be scaled before training a DL model, which helps to speed up the convergence process, avoids bias towards larger-

scale features, and improves the model stability. Here, each input feature was standardized by subtracting the mean and then 

dividing by the standard deviation, whereas for the target SM, no further processing is needed as it is by definition scaled. 

 

Figure 2 Schematic diagrams of the five models used in this study: (a) LSTM, (b) Bi-LSTM, (c) AtLSTM, (d) Transformer, 250 

and (e) XGBoost. In subplots (a-d), 𝑥𝑡, 𝑦𝑡, and ℎ𝑡 represent the input datasets, SM prediction, and hidden state output by the 

models at time step t, respectively. 

3.2 Benchmark model 

When generating the global 1 km GLASS-MODIS SM product, an XGBoost model was employed to integrate the multi-

source datasets because of its good performance and high training and predicting speed. Here, we used the XGBoost model 255 
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as a benchmark and compared its performance with the DL models (LSTM-based and Transformer) to analyze whether the 

DL models that account for temporal information exhibit an advantage over this widely used tree-based conventional 

machine learning model in SM estimation. The XGBoost model (Chen and Guestrin, 2016) is a type of gradient boosting 

model, in which multiple weak learners (trees) are iteratively constructed through correcting the prediction residuals of the 

preceding trees. The schematic diagram of the XGBoost model is shown in Fig. 2e, where predictions from multiple trees are 260 

combined to make the final SM prediction. The open-source XGBoost Python package was utilized for model training, with 

the key hyperparameters configured as follows: n_estimators (number of trees) = 1000, learning_rate = 0.1, and max_depth 

(maximum depth of tree) = 8. The time-series training samples constructed above were put together to train the XGBoost 

model, and the overall accuracy achieved by the XGBoost model on the test dataset was then compared with that of the DL 

models as a benchmark. 265 

3.3 Long short-term memory-based models 

The LSTM network (Hochreiter and Schmidhuber, 1997) is a special type of recurrent neural network (RNN) designed to 

solve the problems of gradient vanishing and exploding when training long sequences, where the LSTM network can 

outperform the original RNN. The basic LSTM network introduces the memory cell, which is a special type of hidden state 

that shares the same shape as the hidden state but is designed to record long-term information. Each recurrent unit within the 270 

LSTM has three distinct gates, i.e., the forget gate, input gate, and output gate, as illustrated in Fig. 2a. These gates work 

together to regulate the flow of information through the LSTM network, facilitating the update of its memory cell, thus 

enabling the network to selectively retain or discard information over time. The formulas used to calculate the three gates 

(𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡), cell state (𝑐𝑡), and hidden state (ℎ𝑡) are given below: 

𝑓𝑡 =  𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)          (1) 275 

𝑖𝑡 =  𝜎(𝑊𝑖  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)          (2) 

𝑜𝑡 =  𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜)          (3) 

𝑐𝑡 =  𝑓𝑡 ∗  𝑐𝑡−1 + 𝑖𝑡 ∗ tanh (𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)        (4) 

ℎ𝑡 =  𝑜𝑡 ∗ tanh (𝑐𝑡)           (5) 

where 𝑥𝑡 represents the input datasets at time step t, ℎ𝑡−1 is the hidden state at the previous time step; 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 are all 280 

calculated as linear functions of 𝑥𝑡  and ℎ𝑡−1 with different weights and biases, and are then rescaled using a non-linear 

sigmoid (𝜎) function. The 𝜎 function acts as the gating function for the three gates with an output ranging between 0 and 1, 

thereby determining which portion of the information passes through the gates. The tanh activation function is used to 

rescale the values to the range between -1 and 1 during the calculation of 𝑐𝑡 and ℎ𝑡, helping to avoid the vanishing gradient 

problem. Both the 𝜎  and tanh functions add non-linearity to the LSTM network. The Bidirectional LSTM (Bi-LSTM) 285 

extends the LSTM network by using two separate LSTM layers to process the input sequence from both forward and 
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backward directions, and then concatenating the outputs of both layers. As displayed in Fig. 2b, the Bi-LSTM model can 

learn bidirectional (preceding and following) information at each time step. 

The LSTM network has different application architectures, including many-to-one (MTO) and many-to-many (MTM). In 

research areas like crop mapping, runoff prediction, and SM forecasting, the MTO architecture is primarily adopted, where 290 

inputs from multiple time steps are fed into an LSTM network, and then estimates for a single time step (typically the last 

time step) are output. Alternatively, we choose to use the MTM architecture, where time-series input features are fed into the 

network, and time-series SM estimates are output at once. This was implemented simply through feeding the hidden states 

output by the LSTM network at all time steps into a fully connected layer, thereby simultaneously obtaining SM estimates 

across all time steps. We also designed an experiment to compare the difference in accuracy between these two architectures 295 

in estimating SM. 

In addition to the basic LSTM and Bi-LSTM networks introduced above, an attention module was added to the Bi-LSTM 

network, referred to as the AtLSTM network, to explore if the estimation accuracy of SM could be further improved. The 

AtLSTM network was constructed based on Bahdanau et al. (2016) and Xu et al. (2020), and adapted here for the MTM 

architecture. As illustrated in Fig. 2c, the attention module generates the attention weights (𝛼), which are then multiplied 300 

with the hidden states (ℎ) to get the weighted hidden states (ℎ∗). The 𝛼 and ℎ∗ can be calculated as follows: 

𝑒𝑡 =  𝑊𝑎 . ℎ𝑡  +  𝑏𝑎           (6) 

𝛼𝑡,𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑡,𝑖) =  
𝑒𝑥𝑝 (𝑒𝑡,𝑖)

∑  𝑒𝑥𝑝 (𝑒𝑡,𝑗)𝑇
𝑗=1

         (7) 

ℎ𝑡
∗ =  ∑ 𝛼𝑡,𝑖 ∗  ℎ𝑖

𝑇
𝑖=1            (8) 

where 𝑊𝑎 and 𝑏𝑎 denote the learnable parameters that map the hidden states ℎ into a weight matrix 𝑒, and T is the sequence 305 

length of the input features. The weight matrix (with the shape of T ×T) is then rescaled by a softmax function to obtain the 

attention weights for each hidden state, which range between 0 and 1 and sum to 1. The softmax function can also enhance 

the importance of elements with higher values in the weight matrix. The weighted hidden states ℎ∗ are finally calculated as 

the matrix multiplication between the attention weights 𝛼 and original hidden states ℎ, which are then fed into a fully 

connected layer to estimate the target variable. Intuitively, the attention weights can reflect the importance of the hidden state 310 

at each time step relative to the current hidden state. Higher attention weights indicate that the corresponding hidden states 

have a greater influence on the estimation of SM at a specific time step. 

In this study, the LSTM-based models were implemented using the open-source PyTorch 2.0 framework. The mean square 

error (MSE) between the models’ output and target SM was used as the loss function. The Adam optimizer was adopted to 

update the learnable parameters of the models, such as the weights and biases in Eq. (1-6), to minimize the loss function 315 

during the training phase. Several key hyperparameters were tuned, including the hidden size, number of epochs, and 

learning rate (Zhang et al., 2021). For each model, the hidden size was determined after testing values of 64, 128, 256, and 

512; the number of epochs after testing 20, 50, 100, and 200; and the learning rate after testing 0.1, 0.01, 0.001, and 0.0001. 

The final settings of the major hyperparameters for the three LSTM-based models are listed in Table 4.  
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Table 4 Key hyperparameters configured for the DL models used in this study. 320 

Hyperparameters LSTM Bi-LSTM AtLSTM Transformer 

Hidden size 256 256 256 64 

Number of heads / / / 4 

Number of epochs 100 100 200 100 

Number of layers 2 1 1 1 

Batch size 100 100 100 100 

Learning rate 1e-3 1e-3 1e-4 1e-3 

Sequence length 425 425 425 365 

3.4 Transformer 

The Transformer network is a DL architecture based entirely on attention mechanisms, dropping the use of recurrent 

structure to avoid the constraint of sequential calculation. After being proposed by Vaswani et al. (2017), Transformer has 

soon become the state-of-the-art neural network for natural language processing tasks, and it has also been successfully 

applied to many other domains such as computer vision (Dosovitskiy et al., 2021) and time series analysis (Wen et al., 2023). 325 

The core component of the Transformer network is the multi-head self-attention layers, which can relate any two positions in 

a sequence to generate representations of the sequence. More specifically, multi-head attention involves applying the 

attention function to multiple sets of key, value, and query vectors in parallel, thus enabling the model to focus on 

information from different parts of the input sequence simultaneously. Unlike the attention function used in the AtLSTM 

model (Eq. (6-7)), the self-attention function used by the Transformer network is called the scaled dot-product attention 𝛼, 330 

which can be calculated as follows: 

𝛼 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)  𝑉          (9) 

where 𝑄, 𝐾, and 𝑉 refer to the query, key, and value vectors, respectively, which are derived by multiplying the embedded 

input sequence with the corresponding learnable projection matrix; 𝑑𝑘  is the dimension of the key and query vectors. 

Additionally, with the help of a positional encoding function, the Transformer network can retain some ordinal information 335 

for elements in the input sequence. A detailed description of Transformer and the multi-head self-attention mechanism can 

be found in Vaswani et al. (2017). Compared with recurrent or convolutional neural networks, the Transformer network can 

efficiently parallelize much larger amounts of computation and capture long-range dependencies in the input sequence more 

easily. Here, we only used the encoder portion of the original Transformer network to map the input features into hidden 

representations, which were then fed into a fully connected layer to output the time-series SM estimates, as displayed in Fig. 340 

2d. The same training samples, optimizer, and loss function used for the LSTM-based models were employed to train the 

Transformer network, with the settings of its hyperparameters also listed in Table 4. In particular, the number of heads is a 

unique hyperparameter of Transformer that refers to the number of parallel self-attention layers of the encoder. 
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3.5 Evaluation of the models and GLASS-AVHRR SM product 

After training the benchmark XGBoost model and the four DL models described above using the same training samples 345 

distributed worldwide, their performance on the test set was then compared from multiple perspectives, including 

comparisons between the DL models and XGBoost model, between the DL models with different attention mechanisms, and 

between the DL models with MTM or MTO architectures. Moreover, the effect of input sequence length on model accuracy 

was investigated using the LSTM-based models, and a preliminary interpretability analysis was performed through 

visualizing the attention weights of both the AtLSTM and Transformer models. Then, the best-performing model, along with 350 

the multi-source input datasets, was employed to generate the global daily GLASS-AVHRR SM product at 5 km resolution 

from 1982 to 2021. To fully assess the derived long-term SM product, different SM datasets and evaluation strategies were 

combined, including overall accuracy evaluation, scatter plots analysis, time-series plots comparison, and spatial consistency 

examination. Specifically, the accuracy of this product was first evaluated against the point-scale ISMN, field-scale 

COSMOS, and upscaled 9 km SMAP CVS in situ SM datasets, respectively. Then, the GLASS-AVHRR SM product was 355 

intercompared with the GLASS-MODIS SM product and two widely used long-term global SM products to investigate their 

spatial consistency. 

4 Results 

4.1 Comparison of model performance 

Table 5 lists the performance metrics achieved by the benchmark tree-based XGBoost model and four DL models on the 360 

training set, validation set, and two types of test sets, respectively. The XGBoost model achieved similar overall accuracy 

across the training, validation, and test sets, with a coefficient of determination (R2) of 0.984 and RMSE of 0.012 m3 m-3 on 

the training set, and an R2 of 0.982 and RMSE of 0.013 m3 m-3 on both the validation and test sets, indicating a low tendency 

for overfitting. The fairly high overall accuracy attained by the benchmark XGBoost model may be attributed to the large 

number of training samples that are evenly distributed across the globe on a daily basis, specifically 135,360 pixels per day 365 

for 3 years. When the size of training samples was reduced by a factor of 100, the accuracy of the XGBoost model dropped 

considerably, with an R2 of 0.96 and RMSE of 0.017 m3 m-3 on the test set. Meanwhile, Table 5 also shows that the accuracy 

of the XGBoost model decreases drastically on the test set with SM observations exceeding 0.4 m3 m-3, yielding an R2 of 

0.413 and RMSE of 0.022 m3 m-3, likely due to the relatively smaller portion of samples at high SM levels. 

In comparison, the LSTM model developed using time-series training samples performed slightly better than the XGBoost 370 

model, with the R2 on the test set increasing to 0.983, and when the Bi-LSTM model was employed, the overall accuracy on 

the test set was further improved, with the R2 increasing to 0.985 and RMSE decreasing to 0.012 m3 m-3. Although the 

increase in the overall accuracy might not be significant, the Bi-LSTM model exhibited significant improvement over the 

XGBoost model at high SM levels, achieving an R2 of 0.482 and RMSE of 0.020 m3 m-3 on the test set for observations 
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exceeding 0.4 m3 m-3. As also can be seen from the density scatter plots in Fig. 3, the majority of samples had SM values 375 

below 0.4 m3 m-3 (indicated by the red dots), where all models achieved high prediction accuracy. However, on the relatively 

infrequent samples with high SM values, where the XGBoost model tended to underestimate, both the LSTM and Bi-LSTM 

models provided more accurate estimates. Given the temporal autocorrelation of SM, these results suggest that learning both 

forward and backward temporal information from the time-series training samples enhances the ability of DL models to 

estimate SM more accurately, especially at high SM levels with sparser samples. 380 

Table 5 Performance metrics of the benchmark XGBoost model and four DL models on the training set, validation set, and 

two types of test sets, respectively. 

Model 

Training set Validation set Test set Test set (> 0.4 m3 m-3) 

R2 
RMSE 

(m3 m-3) 
R2 

RMSE 

(m3 m-3) 
R2 

RMSE 

(m3 m-3) 
R2 

RMSE 

(m3 m-3) 

XGBoost 0.984 0.012 0.982 0.013 0.982 0.013 0.413 0.022 

LSTM 0.986 0.012 0.983 0.013 0.983 0.013 0.424 0.021 

Bi-LSTM 0.988 0.011 0.984 0.012 0.985 0.012 0.482 0.020 

AtLSTM 0.990 0.010 0.986 0.011 0.987 0.011 0.621 0.016 

Transformer 0.990 0.010 0.984 0.012 0.985 0.012 0.460 0.021 

Then, after adding the attention module into the Bi-LSTM model, the derived AtLSTM model achieved the best performance, 

with an R2 of 0.987 and RMSE of 0.011 m3 m-3 on the test set. In contrast, despite that the Transformer model also 

incorporated an attention module, its accuracy was slightly lower than that of the AtLSTM model on the test set and 385 

significantly lower on samples with high SM levels (> 0.4 m3 m-3) in our experiments. As mentioned above, the main 

advantage of the Transformer model is its ability to capture long-range dependencies and handle long sequences effectively. 

However, soil moisture often exhibits high temporal variability, meaning it can change rapidly due to factors such as rainfall 

and evaporation. In this context, short-term adjacent temporal information can be critical for accurate SM estimation. The 

slightly better performance of the AtLSTM model compared with the Transformer model may be attributed to its superior 390 

ability to capture these short-term adjacent dependencies, which are critical for modeling the nuances in rapidly changing 

SM levels. This will be further investigated through the analysis of attentional weights below. Additionally, a feature 

importance analysis was conducted for the best-performing AtLSTM model, as shown in Fig. A2. Specifically, the gradients 

of the model’s output with respect to each input feature were computed on the test set, and the absolute values of these 

gradients were then averaged across all samples and time steps. Input features with larger average gradients are considered to 395 

exert a more significant influence on the model’s predictions. The results indicate that elevation, black-sky visible albedo, 

ERA5-Land reanalysis SM, and slope are the most influential features for the AtLSTM model. 

While the numerical differences in overall accuracy among all these models may not seem remarkable, a more intuitive 

comparison can be drawn from their density scatter plots. As shown in Fig. 3, on the majority of samples, both the best-

performing AtLSTM model and benchmark XGBoost model can achieve high prediction accuracy, resulting in a relatively 400 
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small difference in their overall performance on the test set. However, there remains a small portion of samples that are more 

challenging to predict, on which the SM estimates from the AtLSTM model are much closer to the 1:1 line compared with 

the XGBoost model. Furthermore, the AtLSTM model significantly improves upon the underestimation observed in the 

XGBoost model at high SM levels, achieving an R2 of 0.621 and RMSE of 0.016 m3 m-3 on the test set for observations 

exceeding 0.4 m3 m-3. Overall, while both the XGBoost model and the four DL models can achieve high SM estimation 405 

accuracy, the AtLSTM model yields the highest accuracy among them and performs well across different SM levels with a 

low tendency for overfitting. This suggests that utilizing bidirectional temporal information from the input sequence as well 

as adding an attention module are both effective in further improving the estimation accuracy of SM. 

 

Figure 3 Scatter plots between target SM and predicted SM for the (a) XGBoost, (b) LSTM, (c) Bi-LSTM, (d) AtLSTM and 410 

(e) Transformer models on the test set. The colors of the dots indicate different probability densities, and the black line 

represents the 1:1 line. 

As mentioned in Sect. 3.3, We chose to use the MTM architecture when developing the DL models to output time-series SM 

estimates at once. Here, to compare the accuracy of the MTM architecture with the more commonly used MTO architecture, 

as well as to investigate the effect of input sequence length on model accuracy, we calculated performance metrics for the 415 

LSTM models utilizing these two different architectures under varying lengths of input sequences. Specifically, both types of 

models were trained using input features from a given date (e.g., the first day of 2015) and n days (0-29) prior to that date, 
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respectively, and the accuracy of the models was then evaluated on the test set for that given date. To save training time, the 

number of epochs for these LSTM models was set to 20. It can be seen from the R2 and RMSE curves in Fig. 4a that, as the 

length of input sequence increased, the accuracy of the LSTM model with the MTO architecture also increased, and then the 420 

accuracy leveled off at a sequence length of about 10 days. This indicates that while accounting for temporal information can 

be beneficial for current SM estimation, only the most recent input sequences have a remarkable effect on the model’s 

accuracy. In comparison, the LSTM model with the MTM architecture, which can output a sequence of SM estimates 

simultaneously, achieved similar accuracy to that of the MTO architecture, and its R2 and RMSE curves stabilized at a 

sequence length of about 5 days. This demonstrates the feasibility of adopting the MTM architecture in the LSTM model, 425 

which not only reduces considerable production time but also maintains the estimation accuracy. 

 

Figure 4 Performance metrics of the (a) LSTM models with two different types of architectures (MTO and MTM) and (b) 

AtLSTM model with the MTM architecture trained using varying lengths of input sequences on the test set. The blue and red 

curves represent the R2 and RMSE curves, respectively. 430 

Moreover, we also investigated the effect of input sequence length on the overall accuracy of the AtLSTM model with the 

MTM architecture, and the performance metrics were calculated here based on SM estimates over the entire time series 

instead of on a given date. To save training time and accounting for the smaller learning rate used for the AtLSTM model 

(Table 4), the number of epochs was set to 50. As displayed in Fig. 4b, the overall accuracy of the AtLSTM model increased 

sharply as the length of input sequence increased, and then the accuracy plateaued at a sequence length of about 4 days. The 435 

more rapid stabilization of the AtLSTM model’s accuracy may be attributed to the incorporation of the Bi-LSTM module in 

the model, which can utilize both forward and backward temporal information. In addition, it seems that when the input 

sequence is long enough, the model can automatically learn the necessary temporal information to accurately estimate SM at 

each position in the sequence. However, it should be noted that at the beginning or end of the sequence, the model’s 

accuracy tends to decrease as only forward or backward information can be utilized, which is a common issue encountered 440 

by the LSTM-based models with the MTM architecture. Therefore, to facilitate the production process, the sequence length 

of the LSTM-based models was finally set to 425, and both the first 30 and last 30 values were removed (a rather sufficient 
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discarding number) after the model output the time-series SM estimates, so that an entire year’s SM estimates could be 

obtained in one go. 

Although data-driven DL models are commonly perceived as “black boxes”, there are many techniques that can be employed 445 

to increase the interpretability of DL models. In the case of attention-based deep neural networks, this can be achieved by 

analyzing the distribution of attention weights. In a long sequence, perhaps only a portion of the information is critical to the 

model prediction at a given time step, and the attention mechanism enables the model to focus on these critical positions. In 

particular, the attention module of the AtLSTM model can dynamically adjust the weights of the hidden states output by the 

model at each time step. Figure 5a illustrates the distribution of the averaged attentions weights calculated using the best-450 

performing AtLSTM model on the test set (40,608 samples). To show more detail, only the attention weights of 30 

consecutive days selected from the entire sequence (425 days) are displayed here, and attention weights less than 0.0001 are 

masked out. It is observed that, for the hidden state at each time step in the sequence (vertical axis), the largest attention 

weight was located approximately 3 days around that time step (horizontal axis). This indicates that when the attention 

module of the AtLSTM model learns to readjust the hidden states, it primarily utilizes the temporal information from 455 

adjacent positions in the sequence. 

 

Figure 5 Heatmaps of the averaged attention weights calculated using the (a) AtLSTM and (b) Transformer model on the 

test set (40,608 samples). Only the attention weights of 30 consecutive days selected from the entire sequence are displayed 

here for illustration. 460 

 In contrast, as a core component of the Transformer model, the multi-head self-attention layers can capture various aspects 

of relationships between different positions within a sequence, and the attention weights generated by these layers are then 

directly applied to the embedded input sequence. Figure 5b shows, as a comparison, the distribution of attention weights 

calculated by averaging the outputs from the four attention heads of the Transformer model. The attention weights heatmap 

of the Transformer model is quite different from that of the AtLSTM model, with the weight at each position being much 465 

https://doi.org/10.5194/essd-2024-553
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



19 

 

smaller and dispersed. This is likely because the self-attention module can relate any two positions in the sequence, and 

inputs from more distance positions may contribute more to the model output at the current time step. In addition, for each 

time step in the sequence (vertical axis), there were some common positions (horizontal axis) with larger weights that were 

more important for model prediction. Despite the distinct attention mechanisms employed by these two DL models, both of 

them achieved high SM estimation accuracy. Given that SM is temporally autocorrelated and highly variable over time, the 470 

slightly better performance of the AtLSTM compared to the Transformer model may be attributed to that it extracts temporal 

information mainly from adjacent positions in the sequence, rather than from more distance ones, for SM estimation. 

4.2 Validation of the GLASS-AVHRR SM product 

After generating the GLASS-AVHRR SM product using the best-performing AtLSTM model with the MTM architecture, 

permanent snow and ice as well as water bodies were masked out with the help of the MODIS land cover type product 475 

(MCD12C1) (Friedl and Sulla-Menashe, 2022). The derived SM product was then evaluated against three types of in situ 

SM datasets at different spatial scales. The first type is the point-scale ISMN SM dataset, which is distributed globally and 

covers a wide range of land cover types. There were 1672 ISMN stations and 715 spatially representative stations available 

for validation during Period Ⅰ (2000–2018). The distribution of validation metrics achieved by the GLASS-AVHRR SM 

product on these partially independent ISMN stations during Period Ⅰ, grouped by all stations and representative stations, is 480 

presented in Fig. 6, alongside those of the GLASS-MODIS and ERA5-Land SM products for comparison. The GLASS-

AVHRR SM product achieved comparable performance to that of the GLASS-MODIS SM product across all ISMN stations 

and representative stations during Period Ⅰ. In addition, both GLASS SM products performed significantly better at the 

representative stations. This demonstrates the high level of consistency in accuracy between the two GLASS SM products. 

Note that the validation metrics for the GLASS-MODIS product were derived using a site-independent cross-validation 485 

method, which was designed to accurately reflect the product’s performance over unknown areas. Given the consistency in 

the distribution of validation metrics between the GLASS-AVHRR and GLASS-MODIS SM products, the accuracy 

achieved by the GLASS-AVHRR product at these partially independent stations should also approach its true accuracy. In 

contrast, although the ERA5-Land SM product achieved a similar distribution of R to the two GLASS SM products across 

all ISMN stations and representative stations, it exhibited much larger biases and ubRMSE values. 490 

To conduct a more independent evaluation of the GLASS-AVHRR SM product, the ISMN SM dataset from Period Ⅱ (1982–

1999) was also collected. After excluding stations that overlapped with the 715 representative stations from Period Ⅰ, only 45 

independent stations remained for evaluation during Period II. The observations at these stations were also quite limited, 

hence the validation metrics derived from them may not provide a comprehensive assessment. Nevertheless, it can be seen 

from Fig. 6 that the GLASS-AVHRR product achieved rather high accuracy at these stations, with a median R of 0.73 and a 495 

median ubRMSE of 0.041 m3 m-3. Likewise, while the ERA5-Land SM product exhibited a similar distribution of R to the 

GLASS-AVHRR product at these stations, it achieved much larger biases and ubRMSE values. The second type of in situ 

SM dataset comprises field-scale measurements from three COSMOS networks: COSMOS, COSMOS-UK, and COSMOS-
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Europe, which can provide an independent evaluation of the GLASS-AVHRR SM product at an intermediate scale. As 

shown in Fig. 6, both the GLASS-AVHRR and ERA5-Land SM products achieved good performance across all three 500 

COSMOS networks. Yet, their accuracies varied considerably across these networks, with the median R ranging from 0.63 

to 0.79 and the median ubRMSE ranging from 0.044 to 0.065 m3 m-3 for the GLASS-AVHRR product. This variability may 

be attributed to the different footprint radii of COSMOS sensors, which result in varying degrees of spatial 

representativeness. Besides, the biases of the GLASS-AVHRR SM product across the COSMOS networks were much larger 

than those observed across the ISMN network, particularly on the COSMOS-UK network, where the median bias reached -505 

0.09 m3 m-3. This is likely due to the considerably greater sensing depth of the COSMOS sensors (15–83 cm), compared to 

the GLASS-AVHRR SM product (up to 5 cm). Meanwhile, although the first-layer (0–7 cm) ERA5-Land SM product was 

used here for evaluation, it still exhibited large wet biases across these COSMOS networks, further suggesting its extensive 

overestimation issue. 

 510 
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Figure 6 Boxplots of R, bias, and ubRMSE for the GLASS-AVHRR SM product across different groups of ISMN stations 

and three field-scale COSMOS networks, in comparison with the GLASS-MODIS and ERA5-Land SM products. The 

number above each box represents the median value of the metrics across all stations within each network. 

Despite the high accuracy achieved when validating the GLASS-AVHRR SM product using both the point-scale ISMN and 

field-scale COSMOS in situ SM datasets, the validation results were inevitably affected by the scale differences between 515 

these datasets. Therefore, the upscaled 9 km SMAP CVS in situ SM dataset from 22 different locations was also utilized to 

validate the GLASS-AVHRR SM product from 2015 to 2021 as a complement. Specifically, the mean SM values of the 5 

km GLASS-AVHRR SM product within a 2 × 2 window corresponding to each 9 km SMAP CVS grid were first calculated, 

and then the validation metrics for the GLASS-AVHRR SM product were estimated at each CVS, as listed in Table 6. As a 

comparison, validation metrics for the ERA5-Land SM product (~ 9 km horizontal resolution) were also calculated at each 520 

CVS and presented in the table. 

Table 6 Validation metrics for the GLASS-AVHRR and ERA5-Land SM products at 22 upscaled 9 km SMAP core 

validation sites. 

Site 

GLASS-AVHRR ERA5-Land 

LC No. 
R 

bias 

(m3 m-3) 

RMSE 

(m3 m-3) 

ubRMSE 

(m3 m-3) 
R 

Bias 

(m3 m-3) 

RMSE 

(m3 m-3) 

ubRMSE 

(m3 m-3) 

HOBE 0.61  -0.07 0.100  0.069  0.63 -0.02 0.069 0.066 Croplands 252 

Kenaston1 0.76  -0.07 0.078  0.036  0.72 0.02 0.051 0.048 
Croplands 

87 

Kenaston2 0.80  -0.08 0.084  0.035  0.77 0.01 0.046 0.045 87 

Carman 0.71  0.01 0.042  0.042  0.61 0.10 0.115 0.053 Croplands 145 

South Fork 0.61  0.00 0.062  0.062  0.67 0.07 0.096 0.060 Croplands 179 

St. Josephs 0.71  -0.07 0.077  0.037  0.75 0.05 0.063 0.035 Croplands 115 

REMEDHUS1 0.87  0.05 0.051  0.022  0.86 0.16 0.172 0.071 
Croplands 

557 

REMEDHUS2 0.86  -0.04 0.050  0.034  0.84 0.09 0.101 0.046 540 

Valencia 0.54  -0.01 0.047  0.045  0.59 0.08 0.111 0.078 Savannas 107 

Tonzi Ranch 0.95  0.00 0.030  0.030  0.94 0.09 0.097 0.045 Savannas 79 

Fort Cobb 0.81  0.01 0.034  0.034  0.83 0.08 0.085 0.040 Grasslands 248 

Little Washita 0.78  0.01 0.039  0.038  0.77 0.05 0.071 0.049 Grasslands 225 

Walnut Gulch1 0.71  0.01 0.030  0.027  0.69 0.01 0.062 0.061 
Shrublands 

159 

Walnut Gulch2 0.74  0.04 0.042  0.021  0.71 0.11 0.126 0.062 189 

Little River 0.36 0.00 0.043 0.043 0.76 0.22 0.225 0.040 
Cropland/ Natural 

mosaic 
84 

TxSON1 0.87  0.00 0.024  0.024  0.88 0.09 0.100 0.040 Grasslands 55 
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TxSON2 0.90  0.02 0.028  0.023  0.91 0.07 0.076 0.038 103 

Niger  0.73  0.00 0.018  0.017  0.69 0.04 0.061 0.046 Grasslands 138 

Benin 0.91  0.04 0.052  0.037  0.88 0.22 0.228 0.062 Savannas 217 

Monte Buey 0.78  -0.07 0.081  0.035  0.74 0.01 0.053 0.052 Croplands 120 

Yanco1 0.92  -0.02 0.049  0.043  0.87 0.04 0.064 0.050 Croplands 

Grasslands 

121 

Yanco2 0.90  0.00 0.035  0.035  0.86 0.09 0.095 0.041 117 

Average 0.77 -0.01 0.050 0.037 0.77 0.08 0.099 0.053 / / 

All 0.82  -0.01 0.054  0.054  0.65  0.09  0.119  0.083  / 3924 

 

Figure 7 Scatter plots between the upscaled in situ SM and the corresponding estimated SM from the GLASS-AVHRR or 525 

ERA5-Land product at each SMAP core validation site. 

At most of the CVSs, the GLASS-AVHRR SM product achieved similar R values to the ERA5-Land SM product, except at 

the Little River site, where the R value for the GLASS-AVHRR product was significantly lower. This is probably because 

the land cover type at this site is “Cropland or Natural mosaic”, making the upscaled in situ SM measurements less 

https://doi.org/10.5194/essd-2024-553
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



23 

 

representative. Meanwhile, while the GLASS-AVHRR SM product exhibited notable dry biases only at a few CVSs, the 530 

ERA5-Land SM product showed large wet biases at most of the CVSs, as also reported in detail by Lal et al. (2022). The 

varying degrees of bias in these two SM products can be more intuitively observed through their scatter plots against the 

upscaled in situ SM at each CVS (Fig. 7). As one of the main inputs for generating the GLASS-AVHRR SM product, the 

ERA5-Land reanalysis SM exhibited notable wet biases at almost all CVSs, especially at REMEDHUS1, Little River, and 

Benin, which were largely corrected by the GLASS-AVHRR product, with the data points on the scatter plots being much 535 

closer to the 1:1 line. This can be attributed to the use of the GLASS-MODIS SM product as training target, although it may 

have also contributed to the slight dry bias in the GLASS-AVHRR SM product, given that optical and thermal satellite SM 

estimates typically represent a shallower depth than in situ SM datasets. In addition, at the CVS where the ERA5-Land 

product exhibited a large wet bias, the RMSE and ubRMSE values of the GLASS-AVHRR product were often much lower 

than those of the ERA5-Land product. The average R and ubRMSE values achieved by the GLASS-AVHRR SM product at 540 

22 CVSs were 0.77 and 0.037 m3 m-3, respectively, similar to those reported for the 9 km SMAP-Sentinel L2 SM product, 

which were 0.79 and 0.035 m3 m-3, respectively (Das et al., 2020). When combining all the CVS in situ SM measurements, 

an overall R of 0.82 and ubRMSE of 0.054 m3 m-3 were obtained by the GLASS-AVHRR SM product, showing significant 

improvement over the ERA5-Land SM product, which had values of 0.65 and 0.083 m3 m-3, respectively. This is also 

evident from the more concentrated scatter points of the GLASS-AVHRR SM product displayed in Fig. 7. 545 

To intuitively examine the ability of the GLASS-AVHRR SM product to capture temporal variations in measured SM and its 

temporal consistency with the GLASS-MODIS product, time-series curves for the GLASS-AVHRR (aggregated at 10 km), 

GLASS-MODIS (aggregated at 9 km), and in situ SM (upscaled at 9 km) at six CVSs with different land cover types were 

plotted, with the ERA5-Land SM product (~ 9 km horizontal resolution) also included for reference (Fig. 8). Through 

extending the GLASS-MODIS SM product from 2000 back to 1982, the GLASS-AVHRR SM product attained complete 550 

temporal coverage from 1982 to 2021, and a high degree of temporal consistency between these two products could be 

observed from the time-series plots. Despite that the ERA5-Land SM product also had long-term temporal coverage, it 

exhibited large wet biases when compared with the upscaled in situ SM at all six CVSs, whereas both the GLASS-MODIS 

and GLASS-AVHRR SM products aligned more closely with the dynamic ranges of measured SM. As mentioned above, the 

GLASS-AVHRR SM product exhibited notable dry biases at a few CVSs. However, as can be seen from the time-series 555 

curves at REMEDHUS2 (Fig. 8a) and Yanco1 (Fig. 8f), suspicious abrupt rises in measured SM, as well as temporary spikes 

in SM (possibly caused by irrigation), might also have partially contributed to these dry biases. Overall, the GLASS-

AVHRR SM product could well capture the temporal variations in measured SM at these CVSs, except for the Little River 

site (Fig. 8d) where the land cover type is “Cropland or Natural mosaic”. Measured SM at this site did not show a clear 

seasonal pattern as at the other sites, and there was less consistency between the two GLASS SM products, likely due to the 560 

stronger spatial heterogeneity of this site. Besides, at the Walnut Gulch1 site (Fig. 8c) where the dominant land cover type is 

“shrubland”, while the GLASS-AVHRR product captured high SM values well, it slightly overestimated when the measure 

SM approached zero. 
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Figure 8 Time-series plots of the GLASS-AVHRR (aggregated at 10 km), GLASS-MODIS (aggregated at 9 km), ERA5-565 

Land (~ 9 km horizontal resolution), and in situ SM (upscaled at 9 km) at six CVSs with different land cover types for the 

period 1982–2021. 

4.3 Spatial consistency with global SM products 

To further investigate the spatial consistency between the GLASS-AVHRR and GLASS-MODIS SM products, as well as 

with two widely used long-term global SM products, mean SM maps of the GLASS-AVHRR, GLASS-MODIS, ESA CCI, 570 

and ERA5-Land products were plotted for January and July of 2016, respectively (Fig. 9). It can be seen that the GLASS-

AVHRR SM product had the most complete spatial coverage among these products, after masking out permanent snow and 

ice and water bodies (Fig. 9g-h). Despite the spatiotemporal continuity of the ERA5-Land reanalysis SM product, it yielded 

negative SM values close to zero in parts of the northern Africa, especially in July, which were masked out here (Fig. 9c-d). 

The ESA CCI combined SM product exhibited substantial spatial gaps above 30° N in January, in addition to the persistent 575 

absence of valid estimates in some densely vegetated regions (e.g., the Congo River and Amazon River basins), due to the 

attenuation of microwave signals in these areas (Fig. 9a-b) (Dorigo et al., 2017). Meanwhile, because of the lack of GLASS-

MODIS albedo products at high latitudes during the cold season, GLASS-MODIS SM estimates were unavailable at high 

latitudes (above 60° N) in January (Fig. 9e). Nevertheless, this does not affect the complete spatial coverage of the GLASS-

AVHRR SM product, although it should still be used with caution when LST is below zero degree Celsius. 580 

In terms of the spatial distribution patterns of SM, the GLASS-AVHRR and GLASS-MODIS SM products showed a high 

degree of consistency, which further demonstrates the effectiveness of the developed DL model. In general, both GLASS 

SM products were slightly drier than the ESA CCI combined SM product, probably because optical and thermal satellite SM 

estimates typically represent a shallower depth compared to microwave SM products. In contrast, the ERA5-Land SM 

product was much wetter than the other three SM products, especially in regions with high SM levels. While the three 585 

satellite SM products generally ranged between 0 and 0.5 m3 m-3, the ERA5-Land reanalysis SM product showed a range of 

0–0.7 m3 m-3, indicating a clear tendency for overestimation. Although varying degrees of biases existed among the four 

global SM products, similar spatial patterns could be observed in all of them, characterized by higher SM values in the 

eastern United States, northern South America, central Africa, and southern Asia, and lower SM values in the western USA, 

Middle East, northern and southern Africa, and Australia. Moreover, July was slightly drier than January in all four SM 590 

products, particularly in regions such as the western USA, eastern South America, and central Asia. 
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Figure 9 Mean global SM maps of the (a–b) 0.25° ESA CCI combined, (c–d) 0.1° ERA5-Land, (e–f) 1 km GLASS-MODIS, 

and (g–h) 5 km GLASS-AVHRR SM product in January and July of 2016. 

Figure 10 presents a zoomed-in comparison between the four SM products across the Tibetan Plateau in July 2016. The 595 

Tibetan Plateau, located in Central Asia, is the highest and most extensive plateau in the world, with an average elevation 

exceeding 4,000 meters. Its climate is extreme and varied, featuring significant seasonal and interannual variations. The 

unique topographic and climatic characteristics of the Tibetan Plateau make it one of the hotspots for global climate change 

research. As can be observed from Fig. 10, all of the SM products show similar spatial distribution patterns: lower SM levels 

in the western and northern parts of the plateau, where rainfall is scarce and vegetation is sparse, and higher SM levels in the 600 
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eastern and southern regions, where rainfall is more abundant and vegetation is denser. The GLASS-AVHRR SM product 

also exhibited high spatial consistency with the GLASS-MODIS SM product over the Tibetan Plateau, indicating that the 

adopted DL model effectively learned spatial features from the target SM product without introducing significant biases. 

Compared to the other three products, the ERA5-land SM product was much wetter in the southern part of the plateau, and 

the large positive bias in the ERA5-land reanalysis SM over the Tibetan Plateau was also reported in a previous study (Xing 605 

et al., 2021). Notably, there were many small patches with abrupt SM changes in the ERA5-land product (Fig. 10c), which 

were markedly improved in both the GLASS-AVHRR and GLASS-MODIS SM products. Moreover, compared to the 

ERA5-land and ESA CCI SM products at coarser resolutions, the GLASS-AVHRR SM product contained much richer 

spatial details and could well capture the distribution patterns of topography and vegetation. 

 610 

 

Figure 10 Zoomed-in comparison of the (a) 5 km GLASS-AVHRR, (b) 1 km GLASS-MODIS, (c) 0.1° ERA5-Land, and (d) 

0.25° ESA CCI combined SM products across the Tibetan Plateau in July 2016. 

5 Discussion 

This study aimed to develop a long-term global SM estimation model based on deep learning, so as to derive a temporally 615 

consistent SM product with reliable accuracy over the last four decades. Therefore, we mainly explored two types of widely 

used DL models that are adept at processing sequential data: the LSTM-based models and Transformer. While LSTM has 
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been utilized to retrieve SM since 2017 (Fang et al., 2017), the state-of-the-art Transformer model is still rarely used for SM 

estimation. Specifically, the accuracy of these DL models was compared from multiple perspectives, such as comparisons 

between the DL models and benchmark tree-based XGBoost model, between models with different attention mechanisms or 620 

different application architectures. Results showed that the Attention-based LSTM (AtLSTM) model achieved the best 

performance on the test set, and the MTM architecture could output a sequence of SM estimates simultaneously while 

maintaining similar accuracy to that of the MTO architecture. Note that, Transformer was reported to outperform LSTM-

based models in several hydrological applications due to its ability to better handle long sequences and relate any two 

positions in the sequence (Amanambu et al., 2022; Yin et al., 2022), and according to Xu et al. (2021), it achieved similar 625 

accuracy to the AtLSTM model in multi-temporal crop mapping tasks. However, Zeng et al. (2023) found that a simple 

linear model can outperform Transformer in long-term time-series forecasting tasks, and ascribed this to the temporal 

information loss associated with the self-attention mechanism. Thus, the suitability of Transformer for time-series 

forecasting or estimating remains a topic of ongoing debate. In our study, the accuracy of the Transformer model was 

slightly lower than that of the AtLSTM model, particularly for samples with high SM levels (> 0.4 m3 m-3). Given the high 630 

temporal variability of SM and the relatively short temporal length of SM memory, which typically ranges from 5 to 40 days 

and diminishes with increasing time lags (Orth and Seneviratne, 2012), this result may be attributed to the superior ability of 

the AtLSTM model to capture short-term adjacent dependencies. Yet, additional experiments with diverse training datasets 

are necessary to confirm the general applicability of this result. 

We also investigated the effect of input sequence length on model accuracy, and it was found that the overall accuracy of the 635 

AtLSTM model with the MTM architecture leveled off at a sequence length of about 4 days. Subsequent analysis of the 

distribution of attention weights indicated that the model could automatically learn the necessary temporal information from 

adjacent positions in the sequence to accurately estimate SM. Despite that the overall accuracy of the LSTM-based models 

with the MTM architecture would converge as long as the length of the input sequence is sufficiently long, the models’ 

accuracy is typically lower at the beginning or end of the sequence, and the affected estimates need to be identified and 640 

removed. In contrast, most of the current LSTM or Transformer application architecture is MTO and their accuracy remains 

unaffected at both ends of the sequence. But it is still necessary to identify the optimal sequence length during the training 

process to improve model efficiency, as the amount of input data would increase substantially with increasing sequence 

length. Here, we mainly explored the ability of the LSTM-based models and Transformer to capture temporal information 

from time-series input datasets for SM estimation. Future research could consider incorporating spatial patterns by 645 

combining the AtLSTM or Transformer models with CNNs, or adapting the network of Transformer to improve its 

applicability for time-series estimating tasks. Moreover, different input features and data sources can also be integrated to 

investigate whether the estimation accuracy of SM can be further improved. 

To examine the accuracy and consistency of the generated four-decade global daily GLASS-AVHRR SM product, different 

strategies were combined to fully evaluate it, including the validation against in situ SM datasets from point-scale ISMN 650 

stations, field-scale COSMOS networks, and upscaled 9 km SMAP CVSs, respectively, as well as the intercomparison with 
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two widely used long-term global SM products. However, the evaluation of the GLASS-AVHRR SM product is still subject 

to certain limitations. The ISMN in situ SM dataset prior to 2000 is relatively scarce, with only 45 independent stations 

available for evaluation during this period, and large scale difference exists between this point-scale SM dataset and the 5 km 

GLASS-AVHRR SM product. The COSMOS sensors generally have varying footprint radii and sensing depths, which can 655 

lead to the spatial and vertical representativeness issues. Additionally, there is only a limited number of upscaled SMAP 

CVSs, and the data collected may also contain errors caused by varying degrees of spatial representativeness. Although 

validation results showed that high accuracy was achieved by the GLASS-AVHRR SM product at different spatial scales, its 

accuracy was inevitably influenced by the GLASS-MODIS SM product, which was used as the training target for the 

corresponding SM estimation model. Therefore, more representative long-term in situ SM datasets are needed to better 660 

validate and further improve the quality of the long-term global SM product. 

Intercomparison with the long-term ERA5-Land and ESA CCI combined SM products showed that the derived GLASS-

AVHRR SM product achieved the most complete spatial coverage, contained much richer spatial details, and remained 

unaffected by the large wet biases present in the input ERA5-Land SM product. Since no single microwave sensor covered 

the sufficiently long time period (> 30 years) required for a climate data record, SM products retrieved from multiple sensors 665 

using different algorithms were synthesized to generate the ESA CCI combined SM product, which also led to variations in 

its accuracy over time and space (Dorigo et al., 2012). In contrast, the GLASS-AVHRR SM product was estimated using 

mainly the seamless GLASS-AVHRR albedo and LST products retrieved from the long-archived AVHRR satellite 

observations spanning four decades, which ensured its spatial and temporal completeness and consistency. Moreover, 

although microwave sensors are more sensitive to SM, their signal are significantly attenuated in densely vegetated areas, 670 

resulting in persistent data gaps in the ESA CCI product. While the GLASS-AVHRR SM product is less accurate in these 

regions (with a median R of 0.57 at 20 COSMOS forest stations), it can provide a valuable complement to microwave SM 

products. Nevertheless, greater efforts should be devoted to both the development and validation of long-term SM climate 

data records, and it is also crucial to assess the long-term trends in these SM datasets. 

6 Data availability 675 

The seamless global 5 km SM product (GLASS-AVHRR SM) at daily scale from 1982 to 2021 is freely accessible at 

https://glass.hku.hk/casual/GLASS_AVHRR_SM/. Additionally, the annual average GLASS-AVHRR SM dataset was also 

generated, which can be downloaded from https://doi.org/10.5281/zenodo.14198201 (Zhang et al., 2024). Note that this 

product represents the volumetric water content in the uppermost soil layer (0–5 cm), with areas of permanent snow and ice 

and water bodies masked. 680 
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7 Conclusions 

A four-decade (1982–2021) seamless global SM product at 5 km resolution was derived here, denoted as the GLASS-

AVHRR SM product. This product was estimated using mainly the long-archived AVHRR satellite observations and multi-

source datasets based on deep learning. Specifically, a large number of evenly distributed training samples extracted from 

the global 1 km daily GLASS-MODIS SM product were used as target to train three LSTM-based models (LSTM, Bi-LSTM, 685 

and AtLSTM) and a Transformer model, with an XGBoost model employed as the benchmark. After identifying the 

AtLSTM as the best-performing model, it was ultimately adopted to generate the long-term GLASS-AVHRR SM product, 

which was then fully evaluated for reliability and consistency. The main results are summarized as follows: 

(1) Evaluation of the models on the test set showed that all four DL models outperformed the benchmark XGBoost 

model, particularly at high SM levels (> 0.4 m3 m-3). Notably, the AtLSTM model achieved the best performance, 690 

with an R2 of 0.987 and RMSE of 0.011 m3 m-3, and its SM estimates were much closer to 1:1 line than those from 

other models. These results indicate that utilizing bidirectional temporal information from the input sequence as well 

as adding an attention module are both effective in improving the estimation accuracy of SM. Meanwhile, The MTM 

architecture adopted in this study achieved similar accuracy to that of the MTO architecture, while being able to 

output a sequence of SM estimates simultaneously and reduce considerable production time. 695 

(2) The AtLSTM model with the MTM architecture was then employed to investigate the effect of input sequence length 

on model accuracy, and it was found that the overall accuracy of the model leveled off at a sequence length of about 

4 days. Further analysis of attention weights revealed that the AtLSTM model with the MTM architecture could 

automatically learn the necessary information from adjacent positions in the sequence to accurately estimate SM at 

each position. In contrast, the temporal information learned by the self-attention module of the Transformer model 700 

was more dispersed distributed, and the slightly lower accuracy of the Transformer model than the AtLSTM model 

might be attributed to the typically high temporal variability of SM and that short-term adjacent temporal information 

played a more critical role in the accurate estimation of SM. 

(3) The derived GLASS-AVHRR SM product was first evaluated using 45 independent point-scale ISMN stations prior 

to 2000, resulting in a median R of 0.73 and ubRMSE of 0.041 m3 m-3. Then, the product was validated against SM 705 

datasets from three post-2000 field-scale COSMOS networks, with median R values ranging from 0.63 to 0.79 and 

median ubRMSE values between 0.044 and 0.065 m3 m-3. Validation of the GLASS-AVHRR SM product at 22 

upscaled 9 km SMAP CVSs yielded an overall R of 0.82 and ubRMSE of 0.054 m3 m-3. Whereas the ERA5-Land 

SM product had large wet biases at most of the CVSs, the GLASS-AVHRR SM product basically corrected these 

biases. Moreover, the time-series plots at six CVSs further demonstrated that the GLASS-AVHRR SM product could 710 

well capture the temporal variations in measured SM and showed a high degree of temporal consistency with the 

GLASS-MODIS SM product. 
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(4) Finally, the GLASS-AVHRR SM product was intercompared with two widely used long-term global SM products to 

investigate their spatial consistency. With the most complete spatial coverage, the GLASS-AVHRR SM product was 

slightly drier than the ESA CCI combined SM product, possibly due to the shallower depth it represents, whereas the 715 

ERA5-Land SM product exhibited a clear tendency for overestimation. While similar spatial patterns of SM could be 

observed in all of these products, the GLASS-AVHRR SM product contained much richer spatial details than the two 

long-term SM products at coarser resolutions. 

Our study demonstrates the feasibility of utilizing the attention-based DL model and AVHRR satellite observations to 

generate long-term global SM product. The derived GLASS-AVHRR SM product has the advantages of long-term coverage, 720 

spatial and temporal integrity, reliable accuracy and consistency. As a reliable extension of the GLASS-MODIS SM product 

and a valuable complement to microwave SM products, this four-decade global SM product will be beneficial for a range of 

large-scale climate change-related research. Future studies could combine other DL models or integrate different data 

sources to further improve the quality of the long-term SM product. 

Appendix A: Supplementary figures 725 

 

Figure A1 The spatial distribution of SM stations for each in situ SM dataset used in this study. Period Ⅰ refers to 2000–2018 

and Period Ⅱ refers to 1982–1999 
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Figure A2 Importance ranking of 11 input features for the AtLSTM model based on gradients analysis 730 
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