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Abstract. Soil moisture (SM) data records longer than 30 years are critical for climate change research and various 

applications. However, only a few such long-term global SM datasets exist, and they often suffer from large biases, low 

spatial resolution, or spatiotemporal incompleteness. Here, we generated a consistent and seamless global surface SM 

product (0–5 cm) spanning 1982 to 2021 using a deep learning (DL) model. The model was trained with the GLASS-

MODIS SM product and was designed to integrate four decades of Advanced Very High Resolution Radiometer (AVHRR)-15 

derived albedo and land surface temperature, ERA5-Land SM, as well as terrain and soil texture datasets as input features. 

Considering the temporal autocorrelation of SM, we explored two types of DL models that are adept at processing sequential 

data, including three long short-term memory (LSTM)-based models, i.e., the basic LSTM, Bidirectional LSTM (Bi-LSTM), 

and Attention-based LSTM (AtLSTM), as well as a Transformer model. We also compared the performance of the DL 

models with the tree-based eXtreme Gradient Boosting (XGBoost) model, known for its high efficiency and accuracy. Our 20 

results show that all four DL models outperformed the benchmark XGBoost model, with the AtLSTM model achieving the 

highest accuracy on the test set, particularly at high SM levels (> 0.4 m3 m-3). These results suggest that under some 

challenging conditions, utilizing temporal information as well as adding an attention module can effectively enhance the 

estimation accuracy of SM. Subsequent analysis of attention weights revealed that the AtLSTM model could automatically 

learn the necessary temporal information from adjacent positions in the sequence, which is critical for accurate SM 25 

estimation. The best-performing AtLSTM model was then adopted to produce a four-decade seamless global SM dataset at 5 

km spatial resolution, denoted as the GLASS-AVHRR SM product. Validation of the GLASS-AVHRR SM product using 45 

independent International Soil Moisture Network (ISMN) stations prior to 2000 yielded a median correlation coefficient (R) 

of 0.73 and unbiased RMSE (ubRMSE) of 0.041 m3 m-3. When validated against SM datasets from three post-2000 field-

scale COsmic-ray Soil Moisture Observing System (COSMOS) networks, the median R values ranged from 0.63 to 0.79, 30 

and the median ubRMSE values ranged from 0.044 to 0.065 m3 m-3. Further validation across 22 upscaled 9 km Soil 

Moisture Active Passive (SMAP) core validation sites indicated that it could well capture the temporal variations in 
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measured SM and remained unaffected by the large wet biases present in the input ERA5-Land SM product. Moreover, 

characterized by complete spatial coverage and low biases, this four-decade, 5 km GLASS-AVHRR SM product exhibited 

high spatial and temporal consistency with the 1 km GLASS-MODIS SM product, and contained much richer spatial details 35 

than both the long-term ERA5-Land SM product (0.1°) and European Space Agency Climate Change Initiative combined 

SM product (0.25°). The annual average GLASS-AVHRR SM dataset from 1982 to 2021 is available at 

https://doi.org/10.5281/zenodo.14198201 (Zhang et al., 2024b), and the complete product can be freely downloaded from 

https://glass.hku.hk/archive/SM/AVHRR/.  

1 Introduction 40 

Soil moisture (SM) is an essential climate-sensitive variable that exhibits high spatial and temporal variability. It can be 

measured directly by in situ sensors or indirectly through model simulations or remote sensing techniques (Liang and Wang, 

2020). Accurate knowledge of the spatial and temporal distribution of SM can benefit applications across various Earth 

system domains, including climate, hydrology, and agriculture (Dorigo et al., 2017; Peng et al., 2021a). While local- to 

regional-scale hydrological and agricultural applications like watershed runoff modeling, evapotranspiration estimation, and 45 

crop yield prediction demand SM products with high spatial resolution (≤ 1 km) (Hssaine et al., 2018; Schoener and Stone, 

2019; Zhuo et al., 2019), continental- to global-scale climate change-related applications, such as SM trend analyses and 

drought monitoring, generally require long-term data availability (> 30 years), in addition to moderate spatial resolution and 

high accuracy (Cheng et al., 2015; Grillakis, 2019). 

Long-term point-scale SM can be measured directly by in situ sensors, thus great efforts have been devoted worldwide to 50 

deploying and maintaining a series of operational SM networks. In situ SM datasets from some networks were shared by 

data organizations, which were then processed and released in a harmonized format to the public by the International Soil 

Moisture Network (ISMN) data repository (Dorigo et al., 2021). Still, these networks are too sparse, unevenly distributed in 

space, and each covers a different observation period, hindering their use in large-scale applications. Currently, large-scale 

SM products are typically obtained through model simulations or remote sensing techniques. Driven by long-term forcing 55 

variables, land surface models or data assimilation systems can simulate decades of spatiotemporally continuous SM 

products at the global scale, with an increasingly finer spatial resolution. Several commonly used SM products include those 

generated by the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) at 0.5° from 1980 

to the present (Gelaro et al., 2017), the Global Land Data Assimilation System version 2 (GLDAS-2) at 1°/0.25° from 1948 

to the present (Rodell et al., 2004), and the land component of the fifth generation of European ReAnalysis (ERA5-Land) at 60 

0.1° from 1950 to the present (Muñoz-Sabater et al., 2021). Recently, models that focus on the dynamic simulation of 

evapotranspiration and SM, such as the fourth generation of the Global Land Evaporation Amsterdam Model (GLEAM4) 

(0.1°, 1980–2023) and the Simple Terrestrial Hydrosphere model, version 2 (SiTHv2) (0.1°, 1982–2020), have also provided 

long-term global SM products by integrating multi-source satellite data and hydrometeorological variables (Miralles et al., 

https://doi.org/10.5281/zenodo.14198201
https://glass.hku.hk/archive/SM/AVHRR/
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2025; Zhang et al., 2024a). Yet, these SM products may suffer from large uncertainties arising from defective forcing data, 65 

imperfect model parameterization, and the uneven spatial distribution of input meteorological observations, particularly the 

limited observational coverage in tropical regions. (Ling et al., 2021; Zhang et al., 2024a). 

Alternatively, microwave remote sensing techniques have been utilized for SM retrieval since the 1970s (Schmugge et al., 

1974). Various global SM products have been developed from a range of active or passive microwave sensors, such as the 

advanced scatterometer aboard the Meteorological Operational Satellites (Bartalis et al., 2007), the microwave radiation 70 

imager on Fengyun-3 satellites (Kang et al., 2021), and the L-band radiometers on the Soil Moisture and Ocean Salinity 

(SMOS) and Soil Moisture Active Passive (SMAP) satellites (Chan et al., 2018; Entekhabi et al., 2010; Kerr et al., 2012; Li 

et al., 2022c, b; Wigneron et al., 2021). However, the temporal coverage of these single-sensor SM products is typically 

short, as constrained by the operational lifespan of the satellites. In this context, the European Space Agency (ESA) Climate 

Change Initiative (CCI) program released a long-term global SM product spanning the period since 1978, which merged 75 

multiple active and passive microwave SM products retrieved from different satellite instruments (Dorigo et al., 2017). 

Despite being the longest satellite SM dataset currently available, the ESA CCI combined SM product has a relatively low 

spatial resolution (0.25°) and incomplete spatial coverage, which may restrict its usage in certain applications. According to 

Zheng et al. (2023), the percentage of missing data in the ESA CCI combined SM product ranges from 21.8% to 94.41% at 

the daily scale during the period from 2000 to 2020. 80 

In contrast, optical and thermal remote sensing techniques are characterized by long observation period, rich spectral bands, 

and high spatial resolution, but their relatively low sensitivity to SM poses challenges in deriving long-term global SM 

product solely from optical and thermal satellite observations. Over the past few decades, optical and thermal datasets have 

been extensively employed to downscale the coarse-scale microwave or model-simulated SM products. Most of these 

downscaling studies empirically or physically relate vegetation and temperature parameters to SM conditions based on the 85 

universal triangle concept (Gillies and Carlson, 1995; Merlin et al., 2012; Piles et al., 2011). A detailed review of the 

strengths and limitations of various SM downscaling algorithms can refer to Sabaghy et al. (2018). In recent years, machine 

learning models have gradually gained popularity in SM estimation and the downscaling of coarse-scale SM products, such 

as the SMAP, ERA5-Land, and ESA CCI SM products (Cheng et al., 2023; Guevara et al., 2021; Karthikeyan and Mishra, 

2021; Zhang et al., 2023; Zheng et al., 2023), due to their flexibility to integrate multi-source datasets and ability to 90 

implicitly learn the non-linear relationships between SM and its influencing factors. However, the above-mentioned 

downscaling studies primarily concentrated on enhancing the spatial resolution of SM products, typically through integrating 

the fine-scale Moderate Resolution Imaging Spectroradiometer (MODIS) datasets, and there is still a lack of focus on 

developing long-term SM products or utilizing the four-decades Advanced Very High Resolution Radiometer (AVHRR) 

observations for long-term SM estimation. 95 

Compared with conventional machine learning models, deep learning (DL) models can automatically extract relevant 

features from raw datasets and learn complex non-linear relationships between variables, without the need for careful feature 

engineering (LeCun et al., 2015). Recently, significant progress has been made in applying DL techniques to a range of 
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environmental remote sensing research areas, including land cover mapping (Huang et al., 2018), data fusion and 

downscaling (Wang et al., 2021), and environmental parameter retrieval (Ma and Liang, 2022; Yuan et al., 2020). In terms of 100 

SM retrieval, Fang et al. (2017) first utilized a long short-term memory (LSTM) model to predict spatiotemporally 

continuous SM over the Continental U.S., with atmospheric forcings, modeled SM, and static attributes employed as input 

features, and the SMAP SM product serving as the training target. Since then, various DL models have been used in SM 

estimating (Gao et al., 2022; Sungmin and Orth, 2021), downscaling (Xu et al., 2022; Zhao et al., 2022), forecasting (Fang 

and Shen, 2020; Li et al., 2022a), and gap-filling researches (Zhang et al., 2022; Zhou et al., 2023). Among them, the most 105 

frequently used DL models were the LSTM-based models designed to capture temporal information from sequential data and 

the convolutional neural network (CNN) based models constructed to extract spatial patterns from grid data, alongside 

several other models such as the deep neural network and deep belief network. In those studies, input features might include 

brightness temperature, surface reflectance, meteorological forcings, terrain and soil properties, land cover, precipitation, and 

land surface temperature (LST), depending on the types of models they aimed to simulate, such as radiative transfer models, 110 

downscaling models, or land surface models, while the training target varied from point-scale in situ SM to coarse-scale 

microwave or simulated SM. Despite the diversity of data sources, research areas, and neural networks, all of those DL 

models achieved satisfactory performance, demonstrating their good fitting and generalization capabilities, as well as great 

potential for generating global SM products. Validation of those DL models against the ISMN in situ SM dataset showed 

that the average correlation coefficient (R) ranged from 0.672 to 0.715, and the unbiased root mean square error (ubRMSE) 115 

ranged from 0.041 to 0.061 m3 m-3 (Gao et al., 2022; Xu et al., 2022; Zhang et al., 2022). Nevertheless, there is still a lack of 

research that utilizes DL models to generate long-term global SM data records, as evident from Table 1. Besides, while 

Transformer has demonstrated effectiveness in domains like runoff modeling, drought forecasting, and crop mapping 

(Amanambu et al., 2022; Xu et al., 2020; Yin et al., 2022), its application in SM estimation remains scarce. 

Table 1 Main characteristics of currently available long-term (> 30 years) global SM products. 120 

Category SM products Spatial 

resolution 

Temporal 

coverage 

Spatial 

integrity 

References 

Microwave ESA CCI 0.25° 1978–2022 incomplete Dorigo et al. (2017) 

Reanalysis GLDAS-2 1°/0.25° 1948–present Seamless Rodell et al. (2004) 

 MERRA-2 0.5° 1980–present Seamless Gelaro et al. (2017) 

 ERA5-Land 0.1° 1950–present Seamless Muñoz-Sabater et al. (2021) 

Model-

simulated 

GLEAM4 0.1° 1980–2023 Seamless Miralles et al. (2025) 

SiTHv2 0.1° 1982–2020 Seamless Zhang et al. (2024a) 

DL-based GLASS-AVHRR 5 km 1982–2021 Seamless This study 

In this context, we aim to develop a long-term global SM estimation framework based on DL using mainly the long-archived 

AVHRR satellite observations. Specifically, the AVHRR albedo and LST products from the Global LAnd Surface Satellite 

(GLASS) product suite, ERA5-Land reanalysis SM product, as well as auxiliary terrain and soil texture datasets are used as 
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inputs, and the global 1 km GLASS-MODIS SM product (2000–2020) generated by Zhang et al. (2023) is used as the target 

to train different types of DL models. In particular, three LSTM-based models, i.e., the basic LSTM, Bidirectional LSTM 125 

(Bi-LSTM), and Attention-based LSTM (AtLSTM), along with a Transformer model, all of which are adept at processing 

sequential data, are explored. Then the best-performing model is employed to generate a four-decade (1982–2021) 

spatiotemporally continuous global surface SM dataset (0–5 cm) at 5 km resolution, denoted as the GLASS-AVHRR SM 

product. The specific objectives of this study are: 

(1) To develop a DL-based global SM estimation model by integrating multi-source datasets and leveraging their 130 

complementary strengths, so as to derive a seamless and reliable long-term global SM product; 

(2) To compare the performance of different DL models: the basic LSTM, Bi-LSTM, AtLSTM, and Transformer, with 

the benchmark XGBoost model, and to investigate the effect of input sequence length on model accuracy; 

(3) To fully evaluate the accuracy and spatiotemporal consistency of the derived long-term GLASS-AVHRR SM product 

through validation against in situ SM datasets across different spatial scales and intercomparison with other long-135 

term global SM products. 

2 Datasets 

The multi-source datasets used in this study to develop the long-term SM estimation model are summarized in Table 2. The 

input variables were extracted from the GLASS-AVHRR albedo and LST products, the ERA5-Land reanalysis SM product, 

the Multi-Error-Removed Improved-Terrain (MERIT) DEM, and the SoilGrids datasets, respectively, while the target 140 

variable was obtained from the GLASS-MODIS SM product. These input features are widely used in ML and DL-based SM 

estimation studies. This section also introduces the ISMN, COsmic-ray Soil Moisture Observing System (COSMOS), and 

SMAP Core Validation Sites (CVSs) in situ SM datasets used for validation, alongside the long-term ESA CCI SM product 

used for intercomparison. 

Table 2 Summary of the multi-source datasets used to develop the long-term SM product. 145 

Dataset Variable Temporal 

resolution 

Spatial 

resolution 

Usage References 

GLASS-AVHRR Albedo 8 d 5 km input Qu et al. (2014);Liu et al. (2013) 

 LST daily 5 km input Jia (2023) 

ERA5-Land SM hourly 0.1° input Muñoz-Sabater et al. (2021) 

MERIT DEM elevation, slope, aspect - 90 m input Yamazaki et al. (2017) 

SoilGrids clay, sand, silt - 250 m input Poggio et al. (2021) 

GLASS-MODIS SM daily 1 km target Zhang et al. (2023) 
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2.1 GLASS-AVHRR albedo and LST products 

As part of the GLASS product suite, the GLASS-AVHRR albedo and LST products are generated mainly from the long-

archived AVHRR satellite observations dating back to the 1980s and are characterized by long-term temporal coverage, 

spatial continuity, and high accuracy (Liang et al., 2021). In particular, the GLASS-AVHRR albedo product was retrieved 

through a direct estimation algorithm (Qu et al., 2014) and a spatiotemporal filtering algorithm (Liu et al., 2013). The latest 150 

version (V5) of the GLASS-AVHRR albedo product at 5 km spatial resolution can be downloaded from 

http://www.glass.umd.edu/Albedo/MIX/. Here, the black-sky visible, near-infrared, and shortwave albedo were extracted 

and used as input variables, with the original 8-day temporal resolution interpolated to daily using linear interpolation to 

align with the training target. Meanwhile, the global all-sky GLASS-AVHRR LST product was estimated using a surface 

energy balance-based algorithm (Jia, 2023; Jia et al., 2024), which will be released soon. The daily mean LST at 5 km 155 

resolution was also used here as an input variable. 

2.2 ERA5-Land SM product 

The ERA5-Land is a state-of-the-art long-term reanalysis dataset that includes multiple variables related to water and energy 

cycles spanning from 1950 to the present (Muñoz-Sabater et al., 2021). It offers seamless global coverage with an hourly 

temporal resolution and 0.1° spatial resolution. Previous validation studies show that although it typically exhibited high 160 

temporal correlations with in situ SM datasets, it often suffered from large biases (Gao et al., 2022; Xing et al., 2023; Zheng 

et al., 2022). Here, the first-layer (0–7 cm) ERA5-Land SM product was downloaded from https://cds.climate.copernicus.eu/. 

The daily mean SM was then calculated and up-sampled to 5 km through bilinear interpolation before being used as an input 

variable for the model to provide SM background information. Moreover, the ERA5-Land SM product was also validated 

against in situ SM datasets and intercompared with the generated GLASS-AVHRR SM product. 165 

2.3 Terrain and soil texture datasets 

Topography and soil properties are the main factors that affect the spatial distribution of SM at fine scales. Here, we used the 

MERIT DEM (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/), a high accuracy DEM generated by integrating 

multiple spaceborne DEMs (Yamazaki et al., 2017). This dataset covers 90°N–60°S over land at a resolution of 90 m and 

shows significant improvement in flat regions compared to previous spaceborne DEMs. After downloading the MERIT 170 

DEM, it was then used to derive elevation, slope, and aspect. Meanwhile, we also used the 250-m SoilGrids product 

(https://www.isric.org/explore/soilgrids), a high-resolution soil property dataset generated from global soil profiles and 

environmental variables using machine learning models (Poggio et al., 2021). Specifically, the mean sand, silt, and clay 

content of the top soil layer (0–5 cm) were extracted from the SoilGrids product. All of these terrain and soil texture 

variables were resampled to 5 km before being used as inputs to the SM estimation model. 175 

http://www.glass.umd.edu/Albedo/MIX/
https://cds.climate.copernicus.eu/
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2.4 GLASS-MODIS SM product 

The training target used in this study was the global 1 km spatiotemporally continuous GLASS-MODIS surface SM product 

(0–5 cm), which was generated using an XGBoost machine learning model that integrated the GLASS-MODIS albedo, LST, 

and leaf area index (LAI) products with multi-source datasets. In situ SM from the representative ISMN stations distributed 

globally was utilized by the XGBoost model as training target (Zhang et al., 2023). This product exhibits high spatial and 180 

temporal consistency with both the ESA CCI and SMAP/Sentinel-1 L2 Radiometer/Radar SM products, while maintaining a 

more complete spatial coverage. The daily GLASS-MODIS SM product from 2000 to 2020 is freely available at 

https://glass.hku.hk/archive/SM/MODIS/. Here, we derived training samples from the 5 km resampled GLASS-MODIS SM 

product rather than directly using in situ SM as training target, as the global SM product could provide a much richer and 

representative training set than the sparse ISMN SM dataset. 185 

2.5 In situ SM datasets 

After generating the GLASS-AVHRR SM product using the developed DL model, three types of in situ SM datasets at 

different spatial scales were adopted to evaluate its accuracy and consistency. The characteristics of these in situ SM datasets 

are listed in Table 3, and the spatial distribution of the corresponding SM stations is shown in Fig. A1. The first type is the 

point-scale ISMN SM dataset (Dorigo et al., 2021), providing a valuable reference for validating gridded SM products, 190 

despite the relatively poor spatial representativeness of some SM stations. There were 1672 ISMN stations available for 

validation during Period Ⅰ (2000–2018). Among them, 715 spatially representative stations were selected using the triple 

collocation method, as described in detail in Zhang et al. (2023). Although SM datasets from these representative stations 

were previously used as target to train the GLASS-MODIS SM estimation model, making them only partially independent, 

they can be used here to assess the consistency between the GLASS-AVHRR and GLASS-MODIS SM products. Moreover, 195 

the 45 fully independent ISMN stations from Period Ⅱ (1982–1999) can be used to evaluate the accuracy of the GLASS-

AVHRR SM product during the earlier years. The daily mean SM was calculated by averaging the hourly SM measurements 

at the top soil layer (0–5 cm) obtained from https://ismn.earth/, considering only those flagged as “G” for good quality. 

The second type is the COsmic-ray Soil Moisture Observing System (COSMOS) SM dataset, which includes area-averaged 

SM measurements at the field scale from three COSMOS networks: COSMOS (Zreda et al., 2012), COSMOS-UK (Cooper 200 

et al., 2021), and COSMOS-Europe (Bogena et al., 2022). The COSMOS sensors detect low-energy cosmic-ray neutrons 

above the ground, which can be converted to SM within a footprint radius of 130 to 240 m and a penetration depth of up to 

83 cm, depending on factors such as air humidity, SM, and vegetation (Köhli et al., 2015). Although data from the COSMOS 

and COSMOS-UK networks had been integrated into the ISMN database, they were excluded from the training dataset of 

the GLASS-MODIS SM estimation model because their observation depths exceeded the 5 cm threshold. Recently, data 205 

from the COSMOS-Europe network have been released and can be accessed at https://doi.org/10.34731/x9s3-kr48. 

Collectively, these post-2000 SM datasets can serve as an independent source for validating the GLASS-AVHRR SM 

https://glass.hku.hk/archive/SM/MODIS/
https://ismn.earth/
https://doi.org/10.34731/x9s3-kr48
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product at an intermediate scale. After filtering based on the quality flags and aligning with the GLASS-AVHRR SM 

product, there were 102 COSMOS, 45 COSMOS-UK, and 51 COSMOS-Europe stations available for validation. The 

distribution of sensing depths for each station across the three COSMOS networks is presented in Fig. A2. While COSMOS 210 

sensors measure SM at relatively deeper layers, they have been used to validate microwave and modelled surface SM 

products and show good correlations with them (Montzka et al., 2017; Peng et al., 2021b).  

The third type is the SMAP/In situ core validation site (CVS) match-up dataset, which contains the up-scaled in situ SM 

measurements derived from multiple quality-controlled stations that have been aligned with SMAP SM products (Colliander 

et al., 2017). A total of 22 globally distributed CVSs were matched with the SMAP-Sentinel L2 SM product gridded at 9 km 215 

resolution (SMAPL2SMSP9km). This independent 9 km SMAP CVS in situ dataset can be used to validate the GLASS-

AVHRR SM product with reduced impact of scale difference. It covers the period from 2015 to the present and can be 

downloaded from https://nsidc.org/data/nsidc-0712/versions/1. 

Table 3 Characteristics of three types of in situ SM datasets used in this study at different spatial scales. 

Dataset Group of stations No. of 

stations 

Spatial scale Sensing depth Time period References 

ISMN All ISMN (Period Ⅰ) 1672 Point-scale 0–5 cm 2000–2018 Dorigo et al. (2021) 

Representative ISMN 

(Period Ⅰ) 

715 2000–2018 

ISMN (Period Ⅱ) 45 1982–1999 

COSMOS COSMOS 102 130–240 m 15–83 cm 2008–2018 Zreda et al. (2012) 

COSMOS-UK 45 2013–2018 Cooper et al. (2021) 

COSMOS-Europe 51 2011–2018 Bogena et al. (2022) 

CVS SMAP CVS 22 9 km 0–5 cm 2015–2021 Colliander et al. (2017) 

2.6 ESA CCI SM product 220 

The European Space Agency (ESA) launched the Climate Change Initiative (CCI) SM project to develop the ESA CCI SM 

dataset, a global daily multi-decadal dataset aimed at supporting climate research (Dorigo et al., 2017). This dataset merged 

multiple microwave SM products into active-only, passive-only, and combined active-passive products, respectively. Here, 

we used the ESA CCI SM v7.1 combined product at a resolution of 0.25° (https://climate.esa.int/en/projects/soil-

moisture/data/), which covered the period 1978–2021. Despite being the most widely used long-term satellite SM product, it 225 

suffers from spatial incompleteness due to the lack of satellite observations in the earlier years, the observation gaps in 

satellite orbits, and the physical limitations of microwave observations for SM retrieval over densely vegetated areas (Dorigo 

et al., 2017). In this study, the spatial consistency between the ESA CCI combined SM product and our GLASS-AVHRR 

product was investigated. 

https://nsidc.org/data/nsidc-0712/versions/1
https://climate.esa.int/en/projects/soil-moisture/data/
https://climate.esa.int/en/projects/soil-moisture/data/
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3 Methods 230 

Figure 1 shows the flowchart of the proposed long-term global GLASS-AVHRR SM estimation framework, which consists 

of three main parts: data preprocessing and training samples preparation, model training and performance comparison, and 

generation and evaluation of the GLASS-AVHRR SM product. 

 

Figure 1 Flowchart of the proposed long-term global GLASS-AVHRR SM estimation framework 235 

3.1 Training samples 

The global GLASS-MODIS SM product resampled at 5 km was used as the training target of the long-term SM estimation 

model, from which a large number of representative and evenly distributed training samples could be obtained. Considering 
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that the size of training samples would be too large if all the pixels were included, these samples were selected at 25 km (5 

pixels) intervals along both the longitude and latitude, and a total of 135,360 pixels were chosen after excluding those with a 240 

large proportion of missing values. Based on the geographic coordinates of these pixels, the values corresponding to each 

input feature as well as the target SM for the years 2005, 2010, and 2015 were extracted, which collectively formed the time-

series training samples. While the three years were selected to represent different periods within the available time span 

(2000–2020), this selection may introduce some uncertainty, as climate and environmental conditions can vary annually, and 

extreme weather or climate events in certain years may affect the representativeness of variables such as LST and SM. 245 

Nevertheless, this approach was adopted to control the sample size while ensuring the representativeness of samples across 

different years. These samples were then randomly divided into training, validation, and test datasets in the ratio of 7:2:1 

based on their locations, ensuring spatial independence with distances between any two samples exceeding 25 km, thereby 

minimizing the influence of spatial autocorrelation. While the training and validation datasets were used to train and tune the 

hyperparameters of the models, the accuracy of the models was evaluated on the test dataset. Figure 2 clearly illustrates the 250 

process of constructing time-series input samples for the DL models. Note that, the input features need to be scaled before 

training a DL model, which helps to speed up the convergence process, avoids bias towards larger-scale features, and 

improves the model stability. Here, each input feature was standardized by subtracting the mean and then dividing by the 

standard deviation, whereas for the target SM, no further processing is needed as it is by definition scaled. 

 255 

Figure 2 Schematic diagram illustrating the construction of time-series input samples for the DL models. N denotes the total 

number of samples, and L represents the sequence length, a hyperparameter that needs to be tuned. 
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3.2 Benchmark model 

When generating the global 1 km GLASS-MODIS SM product, an XGBoost model was employed to integrate the multi-

source datasets because of its good performance and high training and predicting speed. Here, we used the XGBoost model 260 

as a benchmark and compared its performance with the DL models (LSTM-based and Transformer) to analyze whether the 

DL models exhibit an advantage over this widely used machine learning model in SM estimation. The XGBoost model 

(Chen and Guestrin, 2016) is a type of gradient boosting model, in which multiple trees are iteratively constructed through 

correcting the prediction residuals of the preceding trees. The schematic diagram of the XGBoost model is shown in Fig. 3e, 

where predictions from multiple trees are combined to make the final SM prediction. The key hyperparameters were 265 

configured as follows: n_estimators = 1000, learning_rate = 0.1, and max_depth = 8. The time-series training samples 

constructed above were put together to train the XGBoost model, and the overall accuracy achieved by the XGBoost model 

on the test dataset was then compared with that of the DL models as a benchmark. 

 

Figure 3 Schematic diagrams of the five models used in this study: (a) LSTM, (b) Bi-LSTM, (c) AtLSTM, (d) Transformer, 270 

and (e) XGBoost. In subplots (a-d), 𝑥𝑡, 𝑦𝑡, and ℎ𝑡 represent the input datasets, SM prediction, and hidden state output by the 

models at time step t, respectively. 
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3.3 Long short-term memory-based models 

The LSTM network (Hochreiter and Schmidhuber, 1997) is a special type of recurrent neural network (RNN) designed to 

solve the problems of gradient vanishing and exploding when training long sequences. The basic LSTM network introduces 275 

the memory cell, which is a special type of hidden state that shares the same shape as the hidden state but is designed to 

record long-term information. Each recurrent unit within the LSTM has three distinct gates, i.e., the forget gate, input gate, 

and output gate, as illustrated in Fig. 3a. The formulas used to calculate the three gates (𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡), cell state (𝑐𝑡), and hidden 

state (ℎ𝑡) are given below: 

𝑓𝑡 =  𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)          (1) 280 

𝑖𝑡 =  𝜎(𝑊𝑖  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)          (2) 

𝑜𝑡 =  𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜)          (3) 

𝑐𝑡 =  𝑓𝑡 ∗  𝑐𝑡−1 + 𝑖𝑡 ∗ tanh (𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)        (4) 

ℎ𝑡 =  𝑜𝑡 ∗ tanh (𝑐𝑡)           (5) 

where 𝑥𝑡 represents the input datasets at time step t, ℎ𝑡−1 is the hidden state at the previous time step; 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 are all 285 

calculated as linear functions of 𝑥𝑡  and ℎ𝑡−1 with different weights and biases, and are then rescaled using a non-linear 

sigmoid (𝜎) function. The 𝜎 function acts as the gating function for the three gates with an output ranging between 0 and 1, 

thereby determining which portion of the information passes through the gates. Both the 𝜎 and tanh functions add non-

linearity to the LSTM network. The Bidirectional LSTM (Bi-LSTM) extends the LSTM network by incorporating both 

forward and backward LSTM units within a single layer, allowing the model to capture contextual information from both 290 

directions before concatenating their outputs. As displayed in Fig. 3b, the Bi-LSTM model can learn bidirectional (preceding 

and following) information at each time step. 

The LSTM network has different architectures, including many-to-one (MTO) and many-to-many (MTM). In research areas 

like crop mapping and runoff prediction, the MTO architecture is primarily adopted, which uses inputs from multiple time 

steps to output estimates for a single time step. Alternatively, we adopt the MTM architecture, which takes time-series inputs 295 

and outputs SM estimates for all time steps simultaneously by feeding the hidden states from all time steps into a fully 

connected layer. We also conducted an experiment to compare the estimation accuracy of these two architectures. 

In addition to the basic LSTM and Bi-LSTM networks introduced above, an attention module was added to the Bi-LSTM 

network, referred to as the AtLSTM network, to explore if the estimation accuracy of SM could be further improved. The 

AtLSTM network was constructed based on Bahdanau et al. (2016) and Xu et al. (2020), and adapted here for the MTM 300 

architecture. As illustrated in Fig. 3c, the attention module generates the attention weights (𝛼), which are then multiplied 

with the hidden states (ℎ) to get the weighted hidden states (ℎ∗). The 𝛼 and ℎ∗ can be calculated as follows: 

𝑒𝑡 =  𝑊𝑎 . ℎ𝑡  +  𝑏𝑎           (6) 

𝛼𝑡,𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑡,𝑖) =  
𝑒𝑥𝑝 (𝑒𝑡,𝑖)

∑  𝑒𝑥𝑝 (𝑒𝑡,𝑗)𝑇
𝑗=1

         (7) 
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ℎ𝑡
∗ =  ∑ 𝛼𝑡,𝑖 ∗  ℎ𝑖

𝑇
𝑖=1            (8) 305 

where 𝑊𝑎 and 𝑏𝑎 denote the learnable parameters that map the hidden states ℎ into a weight matrix 𝑒, and T is the sequence 

length of the input features. The weight matrix (with the shape of T ×T) is then rescaled by a softmax function to obtain the 

attention weights for each hidden state, which range between 0 and 1 and sum to 1. The weighted hidden states ℎ∗ are then 

fed into a fully connected layer to estimate the target variable. Intuitively, higher attention weights indicate that the 

corresponding hidden states have a greater influence on the estimation of SM at a specific time step. 310 

In this study, the LSTM-based models were implemented using the open-source PyTorch 2.0 framework. The mean square 

error (MSE) between was used as the loss function, and the Adam optimizer was adopted to update the learnable parameters 

of the models. Several key hyperparameters were tuned, including the hidden size, number of epochs, and learning rate 

(Zhang et al., 2021). For each model, the hidden size was determined after testing values of 64, 128, 256, and 512; the 

number of epochs after testing 20, 50, 100, and 200; and the learning rate after testing 0.1, 0.01, 0.001, and 0.0001. The final 315 

settings of the major hyperparameters for the three LSTM-based models are listed in Table 4.  

Table 4 Key hyperparameters configured for the DL models used in this study. 

Hyperparameters LSTM Bi-LSTM AtLSTM Transformer 

Hidden size 256 256 256 64 

Number of heads / / / 4 

Number of epochs 100 100 200 100 

Number of layers 1 1 1 1 

Batch size 100 100 100 100 

Learning rate 1e-3 1e-3 1e-4 1e-3 

Sequence length 425 425 425 365 

3.4 Transformer 

The Transformer network is a DL architecture based entirely on attention mechanisms, dropping the recurrent structure to 

avoid the constraint of sequential calculation. After being proposed by Vaswani et al. (2017), Transformer has soon become 320 

the state-of-the-art model for natural language processing and has also been applied successfully to areas like computer 

vision (Dosovitskiy et al., 2021) and time series analysis (Wen et al., 2023). Its core component is the multi-head self-

attention layers, which can relate any two positions in a sequence. More specifically, multi-head attention involves applying 

the attention function to multiple sets of key, value, and query vectors in parallel, thus enabling the model to focus on 

different parts of the input sequence simultaneously. Unlike the attention function used in the AtLSTM model (Eq. (6-7)), 325 

Transformer uses the scaled dot-product attention 𝛼, which can be calculated as follows: 

𝛼 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)  𝑉          (9) 
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where 𝑄, 𝐾, and 𝑉 refer to the query, key, and value vectors, respectively, which are derived by multiplying the embedded 

input sequence with the corresponding learnable projection matrix; 𝑑𝑘  is the dimension of the key and query vectors. 

Additionally, with the help of a positional encoding function, the Transformer network can retain some ordinal information 330 

for elements in the input sequence. A detailed description of Transformer and the multi-head self-attention mechanism can 

be found in Vaswani et al. (2017). Compared with recurrent or convolutional neural networks, the Transformer network can 

efficiently parallelize much larger amounts of computation and capture long-range dependencies in the input sequence more 

easily. Here, we only used the encoder portion of the original Transformer network to map the input features into hidden 

representations, which were then fed into a fully connected layer to output the time-series SM estimates (Fig. 3d). The same 335 

training samples, optimizer, and loss function used for the LSTM-based models were employed to train the Transformer 

network, with the settings of its hyperparameters also listed in Table 4. Notably, the number of heads is a unique 

hyperparameter of Transformer that refers to the number of parallel self-attention layers of the encoder. 

3.5 Evaluation of the models and GLASS-AVHRR SM product 

After training the benchmark XGBoost model and the four DL models described above using the same training samples 340 

distributed worldwide, their performance on the test set was then compared from multiple perspectives, including 

comparisons between the DL models and XGBoost model, between the DL models with different attention mechanisms, and 

between the DL models with MTM or MTO architectures. Moreover, the effect of input sequence length on model accuracy 

was investigated using the LSTM-based models, and a preliminary interpretability analysis was performed through 

visualizing the attention weights of both the AtLSTM and Transformer models. Then, the best-performing model, along with 345 

the multi-source input datasets, was employed to generate the global daily GLASS-AVHRR SM product at 5 km resolution 

from 1982 to 2021. To fully assess the derived long-term SM product, different SM datasets and evaluation strategies were 

combined, including overall accuracy evaluation, scatter plots analysis, time-series plots comparison, and spatial consistency 

examination. Specifically, the accuracy of this product was first evaluated against the point-scale ISMN, field-scale 

COSMOS, and upscaled 9 km SMAP CVS in situ SM datasets, respectively. Then, the GLASS-AVHRR SM product was 350 

intercompared with the GLASS-MODIS SM product and two widely used long-term global SM products, namely the ERA5-

Land and ESA CCI, to investigate their spatial consistency. 

4 Results 

4.1 Comparison of model performance 

Table 5 lists the performance metrics achieved by the benchmark tree-based XGBoost model and four DL models on the 355 

training set, validation set, and two types of test sets, respectively. The XGBoost model achieved similar overall accuracy 

across the training, validation, and test sets, with a coefficient of determination (R2) of 0.984 and RMSE of 0.012 m3 m-3 on 

the training set, and an R2 of 0.982 and RMSE of 0.013 m3 m-3 on both the validation and test sets, indicating a low tendency 
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for overfitting. The fairly high overall accuracy of the benchmark XGBoost model may be attributed to the large number of 

training samples, specifically 135,360 pixels per day over 3 years, evenly distributed across the globe on a daily basis. To 360 

evaluate the impact of sample size on model performance, we conducted an experiment by reducing the number of training 

samples. When the sample size was reduced by a factor of 100, the accuracy of the XGBoost model dropped considerably, 

with an R2 of 0.96 and RMSE of 0.017 m3 m-3 on the test set. This highlights the importance of having sufficient samples to 

achieve high accuracy with XGBoost and indicates the advantage of using the GLASS-MODIS SM product as training target, 

which can provide much richer samples than the sparse in situ ISMN SM dataset. Meanwhile, Table 5 also shows that the 365 

accuracy of the XGBoost model decreases drastically on the test set with SM observations exceeding 0.4 m3 m-3, yielding an 

R2 of 0.413 and RMSE of 0.022 m3 m-3, likely due to the relatively smaller portion of samples at high SM levels. 

In comparison, the LSTM model developed using time-series training samples performed slightly better than the XGBoost 

model, with the R2 on the test set increasing to 0.983, and when the Bi-LSTM model was employed, the overall accuracy on 

the test set was further improved, with the R2 increasing to 0.985 and RMSE decreasing to 0.012 m3 m-3. Although the 370 

increase in the overall accuracy might not be significant, the Bi-LSTM model exhibited significant improvement over the 

XGBoost model at high SM levels, achieving an R2 of 0.482 and RMSE of 0.020 m3 m-3 on the test set for observations 

exceeding 0.4 m3 m-3. As also can be seen from the density scatter plots in Fig. 4, the majority of samples had SM values 

below 0.4 m3 m-3 (indicated by the red dots), where all models achieved high prediction accuracy. However, on the relatively 

infrequent samples with high SM values, where the XGBoost model tended to yield lower estimates, both the LSTM and Bi-375 

LSTM models provided more accurate estimates. Given the temporal autocorrelation of SM, these results suggest that 

learning both forward and backward temporal information from the time-series training samples enhances the ability of DL 

models to estimate SM more accurately, especially at high SM levels with sparser samples. 

Table 5 Performance metrics of the benchmark XGBoost model and four DL models on the training set, validation set, and 

two types of test sets, respectively. 380 

Model 

Training set Validation set Test set Test set (> 0.4 m3 m-3) 

R2 
RMSE 

(m3 m-3) 
R2 

RMSE 

(m3 m-3) 
R2 

RMSE 

(m3 m-3) 
R2 

RMSE 

(m3 m-3) 

XGBoost 0.984 0.012 0.982 0.013 0.982 0.013 0.413 0.022 

LSTM 0.986 0.012 0.983 0.013 0.983 0.013 0.424 0.021 

Bi-LSTM 0.988 0.011 0.984 0.012 0.985 0.012 0.482 0.020 

AtLSTM 0.990 0.010 0.986 0.011 0.987 0.011 0.621 0.016 

Transformer 0.990 0.010 0.984 0.012 0.985 0.012 0.460 0.021 

Then, after adding the attention module into the Bi-LSTM model, the derived AtLSTM model achieved the best performance, 

with an R2 of 0.987 and RMSE of 0.011 m3 m-3 on the test set. In contrast, despite that the Transformer model also 

incorporated an attention module, its accuracy was slightly lower than that of the AtLSTM model on the test set and 

significantly lower on samples with high SM levels (> 0.4 m3 m-3) in our experiments. As mentioned above, the main 
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advantage of the Transformer model is its ability to capture long-range dependencies and handle long sequences effectively. 385 

However, soil moisture often exhibits high temporal variability, meaning it can change rapidly due to factors such as rainfall 

and evaporation. In this context, short-term adjacent temporal information can be critical for accurate SM estimation. The 

slightly better performance of the AtLSTM model compared with the Transformer model may be attributed to its superior 

ability to capture these short-term adjacent dependencies, which are critical for modeling the nuances in rapidly changing 

SM levels. This will be further investigated through the analysis of attentional weights below. Additionally, a feature 390 

importance analysis was conducted for the best-performing AtLSTM model, as shown in Fig. A3. Specifically, the gradients 

of the model’s output with respect to each input feature were computed on the test set, and the absolute values of these 

gradients were then averaged across all samples and time steps. Input features with larger average gradients are considered to 

exert a more significant influence on the model’s predictions. The results indicate that elevation, black-sky visible albedo, 

ERA5-Land reanalysis SM, and slope are the most influential features for the AtLSTM model. In particular, although 395 

elevation is a static variable, it plays a critical role in shaping the spatial distribution of SM by influencing precipitation, 

temperature, vegetation type, and evaporation processes. Its impact on the spatial variability of SM tends to be more stable 

and consistent over time. In contrast, the contributions of dynamic input features such as ERA5-Land SM may fluctuate 

across time and space and can be diminished by inherent uncertainties and biases in the input data. Moreover, their 

importance may also be influenced by correlations with other input features. 400 

While the numerical differences in overall accuracy among all these models may not seem remarkable, a more intuitive 

comparison can be drawn from their density scatter plots. As shown in Fig. 4, on the majority of samples, both the best-

performing AtLSTM model and benchmark XGBoost model can achieve high prediction accuracy, resulting in a relatively 

small difference in their overall performance on the test set. However, there remains a small portion of samples that are more 

challenging to predict, on which the SM estimates from the AtLSTM model are much closer to the 1:1 line compared with 405 

the XGBoost model. Furthermore, the AtLSTM model significantly improves upon the tendency of the XGBoost model to 

produce lower estimates at high SM levels, achieving an R2 of 0.621 and RMSE of 0.016 m3 m-3 on the test set for 

observations exceeding 0.4 m3 m-3. Overall, while both the XGBoost model and the four DL models can achieve high SM 

estimation accuracy, the AtLSTM model yields the highest accuracy among them and performs well across different SM 

levels with a low tendency for overfitting. This suggests that utilizing bidirectional temporal information from the input 410 

sequence as well as adding an attention module are both effective in further improving the estimation accuracy of SM. 
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Figure 4 Scatter plots between target SM and predicted SM for the (a) XGBoost, (b) LSTM, (c) Bi-LSTM, (d) AtLSTM and 

(e) Transformer models on the test set. The colors of the dots indicate different probability densities, and the black line 

represents the 1:1 line. 415 

As mentioned in Sect. 3.3, We chose to use the MTM architecture when developing the DL models to output time-series SM 

estimates at once. Here, to compare the accuracy of the MTM architecture with the more commonly used MTO architecture, 

as well as to investigate the effect of input sequence length on model accuracy, we calculated performance metrics for the 

LSTM models utilizing these two different architectures under varying lengths of input sequences. Specifically, both types of 

models were trained using input features from a given date (e.g., the first day of 2015) and n days (0-29) prior to that date, 420 

respectively, and the accuracy of the models was then evaluated on the test set for that given date. To save training time, the 

number of epochs for these LSTM models was set to 20. It can be seen from the R2 and RMSE curves in Fig. 5a that, as the 

length of input sequence increased, the accuracy of the LSTM model with the MTO architecture also increased, and then the 

accuracy leveled off at a sequence length of about 10 days. This indicates that while accounting for temporal information can 

be beneficial for current SM estimation, only the most recent input sequences have a remarkable effect on the model’s 425 

accuracy. In comparison, the LSTM model with the MTM architecture, which can output a sequence of SM estimates 

simultaneously, achieved similar accuracy to that of the MTO architecture, and its R2 and RMSE curves stabilized at a 
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sequence length of about 5 days. This demonstrates the feasibility of adopting the MTM architecture in the LSTM model, 

which not only reduces considerable production time but also maintains the estimation accuracy. 

 430 

Figure 5 Performance metrics of the (a) LSTM models with two different types of architectures (MTO and MTM) and (b) 

AtLSTM model with the MTM architecture trained using varying lengths of input sequences on the test set. The blue and red 

curves represent the R2 and RMSE curves, respectively. 

Moreover, we also investigated the effect of input sequence length on the overall accuracy of the AtLSTM model with the 

MTM architecture, and the performance metrics were calculated here based on SM estimates over the entire time series 435 

instead of on a given date. To save training time and accounting for the smaller learning rate used for the AtLSTM model 

(Table 4), the number of epochs was set to 50. As displayed in Fig. 5b, the overall accuracy of the AtLSTM model increased 

sharply as the length of input sequence increased, and then the accuracy plateaued at a sequence length of about 4 days. The 

more rapid stabilization of the AtLSTM model’s accuracy may be attributed to the incorporation of the Bi-LSTM module in 

the model, which can utilize both forward and backward temporal information. In addition, it seems that when the input 440 

sequence is long enough, the model can automatically learn the necessary temporal information to accurately estimate SM at 

each position in the sequence. However, it should be noted that at the beginning or end of the sequence, the model’s 

accuracy tends to decrease as only forward or backward information can be utilized, which is a common issue encountered 

by the LSTM-based models with the MTM architecture. Therefore, to facilitate the production process, the sequence length 

of the LSTM-based models was finally set to 425 days, and both the first 30 and last 30 values were discarded (a rather 445 

sufficient number) after the model output the time-series SM estimates, so that an entire year’s SM estimates could be 

obtained in a single run. Note that, during both the training and production phases, the first and last 30 days of each 425-day 

sequence were padded with actual data from adjacent years to ensure consistency. 

Although data-driven DL models are commonly perceived as “black boxes”, there are many techniques that can be employed 

to increase the interpretability of DL models. In the case of attention-based deep neural networks, this can be achieved by 450 

analyzing the distribution of attention weights. In a long sequence, perhaps only a portion of the information is critical to the 

model prediction at a given time step, and the attention mechanism enables the model to focus on these critical positions. In 
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particular, the attention module of the AtLSTM model can dynamically adjust the weights of the hidden states output by the 

model at each time step. Figure 6a illustrates the distribution of the averaged attentions weights calculated using the best-

performing AtLSTM model on the test set (40,608 samples). To show more detail, only the attention weights of 30 455 

consecutive days selected from the entire sequence (425 days) are displayed here, and attention weights less than 0.0001 are 

masked out. It is observed that, for the hidden state at each time step in the sequence (vertical axis), the largest attention 

weight was located approximately 3 days around that time step (horizontal axis). This indicates that when the attention 

module of the AtLSTM model learns to readjust the hidden states, it primarily utilizes the temporal information from 

adjacent positions in the sequence. 460 

 

Figure 6 Heatmaps of the averaged attention weights calculated using the (a) AtLSTM and (b) Transformer model on the 

test set (40,608 samples). Only the attention weights of 30 consecutive days selected from the entire sequence are displayed 

here for illustration. 

 In contrast, as a core component of the Transformer model, the multi-head self-attention layers can capture various aspects 465 

of relationships between different positions within a sequence, and the attention weights generated by these layers are then 

directly applied to the embedded input sequence. Figure 6b shows, as a comparison, the distribution of attention weights 

calculated by averaging the outputs from the four attention heads of the Transformer model. The attention weights heatmap 

of the Transformer model is quite different from that of the AtLSTM model, with the weight at each position being much 

smaller and dispersed. This is likely because the self-attention module can relate any two positions in the sequence, and 470 

inputs from more distance positions may contribute more to the model output at the current time step. In addition, for each 

time step in the sequence (vertical axis), there were some common positions (horizontal axis) with larger weights that were 

more important for model prediction. Despite the distinct attention mechanisms employed by these two DL models, both of 

them achieved high SM estimation accuracy. Given that SM is temporally autocorrelated and highly variable over time, the 

slightly better performance of the AtLSTM compared to the Transformer model may be attributed to that it extracts temporal 475 

information mainly from adjacent positions in the sequence, rather than from more distance ones, for SM estimation. 
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4.2 Validation of the GLASS-AVHRR SM product 

After generating the GLASS-AVHRR SM product using the best-performing AtLSTM model with the MTM architecture, 

permanent snow and ice as well as water bodies were masked out with the help of the MODIS land cover type product 

(MCD12C1) (Friedl and Sulla-Menashe, 2022). The derived SM product was then evaluated against three types of in situ 480 

SM datasets at different spatial scales. The first type is the point-scale ISMN SM dataset, which is distributed globally and 

covers a wide range of land cover types. There were 1672 ISMN stations and 715 spatially representative stations available 

for validation during Period Ⅰ (2000–2018). The distribution of validation metrics achieved by the GLASS-AVHRR SM 

product on these partially independent ISMN stations during Period Ⅰ, grouped by all stations and representative stations, is 

presented in Fig. 7, alongside those of the GLASS-MODIS and ERA5-Land SM products for comparison. The GLASS-485 

AVHRR SM product achieved comparable performance to that of the GLASS-MODIS SM product across all ISMN stations 

and representative stations during Period Ⅰ. In addition, both GLASS SM products performed significantly better at the 

representative stations. This demonstrates the high level of consistency in accuracy between the two GLASS SM products. 

Note that the validation metrics for the GLASS-MODIS product were derived using a site-independent cross-validation 

method, which was designed to accurately reflect the product’s performance over unknown areas. Given the consistency in 490 

the distribution of validation metrics between the GLASS-AVHRR and GLASS-MODIS SM products, the accuracy 

achieved by the GLASS-AVHRR product at these partially independent stations should also approach its true accuracy. In 

contrast, although the ERA5-Land SM product achieved a similar distribution of R to the two GLASS SM products across 

all ISMN stations and representative stations, it exhibited much larger biases and ubRMSE values. 

To conduct a more independent evaluation of the GLASS-AVHRR SM product, the ISMN SM dataset from Period Ⅱ (1982–495 

1999) was also collected. After excluding stations that overlapped with the 715 representative stations from Period Ⅰ, only 45 

independent stations remained for evaluation during Period II. The observations at these stations were also quite limited, 

hence the validation metrics derived from them may not provide a comprehensive assessment. Nevertheless, it can be seen 

from Fig. 7 that the GLASS-AVHRR product achieved rather high accuracy at these stations, with a median R of 0.73 and a 

median ubRMSE of 0.041 m3 m-3. Likewise, while the ERA5-Land SM product exhibited a similar distribution of R to the 500 

GLASS-AVHRR product at these stations, it achieved much larger biases and ubRMSE values. The second type of in situ 

SM dataset comprises field-scale measurements from three COSMOS networks: COSMOS, COSMOS-UK, and COSMOS-

Europe, which can provide an independent evaluation of the GLASS-AVHRR SM product at an intermediate scale. As 

shown in Fig. 7, the GLASS-AVHRR, GLASS-MODIS, and ERA5-Land SM products all achieved good performance 

across the three COSMOS networks. The two GLASS SM products showed comparable overall accuracy across these 505 

networks, although some site-specific discrepancies were observed, which are likely due to differences in the satellite remote 

sensing inputs and spatial resolution. Yet, their accuracies varied considerably across these networks, with the median R 

ranging from 0.63 to 0.79 and the median ubRMSE ranging from 0.044 to 0.065 m3 m-3 for the GLASS-AVHRR product. 

This variability may be attributed to the different footprint radii of COSMOS sensors, which result in varying degree of 
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spatial representativeness and spatial mismatches with gridded SM products. These factors can introduce uncertainty into the 510 

validation results, particularly affecting the bias and ubRMSE metrics. The biases of the GLASS-AVHRR SM product on 

the COSMOS-UK network were much larger than those on the other two COSMOS networks, with the median bias reaching 

-0.09 m3 m-3. This is likely due to the greater sensing depth of the COSMOS-UK network, which has a median depth of 30 

cm, compared to 21 cm and 22 cm for the COSMOS and COSMOS-Europe networks, respectively (Fig. A2). Moreover, 

both the GLASS-AVHRR and ERA5-Land SM products exhibited larger ubRMSE values on the COSMOS-UK network. 515 

This may be related to the increased uncertainty of COSMOS measurements in organic soils or humid regions, which are 

prevalent in the UK, as also reported by Zheng et al. (2024). Meanwhile, although the first-layer (0–7 cm) ERA5-Land SM 

product was used here for evaluation, it still exhibited large wet biases across these COSMOS networks, further suggesting 

its extensive overestimation issue.  

 520 
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Figure 7 Boxplots of R, bias, and ubRMSE for the GLASS-AVHRR SM product across different groups of ISMN stations 

and three field-scale COSMOS networks, in comparison with the GLASS-MODIS and ERA5-Land SM products. The 

number above each box represents the median value of the metrics across all stations within each network. 

Despite the high accuracy achieved when validating the GLASS-AVHRR SM product using both the point-scale ISMN and 

field-scale COSMOS in situ SM datasets, the validation results were inevitably affected by the scale differences between 525 

these datasets. Therefore, the upscaled 9 km SMAP CVS in situ SM dataset from 22 different locations was also utilized to 

validate the GLASS-AVHRR SM product from 2015 to 2021 as a complement. Specifically, the mean SM values of the 5 

km GLASS-AVHRR SM product within a 2 × 2 window corresponding to each 9 km SMAP CVS grid were first calculated, 

and then the validation metrics for the GLASS-AVHRR SM product were estimated at each CVS, as listed in Table 6. As a 

comparison, validation metrics for the ERA5-Land SM product (~ 9 km horizontal resolution) were also calculated at each 530 

CVS and presented in the table. 

Table 6 Validation metrics for the GLASS-AVHRR and ERA5-Land SM products at 22 upscaled 9 km SMAP core 

validation sites, with the best-performing metrics highlighted in bold. 

Site 

GLASS-AVHRR ERA5-Land 

LC No. 
R 

bias 

(m3 m-3) 

RMSE 

(m3 m-3) 

ubRMSE 

(m3 m-3) 
R 

Bias 

(m3 m-3) 

RMSE 

(m3 m-3) 

ubRMSE 

(m3 m-3) 

HOBE 0.61  -0.07 0.100  0.069  0.63 -0.02 0.069 0.066 Croplands 252 

Kenaston1 0.76  -0.07 0.078  0.036  0.72 0.02 0.051 0.048 
Croplands 

87 

Kenaston2 0.80  -0.08 0.084  0.035  0.77 0.01 0.046 0.045 87 

Carman 0.71  0.01 0.042  0.042  0.61 0.10 0.115 0.053 Croplands 145 

South Fork 0.61  0.00 0.062  0.062  0.67 0.07 0.096 0.060 Croplands 179 

St. Josephs 0.71  -0.07 0.077  0.037  0.75 0.05 0.063 0.035 Croplands 115 

REMEDHUS1 0.87  0.05 0.051  0.022  0.86 0.16 0.172 0.071 
Croplands 

557 

REMEDHUS2 0.86  -0.04 0.050  0.034  0.84 0.09 0.101 0.046 540 

Valencia 0.54  -0.01 0.047  0.045  0.59 0.08 0.111 0.078 Savannas 107 

Tonzi Ranch 0.95  0.00 0.030  0.030  0.94 0.09 0.097 0.045 Savannas 79 

Fort Cobb 0.81  0.01 0.034  0.034  0.83 0.08 0.085 0.040 Grasslands 248 

Little Washita 0.78  0.01 0.039  0.038  0.77 0.05 0.071 0.049 Grasslands 225 

Walnut Gulch1 0.71  0.01 0.030  0.027  0.69 0.01 0.062 0.061 
Shrublands 

159 

Walnut Gulch2 0.74  0.04 0.042  0.021  0.71 0.11 0.126 0.062 189 

Little River 0.36 0.00 0.043 0.043 0.76 0.22 0.225 0.040 
Cropland/ Natural 

mosaic 
84 

TxSON1 0.87  0.00 0.024  0.024  0.88 0.09 0.100 0.040 Grasslands 55 
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TxSON2 0.90  0.02 0.028  0.023  0.91 0.07 0.076 0.038 103 

Niger  0.73  0.00 0.018  0.017  0.69 0.04 0.061 0.046 Grasslands 138 

Benin 0.91  0.04 0.052  0.037  0.88 0.22 0.228 0.062 Savannas 217 

Monte Buey 0.78  -0.07 0.081  0.035  0.74 0.01 0.053 0.052 Croplands 120 

Yanco1 0.92  -0.02 0.049  0.043  0.87 0.04 0.064 0.050 Croplands 

Grasslands 

121 

Yanco2 0.90  0.00 0.035  0.035  0.86 0.09 0.095 0.041 117 

Average 0.77 -0.01 0.050 0.037 0.77 0.08 0.099 0.053 / / 

All 0.82  -0.01 0.054  0.054  0.65  0.09  0.119  0.083  / 3924 

 

Figure 8 Scatter plots between the upscaled in situ SM and the corresponding estimated SM from the GLASS-AVHRR or 535 

ERA5-Land product at each SMAP core validation site. 

At most of the CVSs, the GLASS-AVHRR SM product achieved similar R values to the ERA5-Land SM product, except at 

the Little River site, where the R value for the GLASS-AVHRR product was significantly lower. This is probably because 

the land cover type at this site is “Cropland or Natural mosaic”, making the upscaled in situ SM measurements less 
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representative and the validation results at this site less reliable. Meanwhile, while the GLASS-AVHRR SM product 540 

exhibited notable dry biases only at a few CVSs, the ERA5-Land SM product showed large wet biases at most of the CVSs, 

as also reported in detail by Lal et al. (2022). The varying degrees of bias in these two SM products can be more intuitively 

observed through their scatter plots against the upscaled in situ SM at each CVS (Fig. 8). As one of the main inputs for 

generating the GLASS-AVHRR SM product, the ERA5-Land reanalysis SM exhibited notable wet biases at almost all CVSs, 

especially at REMEDHUS1, Little River, and Benin, which were largely corrected by the GLASS-AVHRR product, with the 545 

data points on the scatter plots being much closer to the 1:1 line. This can be attributed to the use of the GLASS-MODIS SM 

product as training target, although it may have also contributed to the slight dry bias in the GLASS-AVHRR SM product, 

given that optical and thermal satellite SM estimates typically represent a shallower depth than in situ SM datasets. In 

addition, at the CVS where the ERA5-Land product exhibited a large wet bias, the RMSE and ubRMSE values of the 

GLASS-AVHRR product were often much lower than those of the ERA5-Land product. The average R and ubRMSE values 550 

achieved by the GLASS-AVHRR SM product at 22 CVSs were 0.77 and 0.037 m3 m-3, respectively, similar to those 

reported for the 9 km SMAP-Sentinel L2 SM product, which were 0.79 and 0.035 m3 m-3, respectively (Das et al., 2020). 

When combining all the CVS in situ SM measurements, an overall R of 0.82 and ubRMSE of 0.054 m3 m-3 were obtained by 

the GLASS-AVHRR SM product, showing significant improvement over the ERA5-Land SM product, which had values of 

0.65 and 0.083 m3 m-3, respectively. This is also evident from the more concentrated scatter points of the GLASS-AVHRR 555 

SM product displayed in Fig. 8. 

To intuitively examine the ability of the GLASS-AVHRR SM product to capture temporal variations in measured SM and its 

temporal consistency with the GLASS-MODIS product, time-series curves for the GLASS-AVHRR (aggregated at 10 km), 

GLASS-MODIS (aggregated at 9 km), and in situ SM (upscaled at 9 km) at six CVSs with different land cover types were 

plotted, with the ERA5-Land SM product (~ 9 km horizontal resolution) also included for reference (Fig. 9). Through 560 

extending the GLASS-MODIS SM product from 2000 back to 1982, the GLASS-AVHRR SM product attained complete 

temporal coverage from 1982 to 2021, and a high degree of temporal consistency between these two products could be 

observed from the time-series plots. Despite that the ERA5-Land SM product also had long-term temporal coverage, it 

exhibited large wet biases when compared with the upscaled in situ SM at all six CVSs, whereas both the GLASS-MODIS 

and GLASS-AVHRR SM products aligned more closely with the dynamic ranges of measured SM. As mentioned above, the 565 

GLASS-AVHRR SM product exhibited notable dry biases at a few CVSs. However, as can be seen from the time-series 

curves at REMEDHUS2 (Fig. 9a) and Yanco1 (Fig. 9f), suspicious abrupt rises in measured SM, as well as temporary spikes 

in SM (possibly caused by irrigation), might also have partially contributed to these dry biases. Overall, the GLASS-

AVHRR SM product could well capture the temporal variations in measured SM at these CVSs, except for the Little River 

site (Fig. 9d) where the land cover type is “Cropland or Natural mosaic”. Measured SM at this site did not show a clear 570 

seasonal pattern as at the other sites, and there was less consistency between the two GLASS SM products, likely due to the 

stronger spatial heterogeneity of this site. Besides, at the Walnut Gulch1 site (Fig. 9c) where the dominant land cover type is 
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“shrubland”, while the GLASS-AVHRR product captured high SM values well, it slightly overestimated when the measure 

SM approached zero. 

 575 
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Figure 9 Time-series plots of the GLASS-AVHRR (aggregated at 10 km), GLASS-MODIS (aggregated at 9 km), ERA5-

Land (~ 9 km horizontal resolution), and in situ SM (upscaled at 9 km) at six CVSs with different land cover types for the 

period 1982–2021. 

4.3 Spatial consistency with global SM products 

To further investigate the spatial consistency between the GLASS-AVHRR and GLASS-MODIS SM products, as well as 580 

with two widely used long-term global SM products, mean SM maps of the GLASS-AVHRR, GLASS-MODIS, ESA CCI, 

and ERA5-Land products were plotted for January and July of 2016, respectively (Fig. 10). It can be seen that the GLASS-

AVHRR SM product had the most complete spatial coverage among these products, after masking out permanent snow and 

ice and water bodies (Fig. 10g-h). Despite the spatiotemporal continuity of the ERA5-Land reanalysis SM product, it yielded 

negative SM values close to zero in parts of the northern Africa, especially in July, which were masked out here (Fig. 10c-d). 585 

The ESA CCI combined SM product exhibited substantial spatial gaps above 30° N in January, in addition to the persistent 

absence of valid estimates in some densely vegetated regions (e.g., the Congo River and Amazon River basins), due to the 

attenuation of microwave signals in these areas (Fig. 10a-b) (Dorigo et al., 2017). Meanwhile, because of the lack of 

GLASS-MODIS albedo products at high latitudes during the cold season, GLASS-MODIS SM estimates were unavailable at 

high latitudes (above 60° N) in January (Fig. 10e). Nevertheless, this does not affect the complete spatial coverage of the 590 

GLASS-AVHRR SM product, although it should still be used with caution in areas covered by seasonal snow and ice. In this 

regard, the performance of the GLASS-AVHRR SM product during the winter season (December–February) was evaluated 

using ISMN stations located above 30°N latitude, retaining only those with more than 100 matched records. The product 

achieved a median R value of 0.69 at 374 representative ISMN stations during Period I (2000–2018) and 0.63 at 19 stations 

during Period II (1982–1999). Therefore, despite its relatively lower accuracy in winter, the GLASS-AVHRR SM product 595 

still can provide valuable estimates and serve as a useful complement to the ESA CCI SM product. 

In terms of the spatial distribution patterns of SM, the GLASS-AVHRR and GLASS-MODIS SM products showed a high 

degree of consistency, which further demonstrates the effectiveness of the developed DL model. In general, both GLASS 

SM products were slightly drier than the ESA CCI combined SM product, probably because optical and thermal satellite SM 

estimates typically represent a shallower depth compared to microwave SM products. In contrast, the ERA5-Land SM 600 

product was much wetter than the other three SM products, especially in regions with high SM levels. While the three 

satellite SM products generally ranged between 0 and 0.5 m3 m-3, the ERA5-Land reanalysis SM product showed a range of 

0–0.7 m3 m-3, indicating a clear tendency for overestimation. Although varying degrees of biases existed among the four 

global SM products, similar spatial patterns could be observed in all of them, characterized by higher SM values in the 

eastern United States, northern South America, central Africa, and southern Asia, and lower SM values in the western USA, 605 

Middle East, northern and southern Africa, and Australia. Moreover, July was slightly drier than January in all four SM 

products, particularly in regions such as the western USA, eastern South America, and central Asia. 
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Figure 10 Mean global SM maps of the (a–b) 0.25° ESA CCI combined, (c–d) 0.1° ERA5-Land, (e–f) 1 km GLASS-

MODIS, and (g–h) 5 km GLASS-AVHRR SM product in January and July of 2016. Permanent snow and ice as well as 610 

water bodies have been masked out using the MODIS land cover product (MCD12C1), while SM values in northern high 

latitudes in January should be interpreted with caution due to the widespread presence of permafrost, snow, and ice. 

Figure 11 presents a zoomed-in comparison between the four SM products across the Tibetan Plateau in July 2016. The 

Tibetan Plateau, located in Central Asia, is the highest and most extensive plateau in the world, with an average elevation 

exceeding 4,000 meters. Its climate is extreme and varied, featuring significant seasonal and interannual variations. The 615 

unique topographic and climatic characteristics of the Tibetan Plateau make it one of the hotspots for global climate change 
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research. As can be observed from Fig. 11, all of the SM products show similar spatial distribution patterns: lower SM levels 

in the western and northern parts of the plateau, where rainfall is scarce and vegetation is sparse, and higher SM levels in the 

eastern and southern regions, where rainfall is more abundant and vegetation is denser. The GLASS-AVHRR SM product 

also exhibited high spatial consistency with the GLASS-MODIS SM product over the Tibetan Plateau, indicating that the 620 

adopted DL model effectively learned spatial features from the target SM product without introducing significant biases. 

Compared to the other three products, the ERA5-land SM product was much wetter in the southern part of the plateau, and 

the large positive bias in the ERA5-land reanalysis SM over the Tibetan Plateau was also reported in a previous study (Xing 

et al., 2021). Notably, there were many small patches with abrupt SM changes in the ERA5-land product (Fig. 11c), which 

were markedly improved in both the GLASS-AVHRR and GLASS-MODIS SM products. Moreover, compared to the 625 

ERA5-land and ESA CCI SM products at coarser resolutions, the GLASS-AVHRR SM product contained much richer 

spatial details and could well capture the distribution patterns of topography and vegetation. 

 

 

Figure 11 Zoomed-in comparison of the (a) 5 km GLASS-AVHRR, (b) 1 km GLASS-MODIS, (c) 0.1° ERA5-Land, and (d) 630 

0.25° ESA CCI combined SM products across the Tibetan Plateau in July 2016. Permanent snow and ice as well as water 

bodies have been masked out using the MODIS land cover product (MCD12C1). 
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5 Discussion 

This study aimed to develop a long-term global SM estimation framework using DL models, so as to derive a temporally 

consistent SM product with reliable accuracy over the last four decades. Therefore, we mainly explored two types of widely 635 

used DL models that are adept at processing sequential data: the LSTM-based models and Transformer. While LSTM has 

been utilized to retrieve SM since 2017 (Fang et al., 2017), the state-of-the-art Transformer model is still rarely used for SM 

estimation. Specifically, the accuracy of these DL models was compared from multiple perspectives, such as comparisons 

between the DL models and benchmark tree-based XGBoost model, between models with different attention mechanisms or 

different application architectures. Results showed that the Attention-based LSTM (AtLSTM) model achieved the best 640 

performance on the test set, and the MTM architecture could output a sequence of SM estimates simultaneously while 

maintaining similar accuracy to that of the MTO architecture. Note that, Transformer was reported to outperform LSTM-

based models in several hydrological applications due to its ability to better handle long sequences and relate any two 

positions in the sequence (Amanambu et al., 2022; Yin et al., 2022). Meanwhile, according to Xu et al. (2021), Transformer 

achieved similar accuracy to the AtLSTM model in multi-temporal crop mapping tasks. However, Zeng et al. (2023) found 645 

that a simple linear model can outperform Transformer in long-term time-series forecasting tasks, and ascribed this to the 

temporal information loss associated with the self-attention mechanism. Therefore, the superiority of Transformer for time-

series forecasting or estimating remains a topic of ongoing debate (Amanambu et al., 2022; Xu et al., 2021; Yin et al., 2022; 

Zeng et al., 2023). In our study, the accuracy of the Transformer model was slightly lower than that of the AtLSTM model, 

particularly for samples with high SM levels (> 0.4 m3 m-3). Given the high temporal variability of SM and the relatively 650 

short temporal length of SM memory, which typically ranges from 5 to 40 days and diminishes with increasing time lags 

(Orth and Seneviratne, 2012), this result may be attributed to the superior ability of the AtLSTM model to capture short-term 

adjacent dependencies. Yet, additional experiments with diverse training datasets are necessary to confirm the general 

applicability of this result. 

We also investigated the effect of input sequence length on model accuracy, and it was found that the overall accuracy of the 655 

AtLSTM model with the MTM architecture leveled off at a sequence length of about 4 days. Subsequent analysis of the 

distribution of attention weights indicated that the model could automatically learn the necessary temporal information from 

adjacent positions in the sequence to accurately estimate SM. Despite that the overall accuracy of the LSTM-based models 

with the MTM architecture would converge as long as the length of the input sequence is sufficiently long, the models’ 

accuracy is typically lower at the beginning or end of the sequence, and the affected estimates need to be identified and 660 

removed. In contrast, most of the current LSTM or Transformer application architecture is MTO and their accuracy remains 

unaffected at both ends of the sequence. But it is still necessary to identify the optimal sequence length during the training 

process to improve model efficiency, as the amount of input data would increase substantially with increasing sequence 

length. Here, we mainly explored the ability of the LSTM-based models and Transformer to capture temporal information 

from time-series input datasets for SM estimation. Future research could consider incorporating spatial patterns by 665 
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combining the AtLSTM or Transformer models with CNNs, or adapting the network of Transformer to improve its 

applicability for time-series estimating tasks. Moreover, different input features and data sources can also be integrated to 

investigate whether the estimation accuracy of SM can be further improved. 

To examine the accuracy and consistency of the generated four-decade global daily GLASS-AVHRR SM product, different 

strategies were combined to fully evaluate it, including the validation against in situ SM datasets from point-scale ISMN 670 

stations, field-scale COSMOS networks, and upscaled 9 km SMAP CVSs, respectively, as well as the intercomparison with 

two widely used long-term global SM products. However, the evaluation of the GLASS-AVHRR SM product is still subject 

to certain limitations. The ISMN in situ SM dataset prior to 2000 is relatively scarce, with only 45 independent stations 

available for evaluation during this period, and large scale difference exists between this point-scale SM dataset and the 5 km 

GLASS-AVHRR SM product. The COSMOS sensors generally have varying footprint radii and sensing depths, and their 675 

measurements tend to exhibit higher uncertainties in organic soils or humid regions, which can lead to spatial and vertical 

representativeness issues. Additionally, there is only a limited number of upscaled SMAP CVSs, and the data collected may 

also contain errors caused by varying degrees of spatial representativeness.  

Although validation results demonstrated that the GLASS-AVHRR SM product achieved high accuracy across different 

spatial scales, its performance was inevitably influenced by the GLASS-MODIS SM product, which served as the training 680 

target for the SM estimation model. Meanwhile, as a data-driven product, the quality of the GLASS-AVHRR SM product 

largely depends on the selected input features, their accuracy and consistency, and the representativeness of the training data. 

Potential uncertainties may arise from biases or errors in the satellite and reanalysis inputs. In particular, the reduced model 

accuracy observed in the high SM range is likely due to the inherent imbalance in the numerical distribution of SM samples 

and increased uncertainty in the accuracy of input features under wet surface conditions.  In terms of feature selection, due to 685 

constraints such as record length, spatiotemporal completeness, and accuracy requirements, some informative but less 

consistently available variables may have been excluded, further contributing to the uncertainties in the final SM product. 

Moreover, as the ERA5-Land reanalysis SM was used as one of the input features, the generated product cannot be 

considered entirely independent. Future research could explore developing a fully independent, long-term, and seamless 

global SM product with sufficiently reliable accuracy. 690 

Nevertheless, intercomparison with the long-term ERA5-Land and ESA CCI combined SM products showed that the derived 

GLASS-AVHRR SM product achieved the most complete spatial coverage, contained much richer spatial details, and 

remained unaffected by the large wet biases present in the input ERA5-Land SM product. While cumulative distribution 

function (CDF)-based methods can also be used for bias correction, they typically adjust statistical distributions locally, 

which limits their spatial generalization capability, particularly in regions lacking in situ SM data. In addition, they often 695 

overlook the temporal dependencies and nonlinear dynamics inherent in SM time series. Therefore, both the proposed DL-

based SM estimation farmwork and the derived long-term global SM product present clear value. It should be noted that the 

ESA CCI combined SM product was generated by synthesizing SM products retrieved from multiple microwave sensors 

using different algorithms. This approach was necessary because no single microwave sensor covered the sufficiently long 
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time period (> 30 years) required for a climate data record, but it also inevitably led to variations in the product’s accuracy 700 

over time and space (Dorigo et al., 2012). In contrast, the GLASS-AVHRR SM product was estimated using mainly the 

seamless GLASS-AVHRR albedo and LST products retrieved from the long-archived AVHRR satellite observations 

spanning four decades, which ensured its spatial and temporal completeness and consistency. Moreover, although 

microwave sensors are more sensitive to SM, their signal are significantly attenuated in densely vegetated areas, resulting in 

persistent data gaps in the ESA CCI product. While the GLASS-AVHRR SM product is less accurate in these regions (with 705 

a median R of 0.57 at 20 COSMOS forest stations), it can provide a valuable complement to microwave SM products. In 

future research, greater efforts should be devoted to both the development and validation of long-term SM climate data 

records, and it is also crucial to assess the long-term trends in these SM datasets. 

6 Data availability 

The seamless global 5 km SM product (GLASS-AVHRR SM) at daily scale from 1982 to 2021 is freely accessible at 710 

https://glass.hku.hk/archive/SM/AVHRR/. Additionally, the annual average GLASS-AVHRR SM dataset was also generated, 

which can be downloaded from https://doi.org/10.5281/zenodo.14198201 (Zhang et al., 2024b). Note that this product 

represents the volumetric water content in the uppermost soil layer (0–5 cm), with areas of permanent snow and ice and 

water bodies masked. A scale factor of 1000 was applied, with missing values filled with -9999. 

7 Conclusions 715 

A four-decade (1982–2021) seamless global surface SM product (0–5 cm) at 5 km resolution was derived here, denoted as 

the GLASS-AVHRR SM product. This product was estimated using mainly the long-archived AVHRR satellite observations 

and multi-source datasets based on DL. Specifically, a large number of evenly distributed training samples extracted from 

the global 1 km daily GLASS-MODIS SM product were used as target to train three LSTM-based models (LSTM, Bi-LSTM, 

and AtLSTM) and a Transformer model, with an XGBoost model employed as the benchmark. After identifying the 720 

AtLSTM as the best-performing model, it was ultimately adopted to generate the long-term GLASS-AVHRR SM product, 

which was then fully evaluated for reliability and consistency. The main results are summarized as follows: 

(1) Evaluation of the models on the test set showed that all four DL models outperformed the benchmark XGBoost 

model, particularly at high SM levels (> 0.4 m3 m-3). Notably, the AtLSTM model achieved the best performance, 

with an R2 of 0.987 and RMSE of 0.011 m3 m-3, and its SM estimates were much closer to 1:1 line than those from 725 

other models. These results indicate that utilizing bidirectional temporal information from the input sequence as well 

as adding an attention module are both effective in improving the estimation accuracy of SM. Meanwhile, The MTM 

architecture adopted in this study achieved similar accuracy to that of the MTO architecture, while being able to 

output a sequence of SM estimates simultaneously and reduce considerable production time. 

https://glass.hku.hk/archive/SM/AVHRR/
https://doi.org/10.5281/zenodo.14198201
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(2) The AtLSTM model with the MTM architecture was then employed to investigate the effect of input sequence length 730 

on model accuracy, and it was found that the overall accuracy of the model leveled off at a sequence length of about 

4 days. Further analysis of attention weights revealed that the AtLSTM model with the MTM architecture could 

automatically learn the necessary information from adjacent positions in the sequence to accurately estimate SM at 

each position. In contrast, the temporal information learned by the self-attention module of the Transformer model 

was more dispersed distributed, and the slightly lower accuracy of the Transformer model than the AtLSTM model 735 

might be attributed to the typically high temporal variability of SM and that short-term adjacent temporal information 

played a more critical role in the accurate estimation of SM. 

(3) The derived GLASS-AVHRR SM product was first evaluated using 45 independent point-scale ISMN stations prior 

to 2000, resulting in a median R of 0.73 and ubRMSE of 0.041 m3 m-3. Then, the product was validated against SM 

datasets from three post-2000 field-scale COSMOS networks, with median R values ranging from 0.63 to 0.79 and 740 

median ubRMSE values between 0.044 and 0.065 m3 m-3. Validation of the GLASS-AVHRR SM product at 22 

upscaled 9 km SMAP CVSs yielded an overall R of 0.82 and ubRMSE of 0.054 m3 m-3. Whereas the ERA5-Land 

SM product had large wet biases at most of the CVSs, the GLASS-AVHRR SM product basically corrected these 

biases. Moreover, the time-series plots at six CVSs further demonstrated that the GLASS-AVHRR SM product could 

well capture the temporal variations in measured SM and showed a high degree of temporal consistency with the 745 

GLASS-MODIS SM product. 

(4) Finally, the GLASS-AVHRR SM product was intercompared with two widely used long-term global SM products to 

investigate their spatial consistency. With the most complete spatial coverage, the GLASS-AVHRR SM product was 

slightly drier than the ESA CCI combined SM product, possibly due to the shallower depth it represents, whereas the 

ERA5-Land SM product exhibited a clear tendency for overestimation. While similar spatial patterns of SM could be 750 

observed in all of these products, the GLASS-AVHRR SM product contained much richer spatial details than the two 

long-term SM products at coarser resolutions. 

Our study demonstrates the feasibility of utilizing the attention-based DL model and AVHRR satellite observations to 

generate long-term global SM product. The derived GLASS-AVHRR SM product has the advantages of long-term coverage, 

spatial and temporal integrity, reliable accuracy and consistency. As a reliable extension of the GLASS-MODIS SM product 755 

and a valuable complement to microwave SM products, this four-decade global SM product will be beneficial for a range of 

large-scale climate change-related research. Future studies could combine other DL models or integrate different data 

sources to further improve the quality of the long-term SM product. 
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Appendix A: Supplementary figures 

 760 

Figure A1 The spatial distribution of SM stations for each in situ SM dataset used in this study. Period Ⅰ refers to 2000–2018 

and Period Ⅱ refers to 1982–1999 

 

Figure A2 Boxplots of sensing depths across the three COSMOS networks used for validation 
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 765 

Figure A3 Importance ranking of 11 input features for the AtLSTM model based on gradients analysis 
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