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CC2: 'Comment on essd-2024-553', SHAOBO SUN 

General comments 

The authors developed a consistent and seamless global soil moisture product over 

1982-2021 using deep learning models and existing SM and auxiliary data. Validation 

showed that the SM data well capture temporal variability of global SM. Thus, the 

newly developed, long-term data show potential in wide applications. While, the 

manuscript needs to be improved. 

We sincerely thank you for the positive and encouraging comments on our dataset 

and its potential applications. We also appreciate the suggestion to improve the 

manuscript. In response, we have revised the text to enhance its clarity and overall 

quality. Detailed responses and corresponding changes are provided below. 

Specific comments 

1. The authors did not use SM measurements to establish a DL model and develop 

global SM product. I think the developed GLASS-AVHRR SM product is a reprocessed 

SM product from ERA-Land SM and previous GLASS MODIS SM products. In the 

abstract, the authors said "we generated a consistent and seamless global SM product 

from 1982 to 2021 using deep learning (DL) by integrating four decades of Advanced 

Very High Resolution Radiometer (AVHRR) albedo and land surface temperature 

products with multi-source datasets."; did not mention use of ERA-Land SM which is 

much important for generating the SM data (Fig. A2). I think the authors should clearly 

stated how they generated the GLASS-AVHRR SM product with existing datasets in 

Abstract. 

Thank you for pointing out the lack of clarity regarding the data sources used in 

generating the GLASS-AVHRR SM product. We have revised the abstract to more 

explicitly state the role of ERA5-Land SM and clarify the datasets used. The updated 

sentence in the abstract now reads: 

“Here, we generated a consistent and seamless global surface SM product (0–5 cm) 

spanning 1982 to 2021 using a deep learning (DL) model. The model was trained with 

the GLASS-MODIS SM product and was designed to integrate four decades of 

Advanced Very High Resolution Radiometer (AVHRR)-derived albedo and land 

surface temperature, ERA5-Land SM, as well as terrain and soil texture datasets as 

input features.” 

2. Page 3: "including land cover mapping, data fusion and downscaling, and 

environmental parameter retrieval (Yuan et al., 2020). " Please add citations for each 
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research area. 

We have added citations as suggested. In particular, we now cite Huang et al. (2018) 

for land cover mapping, Wang et al. (2021) for data fusion and downscaling, and Ma 

and Liang (2022) for environmental parameter retrieval. 

Huang, B., Zhao, B., and Song, Y.: Urban land-use mapping using a deep convolutional neural 

network with high spatial resolution multispectral remote sensing imagery, Remote Sens. Environ., 

214, 73–86, https://doi.org/https://doi.org/10.1016/j.rse.2018.04.050, 2018. 

Wang, F., Tian, D., Lowe, L., Kalin, L., and Lehrter, J.: Deep Learning for Daily Precipitation and 

Temperature Downscaling, Water Resour. Res., 57, e2020WR029308, 

https://doi.org/https://doi.org/10.1029/2020WR029308, 2021. 

Ma, H. and Liang, S.: Development of the GLASS 250-m leaf area index product (version 6) from 

MODIS data using the bidirectional LSTM deep learning model, Remote Sens. Environ., 273, 

112985, https://doi.org/10.1016/J.RSE.2022.112985, 2022. 

3. Table 1: Many other available long-term SM products were not included, such as the 

GLEAM SM. 

Thank you for the suggestion. We have added two model-based long-term global SM 

products—GLEAM4 and SiTHv2—in Table 1. In addition, a brief description of these 

products has been added to the manuscript as follows: 

“Recently, models that focus on the dynamic simulation of evapotranspiration and 

SM, such as the fourth generation of the Global Land Evaporation Amsterdam Model 

(GLEAM4) (0.1°, 1980–2023) and the Simple Terrestrial Hydrosphere model, version 

2 (SiTHv2) (0.1°, 1982–2020), have also provided long-term global SM products by 

integrating multi-source satellite data and hydrometeorological variables (Miralles et 

al., 2025; Zhang et al., 2024a)” 

Miralles, D. G., Bonte, O., Koppa, A., Baez-Villanueva, O. M., Tronquo, E., Zhong, F., Beck, H. E., 

Hulsman, P., Dorigo, W., Verhoest, N. E. C., and Haghdoost, S.: GLEAM4: global land evaporation 

and soil moisture dataset at 0.1° resolution from 1980 to near present, Sci. Data, 12, 416, 

https://doi.org/10.1038/s41597-025-04610-y, 2025. 

Zhang, K., Chen, H., Ma, N., Shang, S., Wang, Y., Xu, Q., and Zhu, G.: A global dataset of terrestrial 

evapotranspiration and soil moisture dynamics from 1982 to 2020, Sci. Data, 11, 445, 

https://doi.org/10.1038/s41597-024-03271-7, 2024a. 

4. Section 2 datasets: introductions on the datasets used in this section were verbose. I 

suggest the author simply simplify this section. 

Thank you for the suggestion. We have simplified Section 2 by removing some less 

important sentences to improve clarity and conciseness. 
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5. Section 3 methods: please also simplify introductions on the DL/machine learning 

models, and pay much attentions on discussing results. 

We have also simplified Section 3 by removing some less important sentences to 

improve clarity and conciseness. 

6. Figure 9: In northern high latitudes, permafrost, snow and ice distribute widely, SM 

values in these regions are invalid in non-growing seasons. Thus, the SM maps in Jan. 

should masked these regions. 

Thank you for the comment. Figure 9 is intended to present the spatial distribution 

of various SM products in their original forms for a direct visual comparison. Regions 

with permanent snow and ice as well as water bodies, where SM values are invalid, 

have now been masked out in all SM products using the MODIS land cover type 

product (MCD12C1).  

However, masking regions covered by permafrost as well as seasonal snow and ice 

in the January SM maps would require reliable monthly land cover datasets, which are 

currently difficult to obtain. Therefore, we have clarified in the figure caption that “SM 

values in northern high latitudes in January should be interpreted with caution due to 

the widespread presence of permafrost, snow, and ice.” 

7. Line 615: "model based on deep learning" - using DL models 

Revised as suggested. 

8. Page 28: “a topic of ongoing debate” - citations are needed. 

Citations are added as suggested. 

9. Discussion: I suggest the authors pay more attention on discussing their results, 

including uncertainties in the their developed SM data, and importance of the input 

variables (Fig. 2A). Specially, Fig. 2A shows that elevation exhibits largest influence 

on predicting SM. While, the ERA-Land SM had small important value. Why? 

Thank you for raising this important point. In response, we have added a discussion 

on the uncertainties associated with our developed SM product in the Discussion 

section (Section 5). Specifically, we included the following statement: 

“Meanwhile, as a data-driven product, the quality of the GLASS-AVHRR SM 

product largely depends on the selected input features, their accuracy and consistency, 

and the representativeness of the training data. Potential uncertainties may arise from 

biases or errors in the satellite and reanalysis inputs. In particular, the reduced model 

accuracy observed in the high SM range is likely due to the inherent imbalance in the 
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numerical distribution of SM samples and increased uncertainty in the accuracy of input 

features under wet surface conditions.  In terms of feature selection, due to constraints 

such as record length, spatiotemporal completeness, and accuracy requirements, some 

informative but less consistently available variables may have been excluded, further 

contributing to the uncertainties in the final SM product. Moreover, as the ERA5-Land 

reanalysis SM was used as one of the input features, the generated product cannot be 

considered entirely independent. Future research could explore developing a fully 

independent, long-term, and seamless global SM product with sufficiently reliable 

accuracy.” 

Regarding the importance of input features, we have added the following explanation 

to the manuscript to clarify the observed differences: 

“In particular, although elevation is a static variable, it plays a critical role in shaping 

the spatial distribution of SM by influencing precipitation, temperature, vegetation type, 

and evaporation processes. Its impact on the spatial variability of SM tends to be more 

stable and consistent over time. In contrast, the contributions of dynamic input features 

such as ERA5-Land SM may fluctuate across time and space and can be diminished by 

inherent uncertainties and biases in the input data. Moreover, their importance may also 

be influenced by correlations with other input features.” 
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RC1: 'Comment on essd-2024-553', Anonymous Referee #1 

This study creates a consistent long-term and high-resolution global soil moisture 

product with comparable accuracy to previous deep learning approaches and 

demonstrates a clear superiority of the AtLSTM approach over other compared 

approaches. The findings and datasets are valuable to the community. The reporting is 

clear. Overall I recommend it for publication after minor revisions. Please see below 

for comments:  

Thank you very much for your positive feedback and valuable suggestions. Your 

insightful comments have helped us address several aspects of the manuscript that were 

previously unclear, greatly enhancing its clarity and rigor. We truly appreciate your time 

and effort in reviewing our work and improving its quality. 

1. The depth of the developed dataset should be noted in the abstract.  

Thank you for your suggestion. We have now included the depth of the developed 

dataset in the abstract to provide clearer information. 

Specifically, we have revised the abstract to mention that: “Here, we generated a 

consistent and seamless global surface SM product (0–5 cm) from 1982 to 2021…” 

Additionally, the depth of the dataset is also emphasized in other parts of the 

manuscript to ensure consistency. 

2. The training target is a previously developed 1km dataset, and the newly developed 

dataset mainly provides the advantage of being longer-term and better winter coverage. 

This would be clearer if the temporal coverage of the Zhang et al. (2023) dataset is 

stated in p4 lines 117-118.  

Thanks for the reminder. We have now added the temporal coverage of the GLASS-

MODIS SM product (2000–2020) to distinguish it from the newly developed dataset. 

3. p5 line 146: "8-day temporal resolution interpolated to daily" Please specify which 

interpolation method was applied.  

We applied linear interpolation and have emphasized this in the manuscript. 

4. It would be nice to add 1-2 sentences about uncertainty in the sampling strategy of 

the training target (p9 lines 242-p10 ln 244).  

We appreciate your advice and have included an analysis of the uncertainty of the 

sampling strategy, as follows: “While the three years were selected to represent 

different periods within the available time span (2000–2020), this selection may 
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introduce some uncertainty, as climate and environmental conditions can vary annually, 

and extreme weather or climate events in certain years may affect the representativeness 

of variables such as LST and SM. Nevertheless, this approach was adopted to control 

the sample size while ensuring the representativeness of samples across different years.” 

5. p13 Table 4: Should the number of layers be "2" for Bi-LSTM and 1 elsewhere?  

Thanks for pointing out this mistake. Upon rechecking the code and experimental 

notes, we found that the “number of layers” for all DL models is 1. This has been 

corrected in Table 4.  

Following the standard convention in deep learning frameworks (e.g., PyTorch), in 

our Bi-LSTM model, “Number of layers = 1” refers to a single Bi-LSTM layer, which 

internally includes both forward and backward LSTM units. 

We realized that the relevant sentence in the manuscript caused some confusion and 

have revised it from “The Bidirectional LSTM (Bi-LSTM) extends the LSTM network 

by using two separate LSTM layers to process the input sequence from both forward 

and backward directions, and then concatenating the outputs of both layers” to “The 

Bidirectional LSTM (Bi-LSTM) extends the LSTM network by incorporating both 

forward and backward LSTM units within a single layer, allowing the model to capture 

contextual information from both directions before concatenating their outputs.” 

6. The sequence lengths in Table 4 span whole year. The testing on p17 only spans 0-

29 days and demonstrates stabilized performances at much shorter lengths than 29 days. 

Why the drastic increase in sequence lengths in production runs? Also, since the input 

data are 3 discrete years, please specify what values are used to pad the 60 days before 

the start and after the end of the whole year.  

Given the need to generate daily SM products over 40 years, using an input sequence 

length of 10–30 days per run and generating SM estimates for such short periods would 

significantly increase the time required for data preprocessing. To balance accuracy and 

efficiency, we extended the sequence length to 425 days, enabling the generation of a 

full year's product in a single run. 

During both the training and production phases, the first and last 30 days of each 

425-day sequence were padded with actual data from adjacent years to ensure 

consistency. We have clarified this point in the manuscript. 

7. p14 lines 366-367: A bit confusing because this reduced-sample testing was not 

described in the Methods. Could you add a description?  

We have added a description of the purpose of this reduced-sample experiment in the 
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manuscript and revised the relevant sentence as follows: “The fairly high overall 

accuracy of the benchmark XGBoost model may be attributed to the large number of 

training samples, specifically 135,360 pixels per day over 3 years, evenly distributed 

across the globe on a daily basis. To evaluate the impact of sample size on model 

performance, we conducted an experiment by reducing the number of training samples. 

When the sample size was reduced by a factor of 100, the accuracy of the XGBoost 

model dropped considerably, with an R2 of 0.96 and RMSE of 0.017 m3 m-3 on the test 

set. This highlights the importance of having sufficient samples to achieve high 

accuracy with XGBoost and indicates the advantage of using the GLASS-MODIS SM 

product as training target, which can provide much richer samples than the sparse in 

situ ISMN SM dataset.” 

8. p15 Table 5: Is there a specific reason for choosing 0.4 m3/m3 as a threshold for large 

SM values? 

The threshold of 0.4 m3 m-3 was chosen because soil moisture values exceeding this 

level are generally considered high in most global land areas, except for wetland and 

irrigated regions. This threshold enables a more detailed assessment of model 

performance under high soil moisture conditions, where sample availability is relatively 

limited. This pattern can also be observed in the density scatter plots shown in Fig. 3, 

where the red dots, indicating the highest density, are primarily concentrated within the 

0–0.4 m3 m-3 range. 

9. Fig. 6: COSMOS dataset is not directly comparable to the developed dataset due to 

significant depth differences. It is okay as an auxiliary comparison, given that other 

comparable independent validation datasets are used (1982-1999 ISMN and SMAP 

validation sites). However, for informative purpose, it would be good to provide 

boxplots of the depths of the COSMO observations used in the last three columns of 

Fig. 6 in supplementary info.  

Following your suggestion, we have summarized the sensing depths of all sensors 

across the three COSMOS networks and added a boxplot (Fig. A2) in the Appendix. 

We have also included relevant descriptions in the main text. 

“The distribution of sensing depths for each station across the three COSMOS 

networks is presented in Fig. A2. While COSMOS sensors measure SM at relatively 

deeper layers, they have been used to validate microwave and modelled surface SM 

products and show good correlations with them (Montzka et al., 2017; Peng et al., 

2021b).” 

Montzka, C., Bogena, H. R., Zreda, M., Monerris, A., Morrison, R., Muddu, S., and Vereecken, H.: 

Validation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron 
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Probes, Remote Sens., 9, https://doi.org/10.3390/rs9020103, 2017. 

Peng, J., Tanguy, M., Robinson, E. L., Pinnington, E., Evans, J., Ellis, R., Cooper, E., Hannaford, J., 

Blyth, E., and Dadson, S.: Estimation and evaluation of high-resolution soil moisture from merged 

model and Earth observation data in the Great Britain, Remote Sens. Environ., 264, 112610, 

https://doi.org/https://doi.org/10.1016/j.rse.2021.112610, 2021. 

 

Figure A2 Boxplots of sensing depths across the three COSMOS networks used for validation 

10. More on Fig. 6. The currently used 1982-1999 ISMN set provides spatiotemporally 

independent comparison. The 1982-1999 data at the 715 representative stations would 

still be temporally independent comparison. Could you include the performance metrics 

on this subset of data? 

Thank you for your suggestion. However, the vast majority of ISMN SM monitoring 

stations were established after 2000. Among the 715 representative stations, only 23 

had observations before 2000. Comparing the metrics obtained from these two groups 

of datasets may not be sufficient to draw robust conclusions. Therefore, we opted not 

to include this comparison in Fig. 6. Nevertheless, we assessed the validation metrics 

of the GLASS-AVHRR SM product across the 23 representative stations from 1982 to 

1999, yielding a median R of 0.76, a median bias of -0.03 m3 m-3, and a median 

ubRMSE of 0.029 m3 m-3. 
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RC2: 'Comment on essd-2024-553', Anonymous Referee #2 

This study used several deep learning models to estimate SM with some optical remote 

sensing indices, soil properties and DEM. Even though it’s a big work, it lacks sufficient 

innovation and employs inappropriate evaluation method. Despite the overall scale of 

the work, the methodological design raises serious concerns. 

We sincerely thank you for your time and effort in reviewing our manuscript and for 

recognizing the scale of our work. With due respect, we would like to express our 

disagreement with the comment that the study lacks sufficient innovation and adopts 

inappropriate evaluation method. 

In terms of methodological innovation, our study explored state-of-the-art deep 

learning models to generate a seamless, four-decade global SM product at 5 km 

resolution. By integrating multi-source datasets, this product achieves complete 

spatiotemporal coverage, reliable accuracy, rich spatial details, and low biases. Given 

the limited research on developing long-term global SM products based on deep 

learning, along with the notable strengths of our product, we believe this work meets 

the journal's requirements for innovation and high-quality datasets. 

Regarding the evaluation strategy, we carefully designed the validation process by 

incorporating multiple methods to assess the performance of our model and product. 

During the model development phase, we used the GLASS-MODIS SM product—also 

employed as the training target—as a reference to evaluate the model’s estimated SM 

on the test set. The high accuracy achieved indicates the strong agreement between the 

estimated and target SM values, and demonstrates the reliability of the GLASS-AVHRR 

product as a temporal extension of the GLASS-MODIS product. During the product 

accuracy evaluation phase, we fully evaluated the product’s accuracy using independent 

in situ SM datasets across different spatial scales, including point-scale ISMN stations, 

field-scale COSMOS networks, and 9-km upscaled SMAP core validation site, as 

detailed in Section 4.2. In addition, time series comparisons and spatial consistency 

analyses with other long-term global SM products provided further evidence of the 

robustness and reliability of our product. 

We hope these clarifications help to alleviate your concerns and highlight the novel 

aspects and methodological soundness of our work. 

Major Comments: 

Line 135, Table 2: I question the innovation and scientific contribution of using ERA5-

Land SM as an input variable in a model that aims to estimate soil moisture. This 
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approach may introduce circular reasoning and undermines the novelty of the proposed 

method. 

We sincerely appreciate your insightful comment and understand your concern 

regarding potential circular reasoning—specifically, the risk that using ERA5-Land SM 

as an input while also estimating SM might lead the model to simply reproduce the 

ERA5-Land SM, rather than genuinely learning from multi-source datasets. 

We would like to clarify that ERA5-Land SM was not used as a target variable, nor 

was the intention to replicate its pattern. Instead, it served as one of several input 

features—alongside satellite observations, terrain, and soil properties—aimed at 

improving the model’s ability to capture the complex spatiotemporal variability of SM. 

Furthermore, our final product was fully validated using independent in situ SM 

datasets (ISMN, COSMOS, and SMAP CVSs), and the results showed that the biases 

in our product were significantly lower than those in the ERA5-Land SM product. As 

such, our approach focuses on multi-source data fusion, leveraging the strengths of 

various datasets, rather than merely “using SM to predict SM.” Therefore, we believe 

that the use of ERA5-Land SM as an input does not undermine the novelty of our 

approach or lead to circular reasoning. 

Accordingly, we explicitly clarified the objective of this study in the manuscript: 

“(1) To develop a DL-based global SM estimation model by integrating multi-

source datasets and leveraging their complementary strengths, so as to derive a seamless 

and reliable long-term global SM product.” 

Line 380, Table 5: It is inappropriate to use GLASS-MODIS SM as a reference to 

evaluate the model's estimated SM, as they are not independent. Since variables such 

as LST and albedo were also used in the model estimation, the evaluation becomes 

biased, leading to inflated performance metrics (e.g., R² > 0.98). This dependence 

compromises the reliability of the validation. 

Thank you for pointing out this important concern. We would like to clarify that the 

use of GLASS-MODIS SM as a reference in Table 5 was solely part of the model 

development process—specifically, to assess how well the models could reproduce the 

training target on a held-out test set. This evaluation is a standard practice in deep 

learning studies to verify model learning behavior before proceeding to independent 

validation. 

Table 5 aims to compare the performance of different DL models on the test set in 

order to select the model with the highest accuracy. The high R² values reported here 

reflect the models’ fit to the training target under consistent input settings, but they do 
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not represent the final product’s accuracy. In contrast, the accuracy of our final product 

was thoroughly evaluated in Section 4.2 using independent in situ SM datasets across 

different spatial scales. 

To avoid any potential misunderstanding that the model's accuracy on the test set 

represents the actual accuracy of the GLASS-AVHRR SM product, we have removed 

the reference to model accuracy in the abstract and revised the relevant text as follows: 

“Our results show that all four DL models outperformed the benchmark XGBoost 

model, with the AtLSTM model achieving the highest accuracy on the test set, 

particularly at high SM levels (> 0.4 m3 m-3).” 

Line 20: The five deep learning models yielded very similar results, with R² values 

ranging from 0.982 to 0.987. Therefore, the claim that these models “…effectively 

enhance…” SM estimation is not well supported. 

Thank you for your valuable comments. We fully understand your concern regarding 

the similarity in overall accuracy among the five models. However, it is important to 

point out that the AtLSTM model significantly improved SM estimation accuracy under 

high SM conditions. Specifically, on the test set, the XGBoost model exhibited notable 

underestimation at high SM levels (> 0.4 m3 m-3), yielding an R² of 0.413 and RMSE 

of 0.022 m3 m-3. In contrast, by incorporating both temporal information and attention 

mechanisms, the AtLSTM model effectively reduced this underestimation and achieved 

an R² of 0.621 and RMSE of 0.016 m3 m-3 within the same range, demonstrating 

superior modeling capability under these challenging conditions. 

Therefore, although the overall R² values across these models appear similar, we 

believe that this significant improvement at high SM levels by the AtLSTM model 

supports the claim that temporal and attention-based modeling can effectively enhance 

the estimation accuracy of SM. To improve clarity, we have revised the relevant 

statement in the abstract to: “These results suggest that under some challenging 

conditions, utilizing temporal information as well as adding an attention module can 

effectively enhance the estimation accuracy of SM.” 

Minor Comments: 

Line 60: There are additional remote sensing-based SM products that should be 

referenced, including but not limited to: Cheng et al. (2023); Guevara, Taufer, & Vargas 

(2021); and Zheng, Jia, & Zhao (2023). 

Thank you for the valuable information. We have added citations to Cheng et al. 

(2023) and Guevara et al. (2021) in Page 3 of the revised manuscript, respectively. 

Zheng et al. (2023) had already been cited in the same page. 
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Line 190: The time period referred to as "period1" is 2000–2018. Why were the years 

2019–2021 excluded from the analysis? 

The period 2000–2018 was intentionally selected to ensure consistency with the 

validation period used in our previous paper on the GLASS-MODIS SM product, as 

illustrated in Fig. 5 of Zhang et al. (2023). In this work, we also used the GLASS-

MODIS SM validation results at ISMN stations as a benchmark for comparison. 

Aligning the time period helps avoid potential confusion for readers regarding any 

differences in the reported performance of the same product between the two studies. 

Zhang, Y., Liang, S., Ma, H., He, T., Wang, Q., Li, B., Xu, J., Zhang, G., Liu, X., and Xiong, C.: 

Generation of global 1 km daily soil moisture product from 2000 to 2020 using ensemble learning, 

Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023, 2023. 

Line 355: The statement “two widely used long-term global SM products” should 

specify which products are being referred to for clarity. 

Thank you for the comment. We have revised the sentence to specify the two SM 

products, namely the ERA5-Land and ESA CCI. 

Cheng, F., Zhang, Z., Zhuang, H., Han, J., Luo, Y., Cao, J., . . . Tao, F. (2023). ChinaCropSM1 km: 

a fine 1 km daily soil moisture dataset for dryland wheat and maize across China during 1993–2018. 

Earth System Science Data, 15(1), 395-409. doi:10.5194/essd-15-395-2023 

Guevara, M., Taufer, M., & Vargas, R. (2021). Gap-free global annual soil moisture: 15 km grids 

for 1991–2018. Earth System Science Data, 13(4), 1711-1735. doi:10.5194/essd-13-1711-2021 

Zheng, C., Jia, L., & Zhao, T. (2023). A 21-year dataset (2000-2020) of gap-free global daily surface 

soil moisture at 1-km grid resolution. Sci Data, 10(1), 139. doi:10.1038/s41597-023-01991-w 
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RC3: 'Comment on essd-2024-553', Anonymous Referee #3 

The authors compared multiple deep learning methods and selected the most suitable 

approach to generate a 5 km-resolution soil moisture product based on AVHRR data, 

spanning four decades. Overall, this is a well-written manuscript, and the scope of the 

study aligns well with the aims and scope of Earth System Science Data. However, the 

current version of the manuscript appears overly technical in its presentation. The 

authors should address the following major and specific comments before the 

manuscript can be considered for publication. 

We sincerely thank you for the positive feedback and constructive suggestions. We 

have revised the manuscript to reduce technical complexity and improve readability. 

Below are our point-by-point responses to all major and specific comments. 

General comments 

1. While the description of the deep learning methods is sufficiently detailed, the 

treatment of the predictor variables requires substantial clarification and improvement. 

It remains unclear how these variables were selected, particularly the rationale for using 

ERA5-Land data as model inputs. In my view, the relatively strong performance of 

GLASS-AVHRR in capturing seasonal variations, especially for the R metric, may be 

partially attributed to this. The authors should consider producing an independently 

driven soil moisture product, rather than relying on predictors that may introduce 

redundancy or circular reasoning. 

These input variables are widely used in ML and DL-based SM estimation studies. 

Their selection was guided by prior literature as well as our experience from previous 

SM product development. Due to practical constraints such as the need for long 

temporal sequences (40 years), consistent spatiotemporal coverage, and reliable 

accuracy, some potentially informative variables were excluded. 

The ERA5-Land SM product was selected because of its long-term temporal 

coverage, physical consistency, and relatively high validation accuracy (e.g., in terms 

of R). Moreover, The ERA5-Land SM product has been widely adopted in previous SM 

downscaling studies, which supports its credibility and applicability within our 

modeling framework. 

We acknowledge that the relatively strong performance of the GLASS-AVHRR SM 

product may be partially attributed to the inclusion of ERA5-Land SM as an input. As 

shown in the feature importance ranking (Fig. A3), ERA5-Land SM contributes 

significantly to the model’s predictions. However, other variables—such as elevation, 
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black-sky visible albedo, and slope—also play important roles, indicating that the 

model integrates diverse sources of information beyond any single input. 

Our goal was to generate a seamless and reliable long-term global SM product by 

integrating multi-source datasets and leveraging their complementary strengths. While 

we acknowledge that some degree of redundancy may exist, the AtLSTM model is 

capable of effectively handling this through its attention mechanism, which allows it to 

dynamically focus on the most relevant features over time.  

We understand the concern regarding potential circular reasoning—specifically, the 

risk that using ERA5-Land SM as an input while also estimating SM might lead the 

model to simply reproduce the ERA5-Land SM, rather than genuinely learning from 

multi-source datasets. We would like to clarify that ERA5-Land SM was not used as a 

target variable, nor was the intention to replicate its pattern. Instead, it served as one of 

several input features—alongside satellite observations, terrain, and soil properties—

aimed at improving the model’s ability to capture the complex spatiotemporal 

variability of SM. 

We appreciate the suggestion to explore the development of an independently driven 

SM product and will consider this direction in future work. However, we believe the 

current design is appropriate for our objective of generating a long-term global SM 

product with complete spatiotemporal coverage, reliable accuracy, rich spatial details, 

and low biases. 

In response, we have revised the manuscript to provide a clearer explanation of our 

variable selection rationale and the role of ERA5-Land SM. Specifically, we added the 

following sentences: 

“These input features are widely used in ML and DL-based SM estimation studies.” 

“In terms of feature selection, due to constraints such as record length, 

spatiotemporal completeness, and accuracy requirements, some informative but less 

consistently available variables may have been excluded, further contributing to the 

uncertainties in the final SM product.” 

“(1) To develop a DL-based global SM estimation model by integrating multi-

source datasets and leveraging their complementary strengths, so as to derive a seamless 

and reliable long-term global SM product;” 

“Moreover, as the ERA5-Land reanalysis SM was used as one of the input features, 

the generated product cannot be considered entirely independent. Future research could 

explore developing a fully independent, long-term, and seamless global SM product 

with sufficiently reliable accuracy.” 
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2. I remain concerned about the generalization capability of the developed deep learning 

model, particularly considering the strong spatial autocorrelation inherent in the current 

training, validation, and test data split. Furthermore, the results presented in Table 5 

indicate that model performance deteriorates when soil moisture exceeds 0.4 m³/m³, 

which the authors attribute to a lack of training samples. This observation indirectly 

suggests that the model performs poorly in unseen regions or conditions, highlighting 

its limited generalization ability. The authors should explore alternative data splitting 

strategies to rigorously assess the robustness and generalizability of their approach. 

We acknowledge your concern regarding the generalization capability of our DL 

model. In this study, the training, validation, and test datasets were constructed by 

randomly sampling from 135,360 pixels distributed across the globe, each representing 

a time-series sample with spatial independent locations. Specifically, these pixels were 

selected at an interval of five grid cells (i.e., 25 km), ensuring that the spatial distance 

between any two samples exceeds 25 km. Given that the spatial autocorrelation of soil 

moisture typically diminishes beyond this scale, the spatial dependence among samples 

is sufficiently minimized. Therefore, we believe that the current data splitting strategy 

can ensure a reliable evaluation of the model’s generalization performance. 

We agree that the model’s performance declines when SM exceeds 0.4 m3 m-3. This 

is mainly due to the inherent imbalance in the distribution of SM observations, as 

samples at high SM levels are naturally scarce across both time and space. In addition, 

satellite observations under wet conditions tend to be less reliable because of saturation 

effects, cloud contamination, and decreased sensitivity in albedo, all of which affect the 

quality of the input features. Despite these challenges, the AtLSTM model still achieves 

much better performance than XGBoost in this range, as demonstrated by significantly 

improved R² and RMSE values. In general, the model performs well across the majority 

of the SM range, with only slight differences in overall accuracy between the spatially 

independent training and test sets, indicating relatively robust generalization capability. 

In response, the following sentences have been added to the revised manuscript:  

“These samples were then randomly divided into training, validation, and test 

datasets in the ratio of 7:2:1 based on their locations, ensuring spatial independence 

with distances between any two samples exceeding 25 km, thereby minimizing the 

influence of spatial autocorrelation.” 

 “In particular, the reduced model accuracy observed in the high SM range is likely 

due to the inherent imbalance in the numerical distribution of SM samples and increased 

uncertainty in the accuracy of input features under wet surface conditions.” 

3. Figure 2 in the Methods section is unnecessarily technical and lacks clear justification. 
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A concise textual explanation that hyperparameter tuning was performed would be 

sufficient. Moreover, both Figures 1 and 2 fail to clearly illustrate how the 

spatiotemporal training was implemented, especially considering that LSTM and 

related models are specifically designed to capture temporal dependencies. The authors 

should provide a more explicit and structured explanation of how time-series 

characteristics were incorporated into the model training, without ignoring the spatial 

autocorrelation issue raised above. 

Thank you for your valuable comments. In response, we have added a new schematic 

diagram (Fig. 2) to explicitly illustrate how spatiotemporal sampling was conducted 

from the input dataset to construct time-series input samples that are evenly distributed 

across the globe. Specifically, spatial sampling was performed at an interval of 5 pixels, 

ensuring that the minimum distance between any two samples exceeds 25 km. As a 

result, the training and test samples are spatially independent, and the potential 

influence of spatial autocorrelation is expected to be minimal. 

 

Figure 2. Schematic diagram illustrating the construction of time-series input samples for the 

DL models. N denotes the total number of samples, and L represents the sequence length, a 

hyperparameter that needs to be tuned. 

4. In Figure 9, I noticed that the GLASS-AVHRR estimates provide coverage during 

the winter season, unlike the CCI product. The authors should clarify what measures 

were taken to ensure the reliability of these estimates under winter conditions, 

particularly in areas covered by snow, ice, or water. An additional seasonal evaluation 

focusing specifically on winter performance would be welcome and could strengthen 

the credibility of the product. In addition, all products in Figure 9 should be masked 

over permanent water bodies, where soil moisture retrieval is not valid. This issue is 

especially noticeable in Quebec, Canada. 

Thank you for the comment. The current algorithm is not able to reliably estimating 
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SM under areas covered by snow, ice, or water. We have masked permanent snow and 

ice as well as water bodies in the final GLASS-AVHRR SM product. However, seasonal 

snow and ice were not masked due to the lack of high-quality global products. Users 

are encouraged to apply additional filters based on their specific application needs—

for example, by masking pixels with LST below 0 °C during the winter season. 

In response to your suggestion, we conducted an accuracy assessment of the GLASS-

AVHRR SM product during the winter season, using in situ measurements from ISMN 

stations. The COSMOS SM dataset was not included in this evaluation due to its 

relatively high uncertainty under wetter soil conditions, which are prevalent in winter. 

Specifically, we selected ISMN stations located above 30°N latitude and extracted daily 

observations from December to February. These observations were matched with the 

GLASS-AVHRR SM estimates, and only stations with more than 100 matched records 

were retained for analysis. The R values between the two datasets at these stations were 

then calculated, and the results are presented in the boxplot below.  

Based on the station selection criteria described above, the GLASS-AVHRR SM 

product achieved a median R value of 0.78 at 374 representative ISMN stations during 

Period I (2000–2018), and 0.74 at 19 stations during Period II (1982–1999). In the 

winter season (December to February), the corresponding median R values were 0.69 

for Period I and 0.63 for Period II. While the product’s performance is relatively lower 

in winter, it still offers valuable estimates—particularly given the substantial data gaps 

in the CCI SM product during the winter season in regions above 30°N latitude. This 

result has been incorporated into Section 4.3 of the manuscript (Page 26). 

 

We have also revised Figure 9 as suggested. In the updated figure, permanent snow 

and ice as well as water bodies have been masked out in all products using the MODIS 

land cover type product (MCD12C1). These changes can be clearly seen from the 
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ERA5-Land and GLASS-MODIS SM products. However, due to the coarse display 

scale of Figure 9, many masked lakes (such as those in Quebec) are not visually 

discernible. As shown in the zoomed-in maps in Figure 10 over the Tibetan Plateau, the 

lakes have been effectively masked. 

5. The authors should provide more reasonable explanations for some of the evaluation 

results. For example, why does GLASS-AVHRR perform worse than ERA5-Land in 

terms of the R metric over COSMOS-Europe? In addition, I do not fully agree with the 

explanation provided for the strong dry bias observed in COSMOS-UK. ERA5-Land 

shows a consistently wet bias across different COSMOS networks, which raises the 

question of whether the developed product itself suffers from instability in different 

regions. 

ERA5-Land is a reanalysis product developed by ECMWF that assimilates and 

calibrates against a large number of in situ observations worldwide, with particularly 

dense and high-quality observational networks in Europe. As a result, it achieves 

notably high accuracy over the COSMOS-Europe network, with a median R value of 

0.85. The slightly lower performance of the GLASS-AVHRR SM product in this 

network may be attributed to two main factors. First, our model is trained globally and 

thus may have learned generalized patterns that are not specifically optimized for 

European conditions. Second, while integrating multiple data sources, such as AVHRR 

LST, albedo, and topographic information, can improve overall global performance, it 

may introduce noise or redundancy in regions where ERA5-Land already provides 

highly accurate estimates, leading to reduced correlation metrics. 

We realized that the original sentence—“Besides, the biases of the GLASS-AVHRR 

SM product across the COSMOS networks were much larger than those observed 

across the ISMN network, particularly on the COSMOS-UK network, where the 

median bias reached -0.09 m3 m-3”—is inappropriate. In fact, the large bias was 

primarily observed on the COSMOS-UK network. We examined the sensing depths 

across the three COSMOS networks and found that the COSMOS-UK network has a 

median sensing depth of 30 cm, which is much deeper than those of COSMOS (21 cm) 

and COSMOS-Europe (22 cm) (Fig. A2). This greater sensing depth likely contributes 

to the large bias observed in the COSMOS-UK network. Moreover, COSMOS 

measurements in organic soils or humid regions—conditions more prevalent in the 

UK—are subject to greater uncertainty, as also noted by Zheng et al. (2024). This may 

explain the higher ubRMSE values observed for both the GLASS-AVHRR and ERA5-

Land SM products on the COSMOS-UK network. 

Therefore, we have revised the relevant sentences to: “The biases of the GLASS-
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AVHRR SM product on the COSMOS-UK network were much larger than those on the 

other two COSMOS networks, with the median bias reaching -0.09 m³ m-3. This is 

likely due to the greater sensing depth of the COSMOS-UK network, which has a 

median depth of 30 cm, compared to 21 cm and 22 cm for the COSMOS and COSMOS-

Europe networks, respectively (Fig. A2). Moreover, both the GLASS-AVHRR and 

ERA5-Land SM products exhibited larger ubRMSE values on the COSMOS-UK 

network. This may be related to the increased uncertainty of COSMOS measurements 

in organic soils or humid regions, which are prevalent in the UK, as also reported by 

Zheng et al. (2024).” 

Zheng, Y., Coxon, G., Woods, R., Power, D., Rico-Ramirez, M. A., McJannet, D., Rosolem, R., Li, 

J., and Feng, P.: Evaluation of reanalysis soil moisture products using cosmic ray neutron sensor 

observations across the globe, Hydrol. Earth Syst. Sci., 28, 1999–2022, 

https://doi.org/10.5194/hess-28-1999-2024, 2024. 

Specific comments: 

L61: This may also be related to the uneven spatial distribution of the input 

meteorological data, particularly the limited observational coverage in tropical regions. 

Thank you for the helpful suggestion. We have revised the sentence as follows: 

“Yet, these SM products may suffer from large uncertainties arising from defective 

forcing data, imperfect model parameterization, and the uneven spatial distribution of 

input meteorological observations, particularly the limited observational coverage in 

tropical regions.”  

L64: also 10.1016/j.rse.2022.112921; 10.1016/j.rse.2022.113272 

We have added the recommended references to the manuscript. 

2 Datasets: Predictor variables lack of vegetation-related variables 

We tested several AVHRR-derived NDVI and LAI products as additional predictor 

variables; however, they did not improve the model performance and in some cases 

even slightly degraded it. This may be due to the relatively high level of noise and 

uncertainty in the long-term AVHRR vegetation products, particularly over regions 

with sparse vegetation or frequent cloud cover. 

Table 2: As noted above, it is inappropriate to use ERA5-Land-derived soil moisture as 

an input when the objective is to analyze or generate a new soil moisture product. 

As mentioned in our response to the first general comment, we have explained the 

reason for choosing the ERA5-Land SM product. In addition, we have clarified the 

main objective of this study at the end of the Introduction section, which is: 
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“(1) To develop a DL-based global SM estimation model by integrating multi-source 

datasets and leveraging their complementary strengths, so as to derive a seamless and 

reliable long-term global SM product.” 

L146: What kind of method? 

We applied linear interpolation and have emphasized this in the manuscript. 

L156: see 10.1016/j.rse.2023.113721 

Thank you for providing this reference. We have included it in the manuscript. 

L175: This also means that validation with ISMN is not independent. 

For Period Ⅰ (2000–2018), the ISMN stations used for validation are not completely 

independent, and we have clarified this point in the text. However, the 45 ISMN stations 

for Period Ⅱ (1982–1999) are fully independent. 

L196: The meaning of the label "G" should be clearly defined. 

We revised the sentence to “considering only those flagged as “G” for good quality.” 

L201: How do the authors justify the appropriateness of using COSMOS observations, 

which primarily sense deeper soil moisture, for evaluating surface soil moisture 

products? 

We acknowledge that COSMOS sensors primarily measure SM at deeper layers, with 

the median sensing depths of the three COSMOS networks used for validation in this 

study being 21 cm, 30 cm, and 22 cm, respectively (Fig. A2). Nevertheless, several 

studies, such as Montzka et al. (2017) and Peng et al. (2021), have also utilized the 

COSMOS SM datasets to validate microwave and modelled surface SM products, 

showing good correlations between COSMOS observations and these products. We 

have added this point into the manuscript (Page 8). 

Moreover, in our evaluation, we used COSMOS data cautiously by analyzing them 

separately from other datasets and clarifying their sensing depth characteristics in the 

manuscript. This ensures that the use of COSMOS data provides complementary 

information without misleading the evaluation of surface SM products. 

Montzka, C., Bogena, H. R., Zreda, M., Monerris, A., Morrison, R., Muddu, S., and Vereecken, H.: 

Validation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron 

Probes, Remote Sens., 9, https://doi.org/10.3390/rs9020103, 2017. 

Peng, J., Tanguy, M., Robinson, E. L., Pinnington, E., Evans, J., Ellis, R., Cooper, E., Hannaford, J., 

Blyth, E., and Dadson, S.: Estimation and evaluation of high-resolution soil moisture from merged 

model and Earth observation data in the Great Britain, Remote Sens. Environ., 264, 112610, 
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https://doi.org/https://doi.org/10.1016/j.rse.2021.112610, 2021. 

Table 3: Are these COSMOS networks intercalibrated? 

Currently, we have not found any literature or reports indicating that these COSMOS 

networks were intercalibrated. However, we conducted independent validations for data 

from different COSMOS networks separately without merging the datasets, so this does 

not affect the main findings of the validation. 

Sections 3.3 and 3.4 can be simplified 

Thank you for the suggestion. We have simplified Sections 3.3 and 3.4 by removing 

some less important sentences to improve clarity and conciseness. 

L377: The term "underestimate" should be used with caution, as all reference datasets 

represent proxy observations rather than true ground-truth measurements at the grid 

scale. 

We agree with your comment and acknowledge that the term “underestimate” should 

be used with caution. Accordingly, we have revised the term “underestimate” in this 

section to “lower estimates” to avoid potential misinterpretation. 

Figure 3: Lack of units 

Thank you for pointing this out. The units have now been added to all RMSE values 

in Figure 3. 

L506-507: Why doesn't ERA5-Land have this problem? 

Both the GLASS-AVHRR and ERA5-Land SM products are affected by the 

differences in spatial scale, vertical sensing depth, and local soil characteristics when 

validated against the COSMOS networks, especially in terms of bias and ubRMSE 

metrics. Notably, both products exhibit the highest ubRMSE values on the COSMOS-

UK network. The biases in the ERA5-Land product, however, stem from a variety of 

factors and can vary considerably across different regions, making it difficult to 

determine the major cause of the bias magnitude. 

Figure 6: These three datasets, including ERA5-Land, GLASS-MODIS and GLDAS-

AVHRR, have different spatial resolutions. Please clarify how the spatial mismatch was 

addressed when using different in-situ observations. 

We understand the concern that spatial mismatches between gridded SM products 

and in-situ observations may affect the accuracy assessment. However, most of the in-

situ SM measurements from the ISMN dataset are collected from sparse sites, where 

typically only a single station is located within each product’s grid cell. In such cases, 
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spatial averaging is not feasible, and the point-scale measurements are directly used to 

represent the grid cell for validation. To help mitigate the impact of spatial mismatch, 

we also conducted accuracy assessments at representative ISMN stations. As shown in 

Figure 6, all SM products exhibit improved accuracy at these representative sites. 

Compared to ISMN stations, COSMOS sensors are capable of providing area-

averaged SM measurements over a much larger footprint, typically with a radius of 130 

to 240 meters. This characteristic makes them more compatible with the spatial 

resolution of gridded products, thereby reducing the potential impact of spatial 

mismatch during the validation process.  

We have added the following statement in the manuscript to clarify the potential 

effects of spatial mismatch on the validation metrics: “This variability may be attributed 

to the different footprint radii of COSMOS sensors, which result in varying degree of 

spatial representativeness and spatial mismatches with gridded SM products. These 

factors can introduce uncertainty into the validation results, particularly affecting the 

bias and ubRMSE metrics.” 

L529: Why doesn't ERA5-Land have this problem? 

Due to the limited number and uneven distribution of in situ stations within each 

CVS, the upscaled 9 km CVS SM dataset may contain considerable uncertainty at sites 

with complex land surface conditions, such as the Little River. Meanwhile, the 2×2 

window averaging used to align the 5 km GLASS-AVHRR product with the CVS grid 

at such site could introduce additional errors due to subpixel heterogeneity. Therefore, 

using this site for validation is less reliable. Although the ERA5-Land product yields a 

higher R value at the Little River site, it also exhibits the largest bias (0.22 m3 m-3), 

which is also evident from the time series plot. 

We have revised the corresponding sentence to: “This is probably because the land 

cover type at this site is ‘Cropland or Natural mosaic’, making the upscaled in situ SM 

measurements less representative and the validation results at this site less reliable.” 

Figure 10: All products should be masked out over lake areas where soil moisture 

retrievals are not valid. 

We have revised Figure 10 as suggested. In the updated figure, permanent snow and 

ice as well as water bodies have been masked out in all products using the MODIS land 

cover type product (MCD12C1). 
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RC4: 'Comment on essd-2024-553', Noemi Vergopolan 

This paper introduces a dataset and approaches integrating AVHRR albedo and land 

surface temperature using an LSTM-based deep learning model to reconstruct soil 

moisture from 1982 to the present from GLASS-MODIS. The paper is well written, and 

the methodology is clear and well-detailed, but the paper does not highlight the novelty 

of the approach and how it differentiates from other efforts in the field. One major 

concern is that GLASS-MODIS already uses ERA5-Land, MERIT-DEM, and Soil-

Grids as inputs; as such the proposed DL models are simply acting as surrogate models 

to GLASS-MODIS. The authors should demonstrate that AVHRR and the proposed DL 

model substantially add value to the predictions of soil moisture. As it reads, the added 

value of the approach is limited to extending the soil moisture time series to the AVRHH 

time series, which is helpful to evaluate long-term trends, but I wonder how it adds 

value beyond a CDF matching bias correction, for example. 

Thank you very much for your insightful comments and the time you spent reviewing 

our manuscript, which have greatly helped improve its clarity. The primary motivation 

for this study arises from the scarcity of long-term global SM products characterized 

by both seamless coverage and reliable accuracy. We believe that developing such a 

dataset is crucial for supporting research on climate change, hydrological modeling, 

and land–atmosphere interactions over multi-decadal scales. 

While the input features in this study are similar to those used in the GLASS-MODIS 

SM product, our work is not a simple extension. Considerable effort was devoted to 

constructing a large-scale training dataset, exploring the state-of-the-art DL models, and 

validating the final product to ensure its accuracy and robustness. Compared to the 

XGBoost model used in developing the GLASS-MODIS SM product, the AtLSTM 

model employed in this study demonstrates significant improvements in estimation 

accuracy, particularly at high SM levels (> 0.4 m3 m-3), by leveraging bidirectional 

temporal information and an attention module. 

Typically, CDF matching bias correction adjusts statistical distributions locally, 

which limits its spatial generalization capability, especially in regions lacking in situ 

SM data. Furthermore, as a distribution-based correction method, it overlooks the 

temporal dependencies and nonlinear dynamics inherent in SM time series. In contrast, 

our approach integrates multi-source datasets using DL models and leverages their 

complementary strengths to effectively capture nonlinear temporal dependencies and 

spatial patterns, thus enhancing the generalizability of SM estimates, as demonstrated 

by the validation results in Section 4.2. Moreover, our product contains much finer 

spatial details, as evidenced by the comparison over the Tibetan Plateau (Fig. 10). 
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In summary, both the proposed DL-based SM estimation farmwork and the derived 

long-term global SM product present clear value, and we believe that this work aligns 

well with the journal's standards for innovation and high-quality datasets. To enhance 

the clarity of our contributions, we have added a comparison between our approach and 

the CDF matching bias correction method in the discussion section (Page 30). 

Major: 

GLASS-MODIS already uses ERA5-Land, MERIT-DEM, and Soil-Grids, which are 

also input data for your approach in this paper. How do you ensure your DL model is 

actually learning anything from GLASS-AVHRR and not just a surrogate for GLASS-

MODIS learning directly the relationship from ERA5-Land, MERIT-DEM and 

SoilGrids. In other words, the if the target data is not independent from the input data, 

your DL model is just a surrogate for the existing GLASS-MODIS model. Two ways 

to quantitatively test for that is to 1) check how statistically significant is the difference 

in the accuracy of your trained DL models with respect to GLASS-MODIS when 

validating the approach with in-situ observations, and 2) by testing how different is 

your DL accuracy if trained only on ERA5-Land, MERIT-DEM and Soil-Grids for the 

past period (1982-1999). These experiments would help elucidate how the proposed 

model is actually learning new things from the AVHRR data or just mimicking GLASS-

MODIS from ERA5-Land, MERIT-DEM, and Soil-Grids. 

 Thank you for raising this insightful question. In this study, we aimed to integrate 

multi-source datasets and leverage their complementary strengths to develop a long-

term, seamless global SM product. As MODIS satellite observations have only been 

available since 2000, we adopted the long-archive AVHRR albedo and LST products as 

the primary remote sensing inputs. Due to the limited number of ISMN in situ SM 

stations, it is not feasible to construct sufficient time-series training samples solely 

based on them for training a DL model. Therefore, we chose to use the GLASS-MODIS 

SM product as the training target for our models. 

To ensure consistency in the feature space, our DL models were trained using input 

datasets similar to those employed to generate the GLASS-MODIS SM product, 

including ERA5-Land SM, MERIT DEM, SoilGrids, and the GLASS-AVHRR albedo 

and LST products. This setup enables the models to generalize effectively across 

different time periods, extending SM estimations to the pre-MODIS era (e.g., 1982–

1999). Validation results indicate that although the inputs are derived from different 

satellite sensors, the GLASS-AVHRR SM product shows high consistency with the 

GLASS-MODIS SM after 2000, and achieves satisfactory accuracy against in situ 

observations prior to 2000. 
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We have further checked the differences in R between the GLASS-AVHRR and 

GLASS-MODIS SM products when evaluated against in situ SM datasets at different 

spatial scales (ISMN & COSMOS). Using both the paired t-test and the Wilcoxon 

signed-rank test, we found that the differences are statistically significant. It should be 

noted that these differences can be partially attributed to the inconsistency in spatial 

resolution between the two GLASS SM products (5 km vs. 1 km). 

As also illustrated in the feature importance ranking plot (Fig. A3), both the GLASS-

AVHRR albedo and LST play significant roles in the AtLSTM model’s prediction. In 

fact, when these AVHRR-based variables were excluded from the inputs, the model 

performance on the test set drops notably (with R2 decreasing from 0.987 to 0.968, 

RMSE increasing from 0.011 m3 m-3 to 0.018 m3 m-3). Since the GLASS-MODIS SM 

product is unavailable during the 1982–1999 period, this experiment was conducted 

using samples from 2000 to 2018.  

In summary, these results suggest that the proposed model is not merely mimicking 

the GLASS-MODIS from ERA5-Land SM, MERIT DEM, and SoilGrids, but is indeed 

learning useful information from the AVHRR-based observations to enable robust, 

long-term SM estimation. 

Moderate: 

R2 0.987 indicates that probably the DL is overfitting or there is contamination between 

the training and testing datasets used. In fact, when using the model to produce the 

GLASS-AVHRR dataset accuracy drops from R 0.63 to 0.79 

We acknowledge your concern, but would like to clarify that the DL models do not 

exhibit overfitting, as their performance on the test set is very close to that on the 

training set. In addition, spatial independence was carefully ensured during the dataset 

splitting process to avoid any data leakage between the training and test sets. 

The high accuracy (R² = 0.987) achieved here results from the model being trained 

using the GLASS-MODIS SM product, rather than in situ observations. Thus, this 

metric reflects the consistency between the GLASS-AVHRR and GLASS-MODIS 

products, rather than the actual accuracy of the GLASS-AVHRR SM product itself. We 

have removed model accuracy from the abstract to avoid misunderstanding. 

The actual accuracy of the GLASS-AVHRR SM product was assessed using in situ 

SM datasets at different spatial scales. As discussed in Section 4.2, such validation 

shows that the product maintains competitive performance even when applied to 

AVHRR inputs prior to 2000, which supports its robustness and generalizability. 

Minor: 
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I appreciate how the authors ensured that testing grids are within 25km distance from 

training grids. This prevents the testing sample is contaminated with inputs from the 

training datasets (since the resolution of precipitation input data from ERA5 into ERA5-

Land runs is about 25km resolution). 

Thank you for your positive feedback. As noted, ensuring a minimum distance of 

25 km between any two samples helps prevent data leakage, especially given the spatial 

resolution of the ERA5 precipitation inputs. 

Please add GLASS-MODIS to Figure 6 for the COSMOS comparisons. Please include 

marks indicating whether the difference between the accuracy of the SM data products 

is statistically significant. 

We have included the validation results of the GLASS-MODIS SM product at the 

three COSMOS networks in the updated figure. The two GLASS SM products show 

comparable overall accuracy across these networks, although some site-specific 

discrepancies are observed, which are likely attributable to differences in the satellite 

remote sensing inputs and spatial resolution (Page 20). As the accuracy differences 

between the two GLASS SM products on all ISMN and COSMOS networks have been 

demonstrated to be statistically significant, we have not added additional significance 

markers in the figure. 
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Please add GLASS-MODIS to Table 6, which will be best displayed in landscape 

format. Also, please mark in bold the best statistically significant data product/metric 

for each site. 

 We used the upscaled 9 km SMAP CVS SM dataset for site-specific validation 

because its spatial resolution is closer to that of the 5 km GLASS-AVHRR SM product. 

Using these sites to validate the 1 km GLASS-MODIS SM product could introduce 

more uncertainty due to the larger scale differences. Furthermore, the validation results 

based on the ISMN and COSMOS networks indicate that the two GLASS SM products 

exhibit similar overall accuracy. Therefore, we consider that including GLASS-MODIS 

in Table 6 may not provide additional information. Even so, following your suggestion, 

we have marked in bold the best-performing metrics for each site. 

Please add GLASS-MODIS to Figure 7. 

Thank you for the suggestion. Considering the reasons mentioned above and to avoid 

excessive overlap of scatter points that could reduce the figure’s clarity, we prefer not 

to include the GLASS-MODIS SM product in this figure. 

 


