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Abstract. Spatially continuous surface air temperature (SAT) is critically important for a wide range of fields such as eco- 

environmental assessments and hydrology. Remotely sensed estimation models based on satellite-derived thermal infrared 

data provides a structurally different approach for reconstructing SAT compared to spatial interpolation of ground 15 

observations of SAT and numerical modelling, which are mainly limited by the coverage of stations and coarse spatial 

resolutions, respectively. However, the data products of remotely sensed estimates of SAT developed in previous studies are 

only available at daily or monthly resolutions, and are primarily restricted for local regions. In this study, we generated the 

first hourly dataset (GHRSAT) of all-sky remotely sensed SAT estimates for the global land areas except Antarctica between 

2011 and 2023. The hourly estimates in GHRSAT were reconstructed from land surface temperature using the hybrid 20 

estimation models that integrate random forest (RK) models and kriging techniques. The hybrid models were developed for 

different regions on a monthly basis. We adopted ordinary kriging (OK) and fixed rank kriging (FRK) in the modelling of 

the site residuals from the RF models for regions with low-density and high-density stations, respectively. Our results show 

that the hybrid models for generating GHRSAT have the predictive performance between 1.48 °C to 2.28 °C in overall 

cross-validation RMSE. The mean RMSE for estimating hourly SAT can be significantly reduced by 0.18–0.41 °C by the 25 

hybrid models compared to the RF models. We analyzed the variability in the predictive errors of estimating hourly SAT 

across regions, months and sites. The variability is apparently decreased when using the hybrid models. We found that the 

RF models are less sensitive to the parameter tuning of the RF models, which greatly impacts the hybrid models. Improving 

the RF models by parameter tuning can drastically improve the hybrid models based on the RF models. Additionally, we 

found the performance difference between OK and FRK in developing the hybrid models for regions with large amounts of 30 

stations is slight with the mean RMSE of 0.05 °C. In summary, the scheme of the hybrid models can result in satisfactorily 

higher performance for estimating SAT, and has the general practicability of applying to regions at various scales. The 

GHRSAT dataset is publicly available at http://doi.org/10.11888/RemoteSen.tpdc.301540 (Zhang, 2024). 
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1 Introduction 

Surface air temperature (SAT) at the height of about 1.5 meters above the earth's surface is an essential variable of surface 35 

meteorological observation. Reconstructing spatially continuous SAT is of great significance for a variety of fields such as 

assessments of epidemiological (Kloog et al., 2015; Schuster et al., 2014) and eco-environmental issues (Pichierri et al., 

2012; Venter et al., 2020). Spatially explicit SAT can be reconstructed by interpolating the observations of SAT from ground 

stations, which is only suitable for the areas with high coverage of stations (Benali et al., 2012; Vancutsem et al., 2010). The 

interpolating of in situ SAT observations has been performed only considering the spatial auto-correlation between SAT at 40 

different locations (Rohde and Hausfather, 2020), or by developing regression frameworks that incorporate the auxiliary 

variables for locations and topography (He et al., 2022; Qin et al., 2022b). In addition, numerical models of atmospheric 

dynamic processes combined with data assimilation systems have been applied to generate the reanalysis datasets that 

contains plentiful spatial variables for atmospheric states and surface properties, such as MERRA-2 (Gelaro et al., 2017), 

ERA5 (Hersbach et al., 2020) and GLDAS (Rodell et al., 2004). However, the simulated variables of SAT in reanalysis 45 

datasets are subject to large uncertainties and available at very coarse spatial resolutions, although the temporal frequency of 

the variables is high.  

Developing the estimation models based on remotely sensed thermal-infrared (TIR) observations provides a structurally 

different approach for reconstructing spatially continuous SAT. Land surface temperature (LST) retrieved from the TIR 

observations of MODIS onboard the Terra and Aqua satellites has been substantially applied in developing the models for 50 

estimating daily (Huerta et al., 2023; Nikolaou et al., 2023; Yoo et al., 2018) or monthly SAT (Gao et al., 2021; Qin et al., 

2023b; Yao et al., 2020, 2023). Terra and Aqua have been continuously operated in orbits for more than two decades and 

provide long-term global LST data products for various application areas. The LST retrievals derived from other polar 

satellites such as EUMETSAT's Metop and NOAA's JPSS have also been attempted in estimating daily SAT (Zhang et al., 

2024; Zhang and Du, 2022b). TIR sensors mounted on geostationary satellites are capable of scanning the earth surface at 55 

very high frequencies. It has become an increasingly important research direction in recent years to estimate SAT at high 

temporal resolutions based on the LST retrievals from geostationary satellites, such as the MSG satellites operated by 

EUMETSAT (Lazzarini et al., 2014; Meyer et al., 2019; Zhou et al., 2020b), NOAA's GOES-R satellites (Hrisko et al., 2020; 

Zhang and Du, 2022a), and China's FY-4 (Liu et al., 2023, 2024; Zhang et al., 2023). The models developed in previous 

studies for estimating SAT primarily build on the statistical connection between truly observed SAT and the influencing 60 

covariates including LST and other auxiliary environmental variables. Various types of statistical methods such as multiple 

regression (Benali et al., 2012; Kloog et al., 2014; Rosenfeld et al., 2017), spatial regression (Kilibarda et al., 2014; Li et al., 

2018; Nikoloudakis et al., 2020; Zhang et al., 2022c) and machine learning algorithms (Cho et al., 2020; dos Santos, 2020; 

Shen et al., 2020; Venter et al., 2020; Zhang et al., 2016) have been adopted in developing the estimation models for SAT.  

The estimation models based on remotely sensed LST can reconstruct spatially continuous SAT with fine-scale structures. 65 

Furthermore, the estimates in the reconstructed SAT are directly constrained by LST retrievals, and indirectly constrained by 
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the TIR radiation observations from spaceborne satellites. However, there are massive retrieval gaps in TIR LST data 

because of the contamination of clouds on TIR observations. The previous studies for estimating SAT based on TIR LST are 

primarily limited to clear-sky areas. Although the study by Zhang and Du (2022b) has attempted to develop the merging 

framework based on the LST retrievals from multiple polar satellites to improve the spatial coverage of daily SAT estimates, 70 

it remains a challenge to reconstructing all-sky SAT from LST retrievals. Several attempts have been made to estimate all-

sky SAT by firstly reconstructing spatially complete LST using spatio-temporal interpolation methods (Chen et al., 2021; 

Gutiérrez‐Avila et al., 2021; Yao et al., 2023; Zheng et al., 2022), or by integrating LST with reanalysis data into the 

estimation models for SAT (Fang et al., 2022; Qin et al., 2022a; Zhang et al., 2021). Reconstruction of LST is also important 

research field of quantitative TIR remote sensing (Li et al., 2023; Wu et al., 2021)for tackling the issues of retrieval gaps, 75 

spatio-temporal resolutions and inconsistency (Duan et al., 2017; Martins et al., 2019; Shwetha and Kumar, 2016; Zhao et al., 

2019), which has great implications for the remotely sensed estimation of SAT. There are the studies performed to 

reconstruct all-weather LST data products based on the TIR LST retrievals from polar satellites (Shiff et al., 2021; Zhang et 

al., 2022b) or geostationary satellites (Jia et al., 2021, 2023; Martins et al., 2019). Few studies have attempted to develop the 

models based on reconstructed LST for estimating all-sky SAT (Wang et al., 2022; Zhang et al., 2022c). 80 

Table 1. Summary of the publicly available products of all-sky remotely sensed SAT estimates. 

Study Spatial 
Coverage 

Temporal 
Coverage 

Spatial 
Resolution 

Temporal 
Resolution 

Journal Abbr. 

Wang et al. (2024) China 2003–2022 1 km Daily Sci. Data 

Yao et al. (2023) Global  2001–2020 1 km Monthly Remote Sens. Environ. 

Qin et al. (2023a) Tibetan 2002–2020  1 km Monthly Earth Syst. Sci. Data 

Nielsen et al. (2023) Antarctic 2003–2021 1 km Daily Sci. Data 

Zhang et al. (2022b) Global 2003–2020 1 km  Daily Earth Syst. Sci. Data 

Fang et al. (2022) China 1979–2020 ~10 km Daily Earth Syst. Sci. Data 

Zhang et al. (2021) Tibetan 1980–2014 1 km Daily Int. J. Appl. Earth Obs. Geoinf. 

Chen et al. (2021) China 2003–2019 1 km Daily Earth Syst. Sci. Data 

Hooker et al. (2018) Global 2002–2016 ~5 km Monthly Sci. Data 

 

Compared to the large number of studies aimed at developing various models for estimating SAT at different scales, there 

are very limited studies performed to generate data products of remotely sensed SAT estimates based on TIR LST data. The 

studies for developing publicly available products of all-sky SAT estimates are summarized in Table 1, and there are no 85 
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studies for developing the estimated SAT products at high temporal resolutions. The daily products of remotely sensed SAT 

developed by Zhang et al. (2022a) and Wang et al. (2024) were generated from a reconstructed daily LST product (Zhang et 

al., 2022b), while Chen et al. (2021) and Yao et al. (2023) integrated seamless reconstruction of MODIS LST data with 

statistical estimation models in the developing of the products of daily SAT in China and monthly SAT in global land areas, 

respectively. The monthly LST datasets composited from daily MODIS LST retrievals have nearly complete spatial 90 

coverage, and have also been utilized to develop seamless products of daily SAT (Huerta et al., 2023) and monthly SAT 

(Hooker et al., 2018). However,  the products of  remotely sensed SAT are primarily for local-scale regions such as China 

and the Tibetan Plateau (Qin et al., 2023a; Zhang et al., 2021), and these products are limited to daily or monthly temporal 

resolutions. Furthermore, the products were generated by the estimation models only based on machine learning or spatial 

regression methods. For example, random forest is utilized to developed the models for generating the products of daily SAT  95 

(Chen et al., 2021) and monthly SAT (Qin et al., 2023a), while the Cubist method was applied in developing the global 

monthly SAT product (Yao et al., 2023). Zhang et al. (2022a) developed the models based on spatially varying coefficient 

regression for generating a global daily SAT product. To improve the predictive accuracy of SAT, the modelling strategy 

integrating statistical learning methods and spatial models (Huerta et al., 2023; Nikoloudakis et al., 2020) can be employed 

in developing the models for estimating SAT. 100 

In this study, we developed the hybrid models for estimating hourly SAT in the global land areas, and for the first time, 

generated the global hourly data product (GHRSAT) of remotely sensed all-sky estimates of SAT from 2011 to 2023. The 

hybrid estimation models for generating GHRSAT were constructed by the two-stage modelling strategy that integrates 

ensemble learning with kriging techniques. The estimation models based on random forest were developed in the first stage 

for estimating hourly SAT from seamless reconstructed LST. The residuals at ground stations from the models developed in 105 

the first stage were modelling by ordinary kriging for areas with limited stations and the computationally efficient method of 

fixed rank kriging for areas with high-density coverage of stations. We comprehensively assessed the predictive performance 

the hybrid models, and compared the models with the estimation models only based on random forest for estimating hourly 

SAT. In addition, we analyzed the impacts of learning parameters for random forest on the predictive performance of the 

hybrid models, and the issues involved in the kriging modelling of large numbers of stations in the second stage of hybrid 110 

models. We expect that the remotely sensed product of SAT estimates generated by our study will provide an important data 

basis for eco-environmental assessments and other related fields. 

2 Study areas and data 

2.1 Study areas 

The GHRSAT product was generated by developing the hybrid estimation models for the global land surface areas excluding 115 

the Antarctic region due to the severe scarcity of ground stations in the region. The models were developed separately for 
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eight task regions (Fig. 1) on the monthly basis because (i) the locally developed models have high adaptability to the areas 

with distinct geographical contexts; (ii) the computational burden of training the models is feasible in this work. In contrast 

to the study (Zhang et al., 2022b) that generated the product of global daily SAT by separately constructing the estimation 

models for different landmass of continents, the task regions for developing our models were partitioned by considering the 120 

spatial unevenness of ground stations across the areas. The models trained using the samples from the stations in a region 

only fit the average relationships represented by the samples. If there is the distinct contrast in the density of stations across a 

region, the fitted relationships by the model developed for the region will be severely smoothed and biased towards the 

relationships represented by the samples from the locations with high-density of stations in the region. Thus, the partitioning 

of the global land areas for developing the hybrid models can ensure the objective assessment of the models for the regions 125 

with low-density stations. The regions of TR-2 and TR-4 have high density of stations, primarily covering conterminous U.S. 

and Europe, respectively. The TR-1 and TR-6 regions located in the Arctic have very limited coverage of stations. 

 
Figure 1: Task regions (TR) defined to separately develop the estimation models for hourly SAT. The TR regions 
are denoted by boundary lines in colours. The dot symbols represent the position of ground weather stations. 130 

2.2 Ground station data 

The hourly observations of SAT at ground stations used in this study were extracted from the ISD (Integrated Surface 

Database) product maintained by NOAA NCEI (https://www.ncei.noaa.gov/data/global-hourly/). ISD was developed by 

integrating hourly and synoptic observations of surface meteorological parameters such as air temperature, pressure and 

wind speed from more than 100 sources, and the records contained in ISD have been subject to strict manual and automatic 135 

quality-control measures (Smith et al., 2011). Fig. 1 shows the locations of the ground stations with at least one valid hourly 

record of SAT during the 2011–2023 period. The spatial density of the stations is highly imbalanced across the land areas. 

The areas of central North America (TR-2) and Europe (TR-4) are covered with very high-density coverage of stations, and 
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most of the stations in the areas have hourly continuous records of SAT (Fig. S1 and Fig. S2). In contrast, the number of the 

stations with available SAT records varies greatly across the hours of the day for other task regions such as TR-7 and TR-5 140 

(Fig. S1) because the source data of the stations integrated into ISD for these regions only contain the records of SAT at 

fixed synoptic hours.  

2.3 Data for spatial covariates  

We developed the hybrid models for estimating all-sky hourly SAT based on GHA-LST, which is a spatially seamless 

dataset that contains global hourly LST (http://glass.umd.edu/allsky_LST/GHA-LST/). The GHA-LST dataset was generated 145 

by synthesizing TIR LST retrievals from geostationary satellites and polar satellites using the three-stage reconstruction 

framework involving a time-evolving model, the assimilation process based on Kalman filter, and the removal of cloud 

effects (Jia et al., 2023). In the development of the models for estimating SAT based on LST, various auxiliary spatial 

covariates have been attempted in previous studies (Janatian et al., 2017). Although several recent studies have demonstrated 

that the predictive performance of estimating SAT can be improved by incorporating the reanalysis simulated variables of 150 

atmospheric states into the models (Shen et al., 2020; Wang et al., 2024; Zhang and Du, 2022a), it is hard to objectively 

assess the models. As the simulated variables used in the models are from the reanalysis of numerical models assimilating 

large numbers of observations from ground stations, it will underestimate the predictive errors of estimating SAT by the 

models when trained using the samples extracted at the stations of which many have been assimilated for generating the 

simulated variables. Thus, the predictive capability of estimating SAT will be confounded by the simulated variables 155 

included in the models. In this study, to develop the models for estimating hourly SAT, we only utilized the auxiliary 

variables that have been extensively validated by previous studies and for which the data are publicly available at the global 

scale. Specifically, the auxiliary spatial covariates used in the hybrid models include the variables for normalized vegetation 

index (NDVI), topographic elevation (ELE), longitude (LON), latitude (LAT) and hours of day (HOD) were used in the 

models. The data for NDVI and ELE were extracted from MOD13A2 (https://lpdaac.usgs.gov/products/mod13a2v006/) and 160 

GMTED2010 (https://www.usgs.gov/coastal-changes-and-impacts), respectively. 

3 Methods 

We generated the GHRSAT product by developing the estimation models for estimating all-sky hourly SAT using the hybrid 

modelling strategy that integrates machine learning algorithms and kriging techniques to improve the predictive accuracy of 

hourly SAT estimates. The models developed by the hybrid strategy are thereafter referred as hybrid estimation models for 165 

brevity in this study. The models for estimating SAT developed in previous studies are primarily based on machine learning 

algorithms (Chen et al., 2021; Meyer et al., 2019; Yoo et al., 2018) or spatial regression methods (Lu et al., 2018; Zhang et 

al., 2022c; Zhang and Du, 2019). Our hybrid models were constructed in two stages. In the first stage, the estimation models 

based on random forest were developed to represent the connection between SAT and spatial covariates using the samples 
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extracted at ground stations. The residuals at ground stations computed from the first-stage models were modelled in the 170 

second stage using kriging methods to represent the spatial structures in the residuals. Both the models developed in the first 

stage and the hybrid models were independently cross-validated. The overall framework for developing the hybrid models is 

schematically shown in Fig. 2, and involves two major processes: (i) processing all input data to obtain the samples extracted 

at ground stations, and the uniformly gridded spatial covariates with the 5-km resolution for each hour point in the 2011–

2023 period; (ii) developing the hybrid models for each task region to generate the hourly estimates of SAT in the region. 175 

 
Figure 2: Overall schematic diagram for the modelling of hourly SAT using the hybrid estimation models. 
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3.1 Data processing 

We processed the data for spatial covariates for each hour in the period of 2011–2023 into the regular grid with a resolution 

of 0.05° in which the hourly LST from GHR-LST is organized. The hourly estimates of SAT in the GHRSAT product were 180 

also reconstructed using the grid. The data fields for NDVI in the data files of MOD13A2 and the elevation variable (ELE) 

from GMTED2010 were reprojected and resampled into the regular grid. The gridded layers of LON and LAT were directly 

generated from the central geographic coordinates of the grid boxes in the grid, and the grid layers of HOD contain constant 

values for all grid boxes representing each hour of the day. We first extracted the records of air temperature measured at the 

stations in the task regions (Fig. 1) for the 2011–2023 period from the ISD dataset. The extracted records were further 185 

processed by two steps: (i) removing the records with missing observations or quality-control issues; (ii) filtering the records 

observed within a time window of 15 minutes centred at each hour, and the records within the window were aggregated to 

compute the average SAT for each hour and each station. The processed records of SAT at stations were spatio-temporally 

matched with the stacks of gridded covariates for each hour to obtain the samples used for training the models for estimating 

hourly SAT. We obtained about 0.9 billion matched samples at ground stations for all 8 task regions in the 2011–2023 period, 190 

and the average number of samples for each calendar month is about 5.9 million.  

3.2 Hybrid estimation models 

The estimated hourly SAT from hybrid models for the grid cell 𝑠! is modelled as 𝑆𝐴𝑇(𝑠!) = 𝑓(𝑿(𝑠!)) + 𝑤(𝑠!), where 𝑓(∙) is 

a statistical model that estimates hourly SAT using the spatial covariates 𝑿 at the cell 𝑠!; 𝑤(∙) is a random field with spatially 

auto-correlated structures for modelling the residuals in the statistical model. The hybrid estimation models were constructed 195 

successively in two stages (Fig. 2). We adopted random forest (RF) in the first stage for the modelling of 𝑓(∙) using spatial 

covariates to estimate hourly SAT, which is formulized as follows: 

𝑆𝐴𝑇" = 𝑓#$(𝑥", 𝑥%&' , 𝑥()*+ , 𝑥,%, , 𝑥%-(, 𝑥%.' , 𝑥/-); 𝜷)       (1) 

The 𝜷 in Eq. (1) denotes the parameters to be tuned for random forest. Random forest is a highly efficient ensemble learning 

algorithm with the ability to model complex non-linear relationships, and has been widely used in the remotely sensed SAT 200 

estimation (Chen et al., 2021; Venter et al., 2020; Yoo et al., 2018) and other fields of remote sensing (Belgiu and Drăguţ, 

2016; Wei et al., 2019, 2021; Zhao et al., 2019). The algorithm is less prone to model overfitting with the advantage of 

insensitivity to the tuning of parameters (Meyer et al., 2018). Specifically, the models for 𝑓#$ were developed for each task 

region on the monthly basis, and are referred as RF in this text. The RF models constructed in the first stage of the hybrid 

models for generating the GHRSAT product were trained using the parameters optimally determined from the tuning grid of 205 

the four core parameters (Table S1).  

The residuals at ground stations were computed as the difference between the observed SAT and the predicted 𝑆𝐴𝑇" by the 

first-stage RF models. The residuals for each hour were modelled by kriging techniques to generate the kriged residual 𝑤(𝑠!) 
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in each grid cell 𝑠! of the regular grid with a resolution of 0.05°. Two types of kriging techniques including ordinary kriging 

(OK) and fixed rank kriging (FRK) were utilized in the second stage for different task regions. The hybrid models developed 210 

in this study specifically refer to the integration of the modelling performed in two stages, and are referred as RF-KR. The 

two types of hybrid models including RF-OK and RF-FRK only differ in the techniques used for the second stage of the 

hybrid models. Conventional kriging techniques are computationally intensive due to the solving of the inversion of matrix, 

and especially, it is impractical to apply ordinary kriging in the second stage of  the hybrid models for each hour between 

2011 and 2023 for the task regions with large numbers of ground stations. Thus, the RF-OK hybrid models were developed 215 

for the regions including TR-1, TR-3, TR-5, TR-6 and TR-8, while the RF-FRK hybrid models utilizing computationally 

efficient FRK were developed for the regions with large numbers of stations, including TR-2, TR-4 and TR-7. 

Ordinary kriging is the best linear unbiased interpolation method that constructs the gridded distribution for a spatial field 

from point samples of the field at different stations. The kriged residual at each grid cell is computed as the linear weighted 

average of the residuals at the stations: 𝑤(𝑠!) = 𝝀'𝜺. The 𝝀 = [𝜆0, 𝜆1, ⋯ , 𝜆(]' represents the weights chosen for each station 220 

to minimize the error variance by solution of the set of equations: 

∑ 𝜆!(
!20 𝛾9𝑠! − 𝑠3; + 𝜓(𝑠") = 	𝛾9𝑠3 − 𝑠";, 𝑗 = 1,2,⋯ ,𝑁; ∑ 𝜆!(

!20 = 1       (2)  

Here 𝜺 = [𝜀0, 𝜀1, ⋯ , 𝜀(]' is the vector of the residuals at the stations; 𝛾9𝑠! − 𝑠3; denotes the semivariance between stations 

𝑠! and 𝑠3; 𝛾9𝑠3 − 𝑠"; represents the semivariance between a station 𝑠3 and the centre of the grid cell 𝑠" in which a kriged 

value will be computed. There are various types of variogram models for characterizing the semivariance. The spherical 225 

model was used in the OK equations, and is expressed in Eq. (4), where the 𝑐" is the nugget term; the ℎ is the spatial lag 

distance between two spatial points, and 𝑐 denotes the spatially correlated variance. The parameters of the spherical model 

were fitted from the residuals 𝜺. 

𝛾&45(ℎ) = 𝑐" + 𝑐 E3ℎ 2𝑟H − ℎ
6

2𝑟6H I          (3) 

In the RF-FRK hybrid models for regions with large numbers of stations, the highly efficient kriging method FRK was used 230 

for the kriging modelling in the second stage. The residuals at stations are regarded as a sampling from a spatial random field 

𝑤(𝑠) with dependent structures. The random field is represented as the weighted combination of a fixed number of spatial 

basis functions: 𝑤(𝑠) = ∑ 𝜙7(𝑠)𝜂7 + 𝜖(𝑠)8
720 , where 𝜙7(𝑠) is one spatial basis function with a specific parametric form; the 

weight for the function is denoted by a random effect variable 𝜂7; 𝜖(𝑠) is a white noise term. The representation of the field 

is expressed in the following matrix form: 235 

𝑤(𝑠) = 𝜼𝒕𝝓(𝑠) + 𝜖(𝑠)            (4) 

𝜼 = (𝜂0, … , 𝜂8)'             (5) 

𝝓(𝑠) = 9𝜙0(𝑠), … , 𝜙8(𝑠);
'
           (6) 
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When the r-dimensional random vector 𝜼 is a normal distribution with zero means and the covariance matrix 𝑲8×8 , the 

spatial covariance function for the field 𝑤(𝑠) is represented as 𝐶;(𝑠) = 𝝓<(𝑠)𝑲𝝓(𝑠) + 𝜏1𝑰. For the 𝑁 samples at stations, 240 

the values of the basis functions at the stations are formed as the matrix 𝑺(×8, and the covariance function for the residuals at 

the 𝑁 stations can be formed by the covariance matrix 𝚺; = 𝑺𝑲𝑺< + 𝜏1𝑰. The matrix inversion in the FRK kriging method is 

performed for 𝚺;, which involves the computation of inverting the r-dimensional matrix 𝑲8×8. In the application of the FRK 

method, the number of spatial basis functions 𝑟 is very small, and the number of stations 𝑁 ≫ 𝑟. Thus, the computation of 

FRK is very efficient for kriging large numbers of stations. In addition to the efficiency of FRK, the method is capable of 245 

modelling spatially non-stationarity in the residuals at stations by combining the spatial basis function chosen at different 

scales (Zammit-Mangion et al., 2018). More detailed theoretical and practical descriptions of FRK can be referred to Cressie 

et al. (2008) and Kang et al. (2011). 

3.3 Model training and validation 

The hybrid models for generating GHRSAT were developed on the monthly basis for each task region, and thus there are 250 

156 different RF models to be trained in the first stage of the hybrid models for each task region across the months between 

2011 and 2023. The RF models developed in the first stage were tuned for the core parameters (Table S1), which were 

determined from an exploratory cross-validation of the models. As such, the RF model or the RF-KR model for each task 

region and each month was cross-validated separately using a total of 72 different sets of parameters. The validation of a 

hybrid model was performed in the following steps that include: (i) the samples used for model training were randomly 255 

partitioned into 10 folds with equal sizes; (ii) the RF model in the first stage was trained using the training set that includes 9 

folds of samples, and the remaining one fold of samples was used as the testing set; (iii) residuals for the training samples 

were computed from the trained RF model; (iv) the residuals at stations for each hour were modelled using kriging methods 

in the second stage; (v) the predicted SAT by the RF model in the first stage for the testing samples was computed, and the 

predicted SAT by the hybrid model for the testing samples was computed by adding the predicted SAT in the first stage to 260 

the kriged residuals at the site locations of the testing samples in the second stage; (vi) the previous steps were repeated until 

each fold of samples had been used as the testing set.  

The predictive performance of the hybrid models or the first-stage RF models is assessed based on the difference between 

the predicted SAT and the truly observed SAT for the testing samples. Two statistical metrics including root mean squared-

error (RMSE) and mean absolute error (MAE) were used for measuring the performance of the models for estimating hourly 265 

SAT. The RMSE and MAE are computed by Eq. (7) and Eq. (8), respectively.  

𝑅𝑀𝑆𝐸 = Z1 𝑁H ∑ 9𝑦!
48=> − 𝑦!?@A;

1(
!20           (7) 

𝑀𝐴𝐸 = 0
(
∑ \𝑦!

48=> − 𝑦!?@A\(
!20                 (8) 
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Here 𝑦!
48=> and 𝑦!?@A are the predicted SAT and observed SAT for one testing sample, respectively; the 𝑁 is the number of 

testing samples used in the computation of RMSE or MAE.  270 

Two types of hybrid models including RF-OK and RF-FRK were developed for different task regions. The RF-FRK models 

were designed for the regions of TR-2, TR-4 and TR-7 due to the computation burden of ordinary kriging for large numbers 

of stations. Although the feasibility of implementing the hybrid modelling strategy for estimating SAT can be ensured by 

applying computing efficient kriging methods such as FRK in the second stage, the impacts of different kriging techniques 

on the predictive performance of the hybrid models should be assessed. We analyzed the impacts of ordinary kriging and 275 

fixed rank kriging on the performance of the hybrid models for estimating hourly SAT by comparing the cross-validated 

results of the RF-OK models with the RF-FRK models across the months in 2020 for TR-2, TR-4 and TR-7, and these 

models were all based on the same RF models trained for each month and each region. 

4 Results and discussion 

4.1 Overall performance of estimation models 280 

Global all-sky hourly estimates of SAT in GHRSAT were generated by merging the SAT estimates predicted by the hybrid 

models for all task regions. Fig. 3 shows the distribution of the SAT estimates and the distribution of kriged residuals in the 

second stage of the hybrid models for the hour 0 of 1 January 2016. The kriged residuals indicate that the RF models have 

apparent spatially structured prediction errors across the land areas. The RF models generally overestimate hourly SAT in 

the coastal areas of northern Asia, southeast Australia and northwest China, and the areas such as northern Asia and eastern 285 

Europe are prone to be underestimated by the RF models. The hybrid models can reduce the spatially structured errors in the 

RF models by further modelling the residuals at stations from the RF models using kriging techniques. 

The hybrid models (RF-KR) for generating the GHRSAT product were developed for each task region across the months in 

the  2011–2023 period. As such, there are 156 different hybrid models developed and cross-validated for each region. We 

computed the RMSE and MAE from the validated testing samples for each hybrid model (RF-KR) and the RF model in the 290 

first stage of RF-KR to characterize the overall predictive performance of estimating hourly SAT for each region. Fig. 4 

presents the variability in the overall predictive performance of the models for different task regions. The RMSE for each 

cross-validated model including both RF-KR and RF developed across the 156 months for each region is shown in Fig. 5. 

The RF-KR hybrid models and the RF models show great variability in the predictive performance of estimating hourly SAT 

across different regions, and perform significantly poorer for the regions with the scarcity of ground stations such as TR-1 295 

and TR-2 (Fig. 4). Furthermore, we can see that the hybrid models consistently achieve higher predictive performance than 

the RF models across the months between 2011 and 2023 for each region (Fig. 5). The averaged performance of the hybrid 

models for different regions ranges from 1.48 °C to 2.28 °C in RMSE, and from 1.07 °C to 1.68 °C in MAE. Compared to 

RF-KR, the RF models achieve lower performance with the average RMSE and MAE ranging from 1.67 °C to 2.54 °C, and 
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from 1.21 °C to 1.87 °C, respectively.  300 

The RF-KR models and RF models developed for TR-1 and TR-6 are characterized by both high average predictive errors 

and high variability in the errors across the months. The RF-KR models for TR-1 and TR-6 across the months respectively 

have the RMSE between 1.46 °C and 3.12 °C with the standard deviance of 0.35 °C, and between 1.60 °C and 3.16 °C with 

the standard deviance of 0.42 °C. In contrast, the RF-RK models across the months for the other 6 regions have the RMSE 

between 1.28 and 2.05 °C, and the standard deviance of the RMSE for the models ranges from 0.05 °C to 0.15 °C. In average, 305 

the hybrid models greatly improve the predictive performance of estimating hourly SAT for the regions by 0.18–0.41 °C in 

terms of RMSE relative to the RF models, and the variability in the performance of the hybrid models across the months is 

also reduced. The hybrid models achieve the remarkable improvement to the estimation performance by about 0.41 °C in the 

averaged RMSE with respect to the RF models for TR-2.  

 310 
Figure 3. An example of the spatial distribution of hourly all-sky SAT reconstructed by hybrid models (a) and the 
kriged residuals generated by the residual modelling in the second stage of the hybrid models (b).  
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Figure 4. Predictive performance of the hybrid estimation models developed for different task regions on the 
monthly basis to generate the GHRSAT product. The variability in the overall cross-validated RMSE and MAE 315 
for the hybrid models (RF-KR) in comparison to the models (RF) developed in the first stage of the hybrid models 
are shown in (a) and (c), respectively. The panels of (b) and (d) show the connection in the predictive performance 
between the RF models and the RF-KR models in terms of RMSE and MAE, respectively.  

Both the RF-KR models and the RF models developed for the same region exhibit the variability in predictive performance 

of estimating SAT, which is due to the impacts of the seasonality on developing the models for estimating SAT. As shown in 320 

Fig. 5, the RF-KR or RF models for the same month in different years have similar cross-validated overall RMSE. The 

models show greater variability in the performance with the average RMSE and MAE above 2.0 °C and 1.5 °C, respectively, 

for TR-1 and TR-6, which are the polar regions with very limited stations. In contrast, the models for the other six regions 

have the lower variability in performance across the months, and the models were trained using the samples from the stations 

with high coverage in these regions, especially in the regions of TR-2/4/7. The impacts of the seasonality on the estimation 325 

models for SAT have been reported in the previous studies for modelling SAT at monthly (Gao et al., 2021; Yao et al., 2020), 

daily (Wang et al., 2024; Zhang et al., 2022c; Zhou et al., 2020a) or hourly scales (Zhang and Du, 2022a). In general, the 

variability in the predictive performance of estimation models across months is characterized by high predictive errors for 
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winter months and lower errors in summer months. The monthly variability can be reduced to some degrees by improving 

the overall performance of the estimation models, which can be achieved by incorporating more influencing spatial 330 

covariates into the models (Wang et al., 2024; Yao et al., 2020; Zhang and Du, 2022a). In particular, Yao et al. (2022) 

constructed the estimation models for daily SAT with the improvement to the models by the EPC method that specifically 

corrects large prediction errors for extremely high and low ranges of SAT, resulting in high overall performance with the 

variability in the performance across months greatly decreased. Although incorporating the variables for atmospheric states 

from reanalysis datasets such as ERA5 into estimation models has been demonstrated to improve the overall performance 335 

and reduce the monthly variability in the performance of estimating daily (Shen et al., 2020) or hourly SAT (Zhang and Du, 

2022a), reanalysis datasets are generated by numerical models with the assimilation of large quantities of observations from 

ground stations. Thus, the variables from reanalysis datasets were not included in the RF-KR models developed by this study 

to guarantee the independence between the ground observations and the spatial covariates used in the models, which enables 

the objective cross-validation of the models.  340 

 
Figure 5. Overall predictive performance (RMSE) of the hybrid estimation models (RF-KR) developed for each 
month between 2011 and 2023 and each region to generate the GHRSAT product. The RMSE for the RF models 
developed in the first stage of RF-KR is shown for the comparison with the RF-KR models. 
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Therefore, the previous results justify that estimating SAT based on the hybrid models that integrate machine learning and 345 

the residual modelling by kriging methods can significantly improve the estimation accuracy of SAT. Fig. 4 and Fig. 5 show 

that the hybrid models achieve consistently higher predictive performance of estimating hourly SAT compared to the RF 

models. As shown in (b) and (d) of Fig. 4, there is the approximately linear relationship between the performance of the RF-

KR models and the performance of the RF models constructed in the first stage of RF-KR, which suggests that higher overall 

predictive performance of estimating SAT can be expected when improving the performance of the models constructed in 350 

the first stage of the hybrid models. However, it is unclear that the improvements to the models in the first stage impact the 

improvements to the overall performance of the hybrid models, which will be analyzed in the following text. 

 
Figure 6. Averaged site-level RMSE and its standard deviance (S.D.) for the sites within 1-degree grid boxes. The 
site-level RMSE for each site was computed for each hybrid model developed across the months between 2011 and 355 
2023 using cross-validated samples. The right panels show the distribution of the averaged site-level RMSE and its 
S.D. for all sites.  

4.2 Spatial analysis of model performance 

We computed the site-level RMSE for a hybrid model using the cross-validated samples for each site. As such, we obtained 

a sequence of site-level RMSE for one site computed from the validated samples for the hybrid models developed across the 360 

months between 2011 and 2023. The averaged site-level RMSE and its standard deviance (S.D.) were calculated from the 
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sequence of site-level RMSE for each site, and are shown in Fig. 6. To better visualize the prediction errors of the hybrid 

models for generating GHRSAT across the global land areas, the averaged site-level RMSE and its S.D. for the sites were 

spatially binned into 1-degree grid boxes in the figure. The predictive performance of the hybrid models across the sites in 

terms of RMSE are primarily between 0.15 and 4.2 °C with the mean of 1.65 °C. The averaged site-level RMSE for most of 365 

sites is below 2.5 °C, while the sites in the mountainous regions or the regions with very limited coverage of sites have 

comparatively higher RMSE. The hybrid models exhibit evidently poor performance with RMSE above 2.5 °C for the sites 

in the high-latitude regions adjacent to the north pole (TR-1 and TR-6), the Rocky mountainous region, the Pamir Plateau, 

the Tibetan Plateau, and the Mongolian Plateau. These regions are subject to the scarcity of ground sites. Previous studies 

have demonstrated that the estimation models for SAT generally have relatively higher prediction errors for the regions with 370 

limited coverage of sites (Chen et al., 2021; Kilibarda et al., 2014; Zhang and Du, 2022a). Furthermore, these regions are 

typically characterized by complex geographical environments and atmospheric dynamics, which severely affects the spatial 

representativeness of the samples extracted from the limited stations in these regions. It remains a challenge to develop the 

estimation models with reduced prediction errors for the regions with limited stations. The S.D. of the averaged site-level 

RMSE across the sites as shown in Fig. 6 confirms the variability of the performance of the hybrid models for each site 375 

across the months, which is due to the impacts of seasonality on the hybrid models.  

The averaged site-level RMSE for each site was also computed for the RF models developed in the first stage of the hybrid 

models. Fig. 7 shows the differences in the averaged site-level RMSE between the RF models and the RF-KR models across 

the sites. We see that nearly all sites have positive differences with the mean difference of 0.24 °C, indicating that the hybrid 

models consistently improve the predictive performance of estimating hourly SAT across the sites. There is great spatial 380 

variability in the differences, and the S.D of the differences is about 0.13 °C, reflecting that spatial location is an important 

factor in the estimation modelling of SAT. In particular, the hybrid models greatly improve the predictive performance for 

the sites in the central areas of north America with the differences above 0.5 °C. 

 
Figure 7. Spatial distribution of the difference in the averaged site-level RMSE between the hybrid models and the 385 
RF models for the sites. The differences for the sites within 1-degree grid boxes were binned for visualization. 
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We analyzed the variability in the predictive performance of the hybrid models across different elevations. Fig. 8 compares 

the averaged site-level RMSE for the sites against the elevations of the sites. The figure shows that the variability in both the 

site-level RMSE and the S.D. of the site-level RMSE is greater for the sites in low elevations than that for the sites in high 

elevations, which is primarily due to the inadequacy of sampling by the very limited number of sites in high elevations. The 390 

number of available sites decreases significantly with the increasing of elevations. For the sites with the elevation below 

1000 m, the range of the site-level RMSE is about between 0.5 °C and 4 °C, while the range of the site-level RMSE is 

narrowed between about 1.2 °C and 3 °C. The mean level of the site-level RMSE for the sites at different elevations is 

slightly increasing with elevations, mainly because the models generally perform poorer for the high-elevation regions. In 

addition, the relationship between the S.D. of the site-level RMSE and elevations shows that there is higher variability in the 395 

site-level RMSE for the sites with low elevations than that with high elevations.  

 
Figure 8. The relationship between the site-level RMSE and elevations (top panels), and the relationship between 
the variability (S.D.) in the site-level RMSE and elevations (bottom panels) for the hybrid models used to generate 
GHRSAT and the RF models constructed in the first stage of the hybrid models. 400 

To quantitatively analyze the overall variability of the site-level RMSE for the sites across different elevations, the averaged 

RMSE and S.D for the site-level RMSE for different ranges of elevations are summarized in Table 2. The averaged RMSE 
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for the RF-KR models and the RF models increases with elevations from 1.55 °C to 2.14 °C, 1.82 °C to 2.40 °C, respectively. 

In different ranges of elevations, the RF-KR models consistently achieve higher predictive performance than the RF models, 

indicating the significance of the hybrid modelling strategy for estimating SAT. The averaged RMSE reduced by the RF-KR 405 

models with respect to the RF models across different elevation ranges is between 0.22 °C to 0.30 °C, which corresponds to 

the 10%-15% marginal improvements to the predictive performance of estimating hourly SAT compared to the RF models. 

In contrast to the RF models, the RF-KR models also have low variability in the averaged RMSE for the site-level RMSE 

across different ranges of elevations. 

Table 2. The averaged site-level RMSE and the standard deviance (S.D.) of the site-level RMSE for the hybrid 410 
models used to generate GHRSAT and the RF models constructed in the first stage of the hybrid models for the 
sites within different ranges of eleveations. 

Elevation 
Range 

RMSE (℃) S.D. (℃) 
RF-KR RF Dec. (%) RF-KR RF Dec. (%) 

< 1000 1.55 1.82 0.27 (15%) 0.37 0.45 0.08 (18%) 
1000–2000 1.94 2.24 0.30 (13%) 0.47 0.54 0.07 (13%) 
2000–3000 2.06 2.31 0.25 (11%) 0.51 0.57 0.06 (11%) 
3000–4000 2.07 2.29 0.22 (10%) 0.47 0.52 0.05 (10%) 
> 4000 2.14 2.40 0.26 (11%) 0.42 0.49 0.07 (14%) 

 

4.3 Impacts of learning parameters 

Tuning the learning parameters or hyper-parameters for machine learning algorithms is a vital step involved in applying the 415 

algorithms in modelling tasks. It is worth noting that there is great variability in the modelling tasks due to the diversity of 

the environmental settings and scales for geographic areas. Thus, a machine learning model optimally developed using the 

parameters tuned using the samples for a specific area probably fails to have high generalization capability for other areas. In 

general, the models developed in a study achieving very satisfactory validation accuracy by massively tuning the parameters 

for the models will have limited implications for other studies focusing on other areas with different data sources. In the field 420 

of remotely sensed estimation of SAT, studies have been performed to develop the estimation models for a variety of areas 

with different scales, such as global land areas (Hooker et al., 2018; Kilibarda et al., 2014), the Tibetan Plateau (Qin et al., 

2023b), central north America (Zhang and Du, 2022a) and the Antarctic (Meyer et al., 2016; Nielsen et al., 2023). However, 

the estimation performance of the models developed in these studies should not examined only from the viewpoint of 

statistical methods, and the scales and data sources of the studies need to be considered.  425 

From the practical perspective of modelling using a machine learning algorithm, it is infeasible to exhaustively tune all 

learning parameters for the algorithm, especially for the case in which large numbers of models need to be developed using 
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different samples, and the sizes of the samples are huge. In this study, the hybrid models for generating the GHRSAT hourly 

SAT estimates were developed across the months between 2011 and 2023 for each task region. Considering the insensitivity 

of random forest to parameter tuning and model overfitting (Meyer et al., 2018; Meyer and Pebesma, 2022), the RF models 430 

constructed in the first stage of the hybrid models for on region utilized the same set of learning parameters, which was 

optimally tuned from a parameter grid of core parameters (Table S1) for January of 2020. As such, we cross-validated the 

RF models for each task region using 72 different sets of learning parameters, and the hybrid models separately based on the 

RF models were also validated. Fig. 9 shows the variability of the overall performance across the RF models and the RF-KR 

models cross-validated using different sets of parameters.  435 

 
Figure 9. Variability in the overall predictive performance of the hybrid models (RF-KR) cross-validated using the 
samples for January of 2020 for each task region and the different sets of learning parameters for the RF models 
developed in the first stage of RF-KR. 

The variability of the overall performance across the models for different regions shown in Fig. 9 as the same as Fig. 4 is 440 

significant, and indicates that the predictive capability the estimation models for SAT based on statistical methods is severely 

impacted by the characteristics of geographic areas and the samples extracted for model training. The average RMSE for the 

RF models using different tuning parameters is respectively 3.41 °C and 3.68 °C for the regions of TR-1 and TR-6, which 

are located in polar areas with very limited coverage of stations. The RF models for the other six regions have the average 

RMSE of 1.74–2.52 °C. We confirmed the insensitivity of random forest to the tuning of hyper-parameters in the modelling 445 

of  hourly SAT (Fig. 9), especially for regions with abundant samples from ground stations. The range of the overall RMSE 

for the RF models using different tuning parameters is 0.28 °C for TR-1 and 0.33 °C for TR-6, while the range for the other 

six regions is only between 0.12 °C and 0.19 °C (Table 3). We can substantially improve the predictive performance of 

estimating SAT for the regions of TR-1 and TR-6 by properly tuning the core learning parameters for the RF models, 

although relatively limited improvements to the performance can be achieved for other regions.  450 
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However, as shown in Fig. 9, the hybrid models (RF-KR) for each task region based on the RF models tuned using different 

parameters show remarkably larger variability in the predictive performance, compared to the RF models. The range of the 

RMSE for the RF models across different regions is 0.12–0.19 °C, while the range of the RMSE for the RF-KR models is 

between 0.26 and 0.72 °C. The range of RMSE for the RF models is more than twice than that for the RF-KR models for 

each region. The RF-KR models for TR-1 and TR-6 have obviously higher variability than other regions with the RMSE 455 

ranging from 0.72 °C to 0.68 °C. The RMSE range for the RF-KR models is 0.61 °C for TR-2, which is more than three 

times the range for the RF models. Although there is great variability in the overall predictive performance of the hybrid 

models due to the tuning of different parameters for the RF models in the first stage, the hybrid models based on the RF 

models consistently achieve higher predictive performance compared to the RF models. In terms of the average RMSE for 

the models for each region, the prediction errors in estimating hourly SAT are decreased by 0.11–0.58 °C with respect to the 460 

RF models when using the hybrid models, and the ratio of relative decrease in the average RMSE compared to the RF 

models is between 5.4% and 21.8%. The prediction errors in estimating hourly SAT for TR-1 and TR-6, for which the RF 

models performed with the average RMSE more than 3 °C, can even be respectively decreased by 0.58 °C and 0.45 °C in the 

averaged RMSE when using the hybrid models. 

Table 3. Statsitics of the variability in predictive performance for the hybrid models shown in Fig. 9.  465 

Task 
Region 

RF RF-KR Mean 
Decrease 

Decrease 
Ratio (%) Mean Range Mean Range 

TR-1 3.41 0.28 2.83 0.72 0.58 17.0% 
TR-2 2.52 0.19 1.97 0.61 0.55 21.8% 
TR-3 1.75 0.12 1.58 0.26 0.17 9.7% 
TR-4 2.03 0.13 1.92 0.26 0.11 5.4% 
TR-5 1.74 0.14 1.61 0.26 0.13 7.5% 
TR-6 3.68 0.33 3.23 0.68 0.45 12.2% 
TR-7 2.06 0.15 1.81 0.35 0.25 12.1% 
TR-8 2.10 0.15 1.84 0.39 0.26 12.4% 

 

We analyzed the relationship of the overall performance between the RF-KR models and the RF models constructed in the 

first stage of RF-KR using different sets of learning parameters. As shown in Fig. 10, we see that there is the approximately 

linear relationship of the performance between the RF models and the RF-KR models for each task region, suggesting that 

the predictive performance of the hybrid models can be gradually improved by decreasing the prediction errors in the RF 470 

models. Furthermore, one unit of reduction in the RMSE for the RF models can result in more than one unit of reduction in 

the RMSE for the RF-KR models, which can be seen from the slope of the linear relationship shown in Fig. 10. For example, 

the two RF models tuned with the lowest and highest predictive performance for TR-2, which are labelled as L and H in Fig. 
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10, have the RMSE of 2.64 °C and 2.45 °C, respectively. The two RF-KR models separately based on the two RF models 

achieve the RMSE of 2.34 °C and 1.73 °C. In such case, improving the performance of the RF models for TR-2 by 0.19 °C 475 

with the RMSE decreasing from 2.64 °C to 2.45 °C results in the significant improvement to the RF-KR models by 0.72 °C 

with the RMSE decreasing from 2.34 °C to 1.73 °C. Therefore, the two-stage hybrid modelling strategy for developing the 

models to generate the GHRSAT product can significantly improve the predictive performance of estimating SAT when the 

models developed in the first stage are tuned with lower errors.  

 480 
Figure 10. The relationship of the overall predictive performance between the RF models and the RF-KR hybrid 
models based on the RF models tuned using different learning parameters (left). The relationship between the 
overall predictive performance of the RF models and the improvements to the performance (decrease in RMSE) 
attributed to the hybrid models. The two points labelled with L and H represent the RF models for TR-2 with the 
lowest and highest performance, respectively.  485 

4.4 Kriging for large spatial data 

Kriging is known as the optimum interpolation technique, and involves inversion of variance-covariance matrices, which is 

very computationally expensive for kriging large numbers of point samples. We reconstructed the global hourly estimates of 

SAT in the GHRSAT product by developing two types of hybrid models including RF-OK and RF-FRK, which are designed 

for the task regions with limited stations and the regions with large numbers of stations, respectively. The RF-FRK models 490 

were designed with the aim of efficiently modelling the station residuals in the first-stage RF models using the FRK method 

for each hour in the period of 2011–2023. Although FRK has the merit of modelling spatial non-stationarity, FRK relies on 

the simplification of kriging equations to significantly reduce the computational cost of solving the equations. Therefore, it is 

highly likely that compared to the conventional ordinary kriging, applying FRK to the modelling of station residuals in the 

second stage of the hybrid models will result in the reduction in the predictive performance of estimating SAT for the hybrid 495 

models. To explore the difference in the performance for the hybrid models caused by the application of the kriging method 

of OK or FRK, we developed and cross-validated both the RF-OK models and RF-FRK models for the regions TR-2, TR-4 

and TR-7 across the months of the year 2020. The models of RF-OK and RF-FRK were based on the same RF models for 

each task region and each month.  
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 500 
Figure 11. Comparison of ordinary kriging (OK) and fixed rank kriging (FRK) in developing the hybrid models 
for the task regions with large numbers of stations including TR-2, TR-4 and TR-7 across the months in 2020. The 
hybrid models (RF-OK and RF-FRK) were based on the same RF models constructed in the first stage of the 
hybrid models. 

As shown in Fig. 11, there are slight differences in the overall predictive performance between the RF-OK models and the 505 

RF-FRK models across the months in 2020 for each region. The RF-OK models across the months have the overall RMSE 

of 1.45–1.79 °C, 1.42–1.89 °C, and 1.42–1.84 °C for TR-2, TR-4, and TR-7, respectively. In contrast, the RF-FRK models 

across the months achieve the overall RMSE of 1.51–1.84 °C, 1.41–1.74 °C, and 1.45–1.89 °C for TR-2, TR-4, and TR-7, 

respectively. The average difference between the RF-OK models and the RF-FRK models for the three regions in terms of 

RMSE and MAE is only about 0.04–0.05 °C, and 0.04–0.06 °C, respectively. Both the RF-OK models and the RF-FRK 510 

hybrid models perform significantly better than the RF models constructed in the first stage of the hybrid models. The RF 

models across the months have the average RMSE of 2.07 °C, 1.83 °C and 1.89 °C for TR-2, TR-4, and TR-7, respectively. 

The hybrid models of RF-KR and RF-FRK, which further modelled the station residuals in the RF models, reduce the errors 

of estimating hourly SAT in terms of average RMSE by about 0.38–0.43 °C, 0.2–0.25 °C and 0.21–0.25 °C for TR-2, TR-4, 

and TR-7, respectively.  515 

Due to the simplification of kriging equations by FRK, it is assumed that the hybrid models using FRK will perform poorer 

than the hybrid models using OK for the modelling of station residuals. Fig. 11 indicates that the RF-OK models consistently 

perform better than the RF-FRK models across the months for TR-2 and TR-7 with the reduction in the average RMSE by 

0.05 °C and 0.04 °C, respectively. However, the RF-FRK models generally achieve lower prediction errors than the RF-OK 

models across the months for TR-4 with the average RMSE reduced by 0.05 °C. In particular, there is apparent difference in 520 

the predictive performance between the RF-OK models and the RF-FRK models for TR-4 across the winter months, and the 
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difference in RMSE ranges from about 0 °C to 0.15 °C. In addition to the performance of the RF models, the performance of 

the hybrid models is also related to the modelling of the station residuals in the RF models. As the spatial structures in hourly 

SAT have been largely modelled by RF models, the signal of the structures in the station residuals is usually weak, and the 

intrinsic noises (nugget effects) associated with the station residuals will be a major part of the residuals. As such, the station 525 

residuals cannot be well modelled in some circumstances by ordinary kriging, which utilize one global variogram model to 

represent the spatial auto-correlation between two locations (Oliver and Webster, 2014). The FRK method represents the 

spatial structures of auto-correlation by several spatial basis functions at different scales (Zammit-Mangion et al., 2018), 

which may result in better modelling of the residuals with apparent structures at different scales and non-stationarity. 

 530 
Figure 12. Spatial distribution of the predictive performance at the site-level for the RF-OK and RF-FRK hybrid 
models for different task regions, which were based on the same RF models developed across the months in 2020. 
The RMSE for the sites were spatially binned into 1-degree grid boxes for better visualization. 
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The difference in the predictive performance between the RF-OK models and the RF-FRK models for each region is further 

assess at the level of sites and the daily scale. The cross-validated samples for the models across the months in 2020 were 535 

averaged to compute the RMSE for each site (Fig. 12) and for each day (Fig. 13). Fig. 12 shows the distribution of the 

averaged RMSE by spatially binning sites into 1-degree grid boxes for better visualization. We see that the difference in the 

spatial distribution of the averaged RMSE at the site-level between RF-OK and RF-FRK is very slight for the three task 

regions. The models of RF, RF-OK and RF-FRK for each region have very similar spatial pattern of prediction errors across 

sites or the region. All models for TR-2 exhibit relatively higher prediction errors in the central areas of the western US, and 540 

the models for TR-4 perform poorer in the southern areas of Europe and Norway with the site-level RMSE above 2 °C. The 

models for TR-7 show very high prediction errors with the site-level RMSE of about 2–4.5 °C primarily in the areas of the 

Pamir Plateau, the Tibetan Plateau, and the Mongolian Plateau. The areas with high prediction errors in the models for the 

three regions are characterized by complex topography and atmospheric environments, and these areas are also subject to the 

scarcity of ground stations. However, it can be observed from Fig. 12 that, compared to the RF models, the high prediction 545 

errors in these areas are substantially reduced by the RF-OK or RF-FRK hybrid models. 

 
Figure 13. Comparison of the predictive performance on the daily basis between the RF-OK and RF-FRK hybrid 
models based on the same RF models for different task regions. The panels of boxplots in the right summarize the 
overall distribution of the daily differences in the predictive performance between RF-OK and RF-FRK. 550 
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As shown in Fig. 13, the RF-OK models exhibit very similar predictive performance with the RF-FRK models across the 

days in 2020 for the three task regions. However, there still exist slight differences in the predictive performance between 

RF-FRK and RF-OK. For the hybrid models for TR-2, the RK-OK models are better than the RF-FRK models for the days 

around the DOY of 200. For TR-4, the RF-OK models perform slightly poorer than the RF-FRK models for the days around 555 

the DOY of 50 and 350. For TR-7, the RF-OK models are slightly better than the RF-RFK models across all days of the year 

2020. The boxplots Fig. 13 show the distribution of the differences in the daily RMSE between RF-OK and RF-FRK for the 

three task regions. The average of the differences in daily RMSE for each region is below 0.05 °C, and the differences are 

primarily below 0.1 °C for the days in 2020.  

The previous results demonstrate the superiority and generality of developing the estimation models by the hybrid modelling 560 

strategy for estimating SAT for both small-scale areas with limited coverage of ground stations and the large-scale areas with 

large numbers of stations. The hybrid models that integrate machine learning methods and the kriging modelling of residuals 

at stations can substantially improve the predictive performance of estimating SAT compared to the models only based on 

statistical methods. For the case of modelling SAT in the areas with large numbers of stations, computationally efficient 

kriging techniques such as FRK (Cressie and Johannesson, 2008) and NNGP (Datta et al., 2016) can be employed to develop 565 

hybrid models.  

5 Data availability 

The GHRSAT product generated by this study contains all-sky hourly estimates of SAT between 2011 and 2023 for the 

global land areas excluding Antarctica, and is available at https://doi.org/10.11888/RemoteSen.tpdc.301540 (Zhang, 2024). 

Data of the global SAT estimates for the 24 hours in each day were organized into a data file in the format of netCDF. The 570 

data files for one month were compressed into a zip file. The total size of all compressed zip files for the GHRSAT product 

is about 1.2 T.  

6 Conclusions 

This study for the first time generated the GHRSAT product of all-sky hourly estimates of SAT between 2011 and 2023 for 

the global land areas. The hourly estimates were reconstructed using the estimation models designed by the hybrid modelling 575 

strategy that integrates random forest and two types of kriging techniques. The hybrid models designed by the strategy were 

constructed in two stages, and by integrating the training of a random forest model (RF) in the first stage using the samples 

extracted at ground stations with the kriging modelling of the station residuals in the first-stage model. The global land areas 

excluding Antarctica were divided into 8 task regions, and considering the scale and data volume of the modelling in this 

study, we developed two types of hybrid models including RF-OK and RF-FRK on the monthly basis for different task 580 

regions across the months between 2011 and 2023. RF-OK and RF-FRK perform the modelling of the station residuals in the 

https://doi.org/10.5194/essd-2024-548
Preprint. Discussion started: 6 December 2024
c© Author(s) 2024. CC BY 4.0 License.



26 
 

RF models using ordinary kriging for the regions with limited stations and fixed rank kriging for the regions with large 

numbers of stations, respectively. All estimation models including the hybrid models and the RF models constructed in the 

first stage were fully cross-validated for assessing the predictive performance of the models in estimating hourly SAT. We 

analyzed the impacts of tuning the learning parameters for the first-stage RF models and the influence of modelling the 585 

station residuals in the RF models by different kriging techniques on the predictive performance of the hybrid models. We 

expect the GHRSAT product generated in this study will be applied in various fields such as environmental assessments and 

hydrological studies. The main results of this study are concluded as follows. 

The hybrid models for generating GHRSAT achieve the predictive performance for different regions with the overall RMSE 

between 1.48 °C to 2.28 °C. Our results demonstrate that the hybrid modelling strategy can greatly improve the predictive 590 

performance for estimating SAT compared to the modelling of SAT only based on statistical methods. In average, the hybrid 

models improve the performance for estimating global hourly SAT by 0.18–0.41 °C in terms of RMSE with respect to the 

RF models constructed in the first stage of the hybrid models. There is the temporal variability in the performance across the 

months between 2011 and 2023 and the spatial variability in the performance across the ground stations in different areas. 

However, compared to the RF models, the spatio-temporal variability is significantly reduced by the hybrid models.  595 

We found that although tuning the parameters for the first-stage RF models has limited impacts on the performance of the 

models, it can drastically influence the performance of the hybrid models. There is the approximately linear relationship of 

the performance between the RF models and the hybrid models developed for each region, and the performance of the hybrid 

models can be greatly improved when the RF models developed in the first stage of the hybrid models slightly tuned with 

lower errors. In addition, we developed the RF-FRK models using the computationally efficient FRK method with the aim of 600 

modelling the station residuals in the RF models for regions with large numbers of stations. FRK reduce the computational 

cost at the sacrifice of simplifying kriging equations, which may result in the reduction in the performance of the hybrid 

models. However, we found that there are slight differences in the predictive performance between the RF-OK models and 

the RF-FRK models, which are based on the same RF models, and the average difference in terms of RMSE is only about 

0.04–0.05 °C. The previous results demonstrate the superiority and generality of developing the estimation models by the 605 

hybrid modelling strategy for estimating SAT for both small-scale areas with limited coverage of stations and the large-scale 

areas with large numbers of stations. 
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