

1 Global database of actual nitrogen loss rates in coastal and marine sediments

- 2 Yongkai Chang¹, Ehui Tan^{1*}, Dengzhou Gao², Cheng Liu³, Zongxiao Zhang⁴,
- 3 Zhixiong Huang¹, Jianan Liu¹, Yu Han¹, Zifu Xu¹, Bin Chen⁵, Shuh-Ji Kao^{1*}
- 4 ¹ State Key Laboratory of Marine Resource Utilization in South China Sea, School of
- 5 Marine Science and Engineering, Hainan University, Haikou, China
- 6 ² Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry
- 7 of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou,
- 8 China
- 9 ³ Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta,
- 10 Shandong University of Aeronautics, Binzhou, China
- ⁴ School of Environmental Science and Engineering, Southern University of Science
- 12 and Technology, Shenzhen, Guangdong, China
- ⁵ State Key Laboratory of Marine Environmental Science, College of Ocean and Earth
- 14 Sciences, Xiamen University, Xiamen, China
- 15 ***Corresponding author:**
- 16 Ehui Tan (ehuitan@hainanu.edu.cn) and Shuh-Ji Kao (sjkao@hainanu.edu.cn)
- 17

18 Abstract

19 Denitrification and anaerobic ammonium oxidation (anammox) convert reactive nitrogen to invert N₂, and play vital roles in nitrogen removal in coastal and marine 20 21 ecosystems, weakening the adverse effects caused by terrestrial excessive nitrogen inputs. Given the importance of denitrification and anammox in nitrogen cycle, lots of 22 studies has measured denitrification and anammox through intact core incubations 23 across different systems, and nitrogen loss processes are affected by a series of 24 25 environmental factors such as organic carbon, nitrate, dissolved oxygen and temperature. However, a global synthesis of actual nitrogen loss rates is lacking and 26 27 how environmental factors regulate nitrogen loss remains unclear. Therefore, we have compiled a database of nitrogen loss rates, including denitrification and anammox in 28 coastal and marine systems from published literatures. This database includes 473, 29 30 466, and 255 measurements for total nitrogen loss denitrification and anammox, respectively. This work deepens our understanding of the spatial and temporal 31 32 distribution of denitrification, anammox and the relative contribution of anammox to total nitrogen loss and their corresponding environmental controls. To our knowledge, 33 the constructed database for the first time offers a comprehensive overview of actual 34 nitrogen loss rates in coastal and marine ecosystems on a global scale. This database 35 36 can be utilized to compare nitrogen loss rates of different regions, identify the key 37 factors regulating these rates, and parameterize biogeochemical models in the future. 38 This database is available in Figshare repository : https://doi.org/10.6084/m9.figshare.27745770.v3 (Chang et al., 2024). 39

- 40 KEYWORDS: nitrogen cycle, denitrification, anammox, coastal and marine
- 41 ecosystems, isotope pairing technology, intact core incubations
- 42

43 **1 Introduction**

44 The production of anthropogenic reactive nitrogen has intensified remarkably since the mid-20th century to meet the increasing global population (Kennedy, 2021). It is 45 estimated that nitrogen is entering Earth's ecosystems at more than twice its natural 46 rate, drastically disrupting the pristine nitrogen cycle (Canfield et al., 2010). Much of 47 the excess nitrogen, primarily in the form of nitrate, is conveyed downriver to coastal 48 and marine systems due to the low use efficiency of crops (Cui et al., 2013), resulting 49 50 in a series of environmental issues including harmful algal blooms, eutrophication, and hypoxia (Dai et al., 2023). Consequently, it is critical to understand the 51 52 transformations, particularly the fates of reactive nitrogen, encountering the fact that the nitrogen cycle has been intensively altered and is currently functioning beyond the 53 safe operating space for humanity (Richardson et al., 2023). 54

Denitrification and anammox are two key nitrogen loss processes in aquatic 55 environments, playing important roles in mitigating the adverse effects of excessive 56 57 nitrogen inputs (Chen et al., 2021; Tan et al., 2022). Denitrification is the sequential reduction of nitrate, nitrite, nitric oxide, and nitrous oxide (N2O) to dinitrogen gas 58 (N₂), which is the most energetically favorable respiratory pathway in the absence of 59 oxygen (Devol, 2015), serving as the predominant mechanism for nitrogen loss in 60 61 coastal ecosystems (Damashek & Francis, 2018; Deng et al., 2024). Anaerobic 62 ammonium oxidation (Anammox), an alternate nitrogen loss pathway, utilizes nitrite 63 and ammonium to generate N₂ with no greenhouse gas N₂O production under anaerobic conditions (Graaf et al., 1995), and is a chemoautotrophic process with no 64

direct demand for organic carbon (Strous et al., 1999). Therefore, anammox is an
 environment-friendly and energy-saving process compared to denitrification.

The ¹⁵N isotope pairing technique (IPT) has been applied to a variety of sediments to 67 quantify nitrogen loss rates in these settings (Nielsen, 1992; Robertson et al., 2019). 68 69 Slurry incubation and intact core incubations in combination with IPT are two widely used methods for studying benthic nitrogen transformation pathways (Song et al., 70 71 2016b). Slurry incubations have been used to estimate the potential rates due to 72 advantage of simple operation in incubations (Thamdrup & Dalsgaard, 2002), and a 73 large number of studies have used this method to study sediment nitrogen loss. 74 However, slurry incubations could not reflect the genuine benthic nitrogen transformation rates, as the natural gradients of substrates and redox in sediments 75 76 were disrupted during incubations (Trimmer et al., 2006). The application of intact core incubations can overcome this drawback and will enable us to fully clarify and 77 understand the nitrogen cycle in field aquatic ecosystems. 78

Over the past thirty years, the introduction of isotope pairing technology has enabled 79 80 numerous studies to measure anammox and denitrification using intact core incubations across a range of coastal and marine environments. These environments 81 include intertidal wetlands (Adame et al., 2019; Liu et al., 2020), estuaries and coasts 82 (Chen et al., 2021; Cheung et al., 2024; Deek et al., 2013; Hellemann et al., 2017), 83 lagoons (Bernard et al., 2015; Magri et al., 2020) and oceans (Deutsch et al., 2010; Na 84 et al., 2018). Despite decades of research, the majority of studies on denitrification 85 and anammox have been limited to local or regional scales. Various environmental 86

87	factors, such as the availability of organic carbon (Yin et al., 2015) and nitrate
88	(Asmala et al., 2017), dissolved oxygen (Bonaglia et al., 2013; Song et al., 2021), and
89	temperature (Tan et al., 2022) influence these processes in coastal marine ecosystems.
90	However, to date, the global patterns and drivers of sediment nitrogen loss rates
91	remain poorly understood in coastal and marine systems.

In view of the critical role of nitrogen removal processes and the current lack of a 92 93 comprehensive database on actual nitrogen loss in coastal and marine systems, we 94 have integrated actual nitrogen loss rates, including denitrification and anammox, 95 from published studies, and constructed a dataset on nitrogen removal rates in these systems. This study provides a global-scale overview of the biogeography and 96 potential controlling factors of denitrification and anammox in coastal and marine 97 98 ecosystems. It also highlights the potential applications of this database such as using machine learning to predict the distribution of denitrification and anammox and 99 100 offering a crucial dataset for the parameterization and development of biogeochemical 101 models.

102 2 Methods

103 **2.1 Data compilation**

Nitrogen loss rates, including denitrification and anammox measured through intact core incubations in coastal and marine ecosystems, were extracted from the literature published between 1996 and 2024. Table 1 summarized the locations, observation numbers, core incubation methods and references of nitrogen loss rates measurements.

108	The intact core incubations in this study include both traditional core incubations
109	(Bonaglia et al., 2017; Cheung et al., 2024) and continuous flow experiments
110	combined with core incubations (Liu et al., 2020; McTigue et al., 2016). The
111	peer-reviewed articles compiled in this study were sourced from the Web of Science
112	database as of June 2024. The search terms were "denitrification" or "anammox" or
113	"nitrogen loss" or "nitrogen removal". Only data where denitrification and/or
114	anammox rates were measured using intact core incubations combined with ¹⁵ N
115	isotope pairing techniques were included, while those measured via slurry incubation
116	were excluded. The intact core incubation experiments were primarily conducted in
117	dark conditions and near-in situ or in situ ambient temperatures. In cases where
118	nitrogen loss rates were measured under both light and dark conditions, only those
119	measured in the dark were included. Measurements under light conditions have been
120	detailed in studies reported by Bartoli et al. (2021), Chen et al. (2021),
121	Risgaard-Petersen et al. (2004), Rysgaard et al. (1996b), and Welsh et al. (2000).
122	Some studies have investigated the changes in nitrogen loss processes under varying
123	oxygen concentrations (Bonaglia et al., 2013; Neubacher et al., 2011; Song et al.,
124	2021), however, only nitrogen loss rates measured under ambient oxygen
125	concentrations were extracted for this database. Additionally, studies examining the
126	effects of meiofauna or antibiotics on nitrogen removal (Bonaglia et al., 2014b; Wan
127	et al., 2023) were not included, only rates measured without meiofauna or antibiotic
128	additions were considered. At least one environmental variable was recorded for each
129	selected study, and means and sample sizes had to be reported for nitrogen removal

rates. Articles that only reported nitrogen loss rates without any environmental variables were excluded. Data on total nitrogen loss rates (the sum of denitrification and anammox), denitrification rates, anammox rates, and related environmental variables were collected from tables, text, and/or supplementary materials, and in some cases, extracted from graphs using Origin 2020 software. The unit conversions were performed where necessary. In addition, longitude and latitude were extracted from figures from published articles if not shown in the main text.

137

138 The database includes observation details (year of sampling, month of sampling, 139 latitude, and longitude), sediment parameters, and water physicochemical factors, such as sediment organic carbon, the ratios of carbon to nitrogen (C/N ratios), oxygen 140 141 penetration depth, and water salinity, depth, temperature, DO, ammonium and nitrate concentrations. Note that some environmental variables were not reported in the 142 original studies. NM represents parameters that were not measured, and empty or NA 143 indicates data not available or reported. In total, the database comprises 473, 466, 255, 144 145 and 255 measurements of total nitrogen loss rates, denitrification rates, anammox rates, and the relative contribution of anammox to total nitrogen loss, respectively. 146 Authors and interested readers are welcomed to contact us to indicate an error or 147 update the data in the database. 148

For quality control, extreme nitrogen loss rate values were excluded from the database following Chauvenet's criterion (Glover et al., 2011), a method typically applied to normally distributed data to identify outliers whose deviation from the mean has a

152	probability lower than 1/(2n). More details about Chauvenet's criterion can be found
153	in Glover et al., (2011) and Buitenhuis et al. (2013). Very high rates of denitrification
154	were observed in the Tama Estuary, Japan (Usui et al., 2001), a constructed wetland in
155	Casino, NSW, Australia (Erler et al., 2008), a coastal lagoon in Sacca di Goro lagoon,
156	Italy (Magri et al., 2020) and the Tropical Coastal Wetlands, Australia (Adame et al.,
157	2019). For anammox, high rates were found only in a constructed wetland in Casino,
158	NSW, Australia (Erler et al., 2008). Similarly, high values for anammox's contribution
159	to total nitrogen loss were observed in the Changjiang River Estuary, China (Liu et al.,
160	2020), the Norwegian Trench, Skagerrak (Trimmer et al., 2013), and the Great Barrier
161	Reef lagoon (Erler et al., 2013), with contributions exceeding 70%. Observations with
162	nitrogen loss rates of 0 or NA were excluded from the outlier analysis. For example,
163	anammox rates of 0 were reported in the Changjiang River Estuary, China (Liu et al.,
164	2020), the North Sea (Neubacher et al., 2011; Rosales Villa et al., 2019), the Pearl
165	River Estuary, China (Tan et al., 2019), the Norwegian Trench, Skagerrak (Trimmer et
166	al., 2013), and the Gulf of Finland, Baltic Sea (Jäntti et al., 2011). After excluding
167	observations of 0 and NA (0, 8, 252, and 253 observations for total nitrogen loss rates,
168	denitrification rates, anammox rates, and anammox's contribution to total nitrogen
169	loss), the nitrogen loss rates were natural-log transformed for further analysis.

170 **2.2 Methods for measuring denitrification and anammox rates**

Before the discovery of anammox, denitrification was regarded as the sole significant
 pathway responsible for nitrogen loss (Dalsgaard & Thamdrup, 2002). The ¹⁵N

173 isotope pairing technique (IPT) was developed to quantify denitrification rates (Nielsen, 1992). In this method, the overlying water of intact sediment cores is 174 enriched with ¹⁵NO₃⁻, which is mixed with the naturally occurring ¹⁴NO₃⁻. After a few 175 hours of incubation, the denitrification products, ¹⁵N-labeled dinitrogen gas (²⁹N₂ and 176 ³⁰N₂), are measured. Incubations to measure nitrogen loss rares have been mostly 177 178 conducted in dark conditions and near-in situ or in situ ambient temperatures. After 179 incubating for 1 h to over 96 h, the incubation is halted by injecting saturated HgCl₂ or ZnCl₂ saturation solution or 37% formaldehyde. The samples are then preserved for 180 181 $^{15}N_2$ gas analyses through isotope ratio mass spectrometer (IRMS) or membrane inlet 182 mass spectrometry (MIMS). Key experimental details, such as incubation conditions, temperature control, incubation time, termination, and calculation references, are 183 184 compiled in the database if provided in the original studies. For more detailed experimental information, refer to the corresponding references. 185

The production rate of unlabeled ${}^{14}NO_{3}^{-}$ (IPT*p*14, also referred to as the genuine production of N₂) can be calculated based on the assumption of random isotope pairing during the denitrification of the uniformly mixed NO₃⁻ species. The following equation is commonly used to estimate the genuine N₂ production (Nielsen, 1992; Steingruber et al., 2001).

Where $p^{29}N_2$ and $p^{30}N_2$ represent the total production rates of ${}^{29}N_2$ and $p^{30}N_2$, respectively.

194 Thamdrup and Dalsgaard (2002) were the first to quantify anammox through

195 anaerobic slurry incubations in natural environments, discovering that anammox 196 could account for more than 60% of total N₂ production. This highlighted the 197 significant role of anammox in nitrogen removal. Following this, Risgaard-Petersen et al. (2003) proposed a modification to the traditional IPT, allowing for more accurate 198 199 quantification of true N2 production in environments where anammox and denitrification coexist. This revision also enables the distinction between N2 produced 200 201 by anammox and denitrification. The revised IPT (rIPT) follows the same procedure as the classical IPT, with ¹⁵NO₃⁻ added to the overlying water of intact sediment cores, 202 203 though the calculation process is more complex. The following equations are 204 commonly used to estimate the actual N_2 production (rIPTp14) and denitrification (p14DEN) as well as anammox (p14ANA) (Risgaard-Petersen et al., 2003; Trimmer 205 206 & Nicholls, 2009; Trimmer et al., 2006). The total N₂ production rate is the sum of denitrification and anammox rates. 207

208
$$rIPTp14 = 2r_{14} \times (p^{29}N_2 + p^{30}N_2 \times (1 - r_{14}))$$
 (2)

209
$$p14\text{DEN} = 2r_{14} \times (r_{14} + 1) \times p^{30}\text{N}_2$$

210
$$p14ANA = 2r_{14} \times (p^{29}N_2 - 2 \times r_{14} \times p^{30}N_2)$$

In these equations, $p^{29}N_2$ and $p^{30}N_2$ are the total production rates of ${}^{29}N_2$ and $p^{30}N_2$, respectively, and r_{14} represents the ratio of ${}^{14}NO_3^-$ and ${}^{15}NO_3^-$ in the nitrate reduction zone. There are 3 different methods to estimate r_{14} , with detailed explanations available in Trimmer et al. (2006).

(3)

(4)

215 Subsequently, Hsu and Kao (2013) revised the rIPT method to incorporate both N₂O

216 production and anammox, enabling the determination of the absolute rate of each

217 nitrogen loss pathway, including denitrification, anammox, and N_2O production from 218 denitrification. Denitrification and anammox measurements based on the method of 219 Hsu and Kao (2013) are included in this database, whereas data on the true N_2O 220 production rate has not been included.

221 **3 Results and discussion**

3.1 Overview of the database

Overall, there are 473, 466, and 255 measurements for total nitrogen loss 223 224 denitrification and anammox, respectively (Fig. 1). Denitrification and anammox have been measured simultaneously at 255 observations. The observations of nitrogen loss 225 rates are primarily distributed in the Eastern coast of the United States, the Baltic Sea, 226 the Eastern Coast of China, the Eastern Coast of Australia, and polar regions of the 227 228 Northern Hemisphere (Fig. 1a). Before 2000, nitrogen loss measurements were predominantly focused on denitrification, while both denitrification and anammox 229 230 rates have been measured concurrently since 2000 (Fig. 1b). Notably, more observations were recorded in 2011 and 2017. The studies in 2011 were mainly 231 conducted in the Changjiang estuary and its adjacent East China Sea (Song et al., 232 2021), the Jinpu Bay, China (Yin et al., 2015), the North Sea (Bale et al., 2014), the 233 Northern Baltic Proper (Bonaglia et al., 2014a) and the hypoxic zone off the 234 Changjiang River estuary, China (Yang et al., 2022). In 2017, high observations were 235 found in the Northern East China Sea, China (Chang et al., 2021), the Changjiang 236 River Estuary, China (Liu et al., 2020; Liu et al., 2019; Tan et al., 2022), the Coast of 237

- 238 Victoria, Australia (Kessler et al., 2018) and the Jiulong River Estuary, China (Tan et
- 239 al., 2022).
- 240

241 **3.2 Distribution of denitrification**

In total, the vast majority of nitrogen loss rate measurements were conducted in the 242 Northern Hemisphere, and data in the Southern Hemisphere were limited (Fig. 2a, 2b, 243 244 2c). The low and middle latitudes of the Northern Hemisphere have a large body of observations, especially in the 20-30°N, 30-40°N, and 50-60°N latitude bands. 245 246 Denitrification rates ranged from 0.04 to 750 µmol N m⁻² h⁻¹, with a median value of 7.72±4.30 µmol N m⁻² h⁻¹. There is a decreasing trend in the denitrification rates with 247 latitude in the Northern Hemisphere, though the observations in the high latitude are 248 249 still limited. The measurements of denitrification were mostly conducted in later 250 spring, summer, and early autumn, from April to September (Fig. 2d, 2e, 2f). On a global scale, no clear seasonal pattern for denitrification rates was observed. 251

252

3.3 Distribution of anammox

From a latitude perspective, the distribution of anammox rates closely mirrored that of denitrification, with the majority of observations concentrated in the 20-30°N, 30-40°N, and 50-60°N latitude bands (Fig. 3a, 3b, 3c). However, compared to denitrification, there were fewer anammox observations. Anammox rates spanned

258 from 0.01 to 48.94 μ mol N m⁻² h⁻¹, with a median value of 1.00±0.39 μ mol N m⁻² h⁻¹. Similar to denitrification, anammox rates also showed a decreasing trend with 259 increasing latitude in the Northern Hemisphere. Numerous anammox measurements 260 were conducted between April and September, consistent with the timing of 261 262 denitrification measurements (Fig. 3d, 3e, 3f). Additionally, February saw a high number of anammox observations, and these observations were predominantly 263 264 conducted at the north East China Sea (Chang et al., 2021), the Changjiang Estuary (Liu et al., 2019) and the Northeastern New Zealand continental shelf regions 265 266 (Cheung et al., 2024). On a global scale, there was no clear seasonal pattern for anammox rates. 267

268

269 3.4 Distribution of contribution of anammox to total N₂ 270 production

The relative importance of anammox to total N2 production increased first and then 271 decreased, peaking in the 40-50°N latitudinal band in the Northern Hemisphere, 272 although data points in this band were limited (Fig. 4). The contribution of anammox 273 to total N_2 production varied from 0.22% to 67.33%, with a median value of 12.29%. 274 The highest value (67.33%) was recorded at a site on the North Atlantic continental 275 slope at a depth of 2000 m (Trimmer & Nicholls, 2009), where anammox accounted 276 277 for the majority of nitrogen removal. There were no significant monthly changes in the relative importance of anammox to total nitrogen loss, except for March, when 278

279	anammox contributed a notably high percentage. High values in March were observed				
280	in the Ulleung Basin, East Sea, and the continental shelf and slope, North Atlantic (Na				
281	et al., 2018; Trimmer & Nicholls, 2009) where the stations were characterized by low				
282	nitrate levels or deep water. These environmental conditions may inhibit				
283	denitrification, thereby increasing the relative contribution of anammox to nitrogen				
284	loss.				

285

286 **3.5 Control factors on nitrogen loss rates**

The variations in denitrification rates, anammox rates, and the contribution of anammox to total N_2 production (%) were compared against several environmental variables, including sediment organic carbon, the ratios of carbon to nitrogen (C/N ratios) and oxygen penetration depth, and water depth, temperature, salinity, dissolved oxygen, ammonium, and nitrate concentrations. This comparison was conducted to evaluate the controlling factors of nitrogen loss rates and the relative importance of anammox to total nitrogen removal.

There was no significant relationship between denitrification rates and the contents of sediment organic carbon (p>0.05; Fig. 5a). Heterotrophic denitrification is primarily carried out by facultative anaerobic heterotrophs (Devol, 2015), which use organic carbon as an electron donor and energy source. Therefore, higher organic carbon levels might be expected to promote denitrification (Damashek & Francis, 2018). However, no such relationship was observed in this dataset. Denitrification rates

300	increased with sediment carbon nitrogen ratios ($r=0.23$, $p<0.01$; Fig. 5b). The C/N
301	ratios can indicate the reactivity of sediment organic material, with lower C/N values
302	generally representing more reactive organic matter (Cheung et al., 2024; Erler et al.,
303	2013). Typically, high denitrification rates are associated with sediments that have
304	lower C/N ratios. However, in this analysis, the opposite trend was observed. One
305	possible explanation is that microbial communities may adapt to use organic matter
306	typically encountered, though the organic matter is not labile (Salk et al., 2017).
307	Denitrification rates showed a weak negative correlation with oxygen penetration
308	depth (r=-0.29, $p < 0.01$; Fig. 5c), as greater O ₂ penetration may be adverse to the
309	occurrence of denitrification (Cheung et al., 2024). Denitrification rates also
310	decreased with water depth (r=-0.2, $p < 0.01$; Fig. 5d), with most observations
311	occurring at depths shallower than 250 m. Denitrification was positively correlated
312	with higher water temperatures ($r=0.38$, $p<0.01$; Fig. 5e), and negatively correlated
313	with salinity ($r=-0.15$, $p<0.01$; Fig. 5f), with most rates falling within two salinity
314	ranges (0-10 and 30-40). Samples that had a salinity greater than 40 were collected in
315	hypersaline lagoons of tropical regions (Enrich-Prast et al., 2016). The relationship
316	between denitrification and salinity across coastal environments has been summarized
317	by Torregrosa-Crespo et al. (2023) and will not be further elaborated here. There was
318	a weak negative relationship between denitrification rates and dissolved oxygen
319	concentrations (r=-0.23, p<0.01; Fig. 5g). Overall, higher denitrification rates were
320	recorded in areas with high nitrate concentrations ($r=0.16$, $p<0.01$; Fig. 5h),
321	suggesting the importance of nitrate substrate in regulating denitrification, though

- 322 some high rates were also observed in sites with low nitrate levels. No significant 323 correlation was found between denitrification rates and ammonium concentrations 324 (p>0.05; Fig. 5i).
- 325

326 Anammox rates showed a weak positive correlation with sediment organic carbon (r=0.16, p<0.05; Fig. 6a). Although anammox is an autotrophic process that does not 327 328 require organic carbon as an electron donor (Salk et al., 2017), some studies have 329 reported links between sediment organic carbon content and anammox rates. For 330 example, studies in subtropical mangrove sediments (Meyer et al., 2005) and the Thames estuary (Trimmer et al., 2003) found that higher organic matter stimulated 331 anammox. This correlation may be due to enhanced mineralization leading to 332 333 increased ammonium production, which indirectly stimulates anammox (Damashek & 334 Francis, 2018), as sediment organic carbon can serve as a proxy for organic carbon 335 mineralization (Song et al., 2016a). Similar to denitrification, high anammox rates were observed at sites with elevated C/N ratios (r=0.33, p<0.01; Fig. 6b). More 336 337 research is needed to reveal the influencing mechanisms of organic matter quantity and quality on anammox. No clear trend was found between anammox rates and 338 oxygen penetration depth (p>0.05; Fig. 6c), and high anammox rates were observed in 339 shallow waters (p>0.05; Fig. 6d). Anammox rates showed a weak positive correlation 340 with temperature (r=0.19, p<0.01; Fig. 6e). While several studies have suggested that 341 low temperatures could favor anammox (Dalsgaard & Thamdrup, 2002; Rysgaard et 342 al., 2004; Tan et al., 2020), these studies primarily measured anammox potential using 343

344	anaerobic slurry incubations. Contrary to previous findings, our study showed that
345	actual anammox rates increased with rising temperatures, suggesting a discrepancy
346	between the effects of temperature on actual and potential anammox rates. Future
347	research is needed to investigate the underlying mechanisms for these inconsistent
348	results. Anammox rates decreased with increasing salinity (r =-0.38, p <0.01; Fig. 6f),
349	and showed no significant relationship with dissolved oxygen (p >0.05; Fig. 6g). A
350	weak positive correlation was observed between anammox rates and nitrate
351	concentration ($r=0.41$, $p<0.01$; Fig. 6h), highlighting the importance of substrates in
352	regulating anammox. Although anammox uses nitrite as an electron acceptor rather
353	than nitrate (Graaf et al., 1995), nitrate reduction can produce nitrite, which promotes
354	anammox activity. No relationship was found between anammox rates and
355	ammonium concentration ($p>0.05$; Fig. 6i).

356

Numerous studies have found that denitrification was linked to anammox in different 357 358 habitats, including estuary sediments (Liu et al., 2020), coastal wetland sediments (Gao et al., 2017) and paddy soils (Shan et al., 2016). Consistent with their findings, 359 360 this work also found denitrification was positively correlated to anammox (r=0.67, 361 p < 0.01; Fig. 7). A majority of denitrifying bacteria are heterotrophic and capable of 362 utilizing organic matter, and the decomposition of organic matter is accompanied by the production of ammonium (Devol, 2015), supplying substrates for anammox. Thus, 363 the relationship between denitrification and anammox may suggest the tight coupling 364 of these two nitrogen removal pathways. 365

366

There was a positive correlation between the contribution of anammox to total N_2 367 production (ra) and water depth (r=0.59, p<0.01; Fig. 8d). Previous studies have 368 reported similar findings, including those conducted on the Northeastern New 369 370 Zealand continental shelf (Cheung et al., 2024), the continental shelf and slope, North Atlantic (Trimmer & Nicholls, 2009). The increased importance of anammox can be 371 372 attributed to the significant attenuation of denitrification with depth, as the availability 373 of organic carbon, which is essential for denitrification, decreases with increasing 374 water depth (Thamdrup, 2012). In addition to water depth, other factors such as 375 oxygen penetration depth, C/N ratios, and temperature may also influence the relative importance of anammox. The contribution of anammox to total N_2 production (ra) 376 377 was positively correlated with oxygen penetration depth (r=0.7, p<0.01; Fig. 8c). As previously mentioned, denitrification decreases with higher oxygen penetration depth, 378 379 likely increasing the relative importance of anammox indirectly. Conversely, ra showed a decreasing trend with elevated C/N ratios (r=-0.35, p<0.01; Fig. 8b). High 380 381 C/N ratios may promote denitrification more significantly than anammox because both processes tend to enhance with increasing C/N ratios, leading to a decrease in the 382 relative importance of anammox at sites with high C/N ratios. Additionally, ra was 383 negatively correlated with temperature (r=-0.29, p<0.01; Fig. 8e), indicating that 384 denitrification is stimulated at higher temperatures compared to anammox. 385 Temperature-controlled experiments have confirmed that denitrification has a greater 386 optimal temperature than anammox (Canion et al., 2014; Tan et al., 2020). No 387

- correlations were found between ra and other environmental factors, including sediment organic carbon, water salinity, dissolved oxygen, nitrate, and ammonium concentrations. (all p>0.05; Fig. 8a, 8f, 8g, 8h, 8i).
- 391

4 Applications of the database

This database serves as a valuable resource for the broad scientific communities that 393 394 are interested in nitrogen cycle processes within coastal and marine ecosystems, 395 particularly those focusing on denitrification and anammox. The data is made 396 accessible as a basic database that will lead to a deeper understanding and generate new scientific insights into the nitrogen cycles at the global scale. Potential 397 398 applications of this database include: (1) serving as a reference for comparing denitrification and anammox rates across local, regional, and global scales in future 399 studies; (2) identifying and comparing the controlling factors of denitrification and 400 anammox at various spatial scales; (3) predicting the global biogeography of 401 denitrification and anammox in coastal and marine systems through machine learning; 402 and (4) providing essential data for the parameterization, validation and enhancement 403 of Earth system biogeochemical models. 404

405 **5 Conclusions**

We compiled a global database of denitrification and anammox measurementsobtained from core incubation experiments in coastal and marine sediments. To our

408	knowledge, no efforts have been made to compile actual nitrogen loss rates and
409	associated environmental factors in coastal and marine regions on a global scale. This
410	database offers valuable insights into the spatiotemporal variations and potential
411	controlling factors of denitrification and anammox, along with the contribution of
412	anammox to total N_2 production. It can be used to compare these two nitrogen loss
413	processes, assess the environmental controls on them at regional and global levels,
414	and support the parameterization and development of biogeochemical models.

415 Data availability

416 The data used in this study are openly available in Figshare repository at

417 <u>https://doi.org/10.6084/m9.figshare.27745770.v3</u> (Chang et al., 2024).

418 Author contributions

- 419 SJK and EHT conceived the research. YKC and EHT compiled the data. YKC, EHT,
- 420 DZG, CL and SJK participated in the data analysis. All co-authors contributed to the
- 421 writing and reviewing of this manuscript.

422 Competing interests

423 None declared.

424 Acknowledgements

- 425 We thank the authors for their contributions to the data used in this database. Thanks
- 426 to the editors and reviewers for their constructive comments and suggestions that

427 improved this manuscript greatly.

428 Financial support

This work was supported by the National Natural Science Foundation of China (92251306 and 42276043), the Hainan Provincial Natural Science Foundation of China (623RC456), the Collaborative Innovation Center of Marine Science and Technology in Hainan University (XTCX2022HYC19), the Innovational Fund for Scientific and Technological Personnel of Hainan Province (KJRC2023B04) and the Shandong Provincial Natural Science Foundation of China (ZR2023QD103).

435 **References**

Adame, M. F., Roberts, M. E., Hamilton, D. P., Ndehedehe, C. E., Reis, V., Lu, J.,
Griffiths, M., Curwen, G., and Ronan, M.: Tropical Coastal Wetlands Ameliorate
Nitrogen Export During Floods, Front. Mar. Sci., 6,
https://doi.org/10.3389/fmars.2019.00671, 2019.

Arroyave Gómez, D. M., Gallego Suárez, D., Bartoli, M., and Toro-Botero, M.: 440 Spatial and seasonal variability of sedimentary features and nitrogen benthic 441 442 metabolism in a tropical coastal area (Taganga Bay, Colombia Caribbean) impacted Biogeochemistry, 150, 85-107, 443 by а sewage outfall, https://doi.org/10.1007/s10533-020-00689-0, 2020. 444

- Asmala, E., Carstensen, J., Conley, D. J., Slomp, C. P., Stadmark, J., and Voss, M.:
 Efficiency of the coastal filter: Nitrogen and phosphorus removal in the Baltic Sea,
 Limnol. Oceanogr., 62, S222-S238, <u>https://doi.org/10.1002/lno.10644</u>, 2017.
- 448 Bale, N. J., Villanueva, L., Fan, H., Stal, L. J., Hopmans, E. C., Schouten, S., and

- 449 Sinninghe Damsté, J. S.: Occurrence and activity of anammox bacteria in surface
- 450 sediments of the southern North Sea, FEMS Microbiol. Ecol., 89, 99-110,
- 451 <u>https://doi.org/10.1111/1574-6941.12338</u>, 2014.

Bartoli, M., Nizzoli, D., Zilius, M., Bresciani, M., Pusceddu, A., Bianchelli, S., 452 Sundbäck, K., Razinkovas-Baziukas, A., and Viaroli, P.: Denitrification, Nitrogen 453 454 Uptake, and Organic Matter Quality Undergo Different Seasonality in Sandy and 455 Muddv Sediments of а Turbid Estuary. Front. Microbiol., 11. https://doi.org/10.3389/fmicb.2020.612700, 2021. 456

- Benelli, S., Bartoli, M., Magri, M., Brzana, R., Kendzierska, H., Styrcz-Olesiak, K.,
 and Janas, U.: Spatial and seasonal pattern of microbial nitrate reduction in coastal
 sediments in the Vistula River plume area, Gulf of Gdańsk, Front. Mar. Sci., 11,
 https://doi.org/10.3389/fmars.2024.1333707, 2024.
- Bernard, R. J., Mortazavi, B., and Kleinhuizen, A. A.: Dissimilatory nitrate reduction
 to ammonium (DNRA) seasonally dominates NO₃⁻ reduction pathways in an
 anthropogenically impacted sub-tropical coastal lagoon, Biogeochemistry, 125, 47-64,
 https://doi.org/10.1007/s10533-015-0111-6, 2015.
- Blackburn, T. H., Hall, P. O. J., Hulth, S., and Landén, A.: Organic-N loss by efflux
 and burial associated with a low efflux of inorganic N and with nitrate assimilation in
 Arctic sediments (Svalbard, Norway), Mar. Ecol.: Prog. Ser., 141, 283-293,
 https://doi.org/10.3354/meps141283, 1996.
- Bonaglia, S., Deutsch, B., Bartoli, M., Marchant, H. K., and Brüchert, V.: Seasonal
 oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea
 estuary: regulation and spatial patterns, Biogeochemistry, 119, 139-160,
 <u>https://doi.org/10.1007/s10533-014-9953-6</u>, 2014a.
- Bonaglia, S., Nascimento, F. J. A., Bartoli, M., Klawonn, I., and Brüchert, V.:
 Meiofauna increases bacterial denitrification in marine sediments, Nat. Commun., 5,

- 475 5133, <u>https://doi.org/10.1038/ncomms6133</u>, 2014b.
- 476 Bonaglia, S., Bartoli, M., Gunnarsson, J. S., Rahm, L., Raymond, C., Svensson, O.,
- 477 Shakeri Yekta, S., and Brüchert, V.: Effect of reoxygenation and Marenzelleria spp.
- 478 bioturbation on Baltic Sea sediment metabolism, Mar. Ecol.: Prog. Ser., 482, 43-55,
- 479 <u>https://doi.org/10.3354/meps10232</u>, 2013.
- Bonaglia, S., Hylén, A., Rattray, J. E., Kononets, M. Y., Ekeroth, N., Roos, P.,
 Thamdrup, B., Brüchert, V., and Hall, P. O. J.: The fate of fixed nitrogen in marine
 sediments with low organic loading: an in situ study, Biogeosciences, 14, 285-300,
 https://doi.org/10.5194/bg-14-285-2017, 2017.
- Buitenhuis, E. T., Vogt, M., Moriarty, R., Bednaršek, N., Doney, S. C., Leblanc, K.,
 Le Quéré, C., Luo, Y. W., O'Brien, C., O'Brien, T., Peloquin, J., Schiebel, R., and
 Swan, C.: MAREDAT: towards a world atlas of MARine Ecosystem DATa, Earth
 Syst. Sci. Data, 5, 227-239, <u>https://doi.org/10.5194/essd-5-227-2013</u>, 2013.
- Canfield, D. E., Glazer, A. N., and Falkowski, P. G.: The Evolution and Future of
 Earth's Nitrogen Cycle, Science, 330, 192-196,
 https://doi.org/10.1126/science.1186120, 2010.
- Canion, A., Kostka, J. E., Gihring, T. M., Huettel, M., van Beusekom, J. E. E., Gao,
 H., Lavik, G., and Kuypers, M. M. M.: Temperature response of denitrification and
 anammox reveals the adaptation of microbial communities to in situ temperatures in
 permeable marine sediments that span 50° in latitude, Biogeosciences, 11, 309-320,
 https://doi.org/10.5194/bg-11-309-2014, 2014.
- Chang, Y., Tan, E., Gao, D., Liu, C., Zhang, Z., Huang, Z., Liu, J., Han, Y., Xu, Z.,
 Chen, B., Kao, S.-J.: Global database of actual nitrogen loss rates in coastal and
 marine sediments, Figshare, <u>https://doi.org/10.6084/m9.figshare.27745770.v3</u>, 2024.
- 499 Chang, Y., Yin, G., Hou, L., Liu, M., Zheng, Y., Han, P., Dong, H., Liang, X., Gao, D.,

- and Liu, C.: Nitrogen removal processes coupled with nitrification in coastal
 sediments off the north East China Sea, J. Soils Sediments, 21, 3289-3299,
- 502 <u>https://doi.org/10.1007/s11368-021-02964-5</u>, 2021.
- 503 Chen, J.-J., Erler, D. V., Wells, N. S., Huang, J., Welsh, D. T., and Eyre, B. D.:
 504 Denitrification, anammox, and dissimilatory nitrate reduction to ammonium across a
 505 mosaic of estuarine benthic habitats, Limnol. Oceanogr., 66, 1281-1297,
 506 https://doi.org/10.1002/lno.11681, 2021.
- 507 Cheung, H. L. S., Hillman, J. R., Pilditch, C. A., Savage, C., Santos, I. R., Glud, R. N.,
 508 Nascimento, F. J. A., Thrush, S. F., and Bonaglia, S.: Denitrification, anammox, and
 509 DNRA in oligotrophic continental shelf sediments, Limnol. Oceanogr., 69, 621-637,
 510 <u>https://doi.org/10.1002/lno.12512</u>, 2024.
- 511 Crowe, S. A., Canfield, D. E., Mucci, A., Sundby, B., and Maranger, R.: Anammox,
 512 denitrification and fixed-nitrogen removal in sediments from the Lower St. Lawrence
 513 Estuary, Biogeosciences, 9, 4309-4321, <u>https://doi.org/10.5194/bg-9-4309-2012</u>,
 514 2012.
- Cui, S., Shi, Y., Groffman, P. M., Schlesinger, W. H., and Zhu, Y.-G.: Centennial-scale
 analysis of the creation and fate of reactive nitrogen in China (1910–2010), Proc. Natl.
 Acad. Sci. U. S. A., 110, 2052-2057, https://doi.org/10.1073/pnas.1221638110, 2013.
- 518 Dai, M., Zhao, Y., Chai, F., Chen, M., Chen, N., Chen, Y., Cheng, D., Gan, J., Guan,
- 519 D., Hong, Y., Huang, J., Lee, Y., Leung, K. M. Y., Lim, P. E., Lin, S., Lin, X., Liu, X.,
- 520 Liu, Z., Luo, Y.-W., Meng, F., Sangmanee, C., Shen, Y., Uthaipan, K., Wan Talaat, W.
- 521 I. A., Wan, X. S., Wang, C., Wang, D., Wang, G., Wang, S., Wang, Y., Wang, Y., Wang,
- 522 Z., Wang, Z., Xu, Y., Yang, J.-Y. T., Yang, Y., Yasuhara, M., Yu, D., Yu, J., Yu, L.,
- 523 Zhang, Z., and Zhang, Z.: Persistent eutrophication and hypoxia in the coastal ocean,
- 524 Cambridge Prisms: Coastal Futures, 1, 1-28, <u>https://doi.org/10.1017/cft.2023.7</u>, 2023.
- 525 Dalsgaard, T. and Thamdrup, B.: Factors Controlling Anaerobic Ammonium

- 526 Oxidation with Nitrite in Marine Sediments, Appl. Environ. Microbiol., 68,
- 527 3802-3808, https://doi.org/10.1128/AEM.68.8.3802-3808.2002, 2002.
- Damashek, J. and Francis, C. A.: Microbial Nitrogen Cycling in Estuaries: From
 Genes to Ecosystem Processes, Estuaries Coasts, 41, 626-660,
 https://doi.org/10.1007/s12237-017-0306-2, 2018.
- 531 Deek, A., Dà ¤hnke, K., van Beusekom, J., Meyer, S., Voss, M., and Emeis, K.: N₂
- fluxes in sediments of the Elbe Estuary and adjacent coastal zones, Mar. Ecol.: Prog.
- 533 Ser., 493, 9-21, <u>https://doi.org/10.3354/meps10514</u>, 2013.
- Deng, D., He, G., Ding, B., Liu, W., Yang, Z., and Ma, L.: Denitrification dominates
 dissimilatory nitrate reduction across global natural ecosystems, Global Change Biol.,
 30, e17256, https://doi.org/10.1111/gcb.17256, 2024.
- 537Deutsch, B., Forster, S., Wilhelm, M., Dippner, J. W., and Voss, M.: Denitrification in538sediments as a major nitrogen sink in the Baltic Sea: an extrapolation using sediment539characteristics,Biogeosciences,7,3259-3271,
- 540 <u>https://doi.org/10.5194/bg-7-3259-2010</u>, 2010.
- 541 Devol, A. H.: Denitrification, Anammox, and N2 Production in Marine Sediments,
- 542
 Annu.
 Rev.
 Mar.
 Sci.,
 7,
 403-423,

 543
 https://doi.org/10.1146/annurev-marine-010213-135040, 2015.
- Enrich-Prast, A., Figueiredo, V., Esteves, F. d. A., and Nielsen, L. P.: Controls of
 Sediment Nitrogen Dynamics in Tropical Coastal Lagoons, PloS one, 11, e0155586,
- 546 <u>https://doi.org/10.1371/journal.pone.0155586</u>, 2016.
- Erler, D. V., Eyre, B. D., and Davison, L.: The Contribution of Anammox and
 Denitrification to Sediment N₂ Production in a Surface Flow Constructed Wetland,
 Environ. Sci. Technol., 42, 9144-9150, <u>https://doi.org/10.1021/es801175t</u>, 2008.

- 550 Erler, D. V., Trott, L. A., Alongi, D. M., and Eyre, B. D.: Denitrification, anammox
- and nitrate reduction in sediments of the southern Great Barrier Reef lagoon, Mar.
- 552 Ecol.: Prog. Ser., 478, 57-70, https://doi.org/10.3354/meps10040, 2013.
- Erler, D. V., Welsh, D. T., Bennet, W. W., Meziane, T., Hubas, C., Nizzoli, D., and
 Ferguson, A. J. P.: The impact of suspended oyster farming on nitrogen cycling and
 nitrous oxide production in a sub-tropical Australian estuary, Estuarine, Coastal Shelf
 Sci., 192, 117-127, <u>https://doi.org/10.1016/j.ecss.2017.05.007</u>, 2017.
- Fan, H., Bolhuis, H., and Stal, L. J.: Drivers of the dynamics of diazotrophs and
 denitrifiers in North Sea bottom waters and sediments, Front. Microbiol., 6,
 https://doi.org/10.3389/fmicb.2015.00738, 2015.
- Farías, L., Graco, M., and Ulloa, O.: Temporal variability of nitrogen cycling in
 continental-shelf sediments of the upwelling ecosystem off central Chile, Deep Sea
 Res., Part II., 51, 2491-2505, <u>https://doi.org/10.1016/j.dsr2.2004.07.029</u>, 2004.
- Gao, D., Li, X., Lin, X., Wu, D., Jin, B., Huang, Y., Liu, M., and Chen, X.: Soil
 dissimilatory nitrate reduction processes in the Spartina alterniflora invasion
 chronosequences of a coastal wetland of southeastern China: Dynamics and
 environmental implications, Plant Soil, 421, 383-399,
 https://doi.org/10.1007/s11104-017-3464-x, 2017.
- Gardner, W. S., McCarthy, M. J., An, S., Sobolev, D., Sell, K. S., and Brock, D.:
 Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support
 nitrogen dynamics in Texas estuaries, Limnol. Oceanogr., 51, 558-568,
 <u>https://doi.org/10.4319/lo.2006.51.1_part_2.0558</u>, 2006.
- Gihring, T. M., Canion, A., Riggs, A., Huettel, M., and Kostk, J. E.: Denitrification in
 shallow, sublittoral Gulf of Mexico permeable sediments, Limnol. Oceanogr., 55,
 43-54, <u>https://doi.org/10.4319/lo.2010.55.1.0043</u>, 2010b.

- 575 Gihring, T. M., Lavik, G., Kuypers, M. M. M., and Kostka, J. E.: Direct determination
- 576 of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard, Norway),
- 577 Limnol. Oceanogr., 55, 740-752, <u>https://doi.org/10.4319/lo.2010.55.2.0740</u>, 2010a.
- Glover, D. M., Jenkins, W. J., and Doney, S. C.: Modeling Methods for Marine
 Science, Cambridge University Press, Cambridge,
 https://doi.org/10.1017/CBO9780511975721, 2011.
- Glud, R. N., Holby, O., Hoffmann, F., and Canfield, D. E.: Benthic mineralization and
 exchange in Arctic sediments (Svalbard, Norway), Mar. Ecol.: Prog. Ser., 173,
- 583 237-251, <u>https://doi.org/10.3354/meps173237</u>, 1998.
- Glud, R. N., Thamdrup, B., Stahl, H., Wenzhoefer, F., Glud, A., Nomaki, H., Oguri,
 K., Revsbech, N. P., and Kitazato, H.: Nitrogen cycling in a deep ocean margin
 sediment (Sagami Bay, Japan), Limnol. Oceanogr., 54, 723-734,
 https://doi.org/10.4319/lo.2009.54.3.0723, 2009.
- Graaf, A. A. v. d., Mulder, A., Bruijn, P. d., Jetten, M. S., Robertson, L. A., and
 Kuenen, J. G.: Anaerobic oxidation of ammonium is a biologically mediated process,
 Appl. Environ. Microbiol., 61, 1246-1251,
 https://doi.org/10.1128/aem.61.4.1246-1251.1995, 1995.
- 592 Hellemann, D., Tallberg, P., Aalto, S. L., Bartoli, M., and Hietanen, S.: Seasonal cycle
- 593 of benthic denitrification and DNRA in the aphotic coastal zone, northern Baltic Sea,
- 594 Mar. Ecol.: Prog. Ser., 637, 15-28, <u>https://doi.org/10.3354/meps13259</u>, 2020.
- Hellemann, D., Tallberg, P., Bartl, I., Voss, M., and Hietanen, S.: Denitrification in an
 oligotrophic estuary: a delayed sink for riverine nitrate, Mar. Ecol.: Prog. Ser., 583,
 63-80, <u>https://doi.org/10.3354/meps12359</u>, 2017.
- Hietanen, S. and Kuparinen, J.: Seasonal and short-term variation in denitrificationand anammox at a coastal station on the Gulf of Finland, Baltic Sea, Hydrobiologia,

- 600 596, 67-77, https://doi.org/10.1007/s10750-007-9058-5, 2008.
- 601 Hoffman, D. K., McCarthy, M. J., Newell, S. E., Gardner, W. S., Niewinski, D. N.,
- 602 Gao, J., and Mutchler, T. R.: Relative Contributions of DNRA and Denitrification to
- 603 Nitrate Reduction in Thalassia testudinum Seagrass Beds in Coastal Florida (USA),
- 604 Estuaries Coasts, 42, 1001-1014, <u>https://doi.org/10.1007/s12237-019-00540-2</u>, 2019.
- 605 Hsu, T. C. and Kao, S. J.: Technical Note: Simultaneous measurement of sedimentary
- N_2 and N_2O production and a modified ¹⁵N isotope pairing technique, Biogeosciences,
- 607 10, 7847-7862, https://doi.org/10.5194/bg-10-7847-2013, 2013.
- Jäntti, H. and Hietanen, S.: The Effects of Hypoxia on Sediment Nitrogen Cycling in
 the Baltic Sea, AMBIO, 41, 161-169, <u>https://doi.org/10.1007/s13280-011-0233-6</u>,
 2012.
- 611 Jäntti, H., Stange, F., Leskinen, E., and Hietanen, S.: Seasonal variation in nitrification
- 612 and nitrate-reduction pathways in coastal sediments in the Gulf of Finland, Baltic Sea,
- 613 Aquat. Microb. Ecol., 63, 171-181, https://doi.org/10.3354/ame01492,2011.
- Kennedy, C. D.: Nitrogen Overload: Environmental Degradation, Ramifications, and
 Economic Costs, Groundwater, 59, 161-162, <u>https://doi.org/10.1111/gwat.13066</u>,
 2021.
- Kessler, A. J., Roberts, K. L., Bissett, A., and Cook, P. L. M.: Biogeochemical
 Controls on the Relative Importance of Denitrification and Dissimilatory Nitrate
 Reduction to Ammonium in Estuaries, Global Biogeochem. Cycles, 32, 1045-1057,
 https://doi.org/10.1029/2018GB005908, 2018.
- Koop-Jakobsen, K. and Giblin, A. E.: The effect of increased nitrate loading on nitrate
 reduction via denitrification and DNRA in salt marsh sediments, Limnol. Oceanogr.,
- 623 55, 789-802, <u>https://doi.org/10.4319/lo.2010.55.2.0789</u>, 2010.

- 624 Liu, C., Hou, L., Liu, M., Zheng, Y., Yin, G., Dong, H., Liang, X., Li, X., Gao, D., and
- 625 Zhang, Z.: In situ nitrogen removal processes in intertidal wetlands of the Yangtze
- 626 Estuary, J. Environ. Sci., 93, 91-97, <u>https://doi.org/10.1016/j.jes.2020.03.005</u>, 2020.
- Liu, C., Hou, L., Liu, M., Zheng, Y., Yin, G., Han, P., Dong, H., Gao, J., Gao, D., 627 Chang, Y., and Zhang, Z.: Coupling of denitrification and anaerobic ammonium 628 629 oxidation with nitrification in sediments of the Yangtze Estuary: Importance and 630 controlling factors. Estuarine. Coastal Shelf Sci.. 220. 64-72, https://doi.org/10.1016/j.ecss.2019.02.043, 2019. 631
- Magri, M., Benelli, S., Bonaglia, S., Zilius, M., Castaldelli, G., and Bartoli, M.: The
 effects of hydrological extremes on denitrification, dissimilatory nitrate reduction to
 ammonium (DNRA) and mineralization in a coastal lagoon, Sci. Total Environ., 740,
- 635 140169, <u>https://doi.org/10.1016/j.scitotenv.2020.140169</u>, 2020.
- 636 McTigue, N. D., Gardner, W. S., Dunton, K. H., and Hardison, A. K.: Biotic and
- 637 abiotic controls on co-occurring nitrogen cycling processes in shallow Arctic shelf
- 638 sediments, Nat. Commun., 7, 13145, <u>https://doi.org/10.1038/ncomms13145</u>, 2016.
- 639 Meyer, R. L., Risgaard-Petersen, N., and Allen, D. E.: Correlation between Anammox
- 640 Activity and Microscale Distribution of Nitrite in a Subtropical Mangrove Sediment,
- 641 Appl. Environ. Microbiol., 71, 6142-6149,
- 642 https://doi.org/10.1128/AEM.71.10.6142-6149.2005, 2005.
- Na, T., Thamdrup, B., Kim, B., Kim, S.-H., Vandieken, V., Kang, D.-J., and Hyun,
 J.-H.: N₂ production through denitrification and anammox across the continental
 margin (shelf–slope–rise) of the Ulleung Basin, East Sea, Limnol. Oceanogr., 63,
 S410-S424, https://doi.org/10.1002/lno.10750, 2018.
- Neubacher, E. C., Parker, R. E., and Trimmer, M.: Short-term hypoxia alters the
 balance of the nitrogen cycle in coastal sediments, Limnol. Oceanogr., 56, 651-665,
 https://doi.org/10.4319/lo.2011.56.2.0651, 2011.

- 650 Nielsen, L. P. and Glud, R. N.: Denitrification in a coastal sediment measured in situ
- 651 by the nitrogen isotope pairing technique applied to a benthic flux chamber, Mar.
- 652 Ecol.: Prog. Ser., 137, 181-186, <u>https://doi.org/10.3354/meps137181</u>, 1996.
- 653 Nielsen, L. P.: Denitrification in sediment determined from nitrogen isotope pairing,
- 654 FEMS Microbiol. Lett., 86, 357-362, <u>https://doi.org/10.1016/0378-1097(92)90800-4</u>,
- 655 **1992**.
- 656 Poulin, P., Pelletier, E., and Saint-Louis, R.: Seasonal variability of denitrification
- 657 efficiency in northern salt marshes: An example from the St. Lawrence Estuary, Mar.
- 658 Environ. Res., 63, 490-505, https://doi.org/10.1016/j.marenvres.2006.12.003, 2007.
- Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S. E., Donges, J. F., 659 Drüke, M., Fetzer, I., Bala, G., von Bloh, W., Feulner, G., Fiedler, S., Gerten, D., 660 661 Gleeson, T., Hofmann, M., Huiskamp, W., Kummu, M., Mohan, C., Nogués-Bravo, D., Petri, S., Porkka, M., Rahmstorf, S., Schaphoff, S., Thonicke, K., Tobian, A., 662 Virkki, V., Wang-Erlandsson, L., Weber, L., and Rockström, J.: Earth beyond six of 663 664 nine planetary boundaries, Sci. Adv., 9, eadh2458, https://doi.org/10.1126/sciadv.adh2458, 2023. 665
- Risgaard-Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T., and Meyer, R. L.:
 Application of the isotope pairing technique in sediments where anammox and
 denitrification coexist, Limnol. Oceanogr.: Methods, 1, 63-73,
 https://doi.org/10.4319/lom.2003.1.63, 2003.
- 670 Risgaard-Petersen, N., Meyer, R. L., Schmid, M., Jetten, M., S. M., Enrich-Prast, A.,
- 671 Rysgaard, S., and Revsbech, N. P.: Anaerobic ammonium oxidation in an estuarine
- sediment, Aquat. Microb. Ecol., 36, 293-304, <u>https://doi.org/10.3354/ame036293</u>,
 2004.
- 674 Robertson, E. K., Bartoli, M., Brüchert, V., Dalsgaard, T., Hall, P. O. J., Hellemann,
- 675 D., Hietanen, S., Zilius, M., and Conley, D. J.: Application of the isotope pairing

- 676 technique in sediments: Use, challenges, and new directions, Limnol. Oceanogr.:
- 677 Methods, 17, 112-136, <u>https://doi.org/10.1002/lom3.10303</u>, 2019.
- 678 Rosales Villa, A. R., Jickells, T. D., Sivyer, D. B., Parker, E. R., and Thamdrup, B.:
- Benthic nitrogen cycling in the North Sea, Cont. Shelf Res., 185, 31-36,
 https://doi.org/10.1016/j.csr.2018.05.005, 2019.
- 681 Rysgaard, S., Finster, K., and Dahlgaard, H.: Primary production, nutrient dynamics
- and mineralisation in a northeastern Greenland fjord during the summer thaw, Polar
 Biology, 16, 497-506, https://doi.org/10.1007/BF02329069, 1996a.
- Rysgaard, S., Fossing, H., and Jensen, M. M.: Organic matter degradation through
 oxygen respiration, denitrification, and manganese, iron, and sulfate reduction in
 marine sediments (the Kattegat and the Skagerrak), Ophelia, 55, 77-91,
 https://doi.org/10.1080/00785236.2001.10409475, 2001.
- 688 Rysgaard, S., Risgaard-Petersen, N., and Sloth, N. P.: Nitrification, denitrification, and
- 689 nitrate ammonification in sediments of two coastal lagoons in Southern France,
- 690 Hydrobiologia, 329, 133-141, https://doi.org/10.1007/BF00034553, 1996b.
- 691 Rysgaard, S., Glud, R. N., Risgaard-Petersen, N., and Dalsgaard, T.: Denitrification
- and anammox activity in Arctic marine sediments, Limnol. Oceanogr., 49, 1493-1502,
- 693 https://doi.org/10.4319/lo.2004.49.5.1493, 2004.
- 694 Salk, K. R., Erler, D. V., Eyre, B. D., Carlson-Perret, N., and Ostrom, N. E.:
- 695 Unexpectedly high degree of anammox and DNRA in seagrass sediments: Description
- and application of a revised isotope pairing technique, Geochim. Cosmochim. Acta,
- 697 211, 64-78, <u>https://doi.org/10.1016/j.gca.2017.05.012</u>, 2017.
- Shan, J., Zhao, X., Sheng, R., Xia, Y., ti, C., Quan, X., Wang, S., Wei, W., and Yan, X.:
 Dissimilatory Nitrate Reduction Processes in Typical Chinese Paddy Soils: Rates,
 Relative Contributions, and Influencing Factors, Environ. Sci. Technol., 50,

- 701 9972-9980, https://doi.org/10.1021/acs.est.6b01765, 2016.
- 702 Sokoll, S., Holtappels, M., Lam, P., Collins, G., Schlüter, M., Lavik, G., and Kuypers,
- 703 M.: Benthic Nitrogen Loss in the Arabian Sea Off Pakistan, Front. Microbiol., 3,
- 704 <u>https://doi.org/10.3389/fmicb.2012.00395</u>, 2012.
- 705 Song, G., Liu, S., Zhu, Z., Zhai, W., Zhu, C., and Zhang, J.: Sediment oxygen
- 706 consumption and benthic organic carbon mineralization on the continental shelves of
- 707 the East China Sea and the Yellow Sea, Deep Sea Res., Part II., 124, 53-63,
- 708 <u>https://doi.org/10.1016/j.dsr2.2015.04.012</u>, 2016a.
- 709 Song, G., Liu, S., Zhang, J., Zhu, Z., Zhang, G., Marchant, H. K., Kuypers, M. M. M.,
- and Lavik, G.: Response of benthic nitrogen cycling to estuarine hypoxia, Limnol.
 Oceanogr., 66, 652-666, <u>https://doi.org/10.1002/lno.11630</u>, 2021.
- Song, G. D., Liu, S. M., Kuypers, M. M. M., and Lavik, G.: Application of the isotope
 pairing technique in sediments where anammox, denitrification, and dissimilatory
 nitrate reduction to ammonium coexist, Limnol. Oceanogr.: Methods, 14, 801-815,
 <u>https://doi.org/10.1002/lom3.10127</u>, 2016b.
- Steingruber, S. M., Friedrich, J., Gächter, R., and Wehrli, B.: Measurement of
 Denitrification in Sediments with the ¹⁵N Isotope Pairing Technique, Appl. Environ.
 Microbiol., 67, 3771-3778, <u>https://doi.org/10.1128/AEM.67.9.3771-3778.2001</u>, 2001.
- Strous, M., Fuerst, J. A., Kramer, E. H. M., Logemann, S., Muyzer, G., van de
 Pas-Schoonen, K. T., Webb, R., Kuenen, J. G., and Jetten, M. S. M.: Missing
 lithotroph identified as new planctomycete, Nature, 400, 446-449,
 <u>https://doi.org/10.1038/22749</u>, 1999.
- Susanna, H.: Anaerobic ammonium oxidation (anammox) in sediments of the Gulf of
 Finland, Aquat. Microb. Ecol., 48, 197-205, <u>https://doi.org/10.3354/ame048197</u>,
 2007.

- 726 Tan, E., Zou, W., Jiang, X., Wan, X., Hsu, T.-C., Zheng, Z., Chen, L., Xu, M., Dai, M.,
- and Kao, S.-j.: Organic matter decomposition sustains sedimentary nitrogen loss in
- 728 the Pearl River Estuary, China, Sci. Total Environ., 648, 508-517,
- 729 https://doi.org/10.1016/j.scitotenv.2018.08.109, 2019.
- 730 Tan, E., Zou, W., Zheng, Z., Yan, X., Du, M., Hsu, T.-C., Tian, L., Middelburg, J. J.,
- Trull, T. W., and Kao, S.-j.: Warming stimulates sediment denitrification at the
 expense of anaerobic ammonium oxidation, Nat. Clim. Change, 10, 349-355,
- 733 <u>https://doi.org/10.1038/s41558-020-0723-2</u>, 2020.
- Tan, E., Hsu, T.-C., Zou, W., Yan, X., Huang, Z., Chen, B., Chang, Y., Zheng, Z.,
 Zheng, L., Xu, M., Tian, L., and Kao, S.-J.: Quantitatively deciphering the roles of
 sediment nitrogen removal in environmental and climatic feedbacks in two
 subtropical estuaries, Water Res., 224, 119121,
 https://doi.org/10.1016/j.watres.2022.119121, 2022.
- Thamdrup, B.: New Pathways and Processes in the Global Nitrogen Cycle, Annu. Rev.
 Ecol. Evol. Syst., 43, 407-428,
 https://doi.org/10.1146/annurev-ecolsys-102710-145048, 2012.
- Thamdrup, B. and Dalsgaard, T.: Production of N₂ through Anaerobic Ammonium
 Oxidation Coupled to Nitrate Reduction in Marine Sediments, Appl. Environ.
 Microbiol., 68, 1312-1318, https://doi.org/10.1128/AEM.68.3.1312-1318.2002, 2002.
- Torregrosa-Crespo, J., Miralles-Robledillo, J. M., Bernabeu, E., Pire, C., and
 Martínez-Espinosa, R. M.: Denitrification in hypersaline and coastal environments,
 FEMS Microbiol. Lett., 370, https://doi.org/10.1093/femsle/fnad066, 2023.
- Trimmer, M. and Nicholls, J. C.: Production of nitrogen gas via anammox and
 denitrification in intact sediment cores along a continental shelf to slope transect in
 the North Atlantic, Limnol. Oceanogr., 54, 577-589,
 https://doi.org/10.4319/lo.2009.54.2.0577, 2009.

- 752 Trimmer, M., Engström, P., and Thamdrup, B.: Stark Contrast in Denitrification and
- 753 Anammox across the Deep Norwegian Trench in the Skagerrak, Appl. Environ.
- 754 Microbiol., 79, 7381-7389, https://doi.org/10.1128/AEM.01970-13, 2013.
- Trimmer, M., Nicholls, J. C., and Deflandre, B.: Anaerobic Ammonium Oxidation
 Measured in Sediments along the Thames Estuary, United Kingdom, Appl. Environ.
 Microbiol., 69, 6447-6454, <u>https://doi.org/10.1128/AEM.69.11.6447-6454.2003</u>,
 2003.
- Trimmer, M., Risgaard-Petersen, N., Nicholls, J. C., and Engström, P.: Direct 759 measurement of anaerobic ammonium oxidation (anammox) and denitrification in 760 761 intact sediment cores, Mar. Ecol.: Prog. Ser., 326, 37-47, 762 https://doi.org/10.3354/meps326037, 2006.
- Usui, T., Koike, I., and Ogura, N.: N₂O Production, Nitrification and Denitrification in
 an Estuarine Sediment, Estuarine, Coastal Shelf Sci., 52, 769-781,
 https://doi.org/10.1006/ecss.2000.0765, 2001.
- 766 Uusheimo, S., Huotari, J., Tulonen, T., Aalto, S. L., Rissanen, A. J., and Arvola, L.:
- High Nitrogen Removal in a Constructed Wetland Receiving Treated Wastewater in a
 Cold Climate, Environ. Sci. Technol., 52, 13343-13350,
 https://doi.org/10.1021/acs.est.8b03032, 2018.
- Vance-Harris, C. and Ingall, E.: Denitrification pathways and rates in the sandy
 sediments of the Georgia continental shelf, USA, Geochem. Trans., 6, 12,
 https://doi.org/10.1186/1467-4866-6-12, 2005.
- Wan, R., Ge, L., Chen, B., Tang, J.-M., Tan, E., Zou, W., Tian, L., Li, M., Liu, Z., Hou,
 L., Yin, G., and Kao, S.-J.: Permeability decides the effect of antibiotics on
 sedimentary nitrogen removal in Jiulong River Estuary, Water Res., 243, 120400,
 https://doi.org/10.1016/j.watres.2023.120400, 2023.

- 777 Welsh, D. T., Bartoli, M., Nizzoli, D., Castaldelli, G., Riou, S. A., and Viaroli, P.:
- 778 Denitrification, nitrogen fixation, community primary productivity and inorganic-N
- and oxygen fluxes in an intertidal Zostera noltii meadow, Mar. Ecol.: Prog. Ser., 208,
- 780 65-77, https://doi.org/10.3354/meps208065, 2000.
- 781 Yang, J.-Y. T., Hsu, T.-C., Tan, E., Lee, K., Krom, M. D., Kang, S., Dai, M., Hsiao, S.
- S.-Y., Yan, X., Zou, W., Tian, L., and Kao, S.-J.: Sedimentary processes dominate
 nitrous oxide production and emission in the hypoxic zone off the Changjiang River
- 784 estuary, Sci. Total Environ., 827, 154042,
- 785 <u>https://doi.org/10.1016/j.scitotenv.2022.154042</u>, 2022.
- Yin, G., Hou, L., Zong, H., Ding, P., Liu, M., Zhang, S., Cheng, X., and Zhou, J.:
 Denitrification and Anaerobic Ammonium Oxidization Across the Sediment–Water
 Interface in the Hypereutrophic Ecosystem, Jinpu Bay, in the Northeastern Coast of
 China, Estuaries Coasts, 38, 211-219, <u>https://doi.org/10.1007/s12237-014-9798-1</u>,
 2015.

792 **Figures and Table**

793

794

Figure 1 Map showing the sampling sites distribution of nitrogen loss rate measurements (a) and the number of rate observations each year (b). Orange solid points denote that only denitrification rates were measured. Cyan solid points denote that both denitrification and anammox rates were measured.

Figure 2 The observation numbers of denitrification (a, d) and denitrification rates (b, c, e, f) with latitudinal bands and months. A vertical dashed red line delimits the Southern Hemisphere and the Northern Hemisphere. Tops and bottoms of boxes in box plots denote the 25th and 75th percentiles, respectively. The horizontal lines inside the box plots represent the medians. Whiskers mark the minimum and maximum values within 1.5 times the interquartile range, with black points representing outliers beyond that range.

809

810 **Figure 3** The observation numbers of anammox (a, d) and anammox rates (b, c, e, f)

811 with latitudinal bands and months.

813

814 Figure 4 The contribution of anammox to total N₂ production with latitudinal bands

815 (a, b) and months (c, d).

Figure 5 Relationships between denitrification rates and organic carbon [OC, (a)],
carbon-nitrogen ratios [C/N, (b)], oxygen penetration depth [OPD, (c)], water depth
(d), temperature (e), salinity (f), dissolved oxygen [DO, (g)], nitrate concentrations
[NO₃⁻, (h)] and ammonium concentrations [NH₄⁺, (i)].

Figure 6 Relationships between anammox rates and organic carbon [OC, (a)],
carbon-nitrogen ratios [C/N, (b)], oxygen penetration depth [OPD, (c)], water depth
(d), temperature (e), salinity (f), dissolved oxygen [DO, (g)], nitrate concentrations
[NO₃⁻, (h)] and ammonium concentrations [NH₄⁺, (i)].

830 Figure 7 Relationships between denitrification and anammox rates. The blue solid

- 831 line and red dashed line denote the linear regression and 1:1 line, respectively.
- 832

Figure 8 Relationships between the relative contribution of anammox to total N₂ production and organic carbon [OC, (a)], carbon-nitrogen ratios [C/N, (b)], oxygen penetration depth [OPD, (c)], water depth (d), temperature (e), salinity (f), dissolved oxygen [DO, (g)], nitrate concentrations [NO₃⁻, (h)] and ammonium concentrations [NH₄⁺, (i)].

- 839 Table 1 Summary of the observations of actual nitrogen loss rates. The locations,
- 840 observation numbers, core incubation methods and references are listed.

Sampling locations	Observation numbers	Core incubations	References	
Aarhus Bright Denmark	2	Intact core	(Nielsen and	
Aanus Bright, Denmark	2	incubations	Glud, 1996)	
Archion Soc	4	Intact core	(Sokoll et al.,	
Alabian Sea		incubations	2012)	
Arotic fiord (Svalbard Norway)	3	Intact core	(Gihring et al.,	
Aretic Ijolu (Svalbaru, Norway)	3	incubations	2010b)	
Bassin d'Arcachon coastal	2	Intact core	(Welsh et al.,	
lagoon	5	incubations	2000)	
Coging NSW Australia	2	Intact core	$(\mathbf{E}_{\mathbf{r}} _{\mathbf{ar}} \text{ at al} 2008)$	
Casino, NSw, Australia	2	incubations	(Erler et al., 2008)	
control Socomi Dov. Jonan	1	Intact core	(Clud at al 2000)	
central Saganni Day, Japan	1	incubations	(Olud et al., 2009)	
Changjiang estuary and its	7	Intact core	(Sama at al. 2021)	
adjacent East China Sea	/	incubations	(Song et al., 2021)	
Changjiang River Estuary and	22	Intact core	(Tar at al. 2022)	
Jiulong River Estuary, China	25	incubations	(Tan et al., 2022)	
Changing Diver Estuary Ching	22	Continuous-flow	(I in at al 2020)	
Changjiang River Estuary, China	22	experiments	(Liu et al., 2020)	
Changing River Estuary Ching	14	Continuous-flow	$(I_{in} \text{ at al} 2010)$	
Changlang River Estuary, China	14	experiments	(Liu et al., 2019)	
Coast of Finland, northern Baltic	10	Intact core	(Hellemann et al.,	
Sea		incubations	2020)	
Coast of Victoria Australia	11	Intact core	(Kessler et al.,	
Coast of Victoria, Australia		incubations	2018)	
Coastal area of the Gulf of	6	Intact core	(Benelli et al.,	
Gdańsk	0	incubations	2024)	
Coastal lagoons France	6	Intact core	(Rysgaard et al.,	
	0	incubations	1996b)	
Coastal sediments Greenland	11	Intact core	(Rysgaard et al.,	
Coustar Seaments, Greemand		incubations	2004)	
Continental shelf and slope,	12	Intact core	(Trimmer and	
North Atlantic	12	incubations	Nicholls, 2009)	
Continental shelf region off	5	Intact core	(Farías et al.,	
central Chile	5	incubations	2004)	
Danshuei River in northern	1	Intact core	(Hsu and Kao,	
Taiwan, China		incubations	2013)	
East China Sea	2	Intact core incubations	(Song et al., 2016)	
Elbe Estuary, North Frisian	5	Intact core	(Deek et al.,	

Wadden Sea	
Fjords in Svalbard and northern Norway	5
Georgia continental shelf, USA	2
Great Barrier Reef lagoon	2
Gulf of Bothnia, Baltic Sea	7
Gulf of Finland	5
Gulf of Finland, Baltic Sea	11
Gulf of Finland, Baltic Sea	13
Gulf of Finland, Baltic Sea	5
Gulf of Mexico	6
Gullmarsfjorden, Sweden and Thames Estuary, England	2
Hypoxic zone off the Changjiang River estuary, China	9
Jinpu Bay, China	12
Jiulong River Estuary, China	2
Kattegat and Skagerrak	10
Lawrence estuary	1
Little Lagoon, USA	1
Noosa River estuary, Australia	5
North Sea	9
North Sea	1
North Sea	8
North Sea	16
Northeast Chukchi Sea	5

inaulactions	2012)	
Incubations	2013)	
incubations	(Glud et al., 1998)	
Intact core	(Vance-Harris and	
incubations	Ingall 2005)	
Intact core	ingan, 2005)	
incubations	(Erler et al., 2013)	
Intact core	(Bonaglia et al.,	
incubations	(Donagna et al., 2017)	
Intact core	2017)	
incubations	(Susanna, 2007)	
Intact core	(Jäntti and	
incubations	Hietanen, 2012)	
Intact core	(Jäntti et al	
incubations	2011)	
Intact core	(Hietanen and	
incubations	Kuparinen, 2008)	
Intact core	(Gihring et al.,	
incubations	2010a)	
Intact core	(Trimmer et al.,	
incubations	2006)	
Intact core	(Yang et al.,	
incubations	2022)	
Continuous-flow	(Win et al. 2015)	
experiments	(Yin et al., 2015)	
Intact core	(Wan et al. 2023)	
incubations	(wall et al., 2023)	
Intact core	(Rysgaard et al.,	
incubations	2001)	
Intact core	(Crowe et al.,	
incubations	2012)	
Continuous-flow	(Bernard et al.,	
experiments	2015)	
Intact core	(Chen et al.,	
incubations	2021)	
Intact core	(Rosales Villa et	
incubations	al., 2019)	
Intact core	(Fan et al., 2015)	
incubations	(1 mi 00 mi, 2010)	
Intact core	(Bale et al., 2014)	
incubations		
Intact core	(Neubacher et al.,	
incubations	2011)	

Northeastern New Zealand continental shelf	7
Northern Baltic Proper	17
Northern East China Sea, China	16
Norwegian Trench, Skagerrak	4
Öre Estuary, Swedish	6
Pearl River Estuary, China	5
Plum Island Sound, Massachusetts	4
Randers Fjord and Norsminde Fjord, Denmark	2
Randers Fjord, Young Sound and Skagerrak, Danmark	3
Sacca di Goro lagoon, Italy	6
Southern and central Baltic Sea	12
Southern Finland	5
St. George Island, Gulf of Mexico, Hausstrand, German Wadden Sea and Spitsbergen island, Svalbard	5
St. Joseph Bay, USA	4
St. Lawrence Estuary, Canada	3
Stockholm Archipelago, Baltic Sea	1
Svalbard, Norway	10
Taganga Bay, Colombia Caribbean	8
Tama Estuary, Japan	2
Texas estuaries, USA	26
The Baltic Sea	1

2016) experiments (Cheung et al., Intact core incubations 2024) Intact core (Bonaglia et al., incubations 2014a) Continuous-flow (Chang et al., experiments 2021) Intact core (Trimmer et al., incubations 2013) Intact core (Hellemann et al., incubations 2017) Intact core (Tan et al., 2019) incubations Intact core (Koop-Jakobsen and Giblin, 2010) incubations Intact core (Risgaard-Peterse n et al., 2004) incubations Intact core (Risgaard-Peterse incubations n et al., 2003) Intact core (Magri et al., incubations 2020) Intact core (Deutsch et al., incubations 2010) Intact core (Uusheimo et al., incubations 2018) Intact core (Canion et al., 2014) incubations Continuous-flow (Hoffman et al., experiments 2019) Intact core (Poulin et al., incubations 2007) Intact core (Bonaglia et al., 2014b) incubations Intact core (Blackburn et al., incubations 1996) Intact core (Arroyave Gómez incubations et al., 2020) Continuous-flow (Usui et al., 2001) experiments (Gardner et al., Continuous-flow experiments 2006) Intact core (Bonaglia et al.,

		incubations	2013)
The Curonian Lagoon	8	Intact core	(Bartoli et al.,
The Curoman Lagoon		incubations	2021)
Transial Constal Language	11	Intact core	(Enrich-Prast et
Tropical Coastal Lagoons	11	incubations	al., 2016a)
Tropical Coastal Wetlands,	0	Intact core	(Adame et al.,
Australia	0	incubations	2019b)
Lilloung Pagin Fast Son	9	Intact core	$(N_{0} \text{ at al} 2018)$
Offeding Basin, East Sea		incubations	(Ina et al., 2018)
Wallis Lake estuary Australia	r	Intact core	(Erlar at al 2017)
wants Lake estuary, Austrana	2	incubations	(Effet et al., 2017)
Young Sound fjord, northeast	1	Intact core	(Rysgaard et al.,
Greenland	1	incubations	1996a)

841 Continuous-flow experiments denote continuous flow experiments combined with core

842 incubations