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Abstract18

Denitrification and anaerobic ammonium oxidation (anammox) convert reactive19

nitrogen to invert N2, and play vital roles in nitrogen removal in coastal and marine20

ecosystems, weakening the adverse effects caused by terrestrial excessive nitrogen21

inputs. Given the importance of denitrification and anammox in nitrogen cycle, lots of22

studies has measured denitrification and anammox through intact core incubations23

across different systems, and nitrogen loss processes are affected by a series of24

environmental factors such as organic carbon, nitrate, dissolved oxygen and25

temperature. However, a global synthesis of actual nitrogen loss rates is lacking and26

how environmental factors regulate nitrogen loss remains unclear. Therefore, we have27

compiled a database of nitrogen loss rates, including denitrification and anammox in28

coastal and marine systems from published literatures. This database includes 473,29

466, and 255 measurements for total nitrogen loss, denitrification and anammox,30

respectively. This work deepens our understanding of the spatial and temporal31

distribution of denitrification, anammox and the relative contribution of anammox to32

total nitrogen loss and their corresponding environmental controls. To our knowledge,33

the constructed database for the first time offers a comprehensive overview of actual34

nitrogen loss rates in coastal and marine ecosystems on a global scale. This database35

can be utilized to compare nitrogen loss rates of different regions, identify the key36

factors regulating these rates, and parameterize biogeochemical models in the future.37

This database is available in Figshare repository ：38

https://doi.org/10.6084/m9.figshare.27745770.v3 (Chang et al., 2024).39

https://doi.org/10.6084/m9.figshare.27745770.v3


3

KEYWORDS: nitrogen cycle, denitrification, anammox, coastal and marine40

ecosystems, isotope pairing technology, intact core incubations41

42



4

1 Introduction43

The production of anthropogenic reactive nitrogen has intensified remarkably since44

the mid-20th century to meet the increasing global population (Kennedy, 2021). It is45

estimated that nitrogen is entering Earth’s ecosystems at more than twice its natural46

rate, drastically disrupting the pristine nitrogen cycle (Canfield et al., 2010). Much of47

the excess nitrogen, primarily in the form of nitrate, is conveyed downriver to coastal48

and marine systems due to the low use efficiency of crops (Cui et al., 2013), resulting49

in a series of environmental issues including harmful algal blooms, eutrophication,50

and hypoxia (Dai et al., 2023). Consequently, it is critical to understand the51

transformations, particularly the fates of reactive nitrogen, encountering the fact that52

the nitrogen cycle has been intensively altered and is currently functioning beyond the53

safe operating space for humanity (Richardson et al., 2023).54

Denitrification and anammox (Anaerobic Ammonium Oxidation) are two key55

nitrogen loss processes in aquatic environments, playing important roles in mitigating56

the adverse effects of excessive nitrogen inputs (Chen et al., 2021; Tan et al., 2022).57

Denitrification is the sequential reduction of nitrate, nitrite, nitric oxide, and nitrous58

oxide (N2O) to dinitrogen gas (N2), which is the most energetically favorable59

respiratory pathway in the absence of oxygen (Devol, 2015), serving as the60

predominant mechanism for nitrogen loss in coastal ecosystems (Damashek & Francis,61

2018; Deng et al., 2024). Anaerobic ammonium oxidation (Anammox), an alternate62

nitrogen loss pathway, utilizes nitrite and ammonium to generate N2 with no63

greenhouse gas N2O production under anaerobic conditions (Graaf et al., 1995), and is64
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a chemoautotrophic process with no direct demand for organic carbon (Strous et al.,65

1999). Therefore, anammox is an environment-friendly and energy-saving process66

compared to denitrification.67

The 15N isotope pairing technique (IPT) has been applied to a variety of sediments to68

quantify nitrogen loss rates in these settings (Nielsen, 1992; Robertson et al., 2019).69

Slurry incubation and intact core incubations in combination with IPT are two widely70

used methods for studying benthic nitrogen transformation pathways (Song et al.,71

2016b). Slurry incubations have been used to estimate the potential rates, and have72

advantages in discovering nitrogen loss processes in the environment (Thamdrup &73

Dalsgaard, 2002) as well as studying the environmental controls of these pathways,74

however, the natural gradients of substrates and redox in sediments were disrupted75

during incubations (Trimmer et al., 2006). The intact core incubations can quantify76

nitrogen removal processes in intact sediments and reflect the genuine benthic77

nitrogen transformation rates. The application of intact core incubations will enable us78

to fully clarify and understand the nitrogen cycle in field aquatic ecosystems.79

Over the past thirty years, the introduction of isotope pairing technology has enabled80

numerous studies to measure anammox and denitrification using intact core81

incubations across a range of coastal and marine environments. These environments82

include intertidal wetlands (Adame et al., 2019; Liu et al., 2020), estuaries and coasts83

(Chen et al., 2021; Cheung et al., 2024; Deek et al., 2013; Hellemann et al., 2017),84

lagoons (Bernard et al., 2015; Magri et al., 2020) and oceans (Deutsch et al., 2010; Na85

et al., 2018). Despite decades of observations, the majority of studies on86

due to advantage of simple operation in

incubations (Thamdrup & Dalsgaard, 2002),

删除[小子]:

a large number of studies have used this method

to study sediment

删除[小子]:

字体: （默认）Times New Roman, （中文）

宋体, 小四

设置格式[小子]:

.删除[小子]:

H删除[小子]:

slurry incubations could not reflect the genuine

benthic nitrogen transformation rates, as

删除[小子]:

application of删除[小子]:

字体: （默认）Times New Roman, （中文）

宋体, 小四

设置格式[小子]:

overcome this drawback and删除[小子]:

research删除[小子]:



6

denitrification and anammox have been limited to local or regional scales. Various87

environmental factors, such as the availability of organic carbon (Yin et al., 2015) and88

nitrate (Asmala et al., 2017), dissolved oxygen (Bonaglia et al., 2013; Song et al.,89

2021), and temperature (Tan et al., 2022) influence these processes in coastal marine90

ecosystems. The modeling community also has conducted many researches on91

environmental regulation of nitrogen loss (mainly denitrification), and improved the92

predictive parameters of denitrification (Middelburg et al., 1996; Bohlen et al., 2012;93

Li et al., 2024). However, according to the currently available observational data, the94

global patterns and drivers of sediment nitrogen loss rates remain poorly understood95

in coastal and marine systems.96

In view of the critical role of nitrogen removal processes and the current lack of a97

comprehensive database on actual nitrogen loss in coastal and marine systems, we98

have integrated actual nitrogen loss rates, including denitrification and anammox,99

from published studies, and constructed a dataset on nitrogen removal rates in these100

systems. This study provides a global-scale overview of the biogeography and101

potential controlling factors of denitrification and anammox in coastal and marine102

ecosystems. It also highlights the potential applications of this database such as using103

machine learning to predict the distribution of denitrification and anammox and104

offering a crucial dataset for the parameterization and development of biogeochemical105

models.106
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2 Methods107

2.1 Data compilation108

Nitrogen loss rates, including denitrification and anammox measured through intact109

core incubations in coastal and marine ecosystems, were extracted from the literature110

published between 1996 and 2024. Table 1 summarized the locations, observation111

numbers, core incubation methods and references of nitrogen loss rates measurements.112

The intact core incubations in this study include both traditional core incubations113

(Bonaglia et al., 2017; Cheung et al., 2024) and continuous-flow experiments (Liu et114

al., 2020; McTigue et al., 2016). For continuous-flow experiments, incubations were115

carried out in a flow-through system where bottom water was pumped over intact116

cores using a multi-channel peristaltic pump, and inflow and outflow samples were117

collected to quantify the nitrogen process rates after the addition of 15N tracer118

(Gardner & McCarthy, 2009). The peer-reviewed articles compiled in this study were119

sourced from the Web of Science database as of June 2024. The search terms were120

“denitrification” or “anammox” or “nitrogen loss” or “nitrogen removal”. Given a121

recent study has already summarized the data on nitrogen loss rates by slurry122

incubations in aquatic systems (He et al., 2025), this work only selected data in which123

denitrification and/or anammox rates were measured using intact core incubations124

with 15N isotope pairing techniques, excluding measurements derived from slurry125

incubations. The intact core incubation experiments were primarily conducted in dark126

conditions and near-in situ or in situ ambient temperatures. Photosynthetic O2127
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production can influence O2 penetration depth and thereby nitrate availability in128

sediments, interfering with denitrification rates in the nitrate reduction zone (Chen et129

al., 2021; Bartoli et al., 2021). In cases where nitrogen loss rates were measured under130

both light and dark conditions, only those measured in the dark were included to131

avoid photosynthesis and facilitate comparison with other studies. Measurements132

under light conditions have been detailed in studies reported by Bartoli et al. (2021),133

Chen et al. (2021), Risgaard-Petersen et al. (2004), Rysgaard et al. (1996b), and Welsh134

et al. (2000). Some studies have investigated the changes in nitrogen loss processes135

under varying oxygen concentrations (Bonaglia et al., 2013; Neubacher et al., 2011;136

Song et al., 2021), however, only nitrogen loss rates measured under ambient oxygen137

concentrations were extracted for this database. Some coastal zones are inhabited by138

plants and animals, whole core incubation would exclude the effect of benthic fauna139

or bioturbation as the nutrient and oxygen availabilities in the core might not reflect in140

situ sediment characteristics. In addition, whole core incubation would exclude the141

effect of antibiotics addition because antibiotics addition could influence in situ142

nitrogen removal rates (Wan et al., 2023). Thus, studies examining the effects of143

meiofauna or antibiotics on nitrogen removal were not included (Bonaglia et al.,144

2014b; Wan et al., 2023), only rates measured without meiofauna or antibiotic145

additions were considered. At least one environmental variable was recorded for each146

selected study, and means and sample sizes had to be reported for nitrogen removal147

rates. Articles that only reported nitrogen loss rates without any environmental148

variables were excluded. Data on total nitrogen loss rates (the sum of denitrification149
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and anammox), denitrification rates, anammox rates, and related environmental150

variables were collected from tables, text, and/or supplementary materials, and in151

some cases, extracted from graphs using Origin 2020 software. The unit conversions152

were performed where necessary. For example, nitrogen loss (including denitrification153

and anammox) rates were in μmol N m-2 h-1. When rates in the texts were displayed as154

mmol N m−2 d−1 or μmol N m−2 d−1, they were converted to μmol N m-2 h-1. In155

addition, longitude and latitude were extracted from figures from published articles if156

not shown in the main text.157

158

The database includes observation details (year of sampling, month of sampling,159

latitude, and longitude), sediment parameters, and water physicochemical factors,160

such as sediment organic carbon, the ratios of carbon to nitrogen (C/N ratios), oxygen161

penetration depth, and water salinity, depth, temperature, DO, ammonium and nitrate162

concentrations. Note that some environmental variables were not reported in the163

original studies. NM represents parameters that were not measured, and empty or NA164

indicates data not available or reported. In total, the database comprises 473, 466, 255,165

and 255 measurements of total nitrogen loss rates, denitrification rates, anammox166

rates, and the relative contribution of anammox to total nitrogen loss, respectively.167

Authors and interested readers are welcomed to contact us to indicate an error or168

update the data in the database.169

For quality control, extreme nitrogen loss rate values were excluded from the database170

following Chauvenet’s criterion (Glover et al., 2011), a method typically applied to171
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normally distributed data to identify outliers whose deviation from the mean has a172

probability lower than 1/(2n). More details about Chauvenet's criterion can be found173

in Glover et al., (2011) and Buitenhuis et al. (2013). Very high rates of denitrification174

were observed in the Tama Estuary, Japan (Usui et al., 2001), a constructed wetland in175

Casino, NSW, Australia (Erler et al., 2008), a coastal lagoon in Sacca di Goro lagoon,176

Italy (Magri et al., 2020) and the Tropical Coastal Wetlands, Australia (Adame et al.,177

2019). For anammox, high rates were found only in a constructed wetland in Casino,178

NSW,Australia (Erler et al., 2008). Similarly, high values for anammox’s contribution179

to total nitrogen loss were observed in the Changjiang River Estuary (also called180

Yangtze River Estuary), China (Liu et al., 2020), the Norwegian Trench, Skagerrak181

(Trimmer et al., 2013), and the Great Barrier Reef lagoon (Erler et al., 2013), with182

contributions exceeding 70%. Observations with nitrogen loss rates of 0 or NA were183

excluded from the outlier analysis. For example, anammox rates of 0 were reported in184

the Changjiang River Estuary, China (Liu et al., 2020), the North Sea (Neubacher et185

al., 2011; Rosales Villa et al., 2019), the Pearl River Estuary, China (Tan et al., 2019),186

the Norwegian Trench, Skagerrak (Trimmer et al., 2013), and the Gulf of Finland,187

Baltic Sea (Jäntti et al., 2011). After excluding observations of 0 and NA (0, 8, 252,188

and 253 observations for total nitrogen loss rates, denitrification rates, anammox rates,189

and anammox’s contribution to total nitrogen loss), the nitrogen loss rates were190

natural-log transformed for further analysis.191
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2.2 Methods for measuring denitrification and anammox rates192

Before the discovery of anammox, denitrification was regarded as the sole significant193

pathway responsible for nitrogen loss (Dalsgaard & Thamdrup, 2002). The 15N194

isotope pairing technique (IPT) was developed to quantify denitrification rates195

(Nielsen, 1992). In this method, the overlying water of intact sediment cores is196

enriched with 15NO3−, which is mixed with the naturally occurring 14NO3−. After a few197

hours of incubation, the denitrification products, 15N-labeled dinitrogen gas (29N2 and198

30N2), are measured. Incubations to measure nitrogen loss rares have been mostly199

conducted in dark conditions and near-in situ or in situ ambient temperatures. After200

incubating for 1 h to over 96 h, the incubation is halted by injecting saturated HgCl2 or201

ZnCl2 saturation solution or 37% formaldehyde. The samples are then preserved for202

15N2 gas analyses through isotope ratio mass spectrometer (IRMS) or membrane inlet203

mass spectrometry (MIMS). Key experimental details, such as incubation conditions,204

temperature control, incubation time, termination, and calculation references, are205

compiled in the database if provided in the original studies. For more detailed206

experimental information, refer to the corresponding references.207

The production rate of unlabeled 14NO3- (IPTp14, also referred to as the genuine208

production of N2) can be calculated based on the assumption of random isotope209

pairing during the denitrification of the uniformly mixed NO3- species. The following210

equation is commonly used to estimate the genuine N2 production (Nielsen, 1992;211

Steingruber et al., 2001).212
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Where p29N2 and p30N2 represent the total production rates of 29N2 and p30N2,214

respectively.215

Thamdrup and Dalsgaard (2002) were the first to quantify anammox through216

anaerobic slurry incubations in natural environments, discovering that anammox217

could account for more than 60% of total N2 production. This highlighted the218

significant role of anammox in nitrogen removal. Following this, Risgaard-Petersen et219

al. (2003) proposed a modification to the traditional IPT, allowing for more accurate220

quantification of true N2 production in environments where anammox and221

denitrification coexist. This revision also enables the distinction between N2 produced222

by anammox and denitrification. The revised IPT (rIPT) follows the same procedure223

as the classical IPT, with 15NO3- added to the overlying water of intact sediment cores,224

though the calculation process is more complex. The following equations are225

commonly used to estimate the actual N2 production (rIPTp14) and denitrification226

(p14DEN) as well as anammox (p14ANA) (Risgaard-Petersen et al., 2003; Trimmer227

& Nicholls, 2009; Trimmer et al., 2006). The total N2 production rate is the sum of228

denitrification and anammox rates.229

))-(1N(214rIPT 142
30
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29

14 rpNprp  (2)230

2
30

1414 N)1(2DEN14 prrp  (3)231

)N2N(2ANA14 2
30

142
29

14 prprp   (4)232

In these equations, p29N2 and p30N2 are the total production rates of 29N2 and p30N2,233

respectively, and r14 represents the ratio of 14NO3− and 15NO3− in the nitrate reduction234
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zone. There are 3 different methods to estimate r14, with detailed explanations235

available in Trimmer et al. (2006).236

Subsequently, Hsu and Kao (2013) revised the rIPT method to incorporate both N2O237

production and anammox, enabling the determination of the absolute rate of each238

nitrogen loss pathway, including denitrification, anammox, and N2O production from239

denitrification. Denitrification and anammox measurements based on the method of240

Hsu and Kao (2013) are included in this database, whereas data on the true N2O241

production rate have not been included.242

Regarding the aforementioned calculation methods, Salk et al. (2017) have243

systematically reviewed different methods for quantifying nitrogen loss rates and244

illustrated their differences with diagrams distinguishing different processes,245

providing valuable guidance for researchers interested in this field. Therefore,246

interested researchers can refer to their article.247

3 Results and discussion248

3.1 Overview of the database249

Overall, there are 473, 466, and 255 measurements for total nitrogen loss250

denitrification and anammox, respectively (Fig. 1). Denitrification and anammox have251

been measured simultaneously at 255 observations. The observations of nitrogen loss252

rates are primarily distributed in the Eastern coast of the United States, the Baltic Sea,253

the Eastern Coast of China, the Eastern Coast of Australia, and polar regions of the254

Northern Hemisphere (Fig. 1a). Before 2000, nitrogen loss measurements were255
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predominantly focused on denitrification, while both denitrification and anammox256

rates have been measured concurrently since 2000 (Fig. 1b). Notably, more257

observations were recorded in 2011 and 2017. The studies in 2011 were mainly258

conducted in the Changjiang estuary and its adjacent East China Sea (Song et al.,259

2021), the Jinpu Bay, China (Yin et al., 2015), the North Sea (Bale et al., 2014), the260

Northern Baltic Proper (Bonaglia et al., 2014a) and the hypoxic zone off the261

Changjiang River estuary, China (Yang et al., 2022). In 2017, high observations were262

found in the Northern East China Sea, China (Chang et al., 2021), the Changjiang263

River Estuary, China (Liu et al., 2020; Liu et al., 2019; Tan et al., 2022), the Coast of264

Victoria, Australia (Kessler et al., 2018) and the Jiulong River Estuary, China (Tan et265

al., 2022).266

267

3.2 Distribution of denitrification268

In total, the vast majority of nitrogen loss rate measurements were conducted in the269

Northern Hemisphere, and data in the Southern Hemisphere were limited (Fig. 2a, 2b,270

2c). The low and middle latitudes of the Northern Hemisphere have a large body of271

observations, especially in the 20-30°N, 30-40°N, and 50-60°N latitude bands.272

Denitrification rates ranged from 0.04 to 750 μmol N m-2 h-1, with a median value of273

7.72±4.30 μmol N m-2 h-1. There is a decreasing trend in the denitrification rates with274

latitude in the Northern Hemisphere, though the observations in the high latitude are275

still limited. The measurements of denitrification were primarily conducted between276

most删除[小子]:

ly删除[小子]:

in later spring, summer, and early autumn,删除[小子]:

from删除[小子]:



15

April and September (Fig. 2d, 2e, 2f). On a global scale, no clear seasonal pattern for277

denitrification rates was observed.278

279

3.3 Distribution of anammox280

From a latitude perspective, the distribution of anammox rates closely mirrored that of281

denitrification, with the majority of observations concentrated in the 20-30°N,282

30-40°N, and 50-60°N latitude bands (Fig. 3a, 3b, 3c). However, compared to283

denitrification, there were fewer anammox observations. Anammox rates spanned284

from 0.01 to 48.94 μmol N m-2 h-1, with a median value of 1.00±0.39 μmol N m-2 h-1.285

Similar to denitrification, anammox rates also showed a decreasing trend with286

increasing latitude in the Northern Hemisphere. Numerous anammox measurements287

were conducted between April and September, consistent with the timing of288

denitrification measurements (Fig. 3d, 3e, 3f). Additionally, February saw a high289

number of anammox observations, and these observations were predominantly290

conducted at the north East China Sea (Chang et al., 2021), the Changjiang Estuary291

(Liu et al., 2019) and the Northeastern New Zealand continental shelf regions292

(Cheung et al., 2024). On a global scale, there was no clear seasonal pattern for293

anammox rates.294

295

to删除[小子]:
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3.4 Distribution of contribution of anammox to total N2296

production297

The relative importance of anammox to total N2 production increased first and then298

decreased, peaking in the 40-50°N latitudinal band in the Northern Hemisphere,299

although data points in this band were limited (Fig. 4). The contribution of anammox300

to total N2 production varied from 0.22% to 67.33%, with a median value of 12.29%.301

The highest value (67.33%) was recorded at a site on the North Atlantic continental302

slope at a depth of 2000 m (Trimmer & Nicholls, 2009), where anammox accounted303

for the majority of nitrogen removal. There were no significant monthly changes in304

the relative importance of anammox to total nitrogen loss, except for March, when305

anammox contributed a notably high percentage. High values in March were observed306

in the Ulleung Basin, East Sea, and the continental shelf and slope, North Atlantic (Na307

et al., 2018; Trimmer & Nicholls, 2009) where the stations were characterized by low308

nitrate levels or deep water. These environmental conditions may inhibit309

denitrification, thereby increasing the relative contribution of anammox to nitrogen310

loss. It is worth noting that the rate observations in March were mainly distributed in311

certain regions. Thus, the extrapolations of relative importance of anammox in coastal312

marine ecosystems at the monthly level using this result should be cautious. More313

observation data in other regions are needed in the future.314

315
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3.5 Control factors on denitrification and anammox rates316

The variations in denitrification rates and anammox rates were compared against317

several environmental variables, including sediment organic carbon, the ratios of318

carbon to nitrogen (C/N ratios) and oxygen penetration depth, and water depth,319

temperature, salinity, dissolved oxygen, ammonium, and nitrate concentrations. This320

comparison was conducted to evaluate the main controlling factors of nitrogen loss321

rates.322

There was no significant relationship between denitrification rates and the contents of323

sediment organic carbon (p>0.05; Fig. 5a). Heterotrophic denitrification is primarily324

carried out by facultative anaerobic heterotrophs (Devol, 2015), which use organic325

carbon as an electron donor and energy source. Therefore, higher organic carbon326

levels might be expected to promote denitrification (Damashek & Francis, 2018).327

However, no such relationship was observed in this dataset. Denitrification rates328

increased with sediment carbon nitrogen ratios (r=0.32, p<0.01; Fig. 5b). The C/N329

ratios can indicate the reactivity of sediment organic material, with lower C/N values330

generally representing more reactive organic matter (Cheung et al., 2024; Erler et al.,331

2013). Typically, high denitrification rates are associated with sediments that have332

lower C/N ratios. However, in this analysis, the opposite trend was observed. One333

possible explanation is that microbial communities may adapt to use organic matter334

typically encountered, though the organic matter is not labile (Salk et al., 2017).335

Denitrification rates showed a weak negative correlation with oxygen penetration336

depth (r=-0.29, p<0.01; Fig. 5c), as greater O2 penetration may be adverse to the337
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occurrence of denitrification (Cheung et al., 2024). Denitrification rates also338

decreased with water depth (r=-0.26, p<0.01; Fig. 5d), with most observations339

occurring at depths shallower than 250 m. Denitrification was positively correlated340

with higher water temperatures (r=0.38, p<0.01; Fig. 5e), and negatively correlated341

with salinity (r=-0.15, p<0.01; Fig. 5f), with most rates falling within two salinity342

ranges (0-10 and 30-40). Samples that had a salinity greater than 40 were collected in343

hypersaline lagoons of tropical regions (Enrich-Prast et al., 2016). The relationship344

between denitrification and salinity across coastal environments has been summarized345

by Torregrosa-Crespo et al. (2023) and will not be further elaborated here. There was346

a weak negative relationship between denitrification rates and dissolved oxygen347

concentrations (r=-0.23, p<0.01; Fig. 5g). Overall, higher denitrification rates were348

recorded in areas with high nitrate concentrations (r=0.16, p<0.01; Fig. 5h),349

suggesting the importance of nitrate substrate in regulating denitrification, though350

some high rates were also observed in sites with low nitrate levels. No significant351

correlation was found between denitrification rates and ammonium concentrations352

(p>0.05; Fig. 5i).353

354

Anammox rates showed a weak positive correlation with sediment organic carbon355

(r=0.16, p<0.05; Fig. 6a). Although anammox is an autotrophic process that does not356

require organic carbon as an electron donor (Salk et al., 2017), some studies have357

reported links between sediment organic carbon content and anammox rates. For358

example, studies in subtropical mangrove sediments (Meyer et al., 2005) and the359
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Thames estuary (Trimmer et al., 2003) found that higher organic matter stimulated360

anammox. This correlation may be due to enhanced mineralization leading to361

increased ammonium production, which indirectly stimulates anammox (Damashek &362

Francis, 2018), as sediment organic carbon can serve as a proxy for organic carbon363

mineralization (Song et al., 2016a). Similar to denitrification, high anammox rates364

were observed at sites with elevated C/N ratios (r=0.33, p<0.01; Fig. 6b). We infer365

that, to some extent, the coupling of denitrification and anammox may account for366

this relation. As mentioned above, denitrification stimulated with higher C/N ratios,367

decomposition of organic matter could provide substrate for anammox, thereby368

promoting anammox. More studies are needed to reveal the influencing mechanisms369

of C/N ratios on anammox. No clear trend was found between anammox rates and370

oxygen penetration depth (p>0.05; Fig. 6c), and high anammox rates were observed in371

shallow waters (p>0.05; Fig. 6d). Anammox rates showed a weak positive correlation372

with temperature (r=0.19, p<0.01; Fig. 6e). While several studies have suggested that373

low temperatures could favor anammox (Dalsgaard & Thamdrup, 2002; Rysgaard et374

al., 2004; Tan et al., 2020), these studies primarily measured anammox potential using375

anaerobic slurry incubations. Contrary to previous findings, our study showed that376

actual anammox rates increased with rising temperatures, suggesting a discrepancy377

between the effects of temperature on actual and potential anammox rates. Future378

research is needed to investigate the underlying mechanisms for these inconsistent379

results. Anammox rates decreased with increasing salinity (r=-0.38, p<0.01; Fig. 6f),380

and showed no significant relationship with dissolved oxygen (p>0.05; Fig. 6g). A381
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weak positive correlation was observed between anammox rates and nitrate382

concentration (r=0.41, p<0.01; Fig. 6h), highlighting the importance of substrates in383

regulating anammox. Although anammox uses nitrite as an electron acceptor rather384

than nitrate (Graaf et al., 1995), nitrate reduction can produce nitrite, which promotes385

anammox activity. No relationship was found between anammox rates and386

ammonium concentration (p>0.05; Fig. 6i).387

Through the correlation analysis of global-scale compiled data, we identified that388

sediment C/N ratios, oxygen penetration depth, water depth, temperature, salinity,389

dissolved oxygen, and nitrate concentrations were the main factors regulating390

denitrification rates, whereas sediment organic carbon, C/N ratios, temperature,391

salinity, and nitrate concentrations primarily controlled anammox rates (Fig. 5 and Fig.392

6).393

Other factors, such as iron, manganese, and sulfide, although not included in the394

database, can also influence denitrification and anammox rates. For example, Fe395

oxides were observed to be positively correlated with denitrification rates in the Jinpu396

Bay, China (Yin et al., 2015). The mechanism may be that ferrous iron can supply an397

electron donor for nitrate, thereby promoting denitrification. Anschutz et al. (2000)398

found manganese dioxides could also serve as electron donors for denitrification.399

Deng et al. (2015) showed a positive relationship between denitrification rates and400

sulfide concentrations in the Changjiang Estuary sediments, revealing that sulfide can401

act as energy sources for denitrification. In contrast, evidence has shown that sulfide402

exerts inhibitory effects on nitrogen removal in coastal sediments by inhibiting the403
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metabolism of denitrifying microorganisms (Aelion and Warttinger, 2010). Thus, the404

impact of sulfide on denitrification remains controversial. For anammox, a study405

found that sulfide could affect anammox activity. Yin et al. (2015) found that406

anammox rates were positively correlated with sulfide concentrations. This407

phenomenon is likely attributed to sulfide-induced nitrite accumulation during408

incomplete denitrification processes, where sulfide inhibits the activity of nitric oxide409

reductase and nitrous oxide reductase, thereby enhancing anammox activity. Under410

anaerobic conditions, ammonium oxidation can be coupled with the reduction of411

ferric iron, sulfate, and Mn(IV)-oxides. For example, Rios-Del Toro et al. (2018)412

confirmed that ammonium oxidation was associated with ferric iron and sulfate413

reduction under anaerobic conditions, thereby stimulating nitrogen loss in marine414

sediments. Evidence shows ammonium loss is coupled with Fe(III) and Mn(IV)415

reduction in coastal environments (Samperio-Ramos et al., 2024), demonstrating the416

crucial roles of metal oxides in removing reactive nitrogen.417

418

Liu et al. (2020) have examined the spatio-temporal changes of in situ nitrogen loss419

processes in intertidal wetlands of the Yangtze Estuary and found that denitrification420

was linked to anammox, implying the coupling of denitrification and anammox on a421

local scale. Consistent with their findings, this work also found denitrification was422

positively correlated to anammox (r=0.67, p<0.01; Fig. 7). A majority of denitrifying423

bacteria are heterotrophic and the decomposition of organic matter is accompanied by424

the production of ammonium (Devol, 2015), supplying substrates for anammox. Thus,425
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the positive relationship may suggest the tight coupling of these two nitrogen removal426

pathways on a global scale.427

428

3.6 Drivers on contribution of anammox to total nitrogen loss429

,We made simple correlation analysis between the contribution of anammox to total430

N2 production (ra) and environmental parameters (Fig. 8). There was a positive431

correlation between ra and water depth (r=0.59, p<0.01; Fig. 8d). Similar findings432

were found on the Northeastern New Zealand continental shelf (Cheung et al., 2024)433

and the continental shelf and slope, North Atlantic (Trimmer & Nicholls, 2009). The434

increased importance of anammox can be attributed to the significant attenuation of435

denitrification with depth, as the availability of organic carbon essential for436

heterotrophic denitrification generally decreases with water depth (Thamdrup, 2012).437

In addition to water depth, other factors such as oxygen penetration depth, C/N ratios,438

and temperature may also influence the relative importance of anammox. The ra was439

positively correlated with oxygen penetration depth (r=0.7, p<0.01; Fig. 8c). As440

previously mentioned, denitrification decreases with higher oxygen penetration depth,441

likely increasing the relative importance of anammox indirectly. Conversely, ra442

showed a decreasing trend with elevated C/N ratios (r=-0.35, p<0.01; Fig. 8b). High443

C/N ratios may promote denitrification more significantly than anammox because444

both processes tend to enhance with increasing C/N ratios, leading to a decrease in the445

relative importance of anammox at sites with high C/N ratios. Additionally, ra was446
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删除[小子]:

下标设置格式[小子]:

字体: （默认）Times New Roman, 小四设置格式[小子]:

the contribution of anammox to total N2

production (

删除[小子]:

)删除[小子]:

Previous studies have reported s删除[小子]:

, including those conducted删除[小子]:

,删除[小子]:

, which is删除[小子]:

,删除[小子]:

increasing删除[小子]:

contribution of anammox to total N2 production (删除[小子]:

)删除[小子]:



23

negatively correlated with temperature (r=-0.29, p<0.01; Fig. 8e), indicating that447

denitrification is stimulated at higher temperatures compared to anammox.448

Temperature-controlled experiments have confirmed that denitrification has a greater449

optimal temperature than anammox (Canion et al., 2014; Tan et al., 2020). No450

correlations were found between ra and other environmental factors, including451

sediment organic carbon, water salinity, dissolved oxygen, nitrate, and ammonium452

concentrations. (all p>0.05; Fig. 8a, 8f, 8g, 8h, 8i). Based on the simple correlation453

analysis of global-scale compiled data, we identified that sediment C/N ratios, oxygen454

penetration depth, water depth and temperature were the primary factors governing455

the relative contribution of anammox to total nitrogen loss (Fig. 8).456

457

4 Applications of the database458

This database serves as a valuable resource for the broad scientific communities that459

are interested in nitrogen cycle processes within coastal and marine ecosystems,460

particularly those focusing on denitrification and anammox. The data is made461

accessible as a basic database that will lead to a deeper understanding and generate462

new scientific insights into the nitrogen cycles at the global scale. Potential463

applications of this database include: (1) serving as a reference for comparing464

denitrification and anammox rates across different spatial scales including local,465

regional, and global scales or across different habitats such as coastal wetland, estuary,466

lagoon, and ocean in future studies. (2) identifying and comparing the controlling467 ;删除[小子]:
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factors of denitrification and anammox at various spatial scales. Note that468

environmental variables have missing values, which limits our analysis of469

environmental factors affecting nitrogen loss rates. For better studying the470

environmental controlls, these missing values can be filled using the multivariate471

imputation with random forests method (Hou et al., 2021). (3) predicting the global472

biogeography of denitrification and anammox in coastal and marine systems through473

machine learning methods. For example, by integrating potential key factors of474

nitrogen removal processes into machine learning architectures, future studies can475

develop spatially predictive models for global nitrogen loss rates by the references of476

Laffitte et al. (2025) and Ling et al. (2025). (4) providing essential data for the477

parameterization, validation and enhancement of Earth system biogeochemical478

models. The previous model considered constraint parameters such as nitrate,479

dissolved oxygen, chlorophyll, and phosphate content (Middelburg et al., 1996;480

Bohlen et al., 2012; Li et al., 2024), and other parameters provided in this dataset can481

supply new parameter supplements for the development of biogeochemical model. (5)482

guiding future observations. More studies are needed in areas and months with limited483

observation data on nitrogen loss rates to deepen our understanding of the nitrogen484

cycle worldwide. Additionally, when studying nitrogen loss rates, particular attention485

should be paid to enhancing the monitoring of multiple environmental parameters.486

487
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5 Conclusions488

We compiled and presented a global database of denitrification and anammox489

measurements obtained from core incubation experiments in coastal and marine490

sediments. To our knowledge, no efforts have been made to compile actual nitrogen491

loss rates and associated environmental factors in coastal and marine regions on a492

global scale. This database offers valuable insights into the spatiotemporal variations493

and potential controlling factors of denitrification and anammox, along with the494

contribution of anammox to total N2 production. The establishment of this global495

database on denitrification and anammox in coastal and marine sediments provides a496

critical foundation for advancing nitrogen cycle research and generating novel497

insights. This database enables the comparison of these two nitrogen loss processes,498

evaluation of the environmental controls across spatial scales (local to global),499

prediction of the global biogeography of denitrification and anammox,500

parameterization and development of biogeochemical models, and guide direction of501

observations in the future.502
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Figures and Table922

923

924

Figure 1 Map showing the sampling sites distribution of nitrogen loss rate925

measurements (a) and the number of rate observations each year (b). Orange solid926

points denote that only denitrification rates were measured. Cyan solid points denote927

that both denitrification and anammox rates were measured.928

929
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930

Figure 2 The observation numbers of denitrification (a, d) and denitrification rates (b,931

c, e, f) with latitudinal bands and months. A vertical dashed red line delimits the932

Southern Hemisphere and the Northern Hemisphere. The box plots show the median,933

interquartile range, and outliers for each latitudinal band and month.934

935

936

Figure 3 The observation numbers of anammox (a, d) and anammox rates (b, c, e, f)937

with latitudinal bands and months.938

939
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940

Figure 4 The contribution of anammox to total N2 production with latitudinal bands941

(a, b) and months (c, d).942

943
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944

Figure 5 Relationships between denitrification rates and organic carbon [OC, (a)],945

carbon-nitrogen ratios [C/N, (b)], oxygen penetration depth [OPD, (c)], water depth946

(d), temperature (e), salinity (f), dissolved oxygen [DO, (g)], nitrate concentrations947

[NO3-, (h)] and ammonium concentrations [NH4+, (i)].948

949
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950

Figure 6 Relationships between anammox rates and organic carbon [OC, (a)],951

carbon-nitrogen ratios [C/N, (b)], oxygen penetration depth [OPD, (c)], water depth952

(d), temperature (e), salinity (f), dissolved oxygen [DO, (g)], nitrate concentrations953

[NO3-, (h)] and ammonium concentrations [NH4+, (i)].954

955
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956

Figure 7 Relationships between denitrification and anammox rates. The blue solid957

line and red dashed line denote the linear regression and 1:1 line, respectively.958

959
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960

Figure 8 Relationships between the relative contribution of anammox to total N2961

production and organic carbon [OC, (a)], carbon-nitrogen ratios [C/N, (b)], oxygen962

penetration depth [OPD, (c)], water depth (d), temperature (e), salinity (f), dissolved963

oxygen [DO, (g)], nitrate concentrations [NO3-, (h)] and ammonium concentrations964

[NH4+, (i)].965
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Table 1 Summary of the observations of actual nitrogen loss rates. The locations,966

water depth range, observation numbers, core incubation methods and references are967

listed.968

Sampling locations
Water depth
(m)

Observation
numbers

Core
incubations

References

Aarhus Bright, Denmark 16 2
Intact core
incubations

(Nielsen and
Glud, 1996)

Arabian Sea 360 - 1430 4
Intact core
incubations

(Sokoll et al.,
2012)

Arctic fjord (Svalbard,
Norway)

51 - 211 3
Intact core
incubations

(Gihring et
al., 2010b)

Bassin d’Arcachon coastal
lagoon

NM 3
Intact core
incubations

(Welsh et al.,
2000)

Casino, NSW, Australia NM 2
Intact core
incubations

(Erler et al.,
2008)

central Sagami Bay, Japan 25.1 - 59 1
Intact core
incubations

(Glud et al.,
2009)

Changjiang estuary and its
adjacent East China Sea

1.9 - 58 7
Intact core
incubations

(Song et al.,
2021)

Changjiang River Estuary and
Jiulong River Estuary, China

NM 23
Intact core
incubations

(Tan et al.,
2022)

Changjiang River Estuary,
China

6 - 61 22
Continuous-
flow
experiments

(Liu et al.,
2020)

Changjiang River Estuary,
China

24 - 33 14
Continuous-
flow
experiments

(Liu et al.,
2019)

Coast of Finland, northern
Baltic Sea

1.5 - 8 10
Intact core
incubations

(Hellemann et
al., 2020)

Coast of Victoria, Australia 5 - 24 11
Intact core
incubations

(Kessler et al.,
2018)

Coastal area of the Gulf of
Gdańsk

NM 6
Intact core
incubations

(Benelli et al.,
2024)

Coastal lagoons, France 36 - 100 6
Intact core
incubations

(Rysgaard et
al., 1996b)

Coastal sediments, Greenland 50 - 2000 11
Intact core
incubations

(Rysgaard et
al., 2004)

Continental shelf and slope,
North Atlantic

85 12
Intact core
incubations

(Trimmer and
Nicholls,
2009)

Continental shelf region off
central Chile

NM 5
Intact core
incubations

(Farías et al.,
2004)

Danshuei River in northern 19 - 43.5 1 Intact core (Hsu and Kao,

Sampling locations

Observation numbers

Core incubations

References

Aarhus Bright, Denmark

2

Intact core incubations

(Nielsen and Glud, 1996)

Arabian Sea

4

Intact core incubations

(Sokoll et al., 2012)

Arctic fjord (Svalbard, Norway)

3

Intact core incubations

(Gihring et al., 2010b)

Bassin d’Arcachon coastal lagoon

3

Intact core incubations

(Welsh et al., 2000)

Casino, NSW, Australia

2

Intact core incubations

(Erler et al., 2008)

central Sagami Bay, Japan

1

Intact core incubations

(Glud et al., 2009)

Changjiang estuary and its adjacent East China Sea

7

Intact core incubations

(Song et al., 2021)

Changjiang River Estuary and Jiulong River Estuary, China

23

Intact core incubations

(Tan et al., 2022)

Changjiang River Estuary, China

22

Continuous-flow experiments

(Liu et al., 2020)

Changjiang River Estuary, China

14

Continuous-flow experiments
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Taiwan, China incubations 2013)

East China Sea 0.7 - 7.9 2
Intact core
incubations

(Song et al.,
2016)

Elbe Estuary, North Frisian
Wadden Sea

115 - 329 5
Intact core
incubations

(Deek et al.,
2013)

Fjords in Svalbard and
northern Norway

27 - 40 5
Intact core
incubations

(Glud et al.,
1998)

Georgia continental shelf,
USA

5 - 29 2
Intact core
incubations

(Vance-Harris
and Ingall,
2005)

Great Barrier Reef lagoon 12.5 - 111 2
Intact core
incubations

(Erler et al.,
2013)

Gulf of Bothnia, Baltic Sea 13 - 85 7
Intact core
incubations

(Bonaglia et
al., 2017)

Gulf of Finland 58 - 83 5
Intact core
incubations

(Susanna,
2007)

Gulf of Finland, Baltic Sea NM 11
Intact core
incubations

(Jäntti and
Hietanen,
2012)

Gulf of Finland, Baltic Sea 33 13
Intact core
incubations

(Jäntti et al.,
2011)

Gulf of Finland, Baltic Sea NM 5
Intact core
incubations

(Hietanen and
Kuparinen,
2008)

Gulf of Mexico 116 6
Intact core
incubations

(Gihring et
al., 2010a)

Gullmarsfjorden, Sweden and
Thames Estuary, England

12 - 63 2
Intact core
incubations

(Trimmer et
al., 2006)

Hypoxic zone off the
Changjiang River estuary,
China

5 - 15 9
Intact core
incubations

(Yang et al.,
2022)

Jinpu Bay, China 4.1 - 11.8 12
Continuous-
flow
experiments

(Yin et al.,
2015)

Jiulong River Estuary, China 10 - 695 2
Intact core
incubations

(Wan et al.,
2023)

Kattegat and Skagerrak 345 10
Intact core
incubations

(Rysgaard et
al., 2001)

Lawrence estuary 1.5 1
Intact core
incubations

(Crowe et al.,
2012)

Little Lagoon, USA NM 1
Continuous-
flow
experiments

(Bernard et
al., 2015)

Noosa River estuary, 0 - 116 5 Intact core (Chen et al.,
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Australia incubations 2021)

North Sea 31 9
Intact core
incubations

(Rosales Villa
et al., 2019)

North Sea 9 - 49 1
Intact core
incubations

(Fan et al.,
2015)

North Sea 29 - 81 8
Intact core
incubations

(Bale et al.,
2014)

North Sea 41 - 66 16
Intact core
incubations

(Neubacher et
al., 2011)

Northeast Chukchi Sea 30 - 128 5
Continuous-
flow
experiments

(McTigue et
al., 2016)

Northeastern New Zealand
continental shelf

31 - 41 7
Intact core
incubations

(Cheung et
al., 2024)

Northern Baltic Proper 27.7 - 64.8 17
Intact core
incubations

(Bonaglia et
al., 2014a)

Northern East China Sea,
China

176 - 688 16
Continuous-
flow
experiments

(Chang et al.,
2021)

Norwegian Trench, Skagerrak NM 4
Intact core
incubations

(Trimmer et
al., 2013)

Öre Estuary, Swedish 7-26 6
Intact core
incubations

(Hellemann et
al., 2017)

Pearl River Estuary, China NM 5
Intact core
incubations

(Tan et al.,
2019)

Plum Island Sound,
Massachusetts

0.5 - 1 4
Intact core
incubations

(Koop-Jakobs
en and Giblin,
2010)

Randers Fjord and Norsminde
Fjord, Denmark

1 - 695 2
Intact core
incubations

(Risgaard-Pet
ersen et al.,
2004)

Randers Fjord, Young Sound
and Skagerrak, Danmark

NM 3
Intact core
incubations

(Risgaard-Pet
ersen et al.,
2003)

Sacca di Goro lagoon, Italy 1450 6
Intact core
incubations

(Magri et al.,
2020)

Southern and central Baltic
Sea

0.2 - 80 12
Intact core
incubations

(Deutsch et
al., 2010)

Southern Finland NM 5
Intact core
incubations

(Uusheimo et
al., 2018)

St. George Island, Gulf of
Mexico, Hausstrand, German
Wadden Sea and Spitsbergen
island, Svalbard

NM 5
Intact core
incubations

(Canion et al.,
2014)
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St. Joseph Bay, USA 0.82 4
Continuous-
flow
experiments

(Hoffman et
al., 2019)

St. Lawrence Estuary, Canada NM 3
Intact core
incubations

(Poulin et al.,
2007)

Stockholm Archipelago,
Baltic Sea

28 1
Intact core
incubations

(Bonaglia et
al., 2014b)

Svalbard, Norway 170 - 869 10
Intact core
incubations

(Blackburn et
al., 1996)

Taganga Bay, Colombia
Caribbean

NM 8
Intact core
incubations

(Arroyave
Gómez et al.,
2020)

Tama Estuary, Japan 20 - 30 2
Continuous-
flow
experiments

(Usui et al.,
2001)

Texas estuaries, USA 0.6 - 3 26
Continuous-
flow
experiments

(Gardner et
al., 2006)

The Baltic Sea 105 1
Intact core
incubations

(Bonaglia et
al., 2013)

The Curonian Lagoon 1 - 2.5 8
Intact core
incubations

(Bartoli et al.,
2021)

Tropical Coastal Lagoons 0.2 - 3 11
Intact core
incubations

(Enrich-Prast
et al., 2016a)

Tropical Coastal Wetlands,
Australia

NM 8
Intact core
incubations

(Adame et al.,
2019b)

Ulleung Basin, East Sea 72 - 2342 9
Intact core
incubations

(Na et al.,
2018)

Wallis Lake estuary, Australia NM 2
Intact core
incubations

(Erler et al.,
2017)

Young Sound fjord, northeast
Greenland

40 1
Intact core
incubations

(Rysgaard et
al., 1996a)

NM denotes that water depth is not mentioned.969 Continuous-flow experiments denote continuous

flow experiments combined with core incubations
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