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Abstract. Plastic-covered greenhouse (PCG) is widely used in agricultural production due to its temperature control, water

conservation, and wind protection characteristics, significantly enhancing crop yields and economic benefits. However, its

long-term and extensive use can lead to environmental issues, such as the accumulation of local toxic gases and the

degradation of soil physicochemical properties. Therefore, obtaining a comprehensive distribution of PCGs is essential. To20
monitor PCGs on a large scale, this study developed a novel approach for producing the first global 10-meters PCGs dataset

(Global-PCG-10) with high-quality. Firstly, the globe was divided into multiple 5-degree grids, and grids for classification

were organized based on global cropland layer. Then, multi-temporal Sentinel-2 data and initial labels of PCGs were

obtained through Google Earth Engine (GEE) to create a training set for deep learning. Next, initial labels were optimized

with the active learning strategy combined with the deep learning model, APC-Net. Finally, the PCGs classification results25
were predicted, spatially analyzed, and compared with publicly released land use and land cover (LULC) datasets.

Experimental results indicate that the proposed Global-PCG-10 dataset has a high overall accuracy of 92.08%. The global

area of PCGs is 14,259.85 km², and 69.24% of PCGs are located in Asia, covering around 9,874.51 km2. China has the

largest PCGs area of 8,224.90 km2, accounting for 57.67% of the globe and 83.29% of Asia. Comparisons with other LULC

datasets revealed that PCGs, which should be classified as cropland, are often misclassified as bareland, impervious surfaces,30
ice/snow, etc.

1 Introduction

With the rapid development of modern plastic industry, agricultural plastic-covered greenhouses (PCGs) have been

spreading widely around the globe. According to statistics, the total PCGs area of the world has reached to 1.3 million
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hectares (Tong et al., 2024), accounting for 8 ‱ of the global cropland (global cropland data source from:35
https://www.fao.org/faostat/en/#data/RL). One important reason for the widespread of PCGs is the role in the increase of

both crop yield and quality. Local climatic conditions could be greatly improved for crops with an increased accumulated

temperature and a decreased water evapotranspiration, which is significant especially for regions with adverse climatic

situations (Liu and Xin, 2023; Lu et al., 2018). In addition, the globe witnesses a speedy growth of PCGs recently. Countries

that have a large area of PCGs mainly include China, Spain, Italy, Vietnam, etc. (Feng et al., 2022a; Jiménez-Lao et al., 2020;40
Veettil et al., 2023; Wu et al., 2016).

Although PCGs play a key role in modern agriculture for the improvement of crop yield and quality, the demerits of

PCGs could not be neglected. Firstly, PCGs increase both the cropping and land use intensity. Due to the improvement of

hydrothermal conditions, the crops could now be harvested twice or three times within one year, leading to the

overexploitation of soil nutrients and underground water resources. Along with the cropping intensity, the usage of chemical45
fertilizers and pesticides has also been increased, which would lead to the widespread of soil contamination. Therefore, the

existence of PCGs could be viewed as an important indicator of agricultural non-point source pollution. Secondly, PCGs

have changed the pattern of water evapotranspiration, which hinders the circulation of water and may cause the microclimate

anomaly. Finally, PCGs contribute more greenhouse gas emissions than other farmlands (Niu et al., 2023b; Wang et al.,

2022).50
Therefore, it is of great significance to acquire the accurate spatial distribution of PCGs worldwide to understand where

and how much PCGs are located and constructed globally. Due to the large-scale coverage and cost-effectiveness, Earth

Observation technology especially satellite remote sensing has been widely used for PCGs classification. Commonly used

satellites consist of Landsat-5/7/8, IKONOS, QuickBird, WorldView-1/2/3 and ESA’s Sentinel-2, which all belong to

multispectral satellites (Hao et al., 2019; Ou and Wang, 2022). In addition to the aforementioned multispectral data, some55
researchers have used free RGB remote sensing imagery from Google Earth for PCGs classification (Niu et al., 2023a;

Zhang et al., 2021b). There are three main kinds of classification methods used for PCG mapping: spectral based methods,

machine learning based methods, and deep learning-based methods.

Spectral based methods tried to construct a spectral index which is sensitive to plastic greenhouses. The differences of

PCGs and the background could be enlarged by these spectral indexes, where a threshold is used to extract PCGs (Aguilar et60
al., 2022; Zhao et al., 2004). The merit of spectral index is the unnecessary for training samples, while the demerit is the

uncertainty in obtaining the suitable threshold in large-scale regions. This is because the best threshold for PCGs extraction

may be different in different regions, which is influenced by the spectral variations of both PCGs and the background

(González-Yebra et al., 2018; Lu et al., 2014). Aguilar et al., (2016) and Yang et al., (2017) independently developed

greenhouse indices, the Moment Distance Index (MDI) and the Plastic Greenhouse Index (PGI), using Landsat satellite data.65
Similarly, Zhang et al., (2022a) derived the Advanced Plastic Greenhouse Index (APGI) from Sentinel-2 imagery through

band calculations.
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In terms of machine learning based methods, decision tree, support vector machine (SVM) and random forest (RF) are

commonly used supervised classifiers for PCGs mapping. Compared with spectral index, the merit of machine learning is its

robustness. However, its drawback is the reliance on labeled samples, where the quantity, quality and diversity of these70

samples significantly affect classification performance (Qiu et al., 2022, 2024; Zhang et al., 2024). Additionally, “salt-and-

pepper effect” is unneglectable in machine learning classifications (Du et al., 2022). Recently, Google Earth Engine (GEE)

provides a popular remote sensing cloud platform, which integrates the aforementioned machine learning methods and

provides vast volume of multi-source, multi-temporal remote sensing data, along with powerful cloud computing service

(Feng et al., 2024; Li et al., 2023; Zhang et al., 2022c). This significantly enhances efficiency in large-scale mapping75
applications such as global LULC mapping, global wetland mapping, etc. Zhang et al., (2020, 2021a, 2022b, 2023, 2024b)

used GEE to develop a comprehensive technical workflow for generating multiple global land cover data products, including

a global impervious surface dataset, a global 30-meter LULC dataset, etc. With regard to PCGs classification, Ou et al.,

(2021) generated a 30-year PCGs distribution map in Shandong Province, China, using Landsat series satellite data and the

RF classifier on the GEE cloud platform. Similarly, by utilizing multi-year Landsat series satellite data and RF classifier on80
GEE, Gao et al., (2022) produced a 20-year greenhouse distribution map for the Guanzhong Plain area in Shaanxi Province,

China. Besides, in our previous study, we utilized RF together with a partition modeling strategy to generate the first

publicly released 30-m national PCGs map of China with an overall accuracy of 87% (Feng et al., 2021). Furthermore, we

also tackled the long-neglected issue of the confusion between PCGs and plastic-mulched farmlands (PMFs) by introducing

multi-temporal observations (i.e., film-on and film-off) to exclude PMFs from PCGs (Feng et al., 2022b).85
In recent years, deep learning has achieved remarkable success in the fields of computer vision (CV) and natural

language processing (NLP). Unlike classical machine learning methods, which can only capture the shallow features of input

data, deep learning has a deeper neural network structure and can effectively learn images’ semantic features, leading to a

better robustness and generalization ability (Chen et al., 2022; Niu et al., 2022; Zhang et al., 2023a). However, the

performance of deep learning models heavily depends on the quantity and quality of training samples, which calls for a huge90
workload for sample labeling. The deep learning model has also been applied to PCGs and PMFs classification. For instance.

Zhou et al., (2024) developed a general framework for extracting PCGs, integrating prior knowledge with deep learning

models. Li et al., (2022), Liu et al., (2023), and Chen et al., (2021) employed Google Earth imagery as their data source,

selecting specific regions within Shandong of China or other smaller areas as study sites, and built deep learning models for

PCGs extraction. Additionally, Ma et al., (2021) and Chen et al., (2023) applied high-resolution remote sensing imagery (1-95
m resolution) and an object detection model to extract PCGs across China, however, these datasets have not been released

publicly. In our previous study, we have proposed a dilated and non-local convolutional neural network (DNCNN) for the

accurate delineation of PCGs in several key regions from China, Saudi Arabia, Turkey and Spain and achieved a high OA of

about 90% (Feng et al., 2021; Niu et al., 2023a). In May 2024, the University of Copenhagen released the first publicly

accessible global dataset for large-scale PCGs mapping (Tong et al., 2024), which was derived from PlanetScope100
commercial satellite data and a deep learning model, UNet. While the dataset has good precision and coverage, acquiring
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such high-resolution, world-covered commercial satellite data is costly for most researchers. Therefore, how to use open

access satellite data such as Sentinel-2 and Landsat to generate a global PCGs map still remains a challenging task.

To address this issue, this study utilizes Sentinel-2 satellite image, one of the most influential open-source remote

sensing datasets globally, for PCGs extraction. The temporal consistency and continuous, all-weather Earth observation105
capabilities of Sentinel-2 data effectively mitigate the temporal inconsistency found in commercial high-resolution datasets.

Meanwhile, Sentinel-2 offers the highest resolution open-source remote sensing data, making it well-suited for PCGs

classification tasks. With such high data quality that is widely preferred by researchers, many existing data products are

derived from Sentinel-2, allowing our Global-PCG-10 dataset to integrate with these data products seamlessly. For data

organization, we have designed a global grid system to facilitate PCGs data indexing and accessibility for researchers.110
However, Sentinel-2 satellite image is not perfect. Unlike high-resolution data, the 10-meter resolution Sentinel-2 data

contains a significant number of mixed pixels, which poses challenges for accurate extraction of PCGs. To address this issue,

we utilize multi-temporal Sentinel-2 data to enhance the differentiation between PCGs and other confused land covers such

as PMFs and bareland. Moreover, we have designed a framework that integrates active learning into deep learning model,

improving the robustness of the latter when dealing with large-scale PCGs mapping tasks.115
Overall, we proposed a novel framework to generate the firstly publicly released 10-m global PCGs map in 2020

derived from Sentinel-2. We also analyzed the spatial pattern of PCGs around the globe together with the driving force

behind. Furthermore, we validated the accuracy of Global-PCG-10 and compared with other studies to further show its

merits and demerits.

2 Dataset120

2.1 Cropland Layer

It should be noted that almost all of the PCGs lie in the cropland, where other land covers such as forest, water bodies

and grassland witness no PCGs. Therefore, we resort to the global cropland layer to eliminate the classification errors (i.e.,

mainly false positives) in the regions that have a very low probability of PCGs. Nonetheless, there still might be PCGs that

lie outside of the cropland layer. To tackle this issue, firstly, we divided the globe into a total of 2,592 grids with a size of 5°125
×5° in the WGS84 projection, while retaining those grids that contained cropland cover. These retained grids extend, which

is larger than the initial cropland, were designated as the first-level classification unit for data organization (i.e., blue grids in

Figure 1). Each 5°×5° grid was further divided into 25 grids of 1°× 1°, which served as the second-level classification unit.

Ultimately, we retained the grids that contained PCGs predictions in the second-level classification units (i.e., orange grids in

Figure 1). In specific, we compared a series of open-access global LULC maps and selected GLC_FCS30D (Zhang et al.,130
2023b) as cropland layer due to its good performance.
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Figure 1. Spatial distribution of Cropland, PCGs grid and classification grid. (Note*: The yellow pixels indicate the cropland layer,
which sources from the GLC_FCS30D cropland category (Zhang et al., 2023b), the orange grids stand for 1-degree grids that
contain PCGs classification results, and the blue grids represent the original 5-degree grids used for PCGs classification.)135

2.2 Satellite datasets

Sentinel-2 multispectral images were used in this study. As the important part of ESA’s Copernicus Programme,

Sentinel-2 aims to provide global Earth Observation data at a fine scale with 10 meters captured by MultiSpectral Instrument

(MSI) with a total of 13 bands and a swath width of 290 km. Actually, Sentinel-2 is a constellation consisting of two

satellites, i.e., Sentinel-2A and Sentinel-2B, which are in the same sun-synchronous orbit while phased at 180° to each other.140
Several reg-edge bands that are very sensitive to vegetation have been designed in Sentinel-2, which could capture a more

detailed conditions of vegetated regions than other satellites such as Landsat and MODIS.

In addition, Sentinel-2 has two major merits over Landsat for PCGs mapping around the globe. Firstly, Sentinel-2 has a

finer spatial resolution of 10-m. When compared with Landsat data at 30-m resolution, PCGs on Sentinel-2 images show a

rather neat and tidy boundaries. Besides, Sentinel-2 witness much less mixed pixels than Landsat due to the increase of145
spatial resolution. Secondly, the revisit time of Sentinel-2 is 5 days at the equator while 2-3 days at mid-latitudes, which is

much shorter than the 16 days of Landsat. The frequent revisit of Sentinel-2 is very important for large-scale PCGs mapping

performance, since it increases the possibility to composite could-free images, especially for those cloudy and rainy regions

around the world.
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3 Method150

Figure 2 depicts the overall workflow of this study, which consists of three stages. 1) Stage-1: generating initial PCGs

labels via random forest classifier and the GEE cloud platform, which aims to release human labor in PCG label annotation;

2) Stage-2: producing accurate PCGs classification results through a deep learning model combined with an active learning

strategy, which adopts a coarse-to-fine procedure to generate high-quality PCGs maps; 3) Stage-3: finalizing global PCGs

mapping and conducting spatial analysis.155

Figure 2. Schematic flowchart to produce the Global-PCG-10 dataset.

Specifically, firstly, both PCG and non-PCG samples were labeled on GEE platform in the format of point. The

locations of samples were acquired from both visual inspection on very high resolution images on Google Earth and our

previous field survey records. Multi-temporal and cloudless Sentinel-2 images in 2020 were composited by GEE, from160
which a multi-dimensional feature space for PCGs classification was constructed, including spectral indices (i.e., NDVI,

MNDWI, etc.), texture features and recently published plastic greenhouse indexes (i.e., APGI, PGHI, etc.). The RF classifier

was then used to generate initial labels. Afterwards, the label dataset was split into training and validation sets in 8:2, and the

APC-Net model was built using the PyTorch framework. The initial and weak labels were refined through the active learning

strategy with the APC-Net model, continuously improving the PCGs classification performance. Finally, post-processing165
was applied to the PCGs classification results to eliminate isolated noises and then followed by spatial analysis and mapping.
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3.1 Stage-1: PCGs weak label generation

In the field of large-scale remote sensing classification, the quantity and quality of labels are very important. However,

if using only human annotation, it would be time-consuming to acquire enough samples for global PCGs classification. To

tackle this issue, we first employed GEE and random forest to generation the initial PCGs classification maps, from which170
samples (i.e., denoted as weak samples) are refined to train a deep semantic segmentation model.

Figure 3. Reference samples and their position in the world. (Note*. Blue circle represents the “salt and pepper effect” in the
reference samples. The size of the reference samples is 512×512, and the background map of the ‘Position’ column is from
©Google Earth imagery.)175
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The weakly labeled samples used in this study were generated through the RF classifier on GEE platform and sourced

from regions with large amount of PCGs. The size of each sample is 512×512. Figure 3 shows several examples from six

typical regions, including Weifang, China (Asia); Almeria, Spain (Europe); Uruapan, Mexico (North America); Campinas,

Argentina (South America); Agadir, Morocco (Africa); and Coffs, Australia (Oceania). Figure 3 depicts that the “salt-and-

pepper effect” exists in RF classification results. This is also the reason why we introduce the second stage (i.e., deep180
learning & active learning) to refine PCGs maps. Notably, misclassifications are in areas with highly reflective surfaces,

such as factory rooftops, beaches, deserts, and bareland.

3.1.1 Multi-temporal Sentinel-2 imagery collection

The Sentinel-2 images were loaded through ee.ImageCollection() function on GEE, and generated cloud-free images

for selected time periods by image property "CLOUDY_PIXEL_PERCENTAGE", which could minimize the impact of cloud185
cover. Meanwhile, a total of seven bands (B1, B2, B3, B4, B8, B11, B12) from Sentinel-2 data are loaded for feature

extraction and RF classifier.

Based on our previous research (Feng et al., 2022a), using Sentinel-2 satellite data for PCGs extraction often encounters

confusion with PMFs and bareland. This is mainly due to the spectral similarities among PCGs, PMFs and bareland. To

address this issue, we introduced multi-temporal observations to enhance inter-class separability. Here, as an example, we190
selected 100 sample points for PCGs, PMFs and bareland in part of Gansu province, Northwest China (Figure 4). From the

NDVI time-series spectral curves in 2020 (Figure 4c), it is observed that both spring (highlighted in grey) and summer

(highlighted in green) witness the differences between PCGs, PMFs and bareland. As a result, we selected multi-spectral

Sentinel-2 images in spring (April-June) and summer (July-September) periods as input data in this study area. By

incorporating multi-temporal data, we can mitigate the effect of feature confusion in single time-phase images, and get more195
precise PCGs classification results.
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Figure 4. Multiple-temporal NDVI profile of bareland, PCGs and PMFs in a representative sub-region of Gansu Province, China.
(a) Sentinel-2’s spring true color image. (b) Sentinel-2’s summer true color image. (c) Time-series NDVI value trend of bareland,
PCGs and PMFs.200

3.1.2 Feature extraction

The role of feature extraction is to transform remote sensing data from the original pixel space to the feature space, in

which the difference and separability of PCGs and non-PCGs would be further enlarged. Specifically, a multi-dimensional

and robust feature space is constructed considering the integration of spectral features and texture features.

1> Spectral features205
According to our previous study (Feng et al., 2022a) and other relevant researches (Ou et al., 2021; Zhang et al., 2022a),

we mainly consider the following spectral indices, including Normalized Difference Vegetation Index (NDVI) (Huang et al.,
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2021), Soil Adjusted Vegetation Index (SAVI) (Huete, 1988), Normalized Difference Built-up Index (NDBI) (Zha et al.,

2003) and Modified Normalized Difference Water Index (MNDWI) (Xu, 2006). Moreover, several recently published PCG

indexes are also included, consisting of PMLI (Lu et al., 2014), APGI (Zhang et al., 2022a), PGHI (Ji et al., 2020), PGI210
(Yang et al., 2017), and RPGI (Yang et al., 2017).

2> Textual features

It should be noted that PCGs have very distinct geometrical and textual characteristics, manifesting a rather regular

rectangular appearance. Therefore, the inclusion of textual features could assist in the separation of PCGs from non-PCGs.

Specifically, we consider the six widely used textural features that derived from grey-level co-occurrence matrix (GLCM),215
including mean (MEA), standard deviation (STD), homogeneity (HOM), dissimilarity (DIS), entropy (ENT) and angular

second moment (ASM).

3.1.3 Random Forest

Random Forest is utilized as the PCGs classification model to generate the initial samples. RF belongs to an ensemble

learning method while the base classifier is decision tree. The final output of RF is determined by the majority vote from all220
the decision trees involved. RF modeling involves two random selection steps. Firstly, the training samples of each base

decision tree is randomly selected through bootstrapping. Secondly, the features used to split each node of the decision tree

is also randomly selected. These two random processes effectively increase the robustness of RF on multi-dimensional data,

and enable RF to cope with collinearity where the latter is an unavoidable issue in remote sensing data. Due to its simplicity

and robustness, RF has been widely adopted in remote sensing applications such as urban vegetation mapping, water225
extraction, crop classification and achieves promising performance (Mei et al., 2024; Sui et al., 2022; Zhang et al., 2024a). In

this study, the RF classifier was configured using the ee.Classifier.smileRandomForest() function in GEE, the parameters set

as follows: numberOfTrees was set to 150, and variablesPerSplit was set to 4.

3.2 Stage-2: Coarse-to-fine PCGs classification via deep learning

3.2.1 APC-Net model230

This study utilized our previously proposed deep semantic segmentation model, APC-Net, as the core model to derive

final PCGs maps in a coarse-to-fine manner (Niu et al., 2023a). This network effectively combines local with global

information to improve the model’s capability in complex landscapes worldwide through multi-scale feature learning.
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Figure 5. Overview of proposed APC-Net model235

Specifically, APC-Net is divided into two major parts: the encoder and the decoder (Figure 5). The encoder, which

serve as the core component of APC-Net, receives remote sensing images with a size of 512×512 and extracts highly

representative features using its multi-level network structure, which improves the internal consistency within the same land

covers while enhancing the distinction between different land cover categories. The encoder consists of convolutional layers,

MDCN (i.e., multi-scale dilated convolutional network) modules and a non-local module. Herein, the MDCN modules240
effectively learn local features at multiple scales by integrating multi-scale dilation convolution, addressing the issue of scale

variation in PCGs classification. The non-local module focuses on capturing global contextual information and enhances the

model’s understanding of the whole image scene. The decoder’s role is to recover information from the downsampled

feature maps generated by the encoder and produce the final segmentation map. The decoder employs bilinear interpolation

for upsampling and skip connections from encoder to further fuse and refine the features. Finally, the output is PCGs245
classification results with the same size (512×512) as the input images.

3.2.2 Active Learning strategy

In this study, the active learning strategy is employed to optimize initial labels by refining and reorganizing via human

intervention. It aims to reduce the false-positive rate hence to improve the classification accuracy. It works as follows. First,

the APC-Net model is trained on the initial weak labels (Input Dataset in Figure 6), which are generated from the RF250
classifier, and saving the best model weights. Then, these weights are applied to predict the results of the input dataset,

producing a set of updated labels. Subsequently, the classification performance is evaluated according to both accuracy

evaluation and visual inspection. If the results do not meet the expected standard, initial labels with significant updates are

selected to form a new input training dataset. The process is repeated until satisfactory results are achieved, or until

performance stabilizes with no further improvements.255
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Figure 6. Active learning strategy utilized.

3.2.3 Training Details

In this section, we provide a detailed description of the model training process, including the design of the hybrid loss

function, the choice of optimizer and the configuration of model hyperparameters. Specifically, this study combines Cross260
Entropy Loss (CE Loss) and Dice Loss to create a hybrid loss function for the PCGs semantic segmentation task. In this

hybrid loss function, CE loss primarily measures the discrepancy between labels and model predictions, while Dice loss

mitigate the issue of class imbalance, ensuring robust model performance even dealing with underrepresented categories.

(1)

(2)265

where denotes the number of samples, is the true label of the th sample, is the corresponding predicted
probability, and is a very small constant in case of a division by zero error.

A hybrid loss function is designed by combining the merits of CE loss and Dice loss for semantic segmentation. The
formula as follows, where represents the weight ratio between the two loss terms, equals to 0.2.

(3)270

Regarding the optimizer, the widely-used Adam optimizer was applied for training APC-Net, with an initial learning

rate of 1e-4. APC-Net was constructed using the PyTorch 1.12.1 framework. The dataset was divided into training and

validation sets using an 8:2 ratio. The training set comprises 14,825 samples, while the validation set includes 3,707 samples.
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Each sample has a resolution of 512 × 512 pixels. Additionally, the model was trained with a GPU of NVIDIA GeForce

RTX 3090 with 24 GB memory, the Intel Core i7-12700KF CPU@5.00 GHz, and the Ubuntu 20.04 operating system.275

3.3 Accuracy assessment

We adopt both qualitative and quantitative accuracy assessment to justify the classification performance of Global-

PCG-10. The former is to compare Global-PCG-10 with remote sensing images to check the obvious classification errors,

while the latter is to calculate a series of accuracy metrics including overall accuracy (OA), recall, precision, F1-score, etc.

Actually, OA is derived from the confusion matrix that are calculated in the test dataset, whose formulas are as follows.280

(4)

where N denotes the total number of samples, r represents the number of classes, and refers to the diagonal elements
of the confusion matrix.

Considering that PCGs mapping belongs to a binary classification problem, therefore, the widely used metrics in binary

classification such a recall, precision and F1-score would also be a good choice to justify the performance of Global-PCG-10.285
These metrics have also been used by Fu et al. (2021), where the three metrics are used for the accuracy evaluation of

China’s marine aquaculture mapping results.

(5)

(6)

(7)290

where TP represents true positives, i.e., the number of correctly classified PCGs pixels, FN denotes false negatives, i.e.,

the number of PCGs pixels misclassified into non-PCGs, while FP stands for false negatives, i.e., the number of non-PCGs

pixels misclassified into PCGs. In general, recall and precision are contradictory to each other. A high recall also brings in a

high FP, which would lead to low prevision. On the other hand, F1-score is an integrated index that takes into consideration

of both recall and precision. F1-score has a value between 0 and 1, where a higher F1-score means a better classification295
performance.

4 Results and discussion

4.1 Spatial pattern of Global-PCG-10

Figure 7 illustrates the global distribution of PCGs in the mapping unit of 0.1° grid instead of using per-pixel PCGs

classification results. This is because the predicted PCGs cover only a small fraction of the entire globe. If we put the per-300
pixel results on map, PCGs would be overwhelmed by background regions. To tackle this issue, we change the mapping unit
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from per-pixel (i.e., 10 m) to 0.1° grid through zonal analysis, which could enhance the visual effect of PCGs spatial

distribution globally.

As depicted in Figure 7, the global PCGs mainly locate in East Asia and Mediterranean regions. Specifically, in East

Asia, China has the largest area of PCGs, where most PCGs are clustered in North China Plain (Eastern China), Liaohe Plain305
(Northeastern China), Sichuan Basin and intermountain basin of Yunnan Province (Southwestern China). In Mediterranean

region, PCGs are mainly distributed along the coasts in Iberian Peninsula, Apennine Peninsula, Balkan Peninsula and Nile

Delta. The widespread presence of PCGs in these regions, where are characterized by both a well-developed and a long

history of farming, can be attributed to two key factors. First, the use of PCGs allows for the expansion of both acreage and

production of high-quality vegetables, fruits, flowers, and other cash crops. This is particularly beneficial in China, where it310
could effectively increase income of local farmers. Second, most of these PCGs are located in plains or basins, close to urban

areas, and have relatively abundant water resources. These geographic advantages provide favorable conditions for irrigation

and product marketing, which could help to ensure the efficiency and output of facility-based agriculture.

Meanwhile, Figure 7 also witnesses several regions with nearly no PCGs, including North America, Northern Eurasia,

Sub-Saharan Africa and Oceania. Two reasons may account for this. On one hand, in North America, the agricultural mode315
is large farms facilitated with advanced agricultural machinery and less workers. Considering that PCGs are rather labor

intensive and not easy for machinery to work, therefore, they are not widespread in both United States and Canada. On the

other hand, in areas like South America, sub-Saharan Africa, Northern Eurasia and Oceania, the lower level of agricultural

development and limited infrastructure hinder the adoption and growth of PCGs. Additionally, in China and along the

Mediterranean coast region, profit-driven small holders are the majority. Under this circumstance, together with policy320
incentive, farmers choose to build PCGs to produce cash crops, leading to the prevalence of PCGs in these regions.

In addition, we calculate the PCG area along both longitude and latitude in an interval of 1 ° and depict the area

histogram in Figure 7. It indicates that the global PCGs mainly locate in the Northern Hemisphere, especially between 30°N

and 40°N with a peak at about 36°N, which accounts for 65.84% of the total PCGs area. Meanwhile, these regions just

correspond to North China Plain and Mediterranean region. From the perspective of longitude, most PCGs are clustered in325
the Eastern Hemisphere, while the Western Hemisphere only witnesses a high PCG density on the west side of the Mexican

Plateau, the west side of the Chilean Cordillera, and the La Plata Plain (river inlets) of Argentina.
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Figure 7. Global PCGs spatial distribution in 2020. The spatial resolution of the map is 0.1°.

Moreover, we calculate both the PCGs area and the ratio of PCGs to cropland area in each country. The former reflects330
the production scale of PCGs while the latter stands for the proportion or importance of PCGs in local agricultural activities.

The total area of global PCGs reached to 14,259.85 km² in 2020, while Asia has the largest PCGs area of 9874.51 km2,

accounting for 69.24% of the total global PCGs. Europe ranks the second with a PCGs area of 2530.56 km2 and a PCGs ratio

of 17.75%. North America, Africa, South America and Oceania witness a decent PCG area of 819.12 km2, 668.82 km2,

213.92 km2 and 152.91 km2, respectively. From the perspective of country, China ranks the first with a PCG area of 8224.90335
km2. Meanwhile, China accounts for 83.29% of PCGs in Asia and 57.67% in the globe. Spain ranks the second in the world

and the first in Europe with a PCG area of 803.26 km2. Other countries with a PCGs area over 500 km2 include Mexico, Italy

and South Korea. On the contrary, countries in Sub-Saharan Africa, Central Asia and other countries like Mongolia, Russia,

United States and Canada, have very few PCGs.
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340
(a)

(b)
Figure 8. PCGs area statistic mapping in 2020. (a) Area of PCGs. (b) Ratio of PCGs to cropland.

Figure 8b illustrates the ratio of PCGs area to cropland. It indicates that although China has the largest PCGs region, its345
PCGs ratio (0.64%) is relatively lower. The country with the highest PCGs ratio is Kuwait (5.23%). Other Mediterranean
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countries such as Italy and Turkey also have a relatively higher PCG ratio. In Eastern Asia, South Korea has a high PCGs

ratio although they have small PCGs regions, which manifests the important role of PCGs in these countries. The main

reason is that these countries are mostly situated in mountainous, hilly or Gobi terrain conditions, leading to a limited

amount of usable cropland. In such conditions, PCGs, as a form of intensive facility-based agriculture, can overcome the350
limitations of the local natural climate. It also effectively optimizes the structure of the local agriculture industry, increases

the diversity of agricultural products, and reduces reliance on imported fruits, vegetables, and other cash crops.

4.2 Reliability of Global-PCG-10

This section would analyze and justify the reliability of Global-PCG-10 from both visual inspection and accuracy

assessment results. Here, we present both the remote sensing images and the corresponding Global-PCG-10 maps from355
several typical regions across the world, including Shouguang of China, Lam Dong of Vietnam in Asia; Almeria of Spain,

Ragasu of Italy in Europe; Outlet of Morocco, Damous of Algeria in Africa; Samis of the U.S., Zapotitan of Mexico in North

America; Lisandro of Argentina, Bom Repouso of Brazil in South America; Robinvale of Australia, Manngatepere of New

Zealand in Oceania. As shown in the Figure 9, our classification results are excellent in regions with a high density of

greenhouses, with virtually no noticeable omission of PCGs. Furthermore, no significant false-positive errors were observed,360
even in areas with a sparse distribution of PCGs (e.g., the United States, Brazil, etc.). Additionally, Global-PCG-10

demonstrates reliable recognition of PCGs in various global climate zones, including humid climates, Mediterranean

climates, and others.

Details of Global-PCG-10 illustrate that we have achieved a very good PCGs map with accurate and neat boundaries

under the spatial resolution of 10 m. The confusion between PCGs and non- PCGs is not obvious and the speckle noises in365
the background have been greatly suppressed. Two reasons may account for this. First, the utilization of multi-temporal

Sentinel-2 satellite image could reduce the misclassification and “salt and pepper effect” caused by PMFs, bareland, and

other land cover classes. Second, the PCGs classification framework, which integrates active learning strategy into the deep

learning model, enables a coarse-to-fine classification process.

https://doi.org/10.5194/essd-2024-538
Preprint. Discussion started: 9 January 2025
c© Author(s) 2025. CC BY 4.0 License.



18

370
Figure 9. Details of the Global-PCG-10 map. (Note*. Taking (a) as an example, from left to right is the location in the world, RGB
Sentinel-2 image, Global-PCG-10 map and detailed fused mapping result of the blue rectangle region.)

To further justify the reliability of Global-PCG-10 from a quantitative perspective, we have selected a global test

dataset for accuracy assessment based on the sampling grid (Figure 10). The test dataset includes both PCGs and non- PCGs

samples, with a number of 20,500 for each category. It should be noted that all the test samples and training samples are375
spatially independent from each other with no overlap to maintain the reasonability.
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Figure 10. Spatial distribution of global test samples.

Table 1 indicates that Global-PCG-10 yields a high accuracy with an OA of 92.08%. Since the test dataset covers the

entire globe with a sufficient amount, it could verify the high quality of Global-PCG-10.380

Table 1. Confusion matrix.

Classification results
Validation Data

Non-PCG PCG UA (%)

Non-PCG 20498 2 99.99

PCG 3243 17257 84.18

PA (%) 86.30 99.99

OA (%) 92.08

Note*: PA, Producer’s Accuracy; UA, User’s Accuracy; OA, Overall Accuracy.

We also calculated other accuracy metrics and the results are in Table 2. It indicates that Global-PCG-10 has both a

high recall, precision and F1-score of 84.18%, 99.99% and 91.41%, respectively, which further justifies the performance of

the published dataset.385

Table 2. Accuracy indicators.

Dataset Recall (%) Precision (%) F1-score (%) OA (%)

Global-PCG-10 84.18 99.99 91.41 92.08
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4.3 Comparison with other studies

4.3.1 Comparison with global LULC dataset

As a distinct land cover category, PCGs should belong to cropland. However, to the best of our knowledge, PCG has

not been fully considered in previously released global LULC datasets. Therefore, in this section, we compare our Global-390
PCG-10 with other released global LULC datasets. To ensure temporal consistency, we only selected LULC datasets

containing 2020 data products comparison, including Dynamic World (Brown et al., 2022), ESA World Cover (Zanaga et al.,

2021), ESRI Land Cover (Karra et al., 2021), FROM-GLC30 (Yu et al., 2022), and GLC_FCS30D (Zhang et al., 2023b).

Among these, Dynamic World, ESA World Cover, and ESRI Land Cover have a spatial resolution of 10 m, while FROM-

GLC30 and GLC_FCS30D have a spatial resolution of 30 m. Since the classification system of each dataset is different, this395
study is based on the land cover types of the selected typical regions and uses GLC_FCS30 as a reference. And the land

cover types are unified into the following nine categories: Cropland, Shrubland, Grassland, Bareland, Wetland, Impervious

surface, Forest, Water Body and Ice/snow.

As shown in Figure 11, the left part presents the Sentinel-2 true color images of typical regions along with their

corresponding Global-PCG-10 maps, while the right part displays the mapping results from various LULC datasets. It is400
quite clear that these LULC datasets have low classification performance in PCGs regions. Specifically, Dynamic World

erroneously classifies PCGs as impervious surfaces (Figure 11a, b, f, g), Ice/snow (Figure 11c, d, f, h), and bareland (Figure

11i). ESA World Cover misclassifies PCGs as impervious surfaces (Figure 11d, h) and bareland (Figure 11a, e, i). ESRI

Land Cover misclassifies PCGs as impervious surfaces (Figure 11b, f, i), bareland (Figure 11d), and grassland (Figure 11h).

FROM-GLC30 misclassifies them as impervious surfaces (Figure 11a, f, i, j) and grassland (Figure 11a, b, i, j).405
GLC_FCS30D similarly misclassifies PCGs as impervious surfaces (Figure 11d, f, h).

Above all, PCGs are commonly misclassified into four categories: impervious surfaces, bareland, grassland, and

Ice/snow. Specifically, impervious surfaces and bareland, such as white-roofed factories, villages, and photovoltaic panels,

may share similar spectral or texture features with PCGs, leading to obvious misclassification. Additionally, the phenology

of crops grown within greenhouses can also affect the spectral features of PCGs, making them resemble grassland at certain410
times and leading to misclassification. Besides, the reflectance of PCGs in some regions is similar to that of clouds and snow,

which might explain why PCGs are sometimes misclassified into these categories.

Meanwhile, Figure 11 also indicates some LULC datasets exhibit good performance in classifying PCGs into cropland.

For instance, Figure 11b, c of ESA World Cover, Figure 11a, c, e of ESRI Land Cover, Figure 11d, e, h of FROM-GLC30,

and Figure 11a, b, c, e, g, i of GLC_FCS30D. The classification results successfully identify PCGs as cropland with greater415
precision in these cases.
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Figure 11. Comparison of Global-PCG-10 with other global LULC products.
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4.3.2 Comparison with other PCG dataset

Research on large-scale extraction of PCGs includes several excellent efforts. Our previous study released the first 30-420
m national-scale PCGs dataset of China in 2019 (Feng et al., 2022a), and in May 2024, the University of Copenhagen

published a global 3-m PCGs dataset also in 2019, both of which are open access. Additionally, Wuhan University

conducted PCGs mapping in 2016 using high-resolution satellite data and deep learning techniques (Chen et al., 2023; Ma et

al., 2021), and the Chinese Academy of Sciences conducted a nearly 20-year extraction and spatial analysis of PCGs in

China using Landsat 5/8 data on GEE cloud platform (Liu and Xin, 2023; Ou et al., 2019). However, these two studies'425
datasets have not been publicly released. Therefore, this study only compares the 3-m PCGs dataset from the University of

Copenhagen.

Figure 12. Comparison with other PCGs dataset. (Note*. Light red depicts our Global PCG-10, light blue represents Tong et al.,
and green circles/rectangles mark the differences.)430

Figure 12a and b illustrate the mapping results in regions with different PCGs densities. In Figure 12a, it shows both

datasets exhibit very similar spatial patterns in densely distributed PCGs regions. Figure 12b demonstrates that Global-PCG-

10 can still accurately capture the greenhouse layout even in areas with sparse PCGs distribution, performing on par with
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Tong et al., (2024) acquired from 3-m commercial satellites. Figure 12c highlights the case where Global-PCG-10 accurately

detected greenhouses while Tong et al., (2024) missed. Figure 12d also shows a case of missed detection by Tong’s dataset,435
but unlike Figure 12c, the missed detection in Figure 12d is more likely due to missing of satellite image. The rectangle

indicates that the data is split into two parts by an “invisible” line. Such situation is commonly caused by improper data

organization or gaps of source satellite data. On the contrary, we used Sentinel-2 satellite data, with its dual constellation

providing a 5-day revisit cycle, which ensures minimal gaps in remote sensing imagery, thereby delivering high-quality data

support for PCGs mapping globally.440

4.4 Advantages and limitations of Global-PCG-10

As previously mentioned, Global-PCG-10 is a globally comprehensive, high-quality dataset built on open-source

Sentinel-2 data, demonstrating high classification accuracy. The Global-PCG-10 utilizes free and open-source Sentinel-2

data, significantly reducing dataset production costs. Additionally, it features a more organized data structure. In the future,

this dataset is expected to become an important data source in the fields of agriculture, environment, ecology, and land use445
and cover change (LUCC) research. To enhance mapping precision, this study introduces multi-temporal remote sensing

imagery data, which effectively mitigates the confusion of PMFs and bareland with PCGs. Additionally, we adopted an

approach that combines the active learning strategy and the deep learning model. This method allows the model to learn

more robust PCG features by optimizing weak labels, which could significantly reduce false positives and improve the

classification performance.450
However, there are still some limitations of Global-PCG-10. Firstly, small sized or isolated PCGs are not fully extracted

due to the limitation of 10 m spatial resolution of Sentinel-2 data. Future study would introduce remote sensing data with an

even higher spatial resolution than 10 m to tackle this issue. Secondly, we now only provide the global PCGs map for the

year of 2020. In the future, we would insist in producing time-series global PCGs map for further understanding of PCGs

and its environmental effect. Thirdly, the technical approach proposed in our research, which integrates deep learning with455
active learning strategies, is still a semi-automatic weak label updating process and has not yet achieved fully end-to-end

task training. In future research, we will explore end-to-end weak label updating methods to achieve a more efficient and

automated data processing workflow.

5 Code and data availability

The code for generating the initial labels of PCGs is publicly available via the following link on Google Earth Engine:460
https://github.com/MrSuperNiu/Greenhouse_Classification_GEE. It consists of feature extraction, RF classification, etc.

Additionally, the code of APC-Net is accessible through the following link: https://github.com/MrSuperNiu/APCNet.

The Global-PCG-10 dataset is stored on figshare, and can be downloaded here:

https://doi.org/10.6084/m9.figshare.27731148.v2 (Niu et al., 2024). The dataset contains 245 5°×5° grids, and each of them

is named using the grid's 'id' attribute. Within each 5°×5° grid file, there are 1°×1° TIF files, named in the format465
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gridID_subgridID_PCG_Result.tif. Here, gridID represents the 'id' of the 5°×5° grid containing the 1°×1° subgrid, and

subgridID represents the 'id' of the 1°×1° grid. The 5°×5° grids and 1°×1° grids, corresponding to the Classification Grid

and PCG Grid in Figure 1, are saved in SHP format within the Global-PCG-10 dataset to facilitate users in indexing the

corresponding PCG classification *.tif files. Additionally, the cropland and PCG area statistic data are contained in the Excel

file, SATA_Cropland&PCG.xlsx. Please refer to the attached supplementary document Supplementary File.docx for more470
detailed data organization information.

6 Conclusions

As an important representative of facility agriculture, PCGs play a crucial role in enhancing crop yields and increasing

local agricultural income through their ability to retain soil moisture and temperature. This study constructed the first global

PCGs dataset with a high spatial resolution of 10 meters based on deep learning and active learning. Specifically, we first475
divided the globe into 2,592 grids with a size of 5°×5° and retained those containing cropland as classification units. Then,

we obtained pre-processed multi-temporal Sentinel-2 data through GEE and used random forest to generate initial labels to

build the training dataset. Next, we developed a classification workflow that integrates the active-learning and deep learning

to optimize weak labels, enhance model robustness, and reduce false positives. Subsequently, we used the trained deep

learning model to predict the global distribution of PCGs, generating the Global-PCG-10 dataset. Finally, we analyzed the480
spatial distribution patterns and driving forces of global PCGs, compared the proposed dataset with other open-source

datasets.

Experimental results show that the global PCGs area is approximately 14,259.85 km² in 2020. PCGs are mainly

distributed between 30°N and 40°N, accounting for about 65.84% of the total area. Asia holds the most extensive area of

PCGs, covering approximately 9874.5 km², accounting for 69.24% of the global total. China, not only has the largest area of485
PCGs in Asia but also ranks first worldwide, with a PCGs area of 8,224.90 km2, making up 57.67% of the global and

83.29% of the Asia. We validated the Global-PCG-10 dataset using 40,500 randomly sampled points, which indicates that

the overall accuracy is satisfactory of 92.08%.

Additionally, we compared the Global-PCG-10 dataset with several open-source global LULC datasets. The findings

reveal that PCGs, which should be classified as cropland, are often misclassified as bareland, impervious surfaces, Ice/snow,490
and grassland in those LULC datasets, which could negatively impact the estimation of global cropland areas. Compared to

other publicly available PCG datasets, Global-PCG-10 demonstrates excellent accuracy in the distribution of PCGs. Besides,

it offers a better data organization for relevant researchers. In future research, we will continue generating time-series global

PCGs maps from multi-source remote sensing data.
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