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Abstract. Plastic-covered greenhouse (PCG) is widely used in agricultural production due to its temperature control, water 

conservation, and wind protection characteristics, significantly enhancing crop yields and economic benefits. However, its 

long-term and extensive use can lead to environmental issues, such as the accumulation of local toxic gases and the degradation 20 

of soil physicochemical properties. Therefore, obtaining a comprehensive distribution of PCGs is essential. To monitor PCGs 

on a large scale, this study developed a novel approach for producing the first global 10-meters PCGs dataset (Global-PCG-

10) with high-quality. Firstly, the globe was divided into multiple 5-degree grids, and grids for classification were organized 

based on global cropland layer. Then, multi-temporal Sentinel-2 data and initial labels of PCGs were obtained through Google 

Earth Engine (GEE) to create a training set for deep learning. Next, initial labels were optimized with the active learning 25 

strategy combined with the deep learning model, APC-Net. Finally, the PCGs classification results were predicted, spatially 

analyzed, and compared with publicly released land use and land cover (LULC) datasets. Experimental results indicate that 

the proposed Global-PCG-10 dataset has a high overall accuracy of 98.04% ± 0.1292.08%. The global area of PCGs is 

14,259.85 km², and 69.24% of PCGs are located in Asia, covering around 9,874.51 km2. China has the largest PCGs area of 

8,224.90 km2, accounting for 57.67% of the globe and 83.29% of Asia. Comparisons with other LULC datasets revealed that 30 

PCGs, which should be classified as cropland, are often misclassified as bareland, impervious surfaces, ice/snow, etc. 

1 Introduction 

With the rapid development of modern plastic industry, agricultural plastic-covered greenhouses (PCGs) have been 

spreading widely around the globe. According to statistics, the total PCGs area of the world has reached to 1.3 million hectares 
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(Tong et al., 2024), accounting for 8 ‱ of the global cropland (global cropland data source from: 35 

https://www.fao.org/faostat/en/#data/RL). One important reason for the widespread of PCGs is the role in the increase of both 

crop yield and quality. Local climatic conditions could be greatly improved for crops with an increased accumulated 

temperature and a decreased water evapotranspiration, which is significant especially for regions with adverse climatic 

situations (Liu and Xin, 2023; Lu et al., 2018). In addition, the globe witnesses a speedy growth of PCGs recently. Countries 

that have a large area of PCGs mainly include China, Spain, Italy, Vietnam, etc. (Feng et al., 2022a; Jiménez-Lao et al., 2020; 40 

Veettil et al., 2023; Wu et al., 2016). 

Although PCGs play a key role in modern agriculture for the improvement of crop yield and quality, the demerits of 

PCGs could not be neglected. Firstly, PCGs increase both the cropping and land use intensity. Due to the improvement of 

hydrothermal conditions, the crops could now be harvested twice or three times within one year, leading to the overexploitation 

of soil nutrients and underground water resources. Along with the cropping intensity, the usage of chemical fertilizers and 45 

pesticides has also been increased, which would lead to the widespread of soil contamination. Therefore, the existence of PCGs 

could be viewed as an important indicator of agricultural non-point source pollution. Secondly, PCGs have changed the pattern 

of water evapotranspiration, which hinders the circulation of water and may cause the microclimate anomaly. Finally, PCGs 

contribute more greenhouse gas emissions than other farmlands (Niu et al., 2023b; Wang et al., 2022). 

Therefore, it is of great significance to acquire the accurate spatial distribution of PCGs worldwide to understand where 50 

and how much PCGs are located and constructed globally. Due to the large-scale coverage and cost-effectiveness, Earth 

Observation technology especially satellite remote sensing has been widely used for PCGs classification. Commonly used 

satellites consist of Landsat-5/7/8, IKONOS, QuickBird, WorldView-1/2/3 and ESA’s Sentinel-2, which all belong to 

multispectral satellites (Hao et al., 2019; Ou and Wang, 2022). In addition to the aforementioned multispectral data, some 

researchers have used free RGB remote sensing imagery from Google Earth for PCGs classification (Niu et al., 2023a; Zhang 55 

et al., 2021b). There are three main kinds of classification methods used for PCG mapping: spectral based methods, machine 

learning based methods, and deep learning-based methods. 

Spectral based methods tried to construct a spectral index which is sensitive to plastic greenhouses. The differences of 

PCGs and the background could be enlarged by these spectral indexes, where a threshold is used to extract PCGs (Aguilar et 

al., 2022; Zhao et al., 2004). The merit of spectral index is the unnecessary for training samples, while the demerit is the 60 

uncertainty in obtaining the suitable threshold in large-scale regions. This is because the best threshold for PCGs extraction 

may be different in different regions, which is influenced by the spectral variations of both PCGs and the background 

(González-Yebra et al., 2018; Lu et al., 2014). Aguilar et al., (2016) and Yang et al., (2017) independently developed 

greenhouse indices, the Moment Distance Index (MDI) and the Plastic Greenhouse Index (PGI), using Landsat satellite data. 

Similarly, Zhang et al., (2022a) derived the Advanced Plastic Greenhouse Index (APGI) from Sentinel-2 imagery through 65 

band calculations. 

In terms of machine learning based methods, decision tree, support vector machine (SVM) and random forest (RF) are 

commonly used supervised classifiers for PCGs mapping. Compared with spectral index, the merit of machine learning is its 
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robustness. However, its drawback is the reliance on labeled samples, where the quantity, quality and diversity of these samples 

significantly affect classification performance (Qiu et al., 2022, 2024; Zhang et al., 2024a). Additionally, “salt-and-pepper 70 

effect” is unneglectable in machine learning classifications (Du et al., 2022). Recently, Google Earth Engine (GEE) provides 

a popular remote sensing cloud platform, which integrates the aforementioned machine learning methods and provides vast 

volume of multi-source, multi-temporal remote sensing data, along with powerful cloud computing service (Feng et al., 2024; 

Li et al., 2023; Zhang et al., 2022c). This significantly enhances efficiency in large-scale mapping applications such as global 

LULC mapping, global wetland mapping, etc. (Zhang et al., (2020, 2021a, 2022b, 2023b, 2024c) used GEE to develop a 75 

comprehensive technical workflow for generating multiple global land cover data products, including a global impervious 

surface dataset, a global 30-meter LULC dataset, etc. With regard to PCGs classification, Ou et al., (2021) generated a 30-year 

PCGs distribution map in Shandong Province, China, using Landsat series satellite data and the RF classifier on the GEE cloud 

platform. Similarly, by utilizing multi-year Landsat series satellite data and RF classifier on GEE, Gao et al., (2022) produced 

a 20-year greenhouse distribution map for the Guanzhong Plain area in Shaanxi Province, China. Besides, in our previous 80 

study, we utilized RF together with a partition modeling strategy to generate the first publicly released 30-m national PCGs 

map of China with an overall accuracy of 87% (Feng et al., 2021). Furthermore, we also tackled the long-neglected issue of 

the confusion between PCGs and plastic-mulched farmlands (PMFs) by introducing multi-temporal observations (i.e., film-on 

and film-off) to exclude PMFs from PCGs (Feng et al., 2022b). 

In recent years, deep learning has achieved remarkable success in the fields of computer vision (CV) and natural language 85 

processing (NLP). Unlike classical machine learning methods, which can only capture the shallow features of input data, deep 

learning has a deeper neural network structure and can effectively learn images’ semantic features, leading to a better 

robustness and generalization ability (Chen et al., 2022; Niu et al., 2022; Zhang et al., 2023a). However, the performance of 

deep learning models heavily depends on the quantity and quality of training samples, which calls for a huge workload for 

sample labeling. The deep learning model has also been applied to PCGs and PMFs classification. For instance. Zhou et al., 90 

(2024) developed a general framework for extracting PCGs, integrating prior knowledge with deep learning models. Li et al., 

(2022), Liu et al., (2023), and Chen et al., (2021) employed Google Earth imagery as their data source, selecting specific 

regions within Shandong of China or other smaller areas as study sites, and built deep learning models for PCGs extraction. 

Additionally, Ma et al., (2021) and Chen et al., (2023) applied high-resolution remote sensing imagery (1-m resolution) and 

an object detection model to extract PCGs across China, however, these datasets have not been released publicly. In our 95 

previous study, we have proposed a dilated and non-local convolutional neural network (DNCNN) for the accurate delineation 

of PCGs in several key regions from China, Saudi Arabia, Turkey and Spain and achieved a high OA of about 90% (Feng et 

al., 2021; Niu et al., 2023a). In May 2024, the University of Copenhagen released the first publicly accessible global dataset 

for large-scale PCG mapping (Tong et al., 2024), which was derived from PlanetScope commercial satellite imagery with a 

spatial resolution of 3 meters and a deep learning model, UNet. While the dataset demonstrates good precision and coverage, 100 

acquiring such high-resolution, globally covered commercial satellite data remains prohibitively expensive for most 

researchers.In May 2024, the University of Copenhagen released the first publicly accessible global dataset for large-scale 
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PCGs mapping (Tong et al., 2024), which was derived from PlanetScope commercial satellite data and a deep learning model, 

UNet. While the dataset has good precision and coverage, acquiring such high-resolution, world-covered commercial satellite 

data is costly for most researchers. Therefore, how to use open access satellite data such as Sentinel-2 and Landsat to generate 105 

a global PCGs map still remains a challenging task. 

To address this issue, this study utilizes Sentinel-2 satellite image, one of the most influential open-source remote sensing 

datasets globally, for PCGs extraction. The temporal consistency and continuous, all-weather Earth observation capabilities of 

Sentinel-2 data effectively mitigate the temporal inconsistency found in commercial high-resolution datasets. Meanwhile, 

Sentinel-2 offers the highest resolution open-source remote sensing data, making it well-suited for PCGs classification tasks. 110 

With such high data quality that is widely preferred by researchers, many existing data products are derived from Sentinel-2, 

allowing our Global-PCG-10 dataset to integrate with these data products seamlessly. For data organization, we have designed 

a global grid system to facilitate PCGs data indexing and accessibility for researchers. However, Sentinel-2 satellite image is 

not perfect. Unlike high-resolution data, the 10-meter resolution Sentinel-2 data contains a significant number of mixed pixels, 

which poses challenges for accurate extraction of PCGs. To address this issue, we utilize multi-temporal Sentinel-2 data to 115 

enhance the differentiation between PCGs and other confused land covers such as PMFs and bareland. Moreover, we have 

designed a framework that integrates active learning into deep learning model, improving the robustness of the latter when 

dealing with large-scale PCGs mapping tasks. 

Overall, we proposed a novel framework to generate the firstly publicly released 10-m global PCGs map in 2020 derived 

from Sentinel-2. We also analyzed the spatial pattern of PCGs around the globe together with the driving force behind. 120 

Furthermore, we validated the accuracy of Global-PCG-10 and compared with other studies to further show its merits and 

demerits. 

2 Dataset 

2.1 Cropland Layer 

It should be noted that almost all of the PCGs lie in the cropland, where other land covers such as forest, water bodies 125 

and grassland witness no PCGs. Therefore, we resort to the global cropland layer to eliminate the classification errors (i.e., 

mainly false positives) in the regions that have a very low probability of PCGs. Nonetheless, there still might be PCGs that lie 

outside of the cropland layer. To tackle this issue, firstly, we divided the globe into a total of 2,592 grids with a size of 5°×5° 

in the WGS84 projection, while retaining those grids that contained cropland cover. These retained grids extend, which is 

larger than the initial cropland, were designated as the first-level classification unit for data organization (i.e., blue grids in 130 

Figure 1). Each 5°×5° grid was further divided into 25 grids of 1°× 1°, which served as the second-level classification unit. 

Ultimately, we retained the grids that contained PCGs predictions in the second-level classification units (i.e., orange grids in 

Figure 1). In specific, we compared a series of open-access global LULC maps and selected GLC_FCS30D (Zhang et al., 

2023b) as cropland layer due to its good performance. 

Field Code Changed
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 135 

Figure 1. Spatial distribution of Cropland, PCGs grid and classification grid. (Note*: The yellow pixels indicate the cropland layer, 
which sources from the GLC_FCS30D cropland category (Zhang et al., 2023b), the orange grids stand for 1-degree grids that contain 
PCGs classification results, and the blue grids represent the original 5-degree grids used for PCGs classification.) 

2.2 Satellite datasets 

Sentinel-2 multispectral images were used in this study. As the important part of ESA’s Copernicus Programme, Sentinel-140 

2 aims to provide global Earth Observation data at a fine scale with 10 meters captured by MultiSpectral Instrument (MSI) 

with a total of 13 bands and a swath width of 290 km. Sentinel-2 is a satellite constellation initially composed of Sentinel-2A 

and Sentinel-2B, which operate in the same sun-synchronous orbit but are phased 180° apart to ensure a high revisit frequency. 

In addition, Sentinel-2C, the third satellite in the constellation, was successfully launched in March 2024. It serves as a 

replacement unit to ensure data continuity and system redundancy throughout the mission duration. Several reg-edge bands 145 

that are very sensitive to vegetation have been designed in Sentinel-2, which could capture a more detailed conditions of 

vegetated regions than other satellites such as Landsat and MODIS.Sentinel-2 multispectral images were used in this study. 

As the important part of ESA’s Copernicus Programme, Sentinel-2 aims to provide global Earth Observation data at a fine 

scale with 10 meters captured by MultiSpectral Instrument (MSI) with a total of 13 bands and a swath width of 290 km. 

Actually, Sentinel-2 is a constellation consisting of two satellites, i.e., Sentinel-2A and Sentinel-2B, which are in the same 150 

sun-synchronous orbit while phased at 180° to each other. Several reg-edge bands that are very sensitive to vegetation have 

been designed in Sentinel-2, which could capture a more detailed conditions of vegetated regions than other satellites such as 

Landsat and MODIS.  

Formatted: Font color: Blue

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font color: Blue



6 
 

In addition, Sentinel-2 has two major merits over Landsat for PCGs mapping around the globe. Firstly, Sentinel-2 has a 

finer spatial resolution of 10-m. When compared with Landsat data at 30-m resolution, PCGs on Sentinel-2 images show a 155 

rather neat and tidy boundaries. Besides, Sentinel-2 witness much less mixed pixels than Landsat due to the increase of spatial 

resolution. Secondly, the revisit time of Sentinel-2 is 5 days at the equator while 2-3 days at mid-latitudes, which is much 

shorter than the 16 days of Landsat. The frequent revisit of Sentinel-2 is very important for large-scale PCGs mapping 

performance, since it increases the possibility to composite could-free images, especially for those cloudy and rainy regions 

around the world. 160 

3 Method 

Figure 2 depicts the overall workflow of this study, which consists of three stages. 1) Stage-1: generating initial PCGs 

labels via random forest classifier and the GEE cloud platform, which aims to release human labor in PCG label annotation; 

2) Stage-2: producing accurate PCGs classification results through a deep learning model combined with an active learning 

strategy, which adopts a coarse-to-fine procedure to generate high-quality PCGs maps; 3) Stage-3: finalizing global PCGs 165 

mapping and conducting spatial analysis. 
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Figure 2. Schematic flowchart to produce the Global-PCG-10 dataset. 

Specifically, firstly, both PCG and non-PCG samples were labeled on GEE platform in the format of point. The locations 170 

of samples were acquired from both visual inspection on very high resolution images on Google Earth and our previous field 

survey records. Multi-temporal and cloudless Sentinel-2 images in 2020 were composited by GEE, from which a multi-

dimensional feature space for PCGs classification was constructed, including spectral indices (i.e., NDVI, MNDWI, etc.), Formatted: Font color: Blue
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texture features and recently published plastic greenhouse indexes (i.e., APGI, PGHI, etc.). The RF classifier was then used to 

generate initial labels. Afterwards, the label dataset was split into training and validation sets in 8:2, and the APC-Net model 175 

was built using the PyTorch framework. The initial and weak labels were refined through the active learning strategy with the 

APC-Net model, continuously improving the PCGs classification performance. Finally, post-processing was applied to the 

PCGs classification results to eliminate isolated noises and then followed by spatial analysis and mapping. 

3.1 Stage-1: PCGs weak label generation 

In the field of large-scale remote sensing classification, the quantity and quality of labels are very important. However, 180 

if using only human annotation, it would be time-consuming to acquire enough samples for global PCGs classification. To 

tackle this issue, we first employed GEE and random random forest forest to generation the initial PCGs classification maps, 

from which samples (i.e., denoted as weak samples) are refined to train a deep semantic segmentation model. 
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Figure 3. Reference samples and their position in the world. (Note*. Blue circle represents the “salt and pepper effect” in the reference 185 
samples. The size of the reference samples is 512 × 512 pixels, and the base map of the ‘position’ column is from ©Google Earth imagery.) 

The weakly labeled samples used in this study were generated through the RF classifier on GEE platform and sourced 

from regions with large amount of PCGs. And prior to training the deep learning model, we implemented multiple strategies 

to ensure the accuracy and reliability of initial PCG labels, as detailed below. 

(1) Collection of high-confidence samples. 190 
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To construct the training samples required for GEE-based Random Forest (RF) classification, we conducted field surveys 

in key greenhouse-intensive regions in China (e.g., Weifang in Shandong, Kunming in Yunnan, and Lishu in Jilin). During the 

surveys, we also consulted local farmers to confirm the locations and types of PCG. Considering that PCG typically remain in 

use for around 10 years or more with relatively high stability (Ou et al., 2021), we performed systematic manual visual 

interpretation of historical high-resolution imagery from Google Earth in multiple global regions to obtain high-confidence 195 

samples. For areas outside China, we additionally referred to published literature, meta-analyses and online sources for 

auxiliary identification. All samples were further verified using Sentinel-2 imagery to ensure their actual presence in the year 

2020. We also refined PCG and non-PCG labels based on the RF classification results within each grid to enhance overall 

labeling accuracy. 

(2) Quality assessment and selection of RF classification results. 200 

Based on the collected samples, we trained a RF model with GEE, using a split between training and validation sets. A 

confusion matrix was constructed to evaluate the classification accuracy, where the validation set was excluded from the 

training process and used solely for accuracy assessment. Only those classification maps with an overall accuracy (OA) greater 

than 95% and a user accuracy (UA) for the PCG class above 90% were selected as candidate label maps for training the deep 

learning model. 205 

(3) Final screening of training labels for the deep learning model. 

All candidate label maps were undergone further visual inspection. Each 512×512 pixels image patch was visually 

checked to ensure high annotation quality, and only the regions with the most reliable classification results were retained for 

deep learning model training. This process ensured that the final training labels used in the deep learning model were of high 

reliability. 210 

The size of each sample is 512×512. Figure 3 shows several examples from six typical regions, including Weifang, China 

(Asia); Almeria, Spain (Europe); Uruapan, Mexico (North America); Campinas, Argentina (South America); Agadir, Morocco 

(Africa); and Coffs, Australia (Oceania). However, Figure 3 depicts that the “salt-and-pepper effect” still exists in RF 

classification results in Figure 3. This is also the reason why we introduce the second stage (i.e., deep learning & active learning) 

to refine PCGs maps. Notably, misclassifications are in areas with highly reflective surfaces, such as factory rooftops, beaches, 215 

deserts, and bareland. 

3.1.1 Multi-temporal Sentinel-2 imagery collection 

The Sentinel-2 images were loaded through ee.ImageCollection() function on GEE, and generated cloud-free images for 

selected time periods by image property "CLOUDY_PIXEL_PERCENTAGE", which could minimize the impact of cloud cover. 

Meanwhile, a total of seven bands (B1, B2, B3, B4, B8, B11, B12) from Sentinel-2 data are loaded for feature extraction and 220 

RF classifier. 
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Figure 4. Multiple-temporal NDVI profile of bareland, PCGs and PMFs in a representative sub-region of Gansu Province, China. 
(a) Sentinel-2’s spring true color image. (b) Sentinel-2’s summer true color image. (c) Time-series NDVI value trend of bareland, 
PCGs and PMFs.  225 

 

Based on our previous research (Feng et al., 2022a), using Sentinel-2 satellite data for PCGs extraction often encounters 

confusion with PMFs and bareland. This is mainly due to the spectral similarities among PCGs, PMFs and bareland. To address 

this issue, we introduced multi-temporal observations to enhance inter-class separability. Here, as an example, we selected 100 

sample points for PCGs, PMFs and bareland in part of Gansu province, Northwest China (Figure 4), which belongs to the 230 

single-cropping region. From the NDVI time-series spectral curves in 2020 (Figure 4c), it is observed that both spring 

(highlighted in grey) and summer (highlighted in green) witness the differences between PCGs, PMFs and bareland. As a 
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result, we selected multi-spectral Sentinel-2 images in spring (April-June) and summer (July-September) periods as input data 

in this study area. By incorporating multi-temporal data, we can mitigate the effect of feature confusion in single time-phase 

images, and get more precise PCGs classification results. Meanwhile, Ou et al. (2021) adopted a similar approach by utilizing 235 

phenological characteristics to extract PCGs in double-cropping regions.  

 

Figure 4. Multiple-temporal NDVI profile of bareland, PCGs and PMFs in a representative sub-region of Gansu Province, China. 
(a) Sentinel-2’s spring true color image. (b) Sentinel-2’s summer true color image. (c) Time-series NDVI value trend of bareland, 
PCGs and PMFs.  240 
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3.1.2 Feature extraction 

The role of feature extraction is to transform remote sensing data from the original pixel space to the feature space, in 

which the difference and separability of PCGs and non-PCGs would be further enlarged. Specifically, a multi-dimensional and 

robust feature space is constructed considering the integration of spectral features and texture features. 

(1)> Spectral features 245 

According to our previous study (Feng et al., 2022a) and other relevant researches (Ou et al., 2021; Zhang et al., 2022a), 

we mainly consider the following spectral indices, including Normalized Difference Vegetation Index (NDVI) (Huang et al., 

2021), Soil Adjusted Vegetation Index (SAVI) (Huete, 1988), Normalized Difference Built-up Index (NDBI) (Zha et al., 2003) 

and Modified Normalized Difference Water Index (MNDWI) (Xu, 2006). Moreover, several recently published PCG indexes 

are also included, consisting of PMLI (Lu et al., 2014), APGI (Zhang et al., 2022a), PGHI (Ji et al., 2020), PGI (Yang et al., 250 

2017), and RPGI (Yang et al., 2017). 

(2>) Textual features 

It should be noted that PCGs have very distinct geometrical and textual characteristics, manifesting a rather regular 

rectangular appearance. Therefore, the inclusion of textual features could assist in the separation of PCGs from non-PCGs. 

Specifically, we consider the six widely used textural features that derived from grey-level co-occurrence matrix (GLCM), 255 

including mean (MEA), standard deviation (STD), homogeneity (HOM), dissimilarity (DIS), entropy (ENT) and angular 

second moment (ASM). 

3.1.3 Random Forest 

Random Forest (RF) is utilized as the PCGs classification model to generate the initial samples. RF belongs to an 

ensemble learning method while the base classifier is decision tree. The final output of RF is determined by the majority vote 260 

from all the decision trees involved. RF modeling involves two random selection steps. Firstly, the training samples of each 

base decision tree is randomly selected through bootstrapping. Secondly, the features used to split each node of the decision 

tree is also randomly selected. These two random processes effectively increase the robustness of RF on multi-dimensional 

data, and enable RF to cope with collinearity where the latter is an unavoidable issue in remote sensing data. Due to its 

simplicity and robustness, RF has been widely adopted in remote sensing applications such as urban vegetation mapping, water 265 

extraction, crop classification and achieves promising performance (Mei et al., 2024; Sui et al., 2022; Zhang et al., 2024a). In 

this study, the RF classifier was configured using the ee.Classifier.smileRandomForest() function in GEE, the parameters set 

as follows: numberOfTrees was set to 150, and variablesPerSplit was set to 4. 
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3.2 Stage-2: Coarse-to-fine PCGs classification via deep learning 

3.2.1 APC-Net model 270 

This study utilized our previously proposed deep semantic segmentation model, APC-Net (Niu et al., 2023a), as the core 

model to generate the final PCG classification map in a coarse-to-fine manner. APC-Net effectively integrates local and global 

features through multi-scale feature learning, thereby enhancing its classification capability under complex global terrain 

conditions.as the core model to derive final PCGs maps in a coarse-to-fine manner (Niu et al., 2023a). This network effectively 

combines local with global information to improve the model’s capability in complex landscapes worldwide through multi-275 

scale feature learning. 
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Figure 5. Overview of proposed APC-Net model Formatted: Font color: Blue
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Specifically, APC-Net consists of two main components, an encoder and a decoder (see Figure 5a). The encoder, which 280 

is the core of the network, takes a 512×512 pixels remote sensing image patch as input and extracts highly representative 

features through a multi-layer structure. This not only enhances intra-class consistency but also improves inter-class 

separability. The encoder includes convolutional layers, an MDCN (Multi-scale Dilated Convolutional Network) module and 

a non-local module. The MDCN module (Figure 5b) integrates multi-scale dilated convolutions to effectively capture multi-

scale local features, addressing scale variation issues that are common in PCG classification. The non-local module (Figure 285 

5c) focuses on capturing global contextual information, thereby improving the model’s capability for overall scene 

understanding. The decoder is responsible for restoring spatial information from the downsampled feature maps generated by 

the encoder and producing the final segmentation map. It employs bilinear interpolation for upsampling and skip connections 

to fuse encoder features, further refining the representation. The final PCG classification output maintains the same spatial 

resolution (512×512 pixels) as the input image.Specifically, APC-Net is divided into two major parts: the encoder and the 290 

decoder (Figure 5). The encoder, which serve as the core component of APC-Net, receives remote sensing images with a size 

of 512×512 and extracts highly representative features using its multi-level network structure, which improves the internal 

consistency within the same land covers while enhancing the distinction between different land cover categories. The encoder 

consists of convolutional layers, MDCN (i.e., multi-scale dilated convolutional network) modules and a non-local module. 

Herein, the MDCN modules effectively learn local features at multiple scales by integrating multi-scale dilation convolution, 295 

addressing the issue of scale variation in PCGs classification. The non-local module focuses on capturing global contextual 

information and enhances the model’s understanding of the whole image scene. The decoder’s role is to recover information 

from the downsampled feature maps generated by the encoder and produce the final segmentation map. The decoder employs 

bilinear interpolation for upsampling and skip connections from encoder to further fuse and refine the features. Finally, the 

output is PCGs classification results with the same size (512×512) as the input images. 300 

3.2.2 Active Learning strategy 

In this study, the active learning strategy is employed to optimize initial labels by refining and reorganizing via human 

intervention. It aims to reduce the false-positive rate hence to improve the classification accuracy. It works as follows. First, 

the APC-Net model is trained on the initial weak labels (Input Dataset in Figure 6), which are generated from the RF classifier, 

and saving the best model weights. Then, these weights are applied to predict the results of the input dataset, producing a set 305 

of updated labels. Subsequently, the classification performance is evaluated according to both accuracy evaluation and visual 

inspection. If the results do not meet the expected standard, initial labels with significant updates are selected to form a new 

input training dataset. The process is repeated until satisfactory results are achieved, or until performance stabilizes with no 

further improvements. 
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 310 

Figure 6. Active learning strategy utilized. 

The active learning process was conducted for up to five iterations. Each iteration involved complete model training and 

evaluation using a validation set, with a focus on Overall Accuracy (OA) and mean Intersection over Union (mIoU). To 

determine whether to proceed with further iterations, we applied a quantitative stopping criterion: if the improvements in both 

OA or mIoU between two consecutive iterations were less than 1%, the process was considered to have reached stability and 315 

was terminated. For each iteration, candidate samples requiring human intervention were selected based on patch-level 

disagreement between the model predictions and the initial weak labels. Specifically, a 512×512 pixels image patch was 

flagged for review if the Patch-level IoU between the predicted label and the initial label was below 0.6. This threshold was 

determined empirically and reflects a significant discrepancy between model and label, potentially indicating labeling errors 

or ambiguous regions. Human annotators then manually reviewed these flagged patches. If inconsistencies were confirmed, 320 

the incorrect labels were corrected and incorporated into the next round of training. This iterative optimization enabled the 

model to learn from the most informative and problematic samples, effectively improving both label quality and model 

performance. When the model achieves an Overall Accuracy (OA) above 90% and a mean Intersection over Union (mIoU) 

above 0.6 on the validation set, we consider it to have met the expected classification standard. However, these metrics are 

only used as reference thresholds for acceptable performance; the final quality of the classification results still requires further 325 

evaluation through visual interpretation.  

In summary, this Patch-level, IoU-based sample selection and iterative human–machine collaboration ensured that only 

the most reliable and meaningful corrections were introduced into the training dataset, thereby refining the PCG classification 

results and reducing the noise introduced by the initial weak labels. 
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3.2.3 Training Details 330 

In this section, we provide a detailed description of the model training process, including the design of the hybrid loss 

function, the choice of optimizer and the configuration of model hyperparameters. Specifically, this study combines Cross 

Entropy Loss (CE Loss) and Dice Loss to create a hybrid loss function for the PCGs semantic segmentation task. In this hybrid 

loss function, CE loss primarily measures the discrepancy between labels and model predictions, while Dice loss mitigate the 

issue of class imbalance, ensuring robust model performance even dealing with underrepresented categories. 335 

  (1) 

  (2) 

where  denotes the number of samples,  is the true label of the th sample,  is the corresponding predicted 

probability, and  is a very small constant in case of a division by zero error. 

A hybrid loss function is designed by combining the merits of CE loss and Dice loss for semantic segmentation. The 340 

formula as follows, where  represents the weight ratio between the two loss terms, equals to 0.2. 
  (3) 

The APC-Net model was implemented using the PyTorch 1.12.1 framework and trained on a GPU of NVIDIA GeForce 

RTX 3090 (24 GB), with an Intel Core i7-12700KF CPU@5.00 GHz and Ubuntu 20.04 operating system. The widely used 

Adam optimizer was applied with an initial learning rate of 1e-4, followed by a step decay schedule. The model was trained 345 

for 200 epochs with a batch size of 8, and early stopping was applied with a patience of 10 epochs based on validation loss to 

prevent overfitting. 

To construct the training and validation datasets, we collected a total of 18,532 samples, each with a resolution of 512×512 

pixels. Specifically, 10,230 samples were collected from China, and 8,302 from other regions. Given that PCG areas in China 

account for more than two-thirds of the global total, we divided the dataset into two geographic subsets (China and non-China) 350 

to mitigate overfitting and allow the model to learn region-specific features. Each subset was randomly split into training and 

validation sets using an 8:2 ratio, resulting in 14,825 training samples and 3,707 validation samples in total. 

To enhance the global representativeness of the model, PCG sample collection covered major agricultural regions across 

six continents, including Asia, Europe, North America, South America, Africa, and Oceania. Two separate regional models 

were trained using the respective subsets, and their predictions were finally combined to produce the Global-PCG-10 dataset, 355 

a global 10-meter resolution PCG classification product. 

Regarding the optimizer, the widely-used Adam optimizer was applied for training APC-Net, with an initial learning rate 

of 1e-4. APC-Net was constructed using the PyTorch 1.12.1 framework. The dataset was divided into training and validation 
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sets using an 8:2 ratio. The training set comprises 14,825 samples, while the validation set includes 3,707 samples. Each 

sample has a resolution of 512 × 512 pixels. Additionally, the model was trained with a GPU of NVIDIA GeForce RTX 3090 360 

with 24 GB memory, the Intel Core i7-12700KF CPU@5.00 GHz, and the Ubuntu 20.04 operating system. 

3.3 Accuracy assessment 

We adopt both qualitative and quantitative accuracy assessment to justify the classification performance of Global-PCG-

10. The former is to compare Global-PCG-10 with remote sensing images to check the obvious classification errors, while the 

latter is to calculate a series of accuracy metrics including overall accuracy (OA), recall, precision, F1-score, etc. Actually, OA 365 

is derived from the confusion matrix that are calculated in the test dataset, whose formulas are as follows. 

  (4) 

where N denotes the total number of samples, r represents the number of classes, and  refers to the diagonal elements 

of the confusion matrix. 
Considering that PCGs mapping belongs to a binary classification problem, therefore, the widely used metrics in binary 370 

classification such a recall, precision and F1-score would also be a good choice to justify the performance of Global-PCG-10. 

These metrics have also been used by (Fu et al., 2021)Fu et al. (2021), where the three metrics are used for the accuracy 

evaluation of China’s marine aquaculture mapping results. 

  (5) 

  (6) 375 

  (7) 

where TP represents true positives, i.e., the number of correctly classified PCGs pixels, FN denotes false negatives, i.e., 

the number of PCGs pixels misclassified into non-PCGs, while FP stands for false positivesfalse negatives, i.e., the number of 

non-PCGs pixels misclassified into PCGs. In general, recall and precision are contradictory to each other. A high recall also 

brings in a high FP, which would lead to low prevision. On the other hand, F1-score is an integrated index that takes into 380 

consideration of both recall and precision. F1-score has a value between 0 and 1, where a higher F1-score means a better 

classification performance. 

4 Results and discussion 

4.1 Spatial pattern of Global-PCG-10 

Figure 7 illustrates the global distribution of PCGs in the mapping unit of 0.1° grid instead of using per-pixel PCGs 385 

classification results. This is because the predicted PCGs cover only a small fraction of the entire globe. If we put the per-pixel 
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results on map, PCGs would be overwhelmed by background regions. To tackle this issue, we change the mapping unit from 

per-pixel (i.e., 10 m) to 0.1° grid through zonal analysis, which could enhance the visual effect of PCGs spatial distribution 

globally. 

As depicted in Figure 7, the global PCGs mainly locate in East Asia and Mediterranean regions. Specifically, in East 390 

Asia, China has the largest area of PCGs, where most PCGs are clustered in North China Plain (Eastern China), Liaohe Plain 

(Northeastern China), Sichuan Basin and intermountain basin of Yunnan Province (Southwestern China). In Mediterranean 

region, PCGs are mainly distributed along the coasts in Iberian Peninsula, Apennine Peninsula, Balkan Peninsula and Nile 

Delta. The widespread presence of PCGs in these regions, where are characterized by both a well-developed and a long history 

of farming, can be attributed to two key factors. First, the use of PCGs allows for the expansion of both acreage and production 395 

of high-quality vegetables, fruits, flowers, and other cash crops. This is particularly beneficial in China, where it could 

effectively increase income of local farmers. Second, most of these PCGs are located in plains or basins, close to urban areas, 

and have relatively abundant water resources. These geographic advantages provide favorable conditions for irrigation and 

product marketing, which could help to ensure the efficiency and output of facility-based agriculture. 

Meanwhile, Figure 7 also witnesses several regions with nearly no PCGs, including North America, Northern Eurasia, 400 

Sub-Saharan Africa and Oceania. Two reasons may account for this. On one hand, in North America, the agricultural mode is 

large farms facilitated with advanced agricultural machinery and less workers. Considering that PCGs are rather labor intensive 

and not easy for machinery to work, therefore, they are not widespread in both United States and Canada. On the other hand, 

in areas like South America, sub-Saharan Africa, Northern Eurasia and Oceania, the lower level of agricultural development 

and limited infrastructure hinder the adoption and growth of PCGs. Additionally, in China and along the Mediterranean coast 405 

region, profit-driven small holders are the majority. Under this circumstance, together with policy incentive, farmers choose 

to build PCGs to produce cash crops, leading to the prevalence of PCGs in these regions. 

In addition, we calculate the PCG area along both longitude and latitude in an interval of 1° and depict the area histogram 

in Figure 7. It indicates that the global PCGs mainly locate in the Northern Hemisphere, especially between 30°N and 40°N 

with a peak at about 36°N, which accounts for 65.84% of the total PCGs area. Meanwhile, these regions just correspond to 410 

North China Plain and Mediterranean region. From the perspective of longitude, most PCGs are clustered in the Eastern 

Hemisphere, while the Western Hemisphere only witnesses a high PCG density on the west side of the Mexican Plateau, the 

west side of the Chilean Cordillera, and the La Plata Plain (river inlets) of Argentina. 
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Figure 7. Global PCGs spatial distribution in 2020. The spatial resolution of the map is 0.1°. 415 

Moreover, we calculate both the total area of PCGs area (Figure 8a) and the ratio of PCG areas to cropland area in each 

country (Figure 8b). The former reflects the production scale of PCGs while the latter stands for the proportion or importance 

of PCGs in local agricultural activities. As shown in Figure 8a, Tthe total area of global PCGs reached to 14,259.85 km² in 

2020, while Asia has the largest PCGs area of 9874.51 km2, accounting for 69.24% of the total global PCGs. Europe ranks the 

second with a PCGs area of 2530.56 km2 and a PCGs ratio of 17.75%. North America, Africa, South America and Oceania 420 

witness a decent PCG area of 819.12 km2, 668.82 km2, 213.92 km2 and 152.91 km2, respectively. From the perspective of 

country, China ranks the first with a PCG area of 8224.90 km2. Meanwhile, China accounts for 83.29% of PCGs in Asia and 

57.67% in the globe. Spain ranks the second in the world and the first in Europe with a PCG area of 803.26 km2. Other countries 

with a PCGs area over 500 km2 include Mexico, Italy and South Korea. On the contrary, countries in Sub-Saharan Africa, 

Central Asia and other countries like Mongolia, Russia, United States and Canada, have very few PCGs. 425 
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(a) 

 

(b) 

Figure 8. PCGs area statistic mapping in 2020. (a) Area of PCGs. (b) Ratio of PCGs to cropland. 430 

Figure 8b illustrates the ratio of PCGs area to cropland. It indicates that although China has the largest PCGs region, its 

PCGs ratio (0.64%) is relatively lower. The country with the highest PCGs ratio is Kuwait (5.23%). Other Mediterranean 
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countries such as Italy and Turkey also have a relatively higher PCG ratio. In Eastern Asia, South Korea has a high PCGs ratio 

although they have small PCGs regions, which manifests the important role of PCGs in these countries. The main reason is 

that these countries are mostly situated in mountainous, hilly or Gobi terrain conditions, leading to a limited amount of usable 435 

cropland. In such conditions, PCGs, as a form of intensive facility-based agriculture, can overcome the limitations of the local 

natural climate. It also effectively optimizes the structure of the local agriculture industry, increases the diversity of agricultural 

products, and reduces reliance on imported fruits, vegetables, and other cash crops. 

4.2 Reliability of Global-PCG-10 

This section would analyze and justify the reliability of Global-PCG-10 from both visual inspection and accuracy 440 

assessment results. Here, we present both the remote sensing images and the corresponding Global-PCG-10 maps from several 

typical regions across the world, including Shouguang of China, Lam Dong of Vietnam in Asia; Almeria of Spain, Ragasu of 

Italy in Europe; Outlet of Morocco, Damous of Algeria in Africa; Samis of the U.S., Zapotitan of Mexico in North America; 

Lisandro of Argentina, Bom Repouso of Brazil in South America; Robinvale of Australia, Manngatepere of New Zealand in 

Oceania. As shown in the Figure 9, our classification results are excellent in regions with a high density of greenhouses, with 445 

virtually no noticeable omission of PCGs. Furthermore, no significant false-positive errors were observed, even in areas with 

a sparse distribution of PCGs (e.g., the United States, Brazil, etc.). Additionally, Global-PCG-10 demonstrates reliable 

recognition of PCGs in various global climate zones, including humid climates, Mediterranean climates, and others. 

Details of Global-PCG-10 illustrate that we have achieved a very good PCGs map with accurate and neat boundaries 

under the spatial resolution of 10 m. The confusion between PCGs and non- PCGs is not obvious and the speckle noises in the 450 

background have been greatly suppressed. Two reasons may account for this. First, the utilization of multi-temporal Sentinel-

2 satellite image could reduce the misclassification and “salt and pepper effect” caused by PMFs, bareland, and other land 

cover classes. Second, the PCGs classification framework, which integrates active learning strategy into the deep learning 

model, enables a coarse-to-fine classification process. 
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 455 

Figure 9. Details of the Global-PCG-10 map. (Note*. Taking (a) as an example, from left to right is the location in the world, RGB 
Sentinel-2 image, Global-PCG-10 map and detailed fused mapping result of the blue rectangle region.) 

To further quantitatively evaluate the reliability of the Global-PCG-10 dataset, we constructed a dedicated test sample 

set. The spatial distribution of test samples is shown in Figure 10. 
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 460 

Figure 10. Spatial distribution of global test samples. 

The dataset includes two categories, PCG and non-PCG. Based on previous research practices (Olofsson et al., 2013, 

2014; Tian et al., 2025; Wang et al., 2023), we followed the stratified random sampling strategy recommended by Olofsson et 

al. (2014), in which samples were drawn in proportion to the mapped area of each class within the actual mapping region. 

However, since the global coverage of PCG is less than 1%, strictly proportional sampling would result in too few PCG 465 

samples to support a statistically robust accuracy assessment. To address this issue, and consistent with the approaches adopted 

in the above studies, we moderately increased the proportion of PCG samples in the test set to approximately 10%. This 

adjustment could enhance the evaluation capability for this minority class. 

As shown in Table 1, the total number of test samples is 46,000, with 6,000 PCG samples and 40,000 non-PCG samples. 

To ensure the validity, we applied separate sampling strategies for each category. As for PCG, test samples were derived from 470 

the global 3-meter PCG dataset in 2019 developed by Tong et al. (2024), and manually verified through Google Earth visual 

interpretation. Since the Global-PCG-10 dataset is for the year 2020, and considering that PCGs typically have long lifespans 

and stable structures, the 2019 dataset by Tong provides a reliable reference. Additionally, we performed a second round of 

verification using historical Google Earth imagery in around 2020 to confirm their existence and status, minimizing sampling 

bias from prior knowledge. And for non-PCG, due to the large quantity required, manual sampling was impractical. We thus 475 

randomly sampled non-PCG from the GLC_FCS30D dataset to ensure independence and randomness. All samples were also 

verified through visual interpretation of historical Google Earth imagery in around 2020 to ensure label correctness(Olofsson 

et al., 2013, 2014; Tian et al., 2025; Wang et al., 2023). 
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Table 1. Confusion matrix. 480 

Confusion Matrix 
Reference: 

Non-PCG 

Reference: 

PCG 
UA (%) 

Predicted: Non-PCG 39,991 893 97.82 ± 0.13 

Predicted: PCG 9 5,107 99.82 ± 0.11 

PA (%) 99.98 ± 0.01 85.12 ± 0.90  

F1-score (%) - 91.88 ± 2.71  

OA (%)   98.04 ± 0.12 

Note*: PA, Producer’s Accuracy; UA, User’s Accuracy; OA, Overall Accuracy. 

Based on this test dataset, Global-PCG-10 achieved a PA of 85.12% ± 0.90%, a UA of 99.82% ± 0.11%, an F1-score of 

91.88% ± 2.71% and an overall accuracy of 98.04% ± 0.12% (Table 1). In the revised confusion matrix, the bias for non-PCG 

has been effectively reduced. However, PCG still exhibits a gap between precision and recall, characterized by a high precision 

but a low recall. This may be caused by missed detections of small PCG patches. Unlike PlanetScope, Sentinel-2 has lower 485 

spatial resolution with 10 meters, and small PCG often spans only a few mixed pixels, making it difficult to extract meaningful 

spectral features for accurate PCG classification. The high precision, on the other hand, is likely due to post-processing applied 

to the initial classification results. Among these steps, the Sieve Filter method played a key role by removing small, erroneous 

regions through multi-level filtering, thereby improving the quality of PCG predictions and enhancing precision. Specifically, 

we used the gdal.SieveFilter() function from the GDAL library (invoked in the Python environment) to perform the filtering. 490 

An 8-connected neighborhood was adopted, and a set of hierarchical thresholds for the minimum number of connected pixels 

(10 / 20 / 50) was applied. This multi-level threshold setting was designed to accommodate variations in noise distribution and 

mapping requirements across different regions. 

In the Table.1, the relatively high number of false negatives (FN = 893) can be attributed to the following factors. (1) 

Omission of small-scale PCG targets. Due to the 10-meter spatial resolution of Sentinel-2 imagery, which is significantly lower 495 

than that of high-resolution platforms like PlanetScope, small PCG often occupies only a few to a dozen pixels and are easily 

affected by mixed pixel issues. This makes it difficult for the model to extract reliable spectral features and leads to missed 

detections. (2) Limitations in spatiotemporal coverage of imagery. The Sentinel-2 data used in this study were organized by 1° 

grid tiles. Due to cloud contamination and observation scheduling constraints, it is sometimes challenging to obtain cloud-free 

imagery for both time periods (spring and summer), which reduces the model’s ability to detect PCG in certain regions. (3) 500 

Post-classification filtering effects. To reduce false positives, we applied a strict post-processing procedure to the initial 

classification results when generating the Global-PCG-10 dataset. Specifically, a multi-stage Sieve Filter was used to remove 

small patches and isolated noise, which effectively suppressed misclassifications and significantly improved the precision (UA) 

for the PCG class. 
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Additionally, based on the test samples and a systematic comparison with the 3-meter resolution PCG data provided by 505 

Tong et al. (2024), we identified two main types of omission errors in the current Global-PCG-10 dataset during the PCG 

extraction process, as detailed below. 

 

Figure 11. Bad case analysis (Note: From left to right, the image shows the Google Earth imagery from 2020, 3-meter spatial resolution 
PlanetScope imagery from 2019 and Sentinel-2 imagery from spring and summer, respectively.) 510 

As shown in Figure 11a, due to the relatively coarse spatial resolution (10 meters) of Sentinel-2 imagery compared to 

higher resolution sources such as PlanetScope or Google Earth (3 meters or finer), small-scale PCG targets often occupy only 

a few to a dozen pixels. These pixels are usually mixed pixels that contain spectral information from multiple surrounding land 

cover types. As a result, the model finds it difficult to extract PCG’s distinct spectral and texture features, which impairs its 

ability to accurately detect small and visually inconspicuous PCG. For instance, in the area shown in Figure 11a, the PCG can 515 

be roughly identified in the high-resolution image, with some observable texture patterns. However, in the corresponding 

Sentinel-2 image at 10-meter resolution, the PCG contours are blurred and lack clear geometric and textural features, leading 

to missed detections. 

Meanwhile, the Global-PCG-10 dataset is derived using multi-temporal Sentinel-2 imagery from spring and summer, 

organized by 1° grid tiles. However, due to cloud contamination and limited observation opportunities, it is challenging to 520 

obtain cloud-free images for both seasons in some regions (Figure 11b). This could limit the model’s ability to extract 

consistent temporal features, thereby increasing the likelihood of omission errors. Figure 11b presents a typical case, although 

the overall cloud coverage is relatively low, even thin clouds can affect surface reflectance values and interfere with the 

model’s classification performance. 

In summary, misclassification errors in PCG classification primarily arise from two aspects: (1) the presence of mixed 525 

pixels in medium-resolution imagery when detecting small-scale PCG, which weakens the model’s ability to learn effective 

spectral and textural representations; and (2) limitations in the spatial and temporal availability of remote sensing data, 

particularly due to cloud cover and long revisit intervals, which may result in missing key seasonal observations and reduce 

classification accuracy. 

To further justify the reliability of Global-PCG-10 from a quantitative perspective, we have selected a global test dataset 530 

for accuracy assessment based on the sampling grid (Figure 10). The test dataset includes both PCGs and non- PCGs samples, 
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with a number of 20,500 for each category. It should be noted that all the test samples and training samples are spatially 

independent from each other with no overlap to maintain the reasonability. 

 

Figure 10. Spatial distribution of global test samples. 535 

Table 1 indicates that Global-PCG-10 yields a high accuracy with an OA of 92.08%. Since the test dataset covers the 

entire globe with a sufficient amount, it could verify the high quality of Global-PCG-10. 

Table 1. Confusion matrix. 

Classification results 
Validation Data  

Non-PCG PCG UA (%) 

Non-PCG 20498 2 99.99 

PCG 3243 17257 84.18 

PA (%) 86.30 99.99  

OA (%) 92.08   

Note*: PA, Producer’s Accuracy; UA, User’s Accuracy; OA, Overall Accuracy. 

We also calculated other accuracy metrics and the results are in Table 2. It indicates that Global-PCG-10 has both a high 540 

recall, precision and F1-score of 84.18%, 99.99% and 91.41%, respectively, which further justifies the performance of the 

published dataset. 

Table 2. Accuracy indicators. 
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Dataset Recall (%) Precision (%) F1-score (%) OA (%) 

Global-PCG-10 84.18 99.99 91.41 92.08 

4.3 Comparison with other studies 

4.3.1 Comparison with global LULC dataset 545 

As a distinct land cover category, PCGs should belong to cropland. However, to the best of our knowledge, PCG has not 

been fully considered in previously released global LULC datasets. Therefore, in this section, we compare our Global-PCG-

10 with other released global LULC datasets. To ensure temporal consistency, we only selected LULC datasets containing 

2020 data products comparison, including Dynamic World (Brown et al., 2022), ESA World Cover (Zanaga et al., 2021), ESRI 

Land Cover (Karra et al., 2021), FROM-GLC30 (Yu et al., 2022), and GLC_FCS30D (Zhang et al., 2023b). Among these, 550 

Dynamic World, ESA World Cover, and ESRI Land Cover have a spatial resolution of 10 m, while FROM-GLC30 and 

GLC_FCS30D have a spatial resolution of 30 m. Since the classification system of each dataset is different, this study is based 

on the land cover types of the selected typical regions and uses GLC_FCS30 as a reference. And the land cover types are 

unified into the following nine categories: Cropland, Shrubland, Grassland, Bareland, Wetland, Impervious surface, Forest, 

Water Body and Ice/snow.  555 

As shown in Figure 1112, the left part presents the Sentinel-2 true color images of typical regions along with their 

corresponding Global-PCG-10 maps, while the right part displays the mapping results from various LULC datasets. It is quite 

clear that these LULC datasets have low classification performance in PCGs regions. Specifically, Dynamic World erroneously 

classifies PCGs as impervious surfaces (Figure 1211a, b, f, g), Ice/snow (Figure 1211c, d, f, h), and bareland (Figure 1211i). 

ESA World Cover misclassifies PCGs as impervious surfaces (Figure 1211d, h) and bareland (Figure 1211a, e, i). ESRI Land 560 

Cover misclassifies PCGs as impervious surfaces (Figure 1211b, f, i), bareland (Figure 1211d), and grassland (Figure 1211h). 

FROM-GLC30 misclassifies them as impervious surfaces (Figure 1211a, f, i, j) and grassland (Figure 1211a, b, i, j). 

GLC_FCS30D similarly misclassifies PCGs as impervious surfaces (Figure 1211d, f, h). 

Above all, PCGs are commonly misclassified into four categories: impervious surfaces, bareland, grassland, and Ice/snow. 

Specifically, impervious surfaces and bareland, such as white-roofed factories, villages, and photovoltaic panels, may share 565 

similar spectral or texture features with PCGs, leading to obvious misclassification. Additionally, the phenology of crops 

grown within greenhouses can also affect the spectral features of PCGs, making them resemble grassland at certain times and 

leading to misclassification. Besides, the reflectance of PCGs in some regions is similar to that of clouds and snow, which 

might explain why PCGs are sometimes misclassified into these categories. 

Meanwhile, Figure 1211 also indicates some LULC datasets exhibit good performance in classifying PCGs into cropland. 570 

For instance, Figure 1211b, c of ESA World Cover, Figure 1211a, c, e of ESRI Land Cover, Figure 1211d, e, h of FROM-

GLC30, and Figure 1211a, b, c, e, g, i of GLC_FCS30D. The classification results successfully identify PCGs as cropland 

with greater precision in these cases. 
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Figure 1112. Comparison of Global-PCG-10 with other global LULC products. 575 
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4.3.2 Comparison with other PCG dataset 

Research on large-scale extraction of PCGs includes several excellent efforts. Our previous study released the first 30-m 

national-scale PCGs dataset of China in 2019 (Feng et al., 2022a), and in May 2024, the University of Copenhagen published 

a global 3-m PCGs dataset also in 2019, both of which are open access. Additionally, Wuhan University conducted PCGs 

mapping in 2016 using high-resolution satellite data and deep learning techniques (Chen et al., 2023; Ma et al., 2021), and the 580 

Chinese Academy of Sciences conducted a nearly 20-year extraction and spatial analysis of PCGs in China using Landsat 5/8 

data on GEE cloud platform (Liu and Xin, 2023; Ou et al., 2019). However, these two studies' datasets have not been publicly 

released. Therefore, this study conducts a comparison with the 3-m PCG dataset from the University of Copenhagen from both 

qualitative and quantitative perspectives.Therefore, this study only compares the 3-m PCGs dataset from the University of 

Copenhagen. 585 

 

Figure 1213. Comparison with other PCGs dataset. (Note*. Light red depicts our Global PCG-10, light blue represents Tong et al. 
(2024)Tong et al., and green circles/rectangles mark the differences.) 

Figure 12a 13a and b illustrate the mapping results in regions with different PCGs densities. In Figure 12a13a, it shows both 

datasets exhibit very similar spatial patterns in densely distributed PCGs regions. Figure 12b 13b demonstrates that Global-590 
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PCG-10 can still accurately capture the greenhouse layout even in areas with sparse PCGs distribution, performing on par with 

Tong et al., (2024) acquired from 3-m commercial satellites. Figure 1312c highlights the case where Global-PCG-10 accurately 

detected greenhouses while Tong et al., (2024) missed. Figure 1312d also shows a case of missed detection by Tong’s dataset, 

but unlike Figure 1312c, the missed detection in Figure 1312d is more likely due to missing of satellite image. The rectangle 

indicates that the data is split into two parts by an “invisible” line. Such situation is commonly caused by improper data 595 

organization or gaps of source satellite data. On the contrary, we used Sentinel-2 satellite data, with its dual constellation 

providing a 5-day revisit cycle, which ensures minimal gaps in remote sensing imagery, thereby delivering high-quality data 

support for PCGs mapping globally.  

 

Figure 14. The consistency performance across the four representative regions and between the dataset by Tong et al. (2024) and 600 
Global-PCG-10 in representative regions.  

To provide a more objective and fair comparison, we followed the methodology proposed by Huang et al. (2022) and 

conducted a quantitative consistency analysis between the two datasets in terms of global PCG spatial distribution. Specifically, 

we selected four representative 1° × 1° grid regions with varying PCG densities. Each of these grids was further subdivided 

into multiple 0.01° × 0.01° sub-grid units. Within each sub-grid, we calculated the proportion of PCG pixels relative to the 605 

total number of pixels for both datasets (i.e., PCG area ratio, ranging from 0 to 1). Using these continuous ratio-based data, we 
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applied linear regression analysis to calculate the coefficient of determination (R²), thereby quantifying the spatial distribution 

consistency between the two datasets across different regions. Unlike methods that rely on discrete classification labels, this 

approach leverages continuous area proportions, making it more suitable for evaluating agreement between remote sensing 

datasets with differing spatial resolutions. As shown in Figure 14a ~ d, the experimental results indicate that, in high-density 610 

PCG regions, our 10-meter resolution PCG dataset demonstrates a high degree of spatial consistency with the 3-meter reference 

dataset. 

To further evaluate spatial consistency at the global scale, we applied a standard regression-based consistency analysis 

across the entire globe, with reference to the analytical approach and spatial resolution (i.e., 0.05° grid) used by (Huang et al., 

(2022)). The coefficient of determination (R²) was again employed as the primary evaluation metric. As shown in Figure 14e, 615 

the comparison based on a 0.05° grid reveals strong agreement in the global spatial distribution of PCG between the dataset 

published by Tong et al. (2024) and the Global-PCG-10 dataset. The regression analysis yields an R² of 0.746, a root mean 

square error (RMSE) of 0.003, and a regression equation of y = 0.734x + 0.000. These results indicate a moderate to strong 

spatial correlation between the two datasets, further validating the effectiveness of the Global-PCG-10 dataset in capturing the 

global distribution pattern of PCG. 620 

As illustrated in Figure 14, the Global-PCG-10 dataset exhibits strong agreement with the reference data in typical regions 

(Figure 14a–d), whereas a moderate overestimation trend is observed at the global scale. This discrepancy may be attributed 

to the spatial resolution limitations of Sentinel-2 imagery. As a medium-resolution satellite (10m), Sentinel-2 is more 

susceptible to intra-class spectral variability and inter-class spectral confusion. In sparely distributed greenhouse areas, non-

PCG features such as bare soil, inter-greenhouse roads, or adjacent agricultural structures may exhibit spectral signatures 625 

similar to plastic-covered greenhouses, leading to misclassification and systematic overestimation of PCG coverage. Moreover, 

within the same spatial aggregation unit (e.g., a 0.05° grid cell), Sentinel-2 offers fewer pixels compared to PlanetScope (3m), 

making PCG area statistics more sensitive to per-pixel classification errors. Consequently, in typical regions with more 

homogeneous greenhouse patterns, clearer boundaries, the classification results are more stable and consistent. In contrast, at 

the global scale, the combined effects of landscape heterogeneity and resolution-induced error propagation contribute to 630 

reduced agreement. 

4.4 Advantages and limitations of Global-PCG-10 

As previously mentioned, Global-PCG-10 is a globally comprehensive, high-quality dataset built on open-source 
Sentinel-2 data, demonstrating high classification accuracy. The Global-PCG-10 utilizes free and open-source Sentinel-
2 data, significantly reducing dataset production costs. Additionally, it features a more organized data structure. In the 635 
future, this dataset is expected to become an important data source in the fields of agriculture, environment, ecology, 
and land use and cover change (LUCC) research. To enhance mapping precision, this study introduces multi-temporal 
remote sensing imagery data, which effectively mitigates the confusion of PMFs and bareland with PCGs. Additionally, 
we adopted an approach that combines the active learning strategy and the deep learning model. This method allows 
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the model to learn more robust PCG features by optimizing weak labels, which could significantly reduce false positives 640 
and improve the classification performance. 

 However, there are still some limitations of Global-PCG-10. Firstly, small sized or isolated PCGs are not fully 
extracted due to the limitation of 10 m spatial resolution of Sentinel-2 data. Future study would introduce remote 
sensing data with an even higher spatial resolution than 10 m to tackle this issue. Secondly, we now only provide the 
global PCGs map for the year of 2020. In the future, we would insist in producing time-series global PCGs map for 645 
further understanding of PCGs and its environmental effect. Thirdly, the technical approach proposed in our research, 
which integrates deep learning with active learning strategies, is still a semi-automatic weak label updating process and 
has not yet achieved fully end-to-end task training. In future research, we will explore end-to-end weak label updating 
methods to achieve a more efficient and automated data processing workflow4.4 Application potential and limitations 
of the dataset 650 

As described above, Global-PCG-10 is a global-scale dataset of PCG derived from open-access Sentinel-2 imagery. By 

leveraging freely available satellite data, the dataset significantly reduces production costs while providing a standardized and 

well-structured data format that can be easily integrated with other open-source remote sensing products. 

As the first global PCG dataset with 10-meter spatial resolution, Global-PCG-10 has strong application potential in 

various domains. (1) In agricultural monitoring and statistics, the dataset reveals the spatial distribution pattern of global 655 

protected agriculture, offering valuable support for agricultural structure optimization, farmland use monitoring and irrigation 

estimation. (2) In agro-environmental assessments, it provides high-resolution spatial information on protected agriculture, 

supporting efforts by governments and international organizations to conduct agricultural censuses, develop regional 

agricultural strategies and implement climate-adaptive agricultural policies. (3) In open-source land use/land cover (LULC) 

applications, PCG are often underrepresented in current global LULC products. This dataset helps fill that gap by explicitly 660 

including PCG as a key cropland subtype. 

Despite its usefulness, Global-PCG-10 still has several limitations that need to be addressed in future work. Firstly, due 

to the 10-meter resolution of Sentinel-2 imagery, it remains difficult to detect small-scale or scattered PCG units, especially in 

regions dominated by smallholder agriculture. This may lead to omission errors. In the future, we plan to integrate higher-

resolution remote sensing data to develop regional PCG datasets with finer spatial detail. Secondly, the classification task in 665 

this study focused primarily on the overall category of PCG, without further distinguishing among its subtypes. In future 

research, we plan to explore fine-grained classification methods for agricultural greenhouses (AG), including the 

differentiation of daylight greenhouses, conventional plastic greenhouses and small arch sheds, in order to further enhance the 

accuracy and practical applicability of PCG dataset. Thirdly, as the dataset only contains PCG in 2020, it does not capture 

dynamic PCG changes such as recent expansion or degradation regions. We plan to extend this work to develop a global time-670 

series dataset of greenhouses, enabling long-term monitoring and trend analysis. Besides, the current pipeline for PCG mapping, 

which combines deep learning and active learning, still relies on a semi-automated weak-label updating strategy and does not 

yet support full end-to-end automation. In the future, we aim to explore end-to-end weak-label learning frameworks to build a 

more efficient and automated data processing system.. 
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5 Code and data availability 675 

The code for generating the initial labels of PCGs is publicly available via the following link on Google Earth Engine: 

https://github.com/MrSuperNiu/Greenhouse_Classification_GEE. It consists of feature extraction, RF classification, etc. 

Additionally, the code of APC-Net is accessible through the following link: https://github.com/MrSuperNiu/APCNet.  

The Global-PCG-10 dataset is stored on figshare, and can be downloaded here: 

https://doi.org/10.6084/m9.figshare.27731148.v2. The dataset contains 245 5°×5° grids, and each of them is named using the 680 

grid's 'id' attribute. Within each 5°×5° grid file, there are 1°×1° TIF files, named in the format 

gridID_subgridID_PCG_Result.tif. Here, gridID represents the ''id'' of the 5°×5° grid containing the 1°×1° subgrid, and 

subgridID represents the ''id'' of the 1°×1° grid. The 5°×5° grids and 1°×1° grids, corresponding to the Classification Grid and 

PCG Grid in Figure 1, are saved in SHP format within the Global-PCG-10 dataset to facilitate users in indexing the 

corresponding PCG classification *.tif files. Additionally, the cropland and PCG area statistic data are contained in the Excel 685 

file, ''SATA_Cropland&PCG.xlsx''. Please refer to the attached supplementary document ''Supplementary File.docx'' for more 

detailed data organization information. 

6 Conclusions 

As an important representative of facility agriculture, PCGs play a crucial role in enhancing crop yields and increasing 

local agricultural income through their ability to retain soil moisture and temperature. This study constructed the first global 690 

PCGs dataset with a high spatial resolution of 10 meters based on deep learning and active learning. Specifically, we first 

divided the globe into 2,592 grids with a size of 5°×5° and retained those containing cropland as classification units. Then, we 

obtained pre-processed multi-temporal Sentinel-2 data through GEE and used random forest to generate initial labels to build 

the training dataset. Next, we developed a classification workflow that integrates the active-learning and deep learning to 

optimize weak labels, enhance model robustness, and reduce false positives. Subsequently, we used the trained deep learning 695 

model to predict the global distribution of PCGs, generating the Global-PCG-10 dataset. Finally, we analyzed the spatial 

distribution patterns and driving forces of global PCGs, compared the proposed dataset with other open-source datasets. 

Experimental results show that the global PCGs area is approximately 14,259.85 km² in 2020. PCGs are mainly 

distributed between 30°N and 40°N, accounting for about 65.84% of the total area. Asia holds the most extensive area of PCGs, 

covering approximately 9,874.5 km², accounting for 69.24% of the global total. China, not only has the largest area of PCGs 700 

in Asia but also ranks first worldwide, with a PCGs area of 8,224.90 km2, making up 57.67% of the global and 83.29% of the 

Asia. We validated the Global-PCG-10 dataset using 40,500 randomly sampled points, which indicates that the overall 

accuracy is satisfactory of 98.04% ± 0.1292.08%.  

Additionally, we compared the Global-PCG-10 dataset with several open-source global LULC datasets. The findings 

reveal that PCGs, which should be classified as cropland, are often misclassified as bareland, impervious surfaces, Ice/snow, 705 

and grassland in those LULC datasets, which could negatively impact the estimation of global cropland areas. Compared to 
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other publicly available PCG datasets, Global-PCG-10 demonstrates excellent accuracy in the distribution of PCGs. Besides, 

it offers a better data organization for relevant researchers. In future research, we will continue generating time-series global 

PCGs maps from multi-source remote sensing data. 
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