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General Comments: 

This manuscript developed a novel approach for producing the global 10-meter Plastic-covered 

greenhouse (PCGs) dataset for 2020 year. This approach combines the active learning strategy and the 

deep learning model, so as to let the model to learn more robust PCG features by optimizing weak labels. 

The results of the PCGs classification has been compared with publicly released land use and land cover 

(LULC) datasets, and showed the high accuracy. This PCGs dataset can characterize the global spatial 

distribution of plastic-mulched coverage in 2020. This manuscript is novel in topic selection, innovative 

in technical approach, and solves the problem of the lack of global-scale plastic-mulched products, which 

is of high scientific significance and practical value. 

 

Specific Comments: 

The following issues still need to be revised. 

1. Do the samples include actual ground-collected sample points? The manuscript has examples from 

Gansu Province in China, are there similar ground samples from other areas? 

Response: 

Thank you for your good comments. Actually, as for actual ground-collected sample points, we 

conducted field surveys in typical greenhouse-concentrated regions of China, such as Weifang (Shandong), 

Kunming (Yunnan) and Lishu (Jilin) during the construction of training samples for the GEE-based 

Random Forest (RF) classification. These surveys involved on-site investigations and interviews with 

local farmers to confirm the distribution and types of PCG. 

Given that PCG typically has a lifespan of around 10 years or longer and exhibit high structural 

stability (Ou et al., 2021), we further performed systematic visual interpretation of high-resolution 

historical imagery from Google Earth to obtain high-confidence samples across multiple regions globally. 

For non-Chinese regions, the identification process was supported by literature review, meta-analysis and 

online resources. All collected samples were cross-validated using Sentinel-2 imagery to ensure their 

actual presence in the year 2020. Additionally, we refined PCG and non-PCG labels within each grid 

based on classification outputs to ensure labeling accuracy. 

As for Figure 4, a region from Gansu was selected as a representative area because it features a large 

number of both plastic-covered greenhouses (PCG) and plastic-mulched farmland (PMF), which often 

coexist and are spatially interwoven. The figure presents differences in multi-temporal NDVI curves 

among PCG, PMF and bare land, illustrating how multi-temporal features can effectively distinguish 

between these easily confusable classes. This method is also applicable to other regions, particularly in 



China, the world's largest user of plastic mulch films, where multi-temporal imagery proves effective in 

resolving confusion between PCG and PMF. 

 

2. From table 1. we can see that the UA of Non-PCG is as high as 99.99%, and the that of PCG is 84.18%. 

Do all these sample points for accuracy evaluation also come from GEE automatically selected or 

manually decoded? Is there a relationship between the high accuracy of Non-PCG and the sample 

selection? 

Response: 

Thanks for your advices. Actually, the current description regarding the sampling strategy, sample 

proportion design and the reliability of the test samples in the confusion matrix was insufficient. We have 

revised this section based on the reconstructed confusion matrix and now provide a detailed explanation 

of the test sample collection process. The specific modifications are as follows: 

To further quantitatively evaluate the reliability of the Global-PCG-10 dataset, we constructed a 

dedicated test sample set. The spatial distribution of these test samples is shown in Figure 10.  

 

Figure 10. Spatial distribution of global test samples. 

The dataset includes two categories of PCG and non-PCG. Based on previous research practices 

(Olofsson et al., 2013, 2014; Tian et al., 2025; Wang et al., 2023), we followed the stratified random 

sampling strategy recommended by Olofsson et al. (2014), in which samples are drawn in proportion to 

the mapped area of each class within the actual mapping region. However, since the global coverage of 

PCG is less than 1%, strictly proportional sampling would result in very few PCG samples to support a 

statistically robust accuracy assessment. To address this issue, and consistent with the approaches adopted 

in the above studies, we moderately increased the proportion of PCG samples in the validation set to 



approximately 10%. This adjustment significantly enhances the evaluation capability for this minority 

class. 

Table 1. Confusion matrix. 

Confusion Matrix 
Reference: 

Non-PCG 

Reference: 

PCG 
UA (%) 

Predicted: Non-PCG 39,991 893 97.82 ± 0.13 

Predicted: PCG 9 5,107 99.82 ± 0.11 

PA (%) 99.98 ± 0.01 85.12 ± 0.90  

F1-score (%) - 91.88 ± 2.71  

OA (%)   98.04 ± 0.12 
Note*: PA, Producer’s Accuracy; UA, User’s Accuracy; OA, Overall Accuracy. 

As shown in Table 1, the total number of test samples is 46,000, with 6,000 PCG samples and 40,000 

non-PCG samples. To ensure the validity of both classes, we applied separate sampling strategies for each. 

As for PCG, test samples were derived from the 2019 global 3-meter PCG dataset developed by Tong et 

al. (2024), and manually verified through Google Earth visual interpretation. Since the Global-PCG-10 

dataset is for the year 2020, and considering that PCG typically have long lifespans and stable structures, 

this 2019 dataset provides a reliable reference. Additionally, we performed a second round of verification 

using historical Google Earth imagery in around 2020 to confirm their existence and status, minimizing 

sampling bias from prior knowledge. And for non-PCG, due to the large quantity required, manual 

sampling was impractical. We thus randomly sampled from the GLC_FCS30D dataset to ensure 

independence and randomness. All samples were also verified through visual interpretation of historical 

Google Earth imagery in around 2020 to ensure label correctness. 

Based on this validation dataset, as shown in Table 1, Global-PCG-10 achieved a PA of 85.12% ± 

0.90%, UA of 99.82% ± 0.11%, F1-score of 91.88% ± 2.71% and an overall accuracy of 98.04% ± 0.12%. 

These results indicate that the recall (PA) for PCG is relatively low, which is likely due to omission errors 

of small-scale PCG instances. This issue is further analyzed in the bad case study presented in Section 

4.3. In contrast, the model demonstrates a very high precision (UA), primarily attributable to a series of 

post-processing operations applied to the preliminary predictions of Global-PCG-10. Among these, the 

most critical step was the use of a Sieve Filter, which was implemented in multiple stages to effectively 

remove a large number of misclassified areas. 

The above contents have been added in Section 4.2 “Reliability of Global-PCG-10” of the 

manuscript (see Lines 423 ~ 455 for details). 
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3. In the section of ‘4.3 Comparison with other studies’, the authors performed a comparison of the results 

of the spatial extraction of PCG in different regions of the globe. In addition, it is advisable to compare 

the total area of PCG by different continents (or regions). For example, the total areas of PCG in a region 

acquired by different data products, or compare the proportion of area where PCG overlaps in the same 

region by different products. This part of the study needs to be deepened in terms of difficulty, and merely 

comparing spatially with the LULC products or similar PCG products does not seem to be enough to 

prove the accuracy of this product. It is also recommended to add some statistical yearbooks or public 

data information for comparison. 

Response: 

To provide a more objective and fair comparison, we followed the methodology proposed by Huang 

et al. (2022) and conducted a quantitative consistency analysis between the two datasets in terms of global 

PCG spatial distribution. Specifically, we selected four representative 1° × 1° grid regions with varying 

PCG densities. Each of these grids was further subdivided into multiple 0.01° × 0.01° sub-grid units. 

Within each sub-grid, we calculated the proportion of PCG pixels relative to the total number of pixels 

for both datasets (i.e., PCG area ratio, ranging from 0 to 1). Using these continuous ratio-based data, we 

applied linear regression analysis to calculate the coefficient of determination (R²), thereby quantifying 

the spatial distribution consistency between the two datasets across different regions. Unlike methods that 

rely on discrete classification labels, this approach leverages continuous area proportions, making it more 

suitable for evaluating agreement between remote sensing datasets with differing spatial resolutions. As 

shown in Figure 14a ~ d, the experimental results in four typical study area indicate that, in high-density 

PCG regions, our 10-meter resolution PCG dataset demonstrates a high degree of spatial consistency with 



the 3-meter reference dataset. 

 
Figure 14. The consistency performance across the four representative regions and between the dataset 
by Tong et al. and Global-PCG-10 in representative regions.  

To further evaluate spatial consistency at the global scale, we applied a standard regression-based 

consistency analysis across the entire study area, with reference to the analytical approach and spatial 

resolution (i.e., 0.05° grid) used by Huang et al, (2022). The coefficient of determination (R²) was again 

employed as the primary evaluation metric. As shown in Figure 14e, the comparison based on a 0.05° 

grid reveals strong agreement in the global spatial distribution of PCG between the dataset published by 

Tong et al. (2024) and the Global-PCG-10 dataset. The regression analysis yields an R² of 0.746, a root 

mean square error (RMSE) of 0.003, and a regression equation of y = 0.734x + 0.000. These results 

indicate a moderate to strong spatial correlation between the two datasets, further validating the 

effectiveness of the Global-PCG-10 dataset in capturing the global distribution pattern of PCG. 

As illustrated in Figure 14, the Global-PCG-10 dataset exhibits strong agreement with the reference 

data in typical regions (Figure 14a–d), whereas a moderate overestimation trend is observed at the global 

scale. This discrepancy may be attributed to the spatial resolution limitations of Sentinel-2 imagery. As a 

medium-resolution satellite (10m), Sentinel-2 is more susceptible to intra-class spectral variability and 

inter-class spectral confusion. In sparely distributed greenhouse areas, non-PCG features such as bare soil, 

inter-greenhouse roads, or adjacent agricultural structures may exhibit spectral signatures similar to 

plastic-covered greenhouses, leading to misclassification and systematic overestimation of PCG coverage. 

Moreover, within the same spatial aggregation unit (e.g., a 0.05° grid cell), Sentinel-2 offers fewer pixels 



compared to PlanetScope (3m), making PCG area statistics more sensitive to per-pixel classification 

errors. Consequently, in typical regions with more homogeneous greenhouse patterns, clearer boundaries, 

the classification results are more stable and consistent. In contrast, at the global scale, the combined 

effects of landscape heterogeneity and resolution-induced error propagation contribute to reduced 

agreement. 

The above contents have been added in Section 4.2 “Reliability of Global-PCG-10” of the 

manuscript (see Lines 551 ~ 572 for details). 
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--------------------------------------------- 

 

Thank you again for your comments. They are valuable and very helpful for revising and improving 

our paper, as well as the important guiding significance to our studies. 

 

Yours sincerely, 

Bowen Niu, Quanlong Feng 

on behalf of all the co-authors 
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