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Abstract. Marine low clouds tend to organize into larger mesoscale patterns with distinct morphological appearances over the 

ocean, referred to as mesoscale morphology. While prior studies have mainly examined the fundamental characteristics and 15 

shortwave radiative effects of these mesoscale morphologies, their behaviour in the nighttime marine boundary layer (MBL) 

remains underexplored due to limited observations. To address this, we established a global classification dataset of daytime 

and nighttime marine low-cloud morphology using a deep residual network model and infrared radiance data of 1°×1° 

resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS), with machine-learning-retrieved all-day cloud 

optical thickness aiding in model training. We analysed day-night contrasts in climatology, seasonal cycles, and cloud 20 

properties of different cloud morphology types in this study. Results show that relative frequency of occurrence of closed 

mesoscale cellular convection (MCC) significantly increase at night, while that of suppressed cumulus (Cu) shows a 

remarkable decrease. Disorganized MCC and clustered Cu display a slight frequency increase during night. In addition, solid 

stratus and three MCC types exhibit distinct seasonal variations, whereas two cumuliform types show no clear seasonal cycle. 

Our dataset extends the study of mesoscale cloud morphologies from daytime to nighttime and 1o × 1o resolution makes it 25 

better match with other climate datasets. It will provide an important foundation for further research on the interactions between 

cloud morphology and climate processes. Our dataset is open-access and available at https://doi.org/10.5281/zenodo.13801408 

(Wu et al., 2024). 

1 Introduction 

Marine low clouds cover the vast area of oceans and have a pronounced impact on the Earth's radiation budget. They exert a 30 

strong radiative cooling on the planet as the residual of a larger cooling effect and a positive warming effect (Klein and 

Hartmann, 1993; Eytan et al., 2020). These radiative effects are known to be sensitive to cloud types due to their different 
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cloud properties, such as cloud fraction and albedo. Traditional ground-based observations have classified individual marine 

low clouds using the cloud types defined by the World Meteorological Organization (WMO), such as cumulus (Cu), 

stratocumulus (Sc) and stratus (St) (Zhang et al., 2018; Li et al., 2022; Guzel et al., 2024). However, satellite imagery shows 35 

that these individual clouds tend to organize into larger mesoscale patterns with distinct morphological features that are not 

easily discernible from the limited perspective of ground observation instruments. These mesoscale cloud patterns, referred to 

as cloud mesoscale morphologies, have been shown to exert different radiative effects on climate (McCoy et al., 2017; McCoy 

et al., 2023; Mohrmann et al., 2021), and also reflect the intricate physical processes of the underlying marine boundary layer 

(MBL) (Wood, 2012; Bony et al., 2020; Eastman et al., 2022; Liu et al., 2024; Mohrmann et al., 2021). 40 

Previous studies have identified several critical environmental factors that influence the evolution of marine low-cloud 

morphologies. Open and closed mesoscale cellular convection (MCC) clouds are both affected by cloud-top longwave 

radiation cooling (Wood, 2012), but the surface fluxes dominate the open MCC when there is a strong cold advection such as 

polar outbreak. As a result, the passage of mid-latitude cold air outbreaks serve as key triggers for the transition from closed 

to open MCC (McCoy et al., 2017; Tornow et al., 2021). In the subtropics, precipitation promotes the organization and 45 

sustainment of open cell structure and dominates the transformation of closed to open MCC clouds (Savic-Jovcic and Stevens, 

2008; Feingold et al., 2010; Yamaguchi and Feingold, 2015; Eastman et al., 2022). In contrast, closed MCC tend to evolve 

into more disorganized cumulus under conditions of warmer sea surface temperature and increased entrainment of dry air at 

the cloud top (Eastman et al., 2022; McCoy et al., 2023). Apart from meteorological influences, aerosols are another key cloud-

controlling factor (Cao et al., 2024) and can initiate these transitions by modulating precipitation. High aerosol concentration 50 

suppresses the precipitation and favors the maintenance of closed MCCs, while the scarcity of aerosols promotes the generation 

of widespread precipitation, leading to the conversion toward open MCCs (Stevens et al., 2005; Rosenfeld et al., 2006; Petters 

et al., 2006; Xue et al., 2008; Goren et al., 2019). With global warming and emission reductions, there is a high likelihood that 

meteorological factors and aerosols will change accordingly. This raises several important questions regarding low-cloud 

feedback, such as whether the mesoscale morphology of low clouds will change as the climate warms and how these changes 55 

will affect radiation. 

An objective classification of mesoscale morphology from satellite observations is essential for facilitating a more systematic 

investigation of these questions. In recent years, deep learning methods, especially those based on convolutional neural 

networks (CNNs), have proven particularly effective in the objective classification of mesoscale cloud morphology in satellite 

images. By using a three-layer neural network, Wood and Hartmann (2006) classified daytime cloud morphology at a 60 

resolution of 256 × 256 pixels into four categories: no MCC, closed MCC, open MCC, and cellular but disorganized MCC. 

Their work was pioneering and has since been extended to more than a decade of MODIS observations by McCoy et al. (2023). 

Yuan et al. (2020) then subdivided the cellular but disorganized category into disorganized MCC, clustered Cu and suppressed 

Cu for 128 × 128 scenes, and developed a global dataset of these six cloud types using a fine-tuned Visual Geometry Group 

16-layer (VGG-16) network. Subsequently, Watson-Parris et al. (2021) employed a pre-trained CNN model to detect pockets 65 
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of open cells (POCs) (224 × 224 pixel) in three main marine stratocumulus regions during daytime. Moreover, Schulz et al. 

(2021) developed an object detection model to classify four larger scale (10o×10o) cloud morphologies in trade wind regions 

of North Atlantic. These morphologies were vividly named as "sugar," "gravel," "flowers," and "fish" mainly based on their 

visual appearances.  

The datasets mentioned above have been utilized for various downstream tasks, such as quantifying shortwave cloud radiative 70 

effects and identifying key controlling factors of different cloud morphologies (Bony et al., 2020; Mohrmann et al., 2021; 

Watson-Parris et al., 2021), quantifying shortwave cloud feedbacks resulting from changes in morphology (McCoy et al., 

2023), and investigating aerosol-cloud interactions across different morphologies (Liu et al., 2024). However, most current 

studies focus on the role of morphology in daytime shortwave radiation, with a notable lack of understanding regarding 

longwave radiation, particularly nighttime longwave radiation, primarily due to the scarcity of nighttime observations of cloud 75 

morphologies. Although a few geostationary satellite-based studies give a nighttime morphological classification, they are also 

limited to regional scales and lack a global-scale classification dataset (Lang et al., 2022; Segal Rozenhaimer et al., 2023).  

The studies on nighttime cloud morphology are limited but essential for investigating cloud-climate feedback. Closed MCC 

clouds have been shown to peak at night (Lang et al., 2022) and the subsequently increased cloud cover could lead to a rise in 

surface temperature by enhancing downward longwave radiation (Dai et al., 1999), which would further reduce the diurnal 80 

temperature range and affect sea breeze-like circulations (Vose et al., 2005; Davy et al., 2017; Cox et al., 2020). Climate 

models suggest that, compared to daytime, the slower decline in the long-term trend of nighttime cloud cover could raise the 

global temperature and amplify climate warming (Luo et al., 2024). However, how these cloud morphology types behave 

under the influence of the nighttime MBL regime and how nighttime cloud cover varies under different cloud morphology 

types remain unclear. In addition, marine precipitation is more frequent at night (Dai, 2001; Dai et al., 2007), with its intensity 85 

strongly dependent on cloud morphology types (Muhlbauer et al., 2014). Therefore, comparing the differences in cloud 

morphology between daytime and nighttime may help explain the uneven distribution of precipitation, as well as improve our 

understanding and prediction of global precipitation changes against the backdrop of climate warming. 

Motivated by the aforementioned issues, a new 1° × 1° classification dataset of daytime and nighttime marine low-cloud 

mesoscale morphology was generated in this study using a residual network model. In contrast to previous cloud classification 90 

datasets, our dataset provides global coverage with a temporal resolution of 5 minutes and a spatial resolution of 1o from 2018 

to 2022, which makes it better integrate with other standard-grid datasets to deliver more precise information about the 

meteorological conditions and aerosols. The manuscript is organized as follows. Section 2 introduces the datasets and methods. 

Section 3 presents the training results and the contents of our dataset. The advantages and limitations of this dataset are 

discussed in Section 4. Section 5 states the data availability and Section 6 concludes. 95 
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2 Data and methods 

2.1 Cloud type classifications 

We adopted the classification scheme in Yuan et al. (2020) for mesoscale morphological classification of marine low clouds. 

The examples of each morphology classification are shown in Fig. 1. Solid stratus clouds are driven by cloud-top radiative 

cooling method and have a flat and uniform surface. Closed MCC clouds are stratocumulus driven by longwave radiative 100 

cooling and surface fluxes and display distinctive honeycomb-like structures with clear and descending edges. Open MCCs 

have a clear descending region in the center, which is surrounded by several active shallow convective clouds. They appear in 

more unstable environment and typically generate heavier drizzle, lower shortwave reflectance, and greater transmissivity than 

closed MCC (Wang and Feingold, 2009; Muhlbauer et al., 2014). Disorganized MCC are a mix of convective elements and 

extensive stratiform clouds, marked by smaller droplets and lower optical thickness (Yuan et al., 2020; Liu et al., 2024). They 105 

tend to occur in a drier troposphere and over warmer oceans (Wyant et al., 1997; Bretherton et al., 2019). Clustered Cu refers 

to the aggregation of shallow, vigorous convective elements, while suppressed Cu consists of individual, scattered cumulus 

clouds that occasionally form linear or branched patterns. Both of them are frequently observed over warm tropical oceans 

(Yuan et al., 2020; Mohrmann et al., 2021). 

Figure 1: Example scenes of six cloud morphological types: solid stratus, closed mesoscale cellular convection, open mesoscale 110 
cellular convection, disorganized mesoscale cellular convection, clustered cumulus and suppressed cumulus. They are visible light 

images composed of channels 1, 4, 3 and the spatial resolution is 1° × 1°.  
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2.2 Data 

The primary observation data utilized in this study were derived from the Moderate Resolution Imaging Spectroradiometer 115 

(MODIS) aboard NASA's Aqua satellite, including the Level-1B radiance product MYD021KM and the Level-2 cloud product 

MYD06 (Platnick et al., 2017), both with a spatial resolution of 1 km at nadir point. The thermal infrared radiance data from 

MYD021KM were used for model training and testing, while the cloud properties from MYD06 were utilized for quality 

control, low clouds filtering and statistical analyses. First, we selected daytime MODIS images over the Southeast Pacific 

(SEP) from January to June of 2014 to create our classification dataset. The representativeness of this dataset was validated as 120 

the probability density functions (PDFs) of thermal radiance data and cloud optical thickness show large overlap with those of 

the global and full-year dataset (Fig. S1). After dividing them into 128 × 128 pixels scenes, we filtered out the cloudless scenes 

(cloud fraction less than 1%) and scenes containing a large amount of high clouds or ice clouds (high/ice cloud exceeding 

10%). High clouds are defined as those with cloud top height above 6km, ice clouds are those with cloud top temperature 

below 273.15K. In addition, the severe stretching at the edge of MODIS granules has been avoided by filtering scenes with 125 

sensor zenith angle greater than 45°. Ultimately, these eligible scenes are manually classified into one of the six categories. 

The cloud properties from MYD06 product, such as cloud top height (CTH), cloud liquid water path (CLWP), cloud optical 

thickness (COT) and cloud effective radius (CER) are used to help label and check the results with the cloud dataset 

(Mohrmann et al., 2021). A total of 38,756 labeled daytime scenes were obtained, including 3,548 scenes of solid stratus, 6,277 

of closed MCC, 3,345 of open MCC, 6,739 of disorganized MCC, 8,947 of clustered Cu and 9,900 of suppressed Cu. These 130 

scenes were then randomly partitioned into three mutually independent datasets for training, validation, and testing, with a 

distribution ratio of 3:1:1 respectively. Despite the disparity in sample sizes within our training dataset, it is capable of yielding 

superior model performance compared to a balanced dataset (Fig. S2).  

In order to classify daytime and nighttime morphological types using one model only, we utilized daytime radiance data to 

train our model. Thermal infrared (TIR) channels 29 (8.7µm), 31 (10.8µm) and 32 (12.0µm) were specifically chosen as they 135 

most effectively represent the cloud properties and cloud-top temperature. Notably, owing to the subtle temperature variations 

on the cloud top, our model is unable to comprehensively discern convective cellular structures within the clouds by using 

radiance data only. Incorporating COT can better address the model's shortcomings in studying these cellular structures by 

providing cloud thickness information. Considering that there are no nighttime COT in the Level-2 cloud product MYD06, we 

used the COT data retrieved by Wang et al. (2022) as the fourth channel input for our model. Their all-day COT products, 140 

obtained using a thermal infrared CNN model, have shown a good consistency with both daytime products from MODIS and 

all-day products from active sensors. To validate the reliability of using TIR-CNN-based COT as a replacement for MODIS 

COT, we conducted a sensitivity experiment: comparing our classification with the outputs of a CNN trained on MODIS 

daytime COT. The results (Fig. S3) showed that the accuracy of both models is nearly identical, indicating that TIR-CNN-

based COT is a reliable alternative to MODIS COT. In addition, we further examined the differences in the PDFs of the thermal 145 

radiance data and the TIR-CNN-based COT between our training dataset (daytime) and nighttime dataset. As depicted in Fig. 
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S4, these PDFs nearly overlapped, which means less extrapolation will be introduced when the model is generalized to 

nighttime data. And it also illustrates the credibility of our nighttime classification results. In summary, all the variables and 

datasets used in this study are outlined in Table 1. 

 150 

Table 1 Summary of datasets used in the study. 

Dataset Count Channels Day/Night Size Period 

Training 

dataset 
23,254 

29,31,32, 

COT 
Daytime 128×128 

January–

June 2014 

Validation 

dataset 
7,751 

29,31,32, 

COT 
Daytime 128×128 

January–

June 2014 

Testing 

dataset 
7,751 

29,31,32, 

COT 
Daytime 128×128 

January–

June 2014 

Application 

dataset 

18 

million 

29,31,32, 

COT 

Daytime 

and 

Nighttime 

1°×1° 

(128×128) 
2018–2022 

 

Before starting training, we first converted the radiance data into Brightness Temperature (BT) according to the inverse Planck 

Function shown in Eq. (1): 

BT(λ, L) =
C2

λln(C1/λ5L+1)
 , (1) 155 

where λ  is the wavelength (μm), L represents the radiance (W/m2·sr·μm), C1=1.191042×108(W/m2·sr·μm − 4), and 

C2=1.4387752×104 (K·μm). We combined BT data from the three thermal infrared channels according to the Day and Night 

colour scheme proposed by Lensky and Rosenfeld (2008) (Table 2). Table 2 includes both the original Day and Night color 

scheme and our modified scheme used in this study. Different from the original Day and Night scheme, we did not clip each 

scene's data to a fixed range of maximum and minimum values. We think clipping might lead to the loss of important 160 

information, such as convective cell characteristics, which will affect model performance. In our scheme, the data of each 

scene may be compressed into different ranges and cause slight color variations in each scene image (Fig. 4), it has little impact 

on the model's judgment capability since the convolutional neural network primarily focuses on the statistical relationships 

between adjacent pixels in satellite images (Goodfellow, 2016). Moreover, after multiple rounds of practical training 

adjustments, we decided to use a factor of 2 to stretch the green channel to achieve a better model prediction outcome. To 165 

enhance the training efficiency and accuracy, the combined BT data and COT are normalized using Min-Max normalization 

following Eq. (2): 

𝑥n =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
 , (2) 



 

 

7 

 

where 𝑥 represents the input data, 𝑥𝑛 represents the data after normalization, min(𝑥) and max(𝑥) represent the minimum and 

maximum values of the input data, respectively. 170 

 

Table 2 The original (adapted from Lensky and Rosenfeld (2008)) and modified Day and Night color schemes 

Color scheme 

Red Green Blue 

Channel Min Max Stretch Channel Min Max Stretch Channel Min Max Stretch 

Original 

Day and Night 

IR12.0–

IR10.8 

−4 

K 
2 K Linear 

IR10.8–

IR8.7 
0 K 6 K Γ=1.2 IR10.8 248K 303K Linear 

Modified 

Day and Night 

IR12.0–

IR10.8 
min max Linear 

IR10.8–

IR8.7 
min max Γ= 2 IR10.8 min max Linear 

 

To align with conventional climate datasets, we developed a standard 1° ×1° gridded datasets by applying the trained model 

to 1°-resolution images, where the 1° × 1° satellite images were interpolated and refined to 128 × 128 pixels.  175 

For the purpose of investigating the influence of meteorological conditions on low-cloud morphologies, we conducted some 

statistical analyses utilizing the co-located hourly ERA5 reanalysis data (1° × 1°) from European Centre for Medium-Range 

Weather Forecasts (ECMWF). The co-location is achieved by spatially selecting the nearest ERA5 grid point to each MODIS 

observation and temporally interpolating the ERA5 data to match the exact time of the MODIS observations. This ensures 

accurate alignment between the two datasets in both space and time. Several variables, such as sea surface temperature (SST), 180 

relative humidity (RH), vertical velocity (ω) and divergence (1000 hPa, 700 hPa), can be directly obtained from the reanalysis 

data, while lower tropospheric stability (LTS) needs to be calculated using the following equation (3): 

𝐿𝑇𝑆 = θ700hPa − θ1000hPa , (3) 

where θ is the potential temperature. 

Furthermore, we retrieved 5-year daytime and night-time CER (re) and COT (τ) using the TIR-CNN model from Wang et al. 185 

(2022) for subsequent statistical analysis for cloud properties. This approach will ensure the consistency of data range by using 

the same cloud detection algorithm. We can further calculate the liquid water path (LWP) utilizing Eq. (4): 

LWP =
2

3
ρwτre , (4) 

with ρw the density of liquid water. 

2.3 Marine Low-cloud Mesoscale Morphology Dataset 190 

Our cloud dataset provides global classifications of daytime and nighttime marine low-cloud mesoscale morphology for the 

years 2018-2022, with a spatial resolution of 1° × 1° and a temporal resolution of 5 minutes. The dataset is provided in two 
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kinds of files: those prefixed with "day" store the daytime classification results for each year, while files with the prefix "night" 

contain the nighttime classification results for each year. Both sets of files include the same variables. Table 3 provides an 

overview of the variables and their associated information. The key variables in the dataset include ‘date’ (representing the 195 

time of the 1° × 1° scene, formatted as the MODIS granule date), ‘lon’ and ‘lat’ (indicating the central longitude and latitude), 

and ‘cat’ (assigned cloud category, the values from 0 to 5 correspond to 'Solid Stratus', 'Closed MCC', 'Open MCC', 

'Disorganized MCC', 'Clustered Cu', and 'Suppressed Cu', respectively). Additionally, ‘cert’ represents the model certainty, 

quantifying the probability that the cloud morphology belongs to the assigned category. ‘low_cf’ denotes the low cloud fraction, 

and ‘COT_CNN’, ‘CER_CNN’, and ‘LWP_CNN’ provide the in-cloud average cloud optical thickness, effective radius, and 200 

liquid water path respectively, as derived from the TIR-CNN model from Wang et al. (2022). The ‘Sensor_zenith’ variable 

indicates the scene average sensor zenith angle.  

 

Table 3 Variables of the Daytime and Nighttime Global Marine Low-cloud Mesoscale Morphology Dataset  

Variable 

Name 

Description Source Spatial 

Resolution 

Temporal 

Resolution 

Units 

 

date Time of the 1°×1° grid point,  

formatted as 'YYYYDDD.HHHH'  

MODIS MYD021 1° × 1° 5 minutes - 

lon Central longitude (-180,180) MODIS MYD021 1° × 1° 5 minutes degree (°) 

lat Central latitude (-60,60) MODIS MYD021 1° × 1° 5 minutes degree (°) 

cat Category of the cloud morphology: 0-

Solid stratus, 1-Closed MCC, 2-Open 

MCC, 3-Disorganized MCC, 4-

Clustered Cu, 5-Suppressed Cu 

Cloud Classification 

Model  

1° × 1° 5 minutes - 

cert Model certainty Cloud Classification 

Model  

1° × 1° 5 minutes - 

low_cf Cloud fraction of low clouds MODIS MYD06 1° × 1° 5 minutes - 

COT_CNN In-cloud average cloud optical thickness 

(COT) 

TIR-CNN model of 

Wang et al. (2022) 

1° × 1° 5 minutes - 

CER_CNN In-cloud average cloud effective radius 

(CER) 

TIR-CNN model of 

Wang et al. (2022) 

1° × 1° 5 minutes µm 

LWP_CNN In-cloud average cloud liquid water 

path (LWP) 

Calculated from 

COT_CNN and 

CER_CNN  

1° × 1° 5 minutes g/m2 

Sensor_zenith Scene average sensor zenith angle MODIS MYD021  1° × 1° 5 minutes degree (°) 



 

 

9 

 

 205 

2.4 Method 

In this study, a machine learning (ML) model ResNet-50 (Koonce, 2021) was chosen as our model architecture. It is a deep 

CNN model which employs a residual learning framework to construct a network with 50 convolutional layers. Despite a fairly 

deep convolutional layer, the incorporation of residual units in ResNet-50 enables direct signal transmission from earlier to 

later layers, ensuring high computational efficiency in deep architectures and markedly boosting both accuracy and the speed 210 

of convergence. We made some adjustments to the overall architecture of ResNet50 to better suit our datasets and the fine-

tuned model structure is presented in Fig. 2a. The number of input channels was set to 4 to include the additional COT channel. 

Then, we configured the output dimension of the final fully connected layer to 6 to produce a probability distribution over the 

6 output classes for each scene via a softmax activation function. The internal structure of ResNet50 remains unchanged, 

consisting of a preprocessing layer, four stages, and a global average pooling. The preprocessing layer includes a convolutional 215 

layer, a batch normalization (BN) layer, a ReLU activation function, and a Max Pooling layer. Each stage contains several 

residual blocks and is connected by skip connections (Fig. 2b). 

 

Figure 2: (a) The fine-tuned ResNet50 model architecture. (b) The skip connection structure of the residual blocks in the model. 220 
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Throughout the training process, we employed the Adaptive Moment Estimation (Adam) optimizer for gradient descent 

calculation and utilized cross-entropy as the loss function. Given the substantial size of our training dataset, we chose a batch 

size of 256 to enhance memory utilization and expedite the training process. In addition, to counteract the tendency for 

overfitting due to the increased noise in the radiance data of thermal infrared channels, we applied random rotation 225 

augmentation to the training images with a 50% probability. L2 regularization was also introduced to further decay the weights 

and prevent overfitting. 

After each training epoch, the validation dataset was used to evaluate the trained model's performance, which allows us to 

monitor the model's success. When the training process was completed, the test dataset was used for the final evaluation of the 

model's performance. We used the optimal model to predict each sample in the test dataset, compared the model’s predictions 230 

with the true labels, and assessed the accuracy using metrics such as accuracy, F1-score, and recall. 

3 Results 

3.1 Model performance 

In this section, our model performance is evaluated and a nighttime classification example is given. Our model begins to show 

signs of convergence around the 50th epoch, with its maximum validation accuracy reaching around 92% by the 65th epoch 235 

(Fig. S5). Compared to training without the incorporation of COT, the model's accuracy improved by 4%. Although it is a bit 

less accurate compared to the visible light model from Yuan et al. (2020), it is undeniable that this model has achieved a 

relatively high accuracy level when compared to other TIR model (Lang et al., 2022), and can effectively accomplish the 

classification tasks we proposed. The optimal model is subsequently evaluated on an independent test dataset, yielding the 

confusion matrix illustrated in Fig. 3. Elements on the diagonal represent the model's prediction accuracy for each type. Our 240 

model achieves an average precision of approximately 91%, an F1-score of 90.6%, and a recall of 90.8%, demonstrating its 

strong generalization capability and robustness.  

In our model, closed MCC is more likely to be misidentified as solid stratus or disorganized MCC, while disorganized MCC 

tends to be misclassified as clustered Cu or closed MCC (Fig. 3). As observed in some classification samples, these 

misclassifications are partly attributed to the existence of mixed and transitional scenes (Fig. S6). In addition, considering the 245 

similarity between the morphology of these clouds, the misclassifications may be related to the model's limited capacity to 

distinguish between stratiform structures and convective cells due to the small temperature difference on the cloud top. This 

can also be reflected in the sample images (Fig. S7). 
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 250 

Figure 3: The confusion matrix of the model's predictions on the test dataset. The rows of confusion matrix represent actual 

categories, columns represent predicted categories. The elements on the diagonal indicate the proportion of samples correctly 

classified by the model in each category. 

Training by daytime infrared data, this model can be applied to nighttime scenarios, as shown in Fig. 4. Circles with different 

colors represent different cloud categories within the 1°×1° grid. Grids without circles indicate that they do not meet the criteria 255 

outlined in Section 2. The pseudo-RGB images are composed of thermal infrared channels 29, 31, 32 following the modified 

Day and Night color scheme (Table 2). This scheme provides a clearer visual distinction between different cloud types. 

However, as the data range for each image is not fixed, the colors of different cloud types will vary in different situations. For 

example, in the left granule image, light yellow represents low water clouds, green indicating thin cirrus and dark yellow 

signifying thick cumulonimbus clouds. In the sample scenes of open MCC and suppressed Cu, the yellow of low clouds 260 

becomes lighter and the green indicates small cumulus cloud. As for the remaining four cloud types, the surrounding thin cirrus 

appears in green while the stratiform clouds and shallow cumulus convections are both depicted in a brighter yellow due to 

their similar temperatures. Thus, it is challenging to discern convective cells among the yellow background of stratiform clouds. 

That is why we incorporated COT to assist in model predictions. 

 265 
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Figure 4: A nighttime classification example for MODIS image taken at 22:20 UTC on December 31, 2014. The pseudo-RGB images 

were generated from the combination of 29, 31, 32 thermal infrared channels while the classification results were derived by 

incorporating the retrieved Cloud Optical Thickness (COT) data. 

 270 

3.2 Climatology of morphological types 

Using the well-trained ResNet-50 model, we classified nearly 18 million 1° MODIS scenes and recorded the occurrence counts 

of different cloud types. The occurrence counts of each cloud type were divided by the total occurrences of the six cloud types 

within each grid to calculate their relative frequency of occurrence (RFO). The daytime climatology of RFO for the six cloud 

types is presented in Fig. 5. Each subplot’s upper-right corner displays n and a percentage, with n denoting the total number 275 

of occurrences for each cloud type during the daytime over the five-year period, while the percentage indicates the proportion 

of each cloud type's five-year occurrences (n) relative to the five-year total occurrences of all six cloud types, which called 

total relative frequency. 

Solid stratus predominantly distributes in nearly symmetrical latitude bands between 40°N–60°N and 50°S–60°S with a total 

relative frequency of 14%. In the mid to high latitudes of the Southern Hemisphere, its RFO exceeds 90%, which is higher 280 

than that in the Northern Hemisphere. Additionally, a substantial presence of solid stratus is also observed along the western 

coasts of continents in tropical and subtropical regions. Closed MCCs mainly appear in the cold eastern subtropical and mid-

latitude oceans, with marked peak along the western coasts of the North America, South America and Africa. Their total 

relative frequency during the daytime is relatively low, accounting for only 5%. Disorganized MCCs exhibit a distribution 

pattern similar to closed MCC but are typically located farther offshore. They cover more extensive area and occur more 285 

frequently. The total relative frequency of disorganized MCC during the daytime is 15%, three times higher than closed MCC. 
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In addition, it is worth noting that, the peak areas of disorganized MCC appear in the west of closed MCC. This may be related 

to the transition between these two cloud types. The occurrence of open MCCs is least frequent over the global ocean, 

accounting for only 3%. In the water areas west of Peru, there is a minor frequency peak of open MCC, which may be attribute 

to the fragmentation of closed MCC caused by strong winds and precipitation (Rosenfeld et al., 2006; Eastman et al., 2022). 290 

Clustered Cu and suppressed Cu are primarily observed in tropical and subtropical regions. They have the highest overall 

relative frequencies, both around 30%. However, in terms of their spatial distribution, clustered cumulus is more prevalent 

over central and western oceans, while suppressed Cu commonly peaks in coastal waters near continents. We have compared 

the daytime climatology with the results from Yuan et al. (2020) using visible light channels and consistent results are obtained 

(Fig. S8). 295 

 

Figure 5: The climatology of daytime relative frequencies of occurrence (RFO) for six categories from 2018 to 2022. N represents 

the total number of occurrences for each cloud type during the day over the five-year period, while the percentage indicates the 

proportion of each cloud type's five-year occurrences relative to the five-year total occurrences of all six cloud types. 

 300 

In Fig. 6, the spatial distribution of these six cloud types remains largely unchanged at night, but their RFO show notable 

variations. Figure 7 presents the nighttime–daytime contrast in RFO for each morphological type (nighttime minus daytime). 
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The total nocturnal frequency of solid stratus clouds is 15%, which is similar to daytime. At night, they occur more frequently 

over mid-latitude oceans and less frequently in low-latitude regions. The RFO for closed MCC shows a pronounced increase 

at night, reaching approximately twice the levels of the daytime. Some of the increase occurs over mid-latitude oceans, while 305 

the most significant rise is observed over the eastern subtropical ocean, particularly in the Southern Hemisphere (Fig. 7). The 

overall frequency of open MCC remains relatively unchanged at night, while the total frequency of disorganized MCC and 

clustered Cu slightly increase. At nighttime, the RFO of all these three cloud types decrease over the colder eastern subtropical 

and mid-latitude oceans, while increase over the warmer sea surface at lower latitudes (Fig. 7). Notably, westward from the 

continents, the night-time frequency pattern of disorganized MCC exhibits an initial decrease followed by an increase. This 310 

opposite trend is most pronounced along the western coast of South America. Among six cloud types, only the total frequency 

of suppressed Cu experiences a marked decline at night, with a total decrease of 11%. A statistical analysis of some 

meteorological conditions will be conducted in Section 3.5. Exploration of the critical cloud-controlling factors contributing 

to these diurnal variations will be done in the future. 

 315 

 

Figure 6: The climatology of nighttime relative frequencies of occurrence (RFO) for six categories from 2018 to 2022. 
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Figure 7: The difference between daytime and night-time RFO for each morphological type (nighttime minus daytime). 320 

 

3.3 Seasonal variations in morphological types 

We further classified the RFO of different cloud morphologies by season. Figure 8 presents the seasonal variation of daytime 

RFO while Fig. 9 shows the nighttime situation. It can be seen from the two figures that the RFO of these six cloud types 

exhibit similar seasonality in both day and night. At mid latitudes, solid stratus clouds usually peak during the summer of the 325 

respective hemisphere (JJA for the Northern Hemisphere, DJF for the Southern Hemisphere) and have the lowest occurrence 

during the winter (DJF for the Northern Hemisphere, JJA for the Southern Hemisphere). They show equal RFO during spring 

and autumn in both hemispheres (MAM and SON). The peak occurrence of solid stratus in mid-latitude regions aligns with 

the latitudinal shift of solar insolation. Thus it can be inferred that the increased temperature and enhanced moisture available 

from melted sea ice may contribute to the peak in summer  (Herman and Goody, 1976). The RFO of closed MCC notably 330 

increases during the winter (JJA) and spring (SON) in the Southern Hemisphere, particularly in the southeast Pacific (SEP) 



 

 

16 

 

and southeast Atlantic (SEA) regions. McCoy et al. (2017) suggest that the seasonal cycle of closed MCC in such regions 

correlates well with estimated inversion strength (EIS). In contrast to solid stratus, open MCC demonstrates an opposite 

seasonal cycle in mid-latitudes, with the highest frequency occurring in the winter of respective hemisphere (DJF for the 

Northern Hemisphere and JJA for the Southern Hemisphere). Previous work suggests that its seasonality is more likely 335 

associated with cold air outbreaks in mid-latitude oceanic regions (McCoy et al., 2017). This may also explain why open MCC 

exhibits zonal frequency peak over the Southern Pacific during the winter of Southern Hemisphere (JJA) (Fig. 8 and Fig. 9). 

Disorganized MCC clouds occur more frequently over warmer ocean surface western of the continents during the summer of 

respective hemisphere (JJA in the Northern Hemisphere and DJF in the Southern Hemisphere) and occur less frequently during 

the winter of respective hemisphere (DJF in the Northern Hemisphere and JJA in the Southern Hemisphere). Thus, the sea 340 

surface temperature may be one of the controlling factors of its seasonal variation. All the MCC types show distinct seasonal 

cycles while the clustered Cu and suppressed Cu do not show marked seasonal variations during both day and night. 

 

 

Figure 8: Seasonal variations of daytime relative frequencies of occurrence (RFO). 345 
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Figure 9: Seasonal variations of nighttime relative frequencies of occurrence (RFO). 

 

3.4 Cloud properties 350 

Different clouds types exhibit different radiative effects due to their unique physical characteristics. In Fig. 10, we compared 

the physical properties of each cloud type in both day and night, including cloud fraction (CF), cloud effective radius (CER), 

cloud liquid water path (LWP), and cloud optical thickness (COT). The CF is derived from the cloud mask in the Level-2 

cloud product MYD06, while CER and COT are both retrieved using the method from Wang et al. (2022). LWP is calculated 

from CER and COT as mentioned in Section 2.2. All of the cloud microphysical properties represent the in-cloud mean value 355 

within a 1°×1° grid. 

Solid stratus and closed MCC possess the highest CF, therefore the increase in their nocturnal frequency may account for a 

major portion of the overall rise in cloud cover. Open MCC possesses the largest CER and it will decrease by 2 microns on 

average at night. In the daytime, closed MCC clouds exhibit the highest values of LWP and COT. At nighttime, their CER, 

LWP and COT increase further substantially, with a substantial magnitude. The four cloud properties of disorganized MCC 360 

also show a slight increase at nighttime. 
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Figure 10: A violin plot of the properties of six cloud types over the global oceans from 2018 to 2022. (a) cloud fraction, (b) retrieved 

cloud effective radius, (c) cloud liquid water path, (d) retrieved cloud optical thickness. Blue represents the daytime data and yellow 365 
represents the nighttime data. The central long dashed line in each plot represents the median of the distribution, and the short 

dashed line indicates the interquartile range. The shape of the violin plots suggests the density distribution of the values, with wider 

sections indicating a higher frequency of data points. 

 

3.5 Large-scale meteorological condition 370 

The statistics of several meteorological factors which may control the marine low cloud morphology in the Southeast Pacific 

(SEP) region (0–30°S, 80°W–120°W) are shown in Figure 11. The lower tropospheric stability (LTS) for the six cloud types 

is shown in Figure 11a. A higher LTS indicates a more stable lower troposphere. Closed MCC have the highest LTS, implying 

the significance of tropospheric stability in their formation. The two cumulus types have the lowest LTS because an unstable 
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troposphere is conducive to cumulus activity. The LTS of six cloud types show different degrees of decline at nighttime, which 375 

may be due to the shift in their geographical locations. Sea surface temperature (SST) is the lowest for closed MCC during 

both day and night (Fig. 11b). Open MCC and disorganized MCC exhibit higher SST compared with closed MCC, which 

corresponds to their geographical positions. Two cumulus types have the highest SST. At nighttime, the increase of SST for 

different cloud types may also be attributed to their movements. Figure 11c and 11d show the relative humidity (RH) at 700hPa 

and 1000hPa respectively. Throughout the day and night, solid stratus clouds exhibit the highest RH at both 700hPa and 380 

1000hPa. At the 700hPa level (Fig. 11c), the RH values for two cumulus types are higher than those for MCC clouds, while at 

the 1000hPa level (Fig. 11d), the difference is minimal. At night and at 700 hPa, the RH of solid stratus and two cumulus types 

increases, while that of closed MCC decreases. Due to lower temperatures at nighttime, the RH over sea surface for all six 

cloud types increases by a similar magnitude. Figure 11e indicates that all cloud types are associated with large-scale 

subsidence. Open MCC experiences the strongest upper-level subsidence, while solid stratus has the weakest vertical motion. 385 

At nighttime, the subsidence for all six cloud types weakens and closed MCC exhibits a more pronounced reduction. Figure 

11f presents the boundary layer anomaly divergence which is calculated by subtracting the divergence at 700 hPa from the 

surface divergence. This index has been proven effective in distinguishing between the two cumulus types (Mohrmann et al., 

2021). Suppressed Cu shows the largest boundary layer anomaly divergence, indicating that strong surface divergence favors 

the maintenance of suppressed Cu. Clustered Cu has the smallest anomaly divergence, with weaker surface divergence. 390 

Therefore, the weakening of surface divergence at nighttime may be the reason for the reduction of suppressed Cu. 
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Figure 11: Same as Fig. 10, but shows day-night comparison of meteorological conditions in the Southeast Pacific (SEP) region (0–

30°S, 80°W–120°W) from 2018 to 2022. All matched from ERA5 reanalysis data. (a) Lower tropospheric stability, (b) sea surface 395 
temperature, (c) 700hPa relative humidity, (d) 1000hPa relative humidity, (e) 700hPa vertical velocity, (f) boundary layer anomaly 

divergence. 

4 Discussion 

The mesoscale cloud morphology dataset presented in this paper enables a comparative investigation of cloud morphology 

during both daytime and nighttime. Its 1° × 1° resolution allows a better alignment with other gridded datasets, facilitating 400 

further studies on driving factors, precipitation efficiency, and radiative effects (shortwave and longwave). 

Although our model has achieved a high prediction accuracy and performed well in the classification tasks, there is still room 

for improvement. In future work, the CNN model can be considered replaced and the quality of our training dataset need to be 

improved. For the former one, novel deep CNN models can be applied to cloud morphology classification through transfer 

learning. For example, the Xception model, which achieved an accuracy of 97.66% in classifying traditional cloud types (Guzel 405 

et al., 2024), could be considered. For the latter goal, removing the mixed and mislabeled scenes from the training dataset, 
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along with adding more global and multi-seasonal scenes will improve the model performance in identifying these cloud 

morphological types. The limitations of brightness temperature in capturing cloud-top morphology significantly constrain the 

model's accuracy, which largely explains the performance gap between our nighttime model and the daytime model proposed 

by Yuan et al. (2020). Nevertheless, a 4% improvement in model accuracy achieved by incorporating COT indicates that 410 

integrating additional cloud property channels represent a promising avenue for further enhancing the performance of our 

model. 

As we apply the model trained on 128 × 128 pixels scenes to the interpolated 1° × 1° cloud scenes, the issue regarding to scene 

area require further discussion. For a given latitude, when the satellite zenith angle changes, the area of 128 × 128 pixel will 

vary due to the pixel stretching, while the area of the 1o grid remains constant. This is an advantage of the 1° × 1° grid dataset 415 

as a larger the area has a larger possibility to cover multiple cloud types in one scene. However, at the same satellite zenith 

angle, the size of 1°× 1° grid will change with latitude, whereas the 128 × 128 pixel scene area remains undistorted, which is 

a limitation of the 1° × 1° grid dataset. Moreover, in some cases, especially with stratocumulus and cumulus clouds, 

interpolating images into a 1o× 1° grid may smooth or blur small-scale cloud features and introduce unrealistic structures that 

do not exist in the original images, which could lead to potential misclassifications of the model. Therefore, testing the model 420 

on a labeled, standard-grid dataset will be necessary in future work. 

The six cloud types examined in this study are the most common and representative types over the ocean. However, they are 

not exhaustive. In future work, we will explore the overall low-cloud morphological types over the global land and ocean, and 

gradually extend to mid and high-level clouds. 

5 Data Availability 425 

Daytime and nighttime cloud classification datasets as well as our training dataset are accessible on the 

https://doi.org/10.5281/zenodo.13801408 (Wu et al., 2024). The model and the code related to this article are available at 

https://github.com/YuanyuanWu-NJU/Cloud-morphology-dataset. MODIS data can be downloaded from NASA Official 

Website (https://ladsweb.modaps.eosdis.nasa.gov/). ERA5 reanalysis data are provided by ECMWF 

(https://cds.climate.copernicus.eu/datasets). The cloud property retrieval model of Wang et al. (2022) can be found at 430 

(https://github.com/WgQuan/cloud-property-retrievals). 

6 Conclusion 

In this study, approximately 40,000 MODIS daytime low-cloud scenes were manually labeled to train a deep residual network 

model, ResNet50. By using this model, we developed a new global standard-grid classification dataset (2018–2022) of marine 

low-cloud mesoscale morphology, encompassing classifications for both daytime and nighttime. Compared to the 128 × 128 435 

pixel dataset of Yuan et al. (2020) and Mohrmann et al. (2021), our standard-grid dataset offers more uniform and widely 

https://github.com/YuanyuanWu-NJU/Cloud-morphology-dataset
https://ladsweb.modaps.eosdis.nasa.gov/
https://cds.climate.copernicus.eu/datasets
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applicable cloud morphology data, and more importantly, extending the dataset to nighttime. This dataset can integrate more 

easily with other climate and surface datasets, thus will provide a solid data foundation for future research on understanding 

cloud dynamics and their impact on climate. 

The climatology of cloud morphologies is also analyzed. The results reveal that solid stratus dominates within the 50°–60° 440 

latitude bands and that closed MCC is most commonly found in the cold eastern subtropical and mid-latitude oceans. 

Disorganized MCC occurs on the warmer ocean surfaces west of closed MCC, with a much higher frequency. Open MCC is 

more evenly distributed across the global oceans but with the lowest frequency. In regions with higher sea surface temperatures, 

such as the tropics and the trade wind zone, clustered Cu and suppressed Cu are the primary types of marine low clouds. 

Clustered Cu is more prevalent over oceans and suppressed Cu is more concentrated along continental coasts. 445 

When comparing the daytime and nighttime climatology, we found that there is a pronounced increase in the RFO of closed 

MCC during night, whereas the occurrence of suppressed Cu undergoes a significant decline. The frequencies of disorganized 

MCC and clustered Cu exhibit minor variation between day and night. From the perspective of different seasons, solid stratus 

and all MCC types exhibit clear seasonal cycles while two cumulus types do not show notable seasonality. 

Although we have statistically analyzed the meteorological factors that may affect low cloud morphology, identifying the 450 

specific dominant factors for each cloud type remains challenging. In the context of global warming, the long-term trends of 

these cloud types during daytime and nighttime may also exhibit significant differences. The changes in Earth's radiation 

budget caused by low-cloud morphology transitions may have a substantial impact on climate sensitivity, which will be a topic 

of our future research. 
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