
Dear Reviewer, 

We gratefully thank you for your constructive and insightful comments, which helped 

us improve the quality of our manuscript and dataset. Below the comments are 

answered point-by-point, with the original comments in black and our response in 

blue. The revised sentences in the manuscript are indicated in italics. 

 

Overview: 

Review of “A Global Classification Dataset of Daytime and Nighttime Marine 

Low-cloud Mesoscale Morphology Based on Deep Learning Methods” by Wu et al 

[MS number: essd-2024-536] 

 

This study produces a global dataset of daytime and nighttime low-cloud mesoscale 

morphologies (categorized into six types) using a convolutional neural network 

through a combination of MODIS infrared radiance data and 

machine-learning-retrieved cloud optical thickness. Leveraging this novel dataset, the 

authors analyzed the day-night contrast in climatology, seasonal cycles, and cloud 

properties of cloud morphologies. One of notable findings is the significant diurnal 

variation in the occurrence frequency of closed MCC and suppressed Cu. The primary 

contribution of this work lies in the generation of nighttime low-cloud morphology 

data, which complements the well-established daytime morphology datasets from 

prior studies. This advancement would inspire and enable more downstream research 

like understanding the diurnal cycle of cloud morphology and 

cloud-longwave-radiation-climate feedback. The manuscript is overall well-written 

and well-organized, with nice presentation of figures. However, my major concern 

pertains to the limitations in the model’s training and validation processes, which 

could impact the dataset’s reliability. Addressing these issues would significantly 

strengthen the study’s contribution to the marine low cloud research community. I’d 

like to recommend a major revision before this manuscript is considered for 

publication in ESSD. 

Thank you for your valuable comments and suggestions. We are pleased that the value 

of our nighttime dataset has been recognized. As you mentioned, this dataset can be 

used for various follow-up studies, such as cloud morphology diurnal cycles, the 

controlling factors of cloud type transitions, and cloud-longwave-radiation-climate 

feedbacks. Beyond these, we can also investigate the impact of climate change and 

anthropogenic emissions reductions on the long-term trends of cloud morphology, 

providing a more comprehensive evaluation of cloud radiative feedbacks associated 

with type transitions. We hope this research will encourage greater attention to the 

indirect climate effects of marine low-cloud morphology, which is also the primary 

purpose of our dataset: to be widely used by the community and to offer valuable 

insights. 



Regarding the limitations you pointed in the model’s training and validation process, 

we fully agree with your concerns. In the revised manuscript, we have further 

clarified the model's training and validation processes, validated the global 

applicability of the regionally trained model, and fixed some minor issues. Please see 

the response below for further details.  

At last, your thoughts actually align closely with ours. Many of the suggestions you 

mentioned, such as investigating the physical reasons behind the diurnal variation of 

cloud morphology and the impact of morphology transitions on shortwave and 

longwave radiation at the TOA, are already ongoing within our group. However, since 

this article is more foundational, many aspects were not fully presented. We look 

forward to sharing new results with you soon. 

 

Major comments: 

1. One of my primary concerns is the validity of applying a regionally trained deep 

learning (DL) model to global predictions. In this study, the authors developed their 

model using data from the SEP region only and then applied it to generate a global 

dataset. While the model demonstrates relatively high prediction accuracy over SEP 

(Figure 3), it is unclear whether this performance extends to global applications. 

Regarding this issue, the authors should first clarify the rationale for selecting SEP as 

the training region rather than using a global or other regional dataset. Was this choice 

subject to the limited availability of the data, or is there a similarity in morphology 

climatology between SEP and the global scale? If SEP is your best choice at the 

moment, it would be essential to evaluate whether using a regionally trained model 

for global predictions is reasonable. One approach to examine this would be to 

generate a global map of prediction accuracy for each cloud morphology type to 

check the model’s global performance. Additionally, the authors could examine the 

differences in the PDFs of thermal radiance, COT, and cloud morphology between 

SEP and the global dataset. A smaller difference or larger overlaps would indicate less 

extrapolation by the model, enhancing the credibility of the global dataset. 

Similarly, the authors would have to be careful when extending the daytime-trained 

model to nighttime predictions, as this may also introduce potential extrapolation 

issues. The authors provided only a single example to illustrate the model’s success at 

nighttime, which is insufficient to establish its statistical reliability. To address this 

concern, additional cases should be analyzed to validate the model’s nighttime 

performance. Alternatively, examining the differences in the PDFs of thermal radiance, 

COT, and cloud morphology between daytime and nighttime could help assess the 

extent of extrapolation and ensure the robustness of the predictions.  

We totally agree with your ideas. Applying a model trained on regional datasets to 

global dataset need careful validation.  

First, we give the rationale for selecting the SEP region as the training dataset: 



1) We believe that SEP region encompass all the cloud types around the world, and 

can provide sufficient samples for each type. 

2) Meanwhile, we are limited by the available training data. We only labeled this 

portion of the data initially, and re-labeling the global dataset and regenerating the 

cloud dataset would take a considerable amount of time.  

However, your suggestions provided effective methods for our model validation. 

Following your suggestion, we generated the plots of probability density functions 

(PDFs) of COT, thermal radiance, and cloud morphology. One plot compares our 

training dataset with a global full-year dataset (Figure R1), while the other compares a 

nighttime dataset (Figure R2). 

Both figures show large overlap in the PDFs of COT and thermal radiance. So, we 

have added some statements in the manuscript to validate the reliability of our model 

and the nighttime results: “The representativeness of this dataset was validated as the 

probability density functions (PDFs) of thermal radiance data and cloud optical 

thickness show large overlap with those of the global and full-year dataset (Fig. S1)” 

(Lines 120-122) 

“In addition, we further examined the differences in the PDFs of the thermal radiance 

data and the TIR-CNN-based COT between our training dataset (daytime) and 

nighttime dataset. As depicted in Fig. S4, these PDFs nearly overlapped, which means 

less extrapolation will be introduced when the model is generalized to nighttime data. 

And it also illustrates the credibility of our nighttime classification results.” (Lines 

145-148) 

 

Figure R1. The comparison of probability density functions (PDFs) between our 

training dataset and a global full-year dataset. (a) PDFs of cloud optical thickness 

(COT); PDFs of radiance data from infrared channels: (b) 29, (c) 31, (d) 32; (e) PDFs 

of cloud morphology. 



 

Figure R2. The comparison of probability density functions (PDFs) between our 

training dataset and a nighttime dataset. (a) PDFs of cloud optical thickness (COT); 

PDFs of radiance data from infrared channels: (b) 29, (c) 31, (d) 32; (e) PDFs of cloud 

morphology. 

 

2. Regarding the model training, validation, and testing, the data-splitting strategy is 

unclear. For instance, was the dataset split randomly or manually into the 6:2:2 ratio? 

Furthermore, the validation method used to assess the model’s predictions has not 

been described. The authors should clarify these aspects to improve the robustness of 

their results.  

We fully agree that clarifying our dataset splitting method and model validation 

method is necessary. Indeed, the original annotated dataset was randomly split 

according to a 3:1:1 ratio, so we clarified it in the manuscript: “These scenes were 

then randomly partitioned into three mutually independent datasets for training, 

validation, and testing, with a distribution ratio of 3:1:1 respectively.” (Lines 

131-132) 

Based on your suggestions, we have added the following content regarding to the 

validation method in the "2.4 Method" Section: “After each training epoch, the 

validation dataset was used to evaluate the trained model's performance, which 

allows us to monitor the model's success. When the training process was completed, 

the test dataset was used for the final evaluation of the model's performance. We used 

the optimal model to predict each sample in the test dataset, compared the model’s 

predictions with the true labels, and assessed the accuracy using metrics such as 

accuracy, F1-score, and recall.” (Lines 229-232) 

And we have also added the content regarding model test results in Section ‘3.1 

Model Performance’: “Our model achieves an average precision of approximately 

91%, an F1-score of 90.6%, and a recall of 90.8%, demonstrating its strong 

generalization capability and robustness.” (Lines 241-243) 

 

3. Given the critical role of cloud morphologies in Earth’s radiation budget, the 

authors could consider including a climatological analysis of shortwave and longwave 

radiation at the TOA for the six cloud morphology types. Adding such an analysis 

would significantly enhance the insights and scientific value of this study. 



Thank you for your insightful and constructive suggestions! Your idea aligns perfectly 

with our thoughts. We are currently conducting a long-term trend study on cloud 

morphology using this cloud dataset, as well as exploring the impact of aerosols and 

climate change on these long-term trends. We aim to conduct a systematic study of 

cloud morphology and cloud type transitions. Based on this, our next step will be to 

investigate radiative effects. However, some issues are existing in the current radiative 

datasets: there is a lack of instantaneous clear sky albedo. We need to address some 

fundamental issues to make the radiative data more solid, which will take time. 

Moreover, since our cloud scenes are instantaneous rather than monthly, matching the 

five years of radiative data will be slow, and this could eventually become a separate 

paper.  

In earlier research, Mohrmann et al. (2021) have assessed the radiative properties of 

the six cloud types, using data from the Clouds and the Earth’s Radiant Energy 

System (CERES), specifically SYN 1-degree hourly data (daytime). They analyzed 

the net cloud radiative effect (CRE) for each cloud type at different spatial scales and 

found that Solid MCC and Disorganized MCC exhibit the strongest climatological 

average cloud radiative effects (Figure R3c, square symbol, about -48 Wm-2). 

However, they did not account for global radiative impacts associated with long-term 

changes in cloud morphology, which is the question we aim to address in future work. 

 

 

Figure R3. Cloud radiative properties by cloud type from Mohrmann et al. (2021): (a) 

CERES cloud fraction, (b) cloud frequency of occurrence, (c) average CERES net 

CRE per cloud type, (d) frequency-weighted net CRE. Each set of three symbols is for 

the 3 years (2014-2016) used. For panels (a) and (c), the mesoscale, synoptic, 



climatological averages are shown using circular, diamond, and square symbols, 

respectively. 

 

Minor comments: 

L30: longwave warming effects are more significant for high clouds, which might not 

be so for low clouds. 

The original sentence was changed to: “They exert a strong radiative cooling on the 

planet as the residual of a larger cooling effect and a positive warming effect (Klein 

and Hartmann, 1993; Eytan et al., 2020).” (Lines 30-32) 

L67: What is the major difference between the six-type classification of this study and 

the four type one here? 

The major differences are: (1) Scale: The four types here require a larger scale to be 

fully observed, at least a 10° by 10° field of view. (2) Classification Basis: Our 

six-type classification emphasizes the underlying physical processes, while their 

four-type classification focuses primarily on the external appearance and 

morphological features. 

We have incorporated some key information into the original sentence, and it now 

reads as follows: “Moreover, Schulz et al. (2021) developed an object detection model 

to classify four larger scale (10o×10o) cloud morphologies in trade wind regions of 

North Atlantic. These morphologies were vividly named as "sugar," "gravel," 

"flowers," and "fish" mainly based on their visual appearances.” (Lines 66-69) 

L81: Do you mean the decline in the long-term trend? 

Yes, fixed. 

L83: “how much they contribute to … remain unclear” to “how nighttime cloud cover 

varies under different cloud morphology types remain unclear.” 

Done. 

L90: Please clarify the temporal and spatial resolution. 

Done. 

L97: “created” to “driven” 

Done. 

L119: Please clarify the temporal resolution of the training dataset. 

Done. 

L121-122: Have you excluded middle clouds (i.e., those situated between 3 and 6 km)? 

These clouds are prevalent over midlatitude oceans, and they also contaminate low 

cloud observations. 



We are sorry for not eliminating the influence of middle clouds in our training process. 

In future work, we plan to refine our methodology by re-screening middle clouds to 

improve the accuracy of our model. 

L174: Please clarify the level of the divergence used. 

Done. 

L199: I’d suggest labeling the input variables (three channels and COT) and the 

output variables (six cloud morphology types) in Figure 2a to improve its clarity and 

readability. 

Done.  

L210: It looks like the improvement is limited. Have you examined the COT retrieval 

uncertainty? If it is greater than the improved accuracy, it would be unnecessary to 

include the COT into the predictors. 

Thank you for your insightful suggestion. The result of a sensitivity experiment 

indicates that our model based on retrieved COT demonstrates identical predictive 

accuracy to the model trained on daytime MODIS COT (Figure R4), which confirms 

the reliability of COT retrieval product. 

 

 

 
Figure R4. Model training results based on MODIS COT. (a) the model's accuracy on 

(a) 

(b) 



the training and validation datasets. (b) the confusion matrix of the model. 

 

L210: Typo: “Yuan et al (2020)_due to” to “Yuan et al (2020) due to”  

Fixed. 

L212: Which is it relative to? 

We have completed the sentence as follows: “ Although it is a bit less accurate 

compared to the visible light model from Yuan et al. (2020), it is undeniable that this 

model has achieved a relatively high accuracy level when compared to other TIR 

model (Lang et al., 2022), and can effectively accomplish the classification tasks we 

proposed.” (Lines 237-240) 

L219: “clustered Cu” to “clustered Cu or closed MCC”  

Done. 

L250: “n denotes” to “with n denoting”  

Done. 

L305: “its seasonal variation” to “the peak in summer”  

Done. 

L332: do you mean “decrease by 2 microns on average”? 

Yes, fixed. 

L333: Please clarify whether the LWP mentioned here represents the in-cloud value or 

the grid box mean value. 

Sorry for the lack of information provided. We have added the following clarification 

in Lines 356-357: “All of the cloud microphysical properties represent the in-cloud 

mean value within a 1°×1° grid.” 

L349: Why is there a westward shift at night? Also, for stratocumulus clouds, LTS is 

usually higher at night. Why does it decline for closed MCC at night?  

Sorry for the confusion. We originally hypothesize that the observed decline in LTS at 

night may be related to the movement of clouds. Since our statistical analysis covers a 

relatively large spatial scale, the meteorological conditions associated with specific 

cloud types could change as the clouds move, potentially leading to the observed 

decrease in LTS. However, we apologize for the previous implication that this 

movement is necessarily westward. So, we removed the mention of "westward" in the 

revised text. We believe that further investigation is required to fully understand the 

reasons behind the LTS decline in closed MCCs at night. 

L351: It would be more interesting to discuss their physical reason. 

Thank you for pointing the direction for us, it is the next part of our work. It is 

difficult to determine the key cloud-controlling factors for each cloud type based 



solely on the statistical analysis in this study, and many other environmental 

conditions have not been included. Therefore, we plan to conduct a more detailed and 

comprehensive investigation into their physical causes in our next work. Furthermore, 

since the main focus of this article is to introduce a cloud dataset, we feel that 

including an analysis of cloud-controlling factors here would dilute the main theme.  

L367: Why are the results shown here only for SEP, while Figure 10 presents global 

results? 

Cloud morphology is controlled by multiple meteorological factors (Liu et al., 2024). 

When we study the influence of one controlling factor, cloud morphologies can be 

affected by the variability in other factors if the study is conducted in a global scale. 

For instance, while exist within the same LTS environment, clouds in mid-to-high 

latitude regions and those near the equator have distinctly different sea surface 

temperatures. Therefore, by restricting the region, we can facilitate the day-night 

comparison of the primary controlling factors while excluding the interference from 

other variables. Clouds properties are the final result of all meteorological conditions, 

and their properties show little differences across different regions. 
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