
Dear Reviewer, 

Thank you for your constructive comments and helpful suggestions, which have 

allowed us to improve the manuscript and dataset more effectively. Below the 

comments are responded point-by-point, with the original comments in black and our 

response in blue. The revised sentences in the manuscript are indicated in italics. 

 

Overview: 

Wu et al. present a global daytime and nighttime low cloud morphology dataset 

classified based on deep learning methods. The work builds on the algorithms of Yuan 

et al (2020; for deep learning) and Wang et al (2022; for nighttime COT retrieval) to 

expand the range of cloud classification, for the first time, to nighttime retrievals. The 

dataset is novel, unique, and of high quality, with significant potential for use in cloud 

and climate studies. However, I find that the manuscript lacks some important 

information, particularly regarding their choice of testing data, sensitivity studies, and 

data screening techniques. Moreover, the data could be presented in a better way for a 

wider scientific community. Therefore, I recommend a major revision of the 

manuscript/dataset by addressing the following comments before it can be considered 

for potential acceptance in ESSD. 

We appreciate your recognition of the novelty and quality of our dataset. Regarding to 

your concerns, we realize the need for further clarification and improvement. In the 

revised manuscript, we have provided additional details on the selection criteria for 

the testing data, conducted sensitivity studies to evaluate the robustness of our model, 

and further clarified our data processing and screening methods. Furthermore, we 

have improved the presentation of our dataset by providing additional descriptions 

and modifying its storage format, which significantly enhances its accessibility. We 

believe these revisions will address your concerns and improve the quality of our 

manuscript. Please see the response below for further details. 

 

Comments: 

1. While the TIR-CNN-based retrieval of cloud properties in Wang et al (2022) could 

be a better one compared to the TIR-based algorithm, it cannot replace the standard 

daytime retrieval algorithm in MODIS. Therefore, to justify using the 

TIR-CNN-based COT used in training the MCC-classification, I suggest the authors 

include an additional validation in this study, which includes comparing their MCC 

classification with that from the outputs of a CNN trained on MODIS daytime COT. 

Even though I agree that the choice of TIR-CNN-based COT is methodologically 

justified to stay consistent in their application to both daytime and nighttime retrievals, 

the inclusion of this additional validation/sensitivity study will strengthen their results 

and the MCC classification dataset. 

Thank you for your valuable suggestion. We agree that an additional validation 



comparing the algorithms based on TIR-CNN-based COT and MODIS daytime COT 

would be beneficial. In response, we have performed a sensitivity experiment by 

training a CNN model using MODIS COT and the original three infrared channels. 

The results indicate that the accuracy of the CNN model based on MODIS COT is 

91.3%, which is almost identical to the 91.5% accuracy achieved by the model using 

the COT retrieved from Wang et al. (2022). The new training results based on MODIS 

COT are shown in Figure R1. This demonstrates that the TIR-CNN-based COT can 

effectively serve as a reliable alternative to MODIS COT for cloud classification, 

which further reinforce the reliability of our model and the MCC classification dataset. 

Therefore, we have added some supplementary statements regarding this sensitivity 

experiment in the ‘2.2 Data’ Section, as follows: “To validate the reliability of using 

TIR-CNN-based COT as a replacement for MODIS COT, we conducted a sensitivity 

experiment: comparing our classification with the outputs of a CNN trained on 

MODIS daytime COT. The results (Fig. S3) showed that the accuracy of both models 

is nearly identical, indicating that TIR-CNN-based COT is a reliable alternative to 

MODIS COT.” (Lines 142-145). 

 

 

 

Figure R1. Model training results based on MODIS COT. (a) the model's accuracy on 

the training and validation datasets. (b) the confusion matrix of the model. 

(b) 

(a) 



2. The authors use different numbers of samples in each MCC category to train the 

model. 

For example, (0.6 times) 9,900 labeled suppressed Cu are used compared to just (0.6 

times) 3,548 solid stratus samples. Shouldn't this disparity impact the performance of 

the classification for different MCC categories? Can the authors comment on this? 

We agree that the disparity in the number of samples across different cloud types can 

potentially affect the model's performance. When there is an imbalance in the training 

data, the model might become biased towards the categories with larger sample sizes 

and perform less accurately on the underrepresented categories.  

However, since each category in our training set contains a sufficient number of 

samples and the sample size ratio between categories does not exceed 4:1, the impact 

of the sample imbalance on our training should be relatively small.  

To approve this, we conducted an experiment in which 2,000 samples were randomly 

selected from each category to train a new CNN model. The training result (Figure R2) 

shows a prediction accuracy of 88.8%, which is slightly lower than our previous result. 

This may be due to the relatively small sample size. Despite this, it indicates that 

sample imbalance has little impact on our training process. Therefore, we have added 

some explanations in Section ‘2.2 Data’: “Despite the disparity in sample sizes within 

our training dataset, it is capable of yielding superior model performance compared 

to a balanced dataset (Fig. S2).” (Lines 132-133) 

In the future, we plan to add more manually labeled samples to the category with the 

fewest samples to explore whether a larger balanced training dataset can lead to a 

better performance. 

 

 

 

 

 



 

 

Figure R2. Model training results with 2,000 samples for each category. (a) the 

model's accuracy on the training and validation datasets. (b) the confusion matrix of 

the model. 

 

3. Why do the authors interpolate the data within a 1o × 1o scene to 128 × 128 pixels? 

Even if I consider the finest resolution of 1km, the number of pixels within a 1o × 1o 

scene would be less than 128 × 128 pixels, leading to extrapolation-related truncation 

error. Also, did the authors perform any sensitivity test regarding the size of the scene 

considered in training the model except from 1o × 1o? Wood and Hartmann (2006) use 

native MODIS 256 × 256 pixels in their classification. Increasing the grid size may 

reduce the probability of misclassifications (Fig. 3). For instance, considering a 

smaller domain may result in misclassification of edges of open cells into clustered 

Cu. In case you achieve a better classification, the resulting dataset can be resampled 

to a finer grid easily for future use in conjunction with other climate and 

weather-related datasets.  

Thank you for pointing out these issues. For the first question, we did not perform 

extrapolation; rather, we performed refinement, where the 128 × 128 pixels images 

(b) 

(a) 



obtained through interpolation are included within a 1-degree grid. We have made the 

following revisions in the manuscript to clarify it: “To align with conventional climate 

datasets, we developed a standard 1° gridded datasets by applying the trained model 

to 1°-resolution images, where the 1°×1° satellite images were interpolated and 

refined to 128 × 128 pixels.” (Lines 175-176) 

Although this may still lead to issues near the cloud edges, it avoids interference from 

other grid pixels. Particularly at higher latitudes, a 128 × 128 pixels scene will cover 

multiple grids, thus the classification of center grid may be interfered by the cloud 

features in neighboring grids. By directly classifying the cloud pixels within a 1° grid, 

this type of error can be minimized. 

For the secondary question regarding to the sensitivity test of the scene size, first, the 

size of the scene can influence the definition of cloud types. A larger scene may 

necessitate a redefinition of cloud types, such as the Sugar, Gravel, Fish, and Flowers 

categories defined by Stevens et al. (2020) (10 o ×10 o). Secondly, Yuan et al. (2020) 

also noted that larger scene sizes increase the probability of multiple different cloud 

types appearing within a single scene, while smaller scenes may lack sufficient 

contextual information for effective classification. Beyond the consideration of Yuan 

et al. (2020), we took additional factors into account and ultimately decided to adopt a 

standardized grid scene to better address the issue of pixel stretching at high latitudes. 

Moreover, standardized cloud classification datasets are more convenient for the 

community to use, as most current studies utilize 1-degree grid datasets for analysis. 

Thirdly, we agree that using a larger scene size helps to constrain and reduce the 

misclassifications caused by smaller domains. Therefore, a more reasonable approach 

would be classifying the integration of scenes of different sizes using the automatic 

unsupervised learning, which is an area we plan to explore in our future work. 

 

4. Information is missing regarding why channels 29, 31, and 32 were particularly 

used in training and classification when multiple other cloud-top-related channels 

(33-36) are available in MODIS. 

Channels 29, 31, and 32 were chosen because they effectively represent cloud 

properties and cloud-top temperature, which are critical for cloud classification. 

Specifically, channels 29 (8.7µm) is sensitive to water-vapour absorption, while 

Channels 31 (10.8µm) and 32 (12.0µm) provide valuable information on cloud-top 

temperature. In contrast, Channels 33-36 are more focused on cloud-top altitude and 

other related properties. We previously conducted an experiment using all six 

channels (29, 31, 32, 33, 34, and 35) for model training, the results were very similar 

to those obtained using channels 29, 31, 32 only (unfortunately, the experimental data 

from that trial was not properly archived). In order to reduce the amount of data, we 

ultimately chose the three channels 29, 31, 32 as inputs. 

Therefore, we added explanations in the manuscript to justify our selection of these 

three channels: “Thermal infrared (TIR) channels 29 (8.7µm), 31 (10.8µm) and 32 



(12.0µm) were specifically chosen as they most effectively represent the cloud 

properties and cloud-top temperature.” (Lines 135-136) 

 

5. What are the parallel yellow and red lines in the panels of Figure 4? Are these 

physical and being used in classification or graphics-related artefacts?  

The striped patterns (yellow and red lines) visible in Figure 4 are graphical artifacts 

generated by satellite sensors. Although these artifacts may create some visual noise, 

they have minimal effect on our pattern identification process since our model relies 

on qualitative pattern recognition rather than quantitative analysis. Furthermore, the 

CNN model can filter the noise out, so we opted not to eliminate the striped noise 

during the training and classification processes. 

Nevertheless, we also tried several methods to eliminate this noise and improve the 

visual quality, such as mean filtering, Fourier transform, and directional filtering. 

However, the stripe noise in our data is not traditionally horizontal or vertical, and 

there are no significant numerical characteristics, so none of these methods were 

effective in removing it. When the noise was removed through these methods, the 

image became very blurry, as shown in the examples below. Perhaps AI-based 

methods could help eliminate it, and we will continue to try that. 

 

 

Figure R3. The image processed with directional filtering. 

 

6. Regarding the dataset, I highly recommend using standard data formats used in 

atmospheric sciences like netCDF and HDF for easy cross-platform and 

cross-software accessibility. Not all users will be accustomed to the Python-specific 

NumPy format. 

We fully agree that using standard data formats would enhance cross-platform and 

cross-software accessibility. In response, we have converted all the files previously in 

NumPy format to HDF files.  

 

7. Since this is a data-descriptor paper, some important information on the contents 

(variables and how they are calculated) and the file nomenclature should be included 



in the manuscript. It may be presented as a separate sub-section within Section 2 and 

summarized using an additional table. This information is currently missing from the 

manuscript.  

Indeed, our manuscript lacks a description of the dataset-related content. We have 

added the following sub-section in Section 2 to explain the contents of our dataset: 

“2.3 Marine Low-cloud Mesoscale Morphology Dataset 

Our cloud dataset provides global classifications of daytime and nighttime marine 

low-cloud mesoscale morphology for the years 2018-2022, with a spatial resolution of 

1° × 1° and a temporal resolution of 5 minutes. The dataset is provided in two kinds 

of files: those prefixed with "day" store the daytime classification results for each year, 

while files with the prefix "night" contain the nighttime classification results for each 

year. Both sets of files include the same variables. Table 3 provides an overview of the 

variables and their associated information. The key variables in the dataset include 

‘date’ (representing the time of the 1° × 1° scene, formatted as the MODIS granule 

date), ‘lon’ and ‘lat’ (indicating the central longitude and latitude), and ‘cat’ 

(assigned cloud category, the values from 0 to 5 correspond to 'Solid Stratus', 'Closed 

MCC', 'Open MCC', 'Disorganized MCC', 'Clustered Cu', and 'Suppressed Cu', 

respectively). Additionally, ‘cert’ represents the model certainty, quantifying the 

probability that the cloud morphology belongs to the assigned category. ‘low_cf’ 

denotes the low cloud fraction, and ‘COT_CNN’, ‘CER_CNN’, and ‘LWP_CNN’ 

provide the in-cloud average cloud optical thickness, effective radius, and liquid 

water path respectively, as derived from the TIR-CNN model from Wang et al. (2022). 

The ‘Sensor_zenith’ variable indicates the scene average sensor zenith angle.” (Lines 

191-203) 

 

Table 3 Variables of the Daytime and Nighttime Global Marine Low-cloud Mesoscale 

Morphology Dataset  

Variable 

Name 

Description Source Spatial 

Resolution 

Temporal 

Resolution 

Units 

 

date Time of the 1°×1° 

grid point,  

formatted as 

'YYYYDDD.HHHH'  

MODIS 

MYD021 

1°×1° 5 minutes - 

lon Central longitude 

(-180,180) 

MODIS 

MYD021 

1°×1° 5 minutes degre

e (°) 

lat Central latitude 

(-60,60) 

MODIS 

MYD021 

1°×1° 5 minutes degre

e (°) 

cat Category of the 

cloud morphology: 

0-Solid stratus, 

1-Closed MCC, 

2-Open MCC, 

3-Disorganized 

Cloud 

Classificati

on Model  

1°×1° 5 minutes - 



 

 

Minor comments: 

1. Line 49-51: More recently Goren et al (2019) showed a similar delay in 

closed-to-open transition using LES. 

Yes, references have been added. 

2. Line 60-61: The cloud morphology dataset by Wood and Hartmann (2006) has been 

expanded to more than a decade of MODIS observations, the Morphology 

Identification Data Aggregated over the Satellite-era (MIDAS), by McCoy et al 

(2023). 

Thank you for reminding us! We have revised the sentence to: “Their work was 

pioneering and has since been extended to more than a decade of MODIS 

observations by McCoy et al. (2023)” (Line 62) 

3. Line 64: Abbreviation VGG not defined! 

The abbreviation “VGG” has already been defined as “Visual Geometry Group” in 

the manuscript. 

4. Line 64: “… for daytime scenes …”. All the morphology datasets discussed prior to 

this point correspond to daytime observations, don't they? 

MCC, 4-Clustered 

Cu, 5-Suppressed 

Cu 

cert Model certainty Cloud 

Classificati

on Model  

1°×1° 5 minutes - 

low_cf Cloud fraction of 

low clouds 

MODIS 

MYD06 

1°×1° 5 minutes - 

COT_CN

N 

In-cloud average 

cloud optical 

thickness (COT) 

TIR-CNN 

model of   

Wang et al. 

(2022) 

1°×1° 5 minutes - 

CER_CNN In-cloud average 

cloud effective 

radius (CER) 

TIR-CNN 

model of 

Wang et al. 

(2022) 

1°×1° 5 minutes µm 

LWP_CN

N 

In-cloud average 

cloud liquid water 

path (LWP) 

Calculated 

from 

COT_CNN 

and 

CER_CNN  

1°×1° 5 minutes g/m2 

Sensor_ze

nith 

Scene average 

sensor zenith angle 

MODIS 

MYD021  

1°×1° 5 minutes degre

e (°) 



Yes, they did. We have removed the original sentence “Their dataset has higher 

spatial resolution, at 128×128 pixel, but also only includes classifications for daytime 

scenes.”  

5. Line 102-103: “Disorganized MCC … larger droplets and lower optical thickness.” 

Can the authors cite studies that have demonstrated this fact? 

The citations for this fact have been added, and the original sentence has been 

checked and revised to: “Disorganized MCC are a mix of convective elements and 

extensive stratiform clouds, marked by smaller droplets and lower optical thickness 

(Yuan et al., 2020; Liu et al., 2024).” (Lines 104-105) 

6. Line 106: Citation missing! 

References have been added. 

7. Line 116: “spatial resolution of 1 km” This resolution is for nadir pixels. It changes 

with sensor zenith angle. 

Thank you for pointing that! The original sentence has been further clarified as: “The 

primary observation data utilized in this study were derived from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Aqua satellite, 

including the Level-1B radiance product MYD021KM and the Level-2 cloud product 

MYD06 (Platnick et al., 2017), both with a spatial resolution of 1 km at nadir point.” 

(Lines 115-117) 

8. Line 121: The authors state that they filter out scenes with more than 10% high 

clouds or ice clouds. How do the authors deal with ice/high cloud pixels in scenes 

where they are less than 10%? Are they set to missing values and not used in either 

training or classification steps? 

Thank you for pointing out this oversight! We initially overlooked this detail and 

directly used the remaining ice/high cloud pixels in both training and classification 

steps, which may introduce noise into the model. In future model iterations, we will 

exclude these pixels by setting them to missing values, ensuring they do not interfere 

with our training and classification process. 

9. Line 172: How is the reanalysis data co-located? Do you select the nearest 

timestamp or interpolated the data to MODIS observations? 

We interpolated the ERA5 data temporally to match the MODIS observation time. We 

added a detailed explanation in the manuscript to clarify our co-location method: “For 

the purpose of investigating the influence of meteorological conditions on low-cloud 

morphologies, we conducted some statistical analyses utilizing the co-located hourly 

ERA5 reanalysis data (1° × 1°) from European Centre for Medium-Range Weather 



Forecasts (ECMWF). The co-location is achieved by spatially selecting the nearest 

ERA5 grid point to each MODIS observation and temporally interpolating the ERA5 

data to match the exact time of the MODIS observations. This ensures accurate 

alignment between the two datasets in both space and time.” (Lines 178-182) 

10. A link to the classification dataset is missing in the “Data Availability” section.  

The classification dataset (training, validation, and test sets) has been added to the 

same link as our cloud classification product dataset, along with descriptions of the 

variables included. We informed in the manuscript that: “Daytime and nighttime 

cloud classification datasets as well as our training dataset are accessible on the 

https://doi.org/10.5281/zenodo.13801408 (Wu et al., 2024).” (Lines 426-427) 

11. No information on the file “example.xlsx” in the data repository.  

Thank you for noting that. The description for the file “example.xlsx” has been added 

into the data repository, which is: “File 'example.xlsx': A sample of the variable data 

from our cloud classification dataset, showcasing the classification results of a 

MODIS granule captured on January 1, 2018, at 00:25 UTC. This sample is provided 

to help users better understand the content of our dataset.” 

Language-related suggestions: 

Line 21: Abbreviation RFO defined in abstract is not used. 

Fixed. 

Line 84: dependent? 

Yes, fixed. 

Line 91: Prior to “Section 2 intro…”, perhaps insert an introductory sentence like 

“The manuscript is organized as follows.” 

Done. 

Line 184: Abbreviation ML is not defined 

Fixed. 

Line 210: Remove underscore after Yuan et al (2020) 

Done. 

Line 383: Consider changing the word “worse” 

https://doi.org/10.5281/zenodo.13801408


The sentence has been changed to: “which largely explains the performance gap 

between our nighttime model and the daytime model proposed by Yuan et al. (2020).” 

(Lines 409-410) 

Line 409: “… nightly …”Do you mean nighttime? 

Yes, fixed. 
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