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Abstract. Fractional Vegetation Cover (FVC) is an important vegetation structure factor for applications in agriculture, 15 

forestry, ecology, etc. Due to its simplicity, the normalized difference vegetation index (NDVI)-based mixture model is widely 

used to estimate FVC from remotely sensed data. However, the accuracy and efficiency of FVC estimation require the precise 

calculation of two key parameters: the NDVI of fully covered vegetation and bare soil. Despite their importance, these two 

endmember NDVI values have not yet been produced as large-scale maps. Traditional statistical methods for obtaining 

endmember NDVI from satellite datasets highly rely on the assumption that a certain amount of pure pixels of vegetation and 20 

soil must be present, which is often invalid for many areas. This study generated 30 m resolution maps of endmember NDVI  

across China’s mainland using the MultiVI algorithm incorporating multi-angle remote sensing data. The quality and accuracy 

of the endmember NDVI maps were evaluated using various validation data, including statistically obtained pure NDVI, soil 

spectra from a soil library, and field-measured FVC. The NDVI values for bare soil derived from the MultiVI algorithm were 

consistent with those obtained from the soil spectral library. Additionally, the FVC estimated using the MultiVI-derived 25 

endmember NDVI and the VI-based mixture model exhibited reasonable accuracy when compared to the field measurements. 

The root mean square deviation (RMSD) values for MultiVI FVC were below 0.13 in the Heihe, Hebei, and Three Gorges 

Reservoir regions of China. Furthermore, the MultiVI FVC outperformed those calculated using the statistical methods. The 

endmember NDVI maps provide a convenient and reliable source of key parameters for the accurate and rapid estimation of 

FVC at large scales. The 30 m pure NDVI maps are free access at https://zenodo.org/records/14060222 (Zhao et al., 2024).  30 
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1 Introduction 

Fractional vegetation cover (FVC) quantitatively characterizes the horizontal density of photosynthetically active vegetation 

(Gutman and Ignatov, 1997). It is typically defined as the planar proportion of green vegetation to the total surface extent 

(Deardorff, 1978). The FVC is an essential parameter in climate and hydrologic models as it represents the spatial contribution 

of vegetation (Hirano et al., 2004; Gutman and Ignatov, 1998; Eriksson et al., 2006; Mölders and Olson, 2004). Accurate and 35 

high-resolution FVC products are in high demand for various studies, including climate change analysis, soil erosion 

assessment, land disturbance evaluation, and crop growth monitoring (Xie et al., 2011; Naqvi et al., 2013; Gan et al., 2014; Li 

et al., 2014; Zhang et al., 2013; Fernández-Guisuraga et al., 2021).  

Remote sensing can rapidly and repeatedly observe the land surface, making estimating FVC on regional or global scales 

feasible. Over recent decades, tremendous efforts have been made to derive high-quality FVC from remotely sensed imagery. 40 

The published approaches for retrieving FVC can generally be summarized as follows: (i) the vegetation index (VI)-based 

mixture model (Gutman and Ignatov, 1998; Zeng et al., 2000; Wu et al., 2014; Mu et al., 2021; Zhao et al., 2023); (ii) spectral 

mixture analysis (García‐Haro et al., 2005; Dimiceli et al., 2011; Guan et al., 2012); (iii) machine learning (Baret et al., 2007; 

Baret et al., 2013; Jia et al., 2015); and (iv) physical model (Xiao et al., 2016). 

The linear mixture model is the most commonly used spectral unmixing method. It is generally utilized in surface elements 45 

evaluation such as vegetation classification, surface disturbance mapping, and evapotranspiration estimation (Li et al., 2018a; 

Lu et al., 2003; Cochrane and Souza Jr, 1998). When considering only two endmembers (green vegetation and bare soil), linear 

mixture modelling can be employed to calculate the relative abundance of live vegetation from the mixed VI, known as the 

VI-based mixture model. It assumes that the VI for a particular pixel originates from a linearly weighted sum of green 

vegetation and bare soil, with their respective areal proportions as weighting coefficients (Gitelson et al., 2002). The mixed VI 50 

(V) of the pixel is linearly decomposed by the two endmembers, i.e., the VI of the fully vegetated (Vv) and bare soil pixel (Vs), 

to obtain the areal proportion of green vegetation as FVC: 

𝐹𝑉𝐶 =
𝑉−𝑉𝑠

𝑉𝑣−𝑉𝑠
  ,                                                                                                                                                                                        (1)  

Despite being the most commonly used method for deriving FVC (Gao et al., 2020), the VI-based mixture model still requires 

enhancements in both accuracy and efficiency. A major limitation is the challenge of obtaining accurate values for Vv and Vs 55 

on a large scale. The normalized difference vegetation index (NDVI) is the primary VI to derive FVC due to its strong 

correlation with vegetation structural parameters (Gutman and Ignatov, 1998). The two endmember NDVI values (hereafter 

referred to as pure NDVI values) are often assigned a priori, and the main methods for extracting these values, along with other 

pure VIs are summarized in Table 1. 

Table 1 Brief summary of the primary methods for determining the two pure VI values (Vv and Vs with NDVI as the default VI). 60 

Methods Vv Vs Reference 
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Independent field spectral 

measurements of pure vegetation 

and bare soil pixels 

0.71 0.16 (Wang and Qi, 2008) 

 *The values are of Modified Soil-Adjusted Vegetation Index (MSAVI). 

Visual interpretation to identify 

pure pixels from high-resolution 

remotely sensed images  

0.78 0.03 (Jiao et al., 2014) 

The endmember extraction 

algorithm, e.g., the pure pixel 

index (PPI) method 

0.941 0.068 (Jia et al., 2017) 

The cumulative maximum and 

minimum, or cumulative 

percentages of NDVI values 

derived from remotely sensed 

datasets within a specific area or 

time series 

Vv determination for different 

land types:  

The 90th percentile of the annual 

maximum NDVI for different land 

types (shrubland, barren, sparsely 

vegetated), the 75th percentile 

(other) 

Vv values for each land type: 

 0.49 (grassland) 

0.6 (open shrubland) 

0.68 (mixed forest) 

0.7 (broadleaf and deciduous 

forests) 

Vs determination for all land 

types:   

The 5th percentile of the annual 

maximum NDVI for barren and 

sparsely vegetated land areas 

Vs values for all land types: 

0.05 

(Zeng et al., 2000) 

 

Vv determination for different 

land types:  

The 98th percentile of the monthly 

maximum NDVI over 5 years for 

different land types 

Vv values for each land type: 

0.752 (crop, grass, desert, shrub) 

0.816 (mixed woodland, forest) 

0.824 (broadleaf deciduous) 

Vs determination for all land 

types: 

The 2nd percentile of the monthly 

maximum NDVI over 5 years for 

desert and semi-desert 

Vs values for all land types: 

0.048 

(Oleson et al., 2000) 
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 Vv determination for different 

biomes:  

The 97th percentile of the 

historical maximum over 20 years 

for different biomes 

Vv values for each biome: 

0.52 (arid) 

0.72 (seasonal) 

0.67 (evergreen) 

Vs determination for different 

biomes: 

The 3rd percentile of the historical 

minimum over 20 years for 

different biomes 

Vs values for each biome: 

0.03 (arid) 

0.04 (seasonal) 

0.05 (evergreen) 

(Matsui et al., 2005) 

Traditional methods for determining pure NDVI values have significant limitations. Collecting Vv and Vs from ground truth 

data or high-resolution remotely sensed imagery by extracting pure pixel values is time-consuming and often limited by data 

availability. These methods become ineffective when data are unavailable or there are no pure pixels in the usable dataset. The 

statistical method infers the two pure NDVI values from the data within a specific area or time series. It typically assumes that 

pixels with the lowest NDVI values represent bare soil, while those with the highest values represent pure vegetation (Gao et 65 

al., 2020). However, in arid and semiarid regions with few fully vegetated pixels, or evergreen forests with limited bare soil 

pixels, the statistically extracted endmember values can be significantly inaccurate (Song et al., 2017).  

Additionally, statistical methods typically assign a single value of Vv or Vs for a specific region or land type. However, 

endmember values can vary significantly from pixel to pixel due to differences in species composition, vegetation health, 

moisture levels, and other factors (Jensen, 2000). In many studies, a fixed value of Vs is adopted for various soil types, as 70 

shown in Table 1, which overlooks the spatial variations in soil moisture, texture, mineralogy, organic matters, and other 

characteristics (Yang and Yang, 2006; Zeng et al., 2000). The NDVI values of soil samples exhibit considerable variation, 

ranging from 0 to 0.4, with a mean value of 0.2, which is significantly higher than the commonly used Vs value (of 

approximately 0.05) (Montandon and Small, 2008). Notably, the accuracy of FVC estimation is highly sensitive to variations 

of Vs, particularly in sparse-vegetated areas (Asrar et al., 1984; Montandon and Small, 2008). Underestimating Vs may lead to 75 

an overestimation of FVC, with errors reaching up to 20% in grassland and shrubland regions (Montandon and Small, 2008; 

Ding et al., 2016). It has been demonstrated that locally derived pure NDVI values provide higher accuracy for FVC estimation 

compared to using a fixed global Vs value (Donohue et al., 2014; Montandon and Small, 2008). Therefore, pixel-wise maps of 

endmember NDVI are essential for effectively addressing the spatial variability of plant and soil reflectance. However, such 

products are currently unavailable. 80 

Recent studies have proposed an alternative method that uses multi-angle datasets from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) to derive pixel-wise Vv and Vs (MultiVI algorithm) (Mu et al., 2018; Song et al., 2022a). The 

discrepancies in directional NDVI values observed from multiple viewing geometries imply vegetation structural information 

and soil characteristics (Chen et al., 2005; Diner et al., 1999; Deering, 1999; Verrelst et al., 2008). The MultiVI algorithm 

utilizes the variations from two large viewing angles to establish equations for simultaneously retrieving Vv and Vs, without 85 
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assuming invariant endmember values within a scene or biome. Feasibility analysis indicated its potential to estimate high-

quality, high-resolution FVC products (Song et al., 2022b). The Vv and Vs derived from the MultiVI algorithm have been used 

to generate 30-m / 15-day FVC products, which are reported to possess satisfactory accuracy (Zhao et al., 2023). However, 

the precision of the Vv and Vs maps still requires evaluation, and strategies to optimize the MultiVI algorithm for large-scale 

Vv and Vs mapping are essential. Providing high-quality pure NDVI values for the VI-based mixture model will significantly 90 

improve the accuracy and efficiency of FVC estimation.  

This study aims to generate and validate 30 m resolution pixel-wise Vv and Vs maps across China’s mainland. These datasets 

can be flexibly applied to accurately calculate FVC at various resolutions on regional or national scales. The Vv and Vs maps 

were derived from MODIS reflectance data using the MultiVI algorithm. Subsequently, the 500 m MODIS Vv and Vs were 

downscaled to 30 m resolution based on land cover types (hereafter referred to as MultiVI Vv and Vs). Traditional statistical 95 

methods were employed to extract Vv and Vs from Landsat data (hereafter referred to as statistical Vv and Vs). The two sets of 

pure NDVI values were then compared and analysed. The generated Vs maps were validated using soil NDVI values calculated 

from a soil spectral library. Finally, the FVC values derived from the MultiVI algorithm and the statistical method were 

validated against field-measured FVC obtained from various experimental sites across China’s mainland. 

2 Datasets  100 

2.1 Satellite data for Vv and Vs calculation 

2.1.1 Terra/Aqua MODIS BRDF products 

The MODIS Bidirectional Reflectance Distribution Function (BRDF) / Albedo Model Parameters product (MCD43A1) and 

its corresponding quality assessment product (MCD43A2) (https://lpdaac.usgs.gov/products/mcd43a1v006/) are the primary 

datasets used to derive pure NDVI values using the MultiVI algorithm. These datasets are produced daily using atmospherically 105 

corrected, cloud-cleared input data from the Terra and Aqua satellites over a 16-day period at 500 m resolution. The BRDF 

characterizes surface anisotropic scattering as a function of illumination and viewing angles. The MCD43A1 product contains 

three sets of model weighting parameters, i.e., the RossThick kernel (volume-scattering kernel), LiSparseR kernel (geometric-

optical kernel), and isotropic kernel parameters. These parameters can be used with the semiempirical linear kernel-driven 

model, known as the semiempirical RossThick-LiSparse Reciprocal (RTLSR) to calculate surface reflectance (SR) for any 110 

required viewing and illumination directions (Roujean et al., 1992; Schaaf et al., 2002). All MCD43A1 data obtained in 2014 

over China’s mainland were used to reconstruct the ground surface reflectance of red and near-infrared (NIR) bands at viewing 

zenith angles (VZAs) of 55° and 60°. These reflectance values were subsequently used to generate directional NDVI for the 

MultiVI algorithm. The quality assessment data from MCD43A2 were applied to exclude clouds, snow, water, and low-quality 

pixels. 115 
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2.1.2 GlobeLand30 datasets 

A global land cover dataset with a 30 m resolution, known as GlobeLand30, was used to downscale the 500 m resolution pure 

NDVI values to 30 m. The GlobeLand30 products are available globally in three versions: 2000, 2010, and 2020, with the 

2020 version being adopted for this study (https://doi.org/10.12041/geodata.140236667788805.ver1.db, last accessed 16 

September 2024). These products were developed and updated using cloudless or minimally cloudy multispectral images from 120 

Landsat, HJ-1, and GF-1 (Chen et al., 2014; Chen et al., 2015). Validation based on over 230,000 points indicated a total 

accuracy of 85.72% for the 2020 version of GlobeLand30, with a Kappa coefficient of 0.82. The GlobeLand30 products define 

bare land as having an FVC of lower than 10%, which is stricter than the criteria used by other land cover products. This 

criterion helps minimize the misclassification of sparse shrubland or grassland as bare land (Liu et al., 2021). The GlobeLand30 

product categorizes land cover into ten classes: six vegetation classes (i.e., cultivated land, forest, grassland, shrubland, wetland, 125 

and tundra) and four non-vegetation classes (i.e., artificial surfaces, bare land, water bodies, and perennial snow and ice) (Jun 

et al., 2014). The classes of wetlands, water bodies, and perennial snow and ice were grouped during the downscaling of Vv 

and Vs, as their pure NDVI values are generally similar (below 0).  

2.2 Validation data 

2.2.1 Statistical Vv and Vs 130 

The Landsat 8 data were used to obtain Vv and Vs using statistical methods on the Google Earth Engine (GEE) platform. These 

statistical Vv and Vs maps were subsequently compared to the pure NDVI values derived from the MultiVI algorithm. The 

Landsat 8 Collection 2 Surface Reflectance (SR) products with a resolution of 30 m provided atmospherically corrected SR 

data (https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products). The time-series Landsat 8 SR 

images from 2013 to 2015 were analysed to derive statistical Vv and Vs for the year 2014. Pixels identified as cloud, cloud 135 

shadow, water, and snow in the Landsat 8 images were excluded using the corresponding quality assessment data. 

2.2.2 Soil NDVI from the soil spectral library 

The soil spectra measured at the Soil and Plant Spectral Diagnostic Laboratory of the World Agroforestry Center (ICRAF) 

were used to calculate soil NDVI values (https://files.isric.org/public/other/), which were subsequently compared with the 

retrieved Vs values. The soil spectral library that includes soil samples collected from 58 countries was developed by ICRAF 140 

in collaboration with the International Soil Reference and Information Centre (ISRIC). This soil spectral library provides 

laboratory-measured soil spectra, along with attribute data such as geographical coordinates, horizon, and physical and 

chemical properties. Approximately 20 g of air-dried soil samples were passed through a 2 mm sieve, and placed into 7.4 cm 

diameter Duran glass Petri dishes for measurement (Garrity and Bindraban, 2006). Spectral measurements were conducted 

using a FieldSpec FR spectroradiometer (Analytical Spectral Devices, Boulder, CO) at wavelengths ranging from 0.35 to 2.5 145 

µm, with 1 nm intervals (Garrity and Bindraban, 2006). 
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Among the soil samples in the ICRAF soil spectral library, 247 were collected in China’s mainland (Figure 1). The retrieved 

Vs values were constrained to be no lower than 0, consistent with the findings of most studies (Montandon and Small, 2008; 

Ding et al., 2016). Consequently, those samples with NDVI values below 0 were excluded, resulting in a total of 228 samples 

available for validation. These samples were categorized into eight soil types (Table 2) based on their collection locations and 150 

the soil type map of China’s mainland (https://www.resdc.cn/data.aspx?DATAID=145). Additionally, Figure 1 illustrates the 

ecological and geographical zones of China’s mainland, highlighting the humid and arid areas according to moisture conditions 

(https://www.resdc.cn/data.aspx?DATAID=125).  

The NDVI values of the soil samples in the ICRAF soil spectral library range from 0 to 0.3, with the majority concentrated 

around 0.1. The mean NDVI value for all soil samples in China’s mainland is 0.08, with a standard deviation of 0.05. Desert 155 

soils exhibit the lowest NDVI values, with a maximum of 0.0391. This soil type is mainly found in the arid regions of 

northwestern China (Figure 1). In contrast, Alfisols have the highest NDVI values, reaching a maximum of 0.2732. These soils 

are primarily distributed in the humid regions of northeastern and southwestern China (Figure 1). 
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Figure 1: The spatial distribution of soil types in China’s mainland. The red circle represents the locations of soil samples in the 160 
ICRAF soil spectral library. The ecological and geographical zones of China’s mainland are numbered using Roman numerals. 

Table 2 NDVI of the soil samples collected from the soil spectral library. 

Soil type Number of samples Mean Maximum Minimum Standard deviation  

Alfisols 10 0.1580 0.2732 0.0554 0.0697 

Semi-Luvisols 22 0.1091 0.2062 0.0507 0.0392 

Caliche soils 12 0.1077 0.2057 0.0438 0.0612 

Desert soils 10 0.0282 0.0391 0.0118 0.0113 

Skeletol primitive soils 28 0.0811 0.1629 0.0156 0.0468 

Dark Semi-hydromorphic soils 9 0.1424 0.2035 0.0567 0.0489 

Anthrosols 41 0.0578 0.1098 0.0013 0.0309 

Ferralisols 96 0.0635 0.1803 0.0005 0.0371 

2.2.3 Field-measured FVC 

The field-measured FVC was collected from three sites: (i) the Hebei watershed in humid northeastern China, (ii) the Heihe 

River Basin in arid northwestern China, and (iii) the Three Gorges Reservoir Area in humid southwestern China. All field 165 

measurements were conducted over a complete vegetation growth cycle, with data collected approximately every 15 days. 

Figure 2 shows the locations of the these sites.  
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Figure 2: The ecological and geographical zones of China’s mainland. The red, green, and blue pentagrams symbolize the Hebei site, 

the Heihe site and the Three Gorges Reservoir site, respectively. 170 

The Hebei watershed is located in a typical black soil region of China and is mainly covered by crops. Eight sampling plots 

were distributed in relatively flat and uniform areas, comprising five forest plots, two grassland plots, and one cropland plot. 

The field measurements were conducted between 15 April and 30 October, 2022. An unmanned aerial vehicle (UAV) was 

used to capture FVC images of the cropland and grassland, achieving a resolution of higher than 1.5 cm and a plot size of 100 

m × 100 m. A digital camera was used to acquire FVC for the forests, with a plot size of 30 m. The camera was mounted on 175 

a long pole at a height of 1.5 to 2 meters above the ground and took vertical photographs at regular intervals along two diagonal 

lines within each sampling plot (Mu et al., 2013; Li et al., 2012). Images were captured from top to bottom and bottom to top 

at each step to document the coverage of understory vegetation (fup) and overstory canopy (fdown), respectively. The FVC was 

calculated as the weighted sum of the fup and fdown using the following Eq. (2): 

𝐹𝑉𝐶 = 𝑓𝑢𝑝 + (1 − 𝑓𝑢𝑝) ∗ 𝑓𝑑𝑜𝑤𝑛 ,                                                                                                                                       (2) 180 

The study area in the Heihe River Basin comprises 72% cropland, 24% residential land, and 4% woodland, indicating 

significant surface heterogeneity (Mu et al., 2015). The sampling plots, each measuring 10 m × 10 m, were exclusively located 

in cropland areas within the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) sites, where corn was the 

predominant crop. The FVC measurements were conducted using a digital camera from 15 May to 14 September, 2012, 

encompassing the entire growing season. 185 
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The Three Gorges Reservoir Area is situated in the mid-upper reaches of the Yangtze River. Five representative small river 

basins were selected for vegetation monitoring within this region. Seasonal trajectories of vegetation cover were recorded 

using UAVs every two weeks from 15 August, 2021, to 1 August, 2022. Each small river basin contained a sampling plot of 

approximately 100 m × 100 m, distributed in a relatively flat and homogeneous area. The primary vegetation types included 

orchards, forests, and shrubland. The UAV images had a resolution of higher than 1.5 cm. 190 

A Half-Gaussian Fitting algorithm (HAGFVC) was used to calculate FVC from UAV-acquired images, resulting in a minimal 

mean bias error (MBE) and root mean square error (RMSE) of less than 0.04 (Li et al., 2018b). The digital images captured 

by hand-held cameras were processed using a shadow-resistant algorithm (SHAR-LABFVC) to extract FVC, achieving an 

RMSE of approximately 0.025 (Song et al., 2015).  

3 Methods  195 

3.1 MultiVI algorithm for retrieving the pure NDVI maps 

3.1.1 Theory 

The MultiVI algorithm uses multi-angle remotely sensed observations to retrieve Vv and Vs. It defines the directional 

vegetation cover, 𝐹(𝜃), which represents the FVC at the VZA θ. A nonlinear coefficient, k, is introduced in the VI-based 

mixture model. This coefficient helps mitigate the saturation effect of NDVI in dense vegetation and accommodates the slight 200 

nonlinear relationship between FVC and NDVI, as shown in Eq. (3) (Xiao and Moody, 2005; Jiapaer et al., 2011; Choudhury 

et al., 1994):  

𝐹(𝜃) = (
𝑉(𝜃)−𝑉𝑠

𝑉𝑣−𝑉𝑠
)

𝑘

,                                                                                                                                                            (3) 

where 𝑉(𝜃) is the NDVI observed at VZA θ. The directional gap fraction model can be expressed as Eq. (4) (Nilson, 1971): 

𝑃(𝜃) = 𝑒−𝐺(𝜃)⋅𝛺(𝜃)⋅𝐿𝐴𝐼/ 𝑐𝑜𝑠 𝜃,                                                                                                                                             (4) 205 

Here,  𝑃(𝜃) denotes the directional gap fraction, 𝐺(𝜃) is the mean projection of unit foliage area (Goel and Strebel, 1984), 

Ω(𝜃)  is the clumping index, and LAI represents the leaf area index. The directional FVC and gap fraction exhibit a 

complementary relationship, such that the sum of 𝐹(𝜃) and 𝑃(𝜃) equals 1. Therefore, Eq. (3) and (4) can be combined as 

follows: 

1 − (
𝑉(𝜃)−𝑉𝑠

𝑉𝑣−𝑉𝑠
)

𝑘

= 𝑒−𝐺(𝜃)⋅𝛺(𝜃)⋅𝐿𝐴𝐼/ 𝑐𝑜𝑠 𝜃,                                                                                                                              (5) 210 

The G(θ) in Eq. (5) is often assumed to be constant at large VZAs around 57.5°, despite variations in leaf angle distributions 

(Leblanc et al., 1999; He et al., 2011; Song et al., 2017; Mu et al., 2018; Weiss et al., 2004; Roujean et al., 1992).  Furthermore, 

the variation of G(θ)⋅Ω(θ) is significantly smaller than the angular variation of cosθ at large VZAs (Mu et al., 2018). Since the 

LAI is also independent of VZA, G(θ)⋅Ω(θ)⋅LAI can be assumed to be invariant at large VZAs around 57.5°. The angular 
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effects of Vv and Vs are negligible (Escadafal and Huete, 1991; Mu et al., 2018). By using pairs of observations at large VZAs 215 

around 57.5° and eliminating angle-invariant parameters, Eq. (5) can be reorganized as: 

 (1 − (
𝑉(𝜃𝑖)−𝑉𝑠

𝑉𝑣−𝑉𝑠
)

𝑘

)
𝑐𝑜𝑠𝜃𝑖

= (1 − (
𝑉(𝜃𝑗)−𝑉𝑠

𝑉𝑣−𝑉𝑠
)

𝑘

)

𝑐𝑜𝑠𝜃𝑗

,                                                                                                           (6) 

where the subscripts “i” and “j” represent pairs of large VZAs around 57.5°. The combination of 55° and 60° in the forward 

viewing directions was identified as the optimal angular configuration. This selection is attributed to its minimal influence on 

𝐺(𝜃) and the high quality of angular remote sensing observations (Mu et al., 2018). These angles were used to formulate 220 

equations for estimating Vv and Vs: 

 (1 − (
𝑉(55∘)−𝑉𝑠

𝑉𝑣−𝑉𝑠
)

𝑘

)
𝑐𝑜𝑠55∘

= (1 − (
𝑉(60∘)−𝑉𝑠

𝑉𝑣−𝑉𝑠
)

𝑘

)
𝑐𝑜𝑠60∘

,                                                                                                     (7) 

The unknown parameters Vv, Vs, and k for a given pixel can be derived using at least three pairs of angular observations at 

VZAs of 55° and 60° to solve Eq. (7).  

3.1.2 Implementation 225 

The observed NDVI used to solve Eq. (7) should exhibit distinct variations to ensure stable results (Mu et al., 2018). This 

study used observations from different periods to construct appropriate equations for each pixel. The Vv and Vs were 

independently retrieved to enhance accuracy by applying high and low NDVI values, respectively. The historical minimum 

and maximum NDVI values for each pixel in 2014 were used as statistical boundaries. This approach ensured that the derived 

Vs values remained below the historical minimum, while the derived Vv values exceeded the historical maximum. Furthermore, 230 

empirical boundaries for Vs ([0.01, 0.3]) and Vv ([0.6, 1.0]) were applied to constrain the retrieval, preventing the upper limit 

of Vs from exceeding 0.3 and the lower limit of Vv from falling below 0.6 (Montandon and Small, 2008). This flexible approach 

integrates statistical boundaries for Vv and Vs, while allowing for reasonable intra-variability within each land cover type. 

Figure 3 illustrates the steps for using the MultiVI algorithm to derive 500 m pure NDVI values from the MODIS BRDF 

products:  235 

(1) Daily directional NDVI values at VZA of 55° and 60° were calculated for each pixel throughout the year using the 

semiempirical RTLSR model; 

(2) NDVI pairs at VZA of 55° and 60° were ranked in ascending order based on the values at 55° VZA for the entire year;  

(3) The annual NDVI value sequence was divided into two groups based on the 10th percentile. The NDVI values below the 

10th percentile were used to retrieve Vs using Eq. (7), while the remaining 90% were used to retrieve Vv;  240 

(4) The 25th, 50th, 75th, and 100th percentiles of the NDVI pairs in each group were selected to construct inversion equations 

(Eq. (7)) for each pixel. The unknown parameters Vv, Vs, and k were numerically solved using the least squares method; 

(5) For a small number of invalid pixels due to limited observations, gap filling was performed based on the MODIS land 

cover data (MCD12Q1). The mean values of Vv and Vs corresponding to the same land cover type were used to fill these gaps.  
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 245 

Figure 3: The scheme of the MultiVI algorithm to derive 500 m pure NDVI values from MODIS BRDF products. 

3.2 Spectral unmixing for downscaling the 500 m Vv and Vs  

The 500 m Vv and Vs were downscaled to 30 m resolution using spectral unmixing theory to facilitate fine-scale FVC 

estimation. It was assumed that 30 m pixels of the same land cover type shared identical Vv and Vs values. The 500 m Vv and 

Vs were considered as linear combinations of the 30 m Vv and Vs values, with weights determined by the areal proportion of 250 

each land cover type, as shown in Eq. (8):     

{
𝑉𝑣,500 =  ∑ 𝑃𝑖𝑉𝑣,30,𝑖

𝑛
𝑖=1

𝑉𝑠,500 =  ∑ 𝑃𝑖𝑉𝑠,30,𝑖
𝑛
𝑖=1

,                                                                                                                                                       (8) 

where Vv,500 and Vs,500 represent the Vv and Vs at 500 m resolution within a MODIS pixel, respectively; Pi signifies the 

proportion of the ith land cover type within the 500 m MODIS pixel, indicating its area-weighted contribution; and Vv,30,i and 
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Vs,30,i denote the Vv and Vs at 30 m resolution for land cover type i, respectively. Here, 𝑖 (1,2,…,𝑛) represents each land cover 255 

type. 

Figure 4 illustrates the method for downscaling 500 m pure NDVI values to 30 m resolution. The downscaling process utilized 

seven land cover types from the GlobeLand30 product, specifically four vegetation classes (cultivated land, forest, grassland, 

shrubland, and tundra), a grouped water surface category (wetland, water body, and permanent snow and ice), bare land, and 

artificial surfaces. A 3 × 3 sliding window with a step size of one MODIS pixel was employed to construct the unmixing 260 

equations (Eq. (8)). The derived Vv,30,i and Vs,30,i values were then assigned as the Vv and Vs for all 30 m pixels of land cover 

type i within the central MODIS pixel area. 

 

Figure 4: The approach for downscaling the 500 m MultiVI Vv and Vs to 30 m resolution based on the GlobeLand30 product. 

3.3 Assessment and validation  265 

3.3.1 Comparison with statistical methods 

Statistical methods were used to generate 30 m statistical Vv and Vs in 2014 across China’s mainland using Landsat 8 data, 

which were then compared with the MultiVI Vv and Vs. The statistical method utilized Landsat 8 data from 2013 to 2015, 

processed on the Google Earth Engine (GEE) platform. Initially, the pixel-wise maximum and minimum NDVI values over 

the three years were selected as the preliminary estimates for Vv and Vs, respectively. These initial values were then smoothed 270 

using an 11 × 11 pixel (330 m × 330 m) moving window to reduce spatial heterogeneity. The maximum and minimum NDVI 

within each moving window were subsequently assigned to the central pixel as its Vv and Vs, respectively. Finally, the 

statistical Vv and Vs were compared with the MultiVI Vv and Vs to assess differences in spatial patterns and magnitudes. 

3.3.2 Comparison with soil NDVI from the soil spectral library 

The soil spectra obtained from the soil spectral library were convolved to the red and NIR bands using the spectral response 275 

functions of MODIS. The convolved soil spectra were then used to calculate the soil NDVI for comparison with the retrieved 

Vs. The MultiVI Vs and statistical Vs were averaged for each soil type to facilitate comparison with the soil NDVI. Additionally, 

the uncertainties in the estimated FVC caused by intra-class variability in Vs were assessed for each soil type.  
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3.3.3 Assessment with field-measured FVC 

The field-measured FVC at the Hebei, Heihe, and Three Gorges Reservoir sites was used to assess the estimated FVC derived 280 

from the MultiVI Vv/Vs and that from the statistical Vv/Vs. The Landsat 8 NDVI time series were smoothed using a harmonic 

model (Zhao et al., 2023). The NDVI was generated at half-monthly intervals to coincide with the observation times of the 

field measurements. Subsequently, the NDVI was converted to FVC using the VI-based mixture model and the retrieved Vv 

and Vs. The estimated FVC was averaged across a sliding window of surrounding 3 × 3 pixels for comparison with the field-

measured FVC (Weiss et al., 2007).   285 

In the Heihe site, where the plot size (10 m) is smaller than the pixel size of Landsat 8 (30 m), field-measured FVC was 

upscaled to 90 m for comparison. This upscaling process utilized reflectance data obtained from the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER). An empirical transfer function was employed to establish the 

relationship between ASTER NDVI and field-measured FVC (Mu et al., 2014). The FVC at ASTER’s resolution (15 m) was 

estimated from ASTER NDVI using the established transfer relationship. The reference FVC was acquired by upscaling the 290 

15 m resolution FVC to 90 m through arithmetical averaging. 

The correlation coefficient (R2) and the root mean square deviation (RMSD) were used to assess the relationship and 

differences between the field-measured FVC and the estimated FVC, respectively. 

4 Results 

4.1 Maps of the MultiVI Vv and Vs  295 

Figure 5 shows the Vv and Vs maps generated using the MultiVI algorithm (Figures 5a and 5b) and the statistical method 

(Figures 5c and 5d). The MultiVI Vv and Vs maps demonstrate smooth distributions, whereas the statistical Vv and Vs maps 

exhibit noticeable stripes along the borders of the Landsat 8 imagery tiles. The spatial patterns of pure NDVI values derived 

from the MultiVI algorithm and the statistical method show similar trends, predominantly influenced by moisture conditions. 

Specifically, the humid and sub-humid areas of southeastern China are characterized by elevated pure NDVI values, while the 300 

arid and semi-arid regions of northwestern China are associated with lower values.  

The statistical Vv are generally lower than the MultiVI Vv in most areas, particularly in semi-arid and arid regions. In 

northwestern China, which is primarily covered by grasslands, bare lands, and deserts, the statistical method yields NDVI 

values of less than 0.3 for pure vegetation pixels (Figure 3b). These values are significantly lower than the Vv values reported 

in most studies (Table 1). 305 

Table 3 presents the MultiVI Vv and Vs values across various land types. The mean Vv values range from 0.82 to 0.91, while 

the mean Vs values range from 0.07 to 0.29. Both MultiVI Vv and Vs exhibit consistent patterns across different land types, 

indicating that vegetation with higher Vv values tends to also exhibit higher Vs values. The shrublands show the lowest values, 

whereas evergreen needleleaf forests exhibit the highest. The forests generally have higher values than other land types, with 
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evergreen forests surpassing broadleaf forests. In contrast, grasslands and shrublands have lower values compared to other 310 

land types. The standard deviation values for Vs are greater than those for Vv.  

The spatial patterns of the MultiVI Vs exhibit distinct variations across different soil types and demonstrate a closer alignment 

with the actual soil distribution in China’s mainland (Figure 1) when compared to the statistical Vs. The MultiVI Vs are 

generally lower than the statistical Vs, especially in the densely vegetated areas of southeastern China. In these humid regions, 

the statistical Vs values exceed 0.4, where evergreen vegetation predominates and shows few bare lands (Figure 3d). These 315 

values, which exceed 0.4, are notably higher than the generally accepted soil NDVI values (Table 1). 

 

Figure 5: The spatial distributions of Vv and Vs generated using the MultiVI algorithm and the statistical method, respectively. 

Table 3 MultiVI Vv and Vs for different land types. 

Land type mean Vv standard deviation of Vv mean Vs standard deviation of Vs 

Grassland 0.8569  0.0455  0.0740  0.0564  
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Shrublands 0.8168  0.0469  0.0683  0.0439  

Broadleaf croplands 0.8872  0.0310  0.1232  0.0789  

Savananas 0.8927  0.0321  0.2194  0.0836  

Evergreen broadleaf forests 0.9070  0.0286  0.3136  0.0596  

Deciduous broadleaf forests 0.8942  0.0273  0.1737  0.0858  

Evergreen needleleaf forests 0.9088  0.0316  0.2870  0.0725  

Deciduous needleleaf forests 0.8752  0.0215  0.1564  0.0697  

 320 

Figure 6 shows the differences between the MultiVI Vv/Vs and the statistical Vv/Vs. The largest discrepancies are observed in 

regions lacking pure pixels, i.e., the arid areas where pure vegetation pixels are absent for Vv estimation, and the humid areas 

where bare soil pixels are lacking for Vs estimation.  

In the sparse grasslands of northwestern China, the MultiVI Vv are significantly higher than the statistical Vv, with a bias 

exceeding 0.3 (Figure 6a). In most humid or subhumid areas of southeastern China, the difference between the two sets of Vv 325 

values is generally within ±0.1. For relatively sparse vegetation, such as grasslands and croplands, the MultiVI Vv are slightly 

higher than the statistical Vv. However, in forested areas, the MultiVI Vv are slightly lower than the statistical Vv. 

In the densely vegetated forests of southeastern China, the MultiVI Vs are markedly lower than the statistical Vs, with a bias 

of less than -0.3 (Figure 6b). In arid regions, the MultiVI Vs values are slightly lower than the statistical Vs values in sparse 

grasslands and bare lands, but higher in oases, with a bias of approximately ±0.1.  330 

 

Figure 6: The difference maps between the MultiVI NDVI and statistical NDVI for pure vegetation and bare soil. 
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4.2 Evaluation with soil NDVI from the soil spectral library  

Figure 7 shows the MultiVI Vs and statistical Vs in comparison to the soil NDVI derived from the ICRAF soil library. For 

most soil types, the mean of the MultiVI Vs closely aligns with the median NDVI of the corresponding soil samples. In contrast, 335 

the mean statistical Vs tend to overestimate the median NDVI across most soil types. Both the mean values of the MultiVI and 

the statistical Vs are lower than the median NDVI for Dark Semi-hydromorphic soils, with a bias of approximately 0.1.  

Soil samples of Anthrosols and Ferralisols are primarily distributed in the humid, densely vegetated regions of southeastern 

China, which results in relatively high NDVI values. For these soil types, the MultiVI Vs show an overestimation when 

compared to the median NDVI values, with biases of approximately 0.15 for Anthrosols and 0.2 for Ferralisols. This 340 

overestimation is more pronounced for the statistically derived Vs, with biases exceeding 0.2 for Anthrosols and 0.4 for 

Ferralisols. 

 

Figure 7: The boxplot of the soil NDVI from the ICRAF soil library for each soil type. Each boxplot features a central red line 

representing the median. The N above the box indicates the number of sampling plots for each soil type. The lower and upper edges 345 
of the box denote the 25th and 75th percentiles, respectively. The whiskers are extended to the most extreme data points excluding 

outliers. The blue and red lines denote the means of the MultiVI Vs and statistical Vs, respectively. 

Figure 8 illustrates the bias between the MultiVI FVC and the statistical FVC compared to the reference FVC estimated using 

soil NDVI from the ICRAF soil library. The MultiVI FVC and statistical FVC were calculated using the MultiVI Vv/Vs  (Figure 

8a) and statistical Vv/Vs (Figure 8b), respectively. The reference FVC was estimated using the ICRAF soil NDVI in 350 

combination with either MultiVI Vv (Figure 8a) or statistical Vv (Figure 8b). 

For the MultiVI FVC, the median bias is within ±0.05, and the mean absolute values consistently remain below 0.1 across all 

soil types. The overestimation of the MultiVI Vs yields a slight underestimation of FVC for Anthrosols and Ferralisols. The 

overestimations of 0.15 and 0.2 in MultiVI Vs lead to underestimations of approximately 0.04 and 0.08 in FVC for Anthrosols 
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and Ferralisols, respectively, both of which are located in densely vegetated areas. Conversely, the slight underestimation of 355 

MultiVI Vs relative to soil NDVI results in overestimations of 0.07 and 0.08 in FVC for Caliche soils and Dark Semi-

hydromorphic soils, respectively. 

The statistical method performs worse than the MultiVI algorithm across most soil types in terms of FVC bias except for the 

Alfisols (mean biases of 0.04 and 0.07 for statistical method and MultiVI, respectively). The underestimation of statistical 

FVC exceeds 0.5 for Skeletol primitive soils, Anthrosols, and Ferralisols.  360 

 

Figure 8: The bias in FVC estimation across different soil types using different Vs values. The FVC bias represents the difference 

between the estimated FVC using (a) MultiVI Vs or (b) statistical Vs and the reference FVC derived from soil NDVI in the ICRAF 

soil library. The number above each box indicates the mean absolute bias of FVC for each soil type. The lower and upper edges of 

the box denote the 25th and 75th percentiles, respectively. The whiskers are extended to the most extreme data points excluding 365 
outliers.  

4.3 Accuracy of FVC estimation  

Figure 9 depicts scatterplots that compare the field-measured FVC with the FVC estimated using the MultiVI Vv/Vs and the 

statistical Vv/Vs across three distinct sites: the Hebei site (Figures 9a and 9b), the Heihe site (Figures 9c and 9d), and the Three 

Gorges Reservoir site (Figures 9e and 9f).  370 

The MultiVI FVC demonstrates superior accuracy relative to the statistical FVC at the Hebei site, with a lower RMSD and a 

higher R2 (0.8121 for the MultiVI FVC compared to 0.7156 for the statistical FVC). Both the MultiVI FVC and the statistical 

FVC show saturation effects for high FVC values at the Hebei site during the summer months (Figures 9a and 9b). However, 

the MultiVI FVC aligns more closely with the 1:1 line, particularly during the non-growing seasons, specifically in April, 

September, and October.  375 

The MultiVI FVC outperforms the statistical FVC at the Heihe site, with an RMSD of 0.122 and an R2 of 0.7786. In contrast, 

the statistical FVC presents an RMSD exceeding 0.2 and an R2 below 0.5. The majority of the data points depicted in Figure 
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9d are situated above the 1:1 line, indicating that the statistical method tends to underestimate Vv values in arid regions, 

resulting in a significant overestimation of FVC.  

At the Three Gorges Reservoir site, the MultiVI FVC also demonstrates superior accuracy, as indicated by an RMSD of 0.1022, 380 

in contrast to 0.1801 for the statistical FVC. Additionally, the correlation between the MultiVI FVC and field-measured FVC 

is significantly higher (R2 = 0.8162) than that of the statistical FVC (R2 = 0.6572). As illustrated in Figure 9f, a part of the 

statistical FVC data points is saturated at high values and drops to zero at low values, indicating that the statistical method 

suffers from an underestimation of Vv and an overestimation of Vs in humid areas. 

 385 
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Figure 9: Scatterplots of the MultiVI FVC and the statistical FVC versus the field-measured FVC. The R2 and RMSD values are 

also shown. N is the number of samples.  

5 Discussion 

The VI-based mixture model is widely used to estimate FVC due to its ease of implementation. The model’s simplicity is 

primarily attributed to the preselection of two critical parameters: the NDVI of bare soil (Vs) and that of pure vegetation (Vv). 390 

These parameters are essential for the model’s performance and have a significant impact on its accuracy. The traditional 

statistical method for obtaining Vv and Vs assumes the existence of pure pixels, either spatially or temporally. In this method, 

extreme values from regional or temporal datasets are employed to represent Vv and Vs. However, this approach has two 

significant limitations: (1) pure pixels may be absent in certain ecosystems, such as evergreen forests, where bare soil pixels 

are lacking, or in bare lands, where pure vegetation pixels are absent; (2) the Vv and Vs can vary from pixel to pixel, yet the 395 

traditional statistical method often assigns a single value for an entire region or land type.  

The global soil spectral library was used to calibrate Vs and to account for its spatial variability (Montandon and Small, 2008). 

Although this method improves the accuracy of FVC estimation compared to using a single Vs value across large regions, it is 

limited in that it only considers soil variability within the spectral library and fails to address the spectral differences among 

individual pixels. An alternative approach is to use each pixel’s historical lowest NDVI values as Vs to ensure pixel-wise 400 

variability.  

In this study, statistical maps of Vv and Vs were generated using a common statistical criterion (Sect. 3.3.1). However, two 

significant drawbacks were observed. First, empirical NDVI for fully vegetated pixels are typically reported to exceed 0.5 in 

most studies (Gao et al., 2020; Zeng et al., 2000; Montandon and Small, 2008), whereas the statistical Vv are observed to be 

below 0.3 in arid regions of China’s mainland (Figure 5a). This discrepancy suggests that identifying appropriate NDVI values 405 

for pure pixels from datasets with limited spatial or temporal coverage is challenging, making the use of statistical methods to 

obtain pixel-wise pure NDVI values impractical. Second, inaccuracies in the statistical Vv and Vs contribute to significant 

uncertainty in FVC estimation. The overestimation of Vs leads to an underestimation of FVC, particularly in arid areas (Figure 

10d) and during the non-growing season when NDVI values fall within a sensitive range (0.2 to 0.4) (Figure 10b). Furthermore, 

the underestimation of Vv results in the saturation of FVC (Figure 10f).  410 

The MultiVI algorithm, which uses multi-angle data to retrieve Vv and Vs, has demonstrated effectiveness in estimating FVC 

and has been applied to generate FVC time series on a national scale (Mu et al., 2018; Song et al., 2022a). This algorithm 

retrieves angle-invariant NDVI values for endmembers using observations from two large VZAs. In this study, the retrieval 

strategy of the MultiVI algorithm was optimized through the construction of well-posed equations based on NDVI time series. 

Additionally, historical statistical values of Vv and Vs were incorporated as boundary constraints during the equation-solving 415 

process. The downscaling procedure integrates a 30 m land cover product, which introduces finer spatial detail to accurately 

describe the sub-pixel heterogeneity within MODIS pixels. 
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The MultiVI Vs show the largest discrepancies for the soil types of Anthrosols and Ferralisols when compared to the soil NDVI 

from the ICRAF soil spectral library. This discrepancy is attributed to the relatively high NDVI  associated with these two soil 

types, which are predominantly distributed in the humid areas of southern China. However, the overestimation of Vs in these 420 

areas has a limited impact on the FVC estimation (Figure 8a). Previous studies have also indicated that the influence of Vs on 

FVC estimation is more pronounced in areas with low NDVI values, such as grasslands and croplands / natural vegetation 

areas, compared to regions with high NDVI values (Ding et al., 2016). Despite the median statistical Vs are slightly closer to 

the soil NDVI from the ICRAF soil library for Caliche soils and Desert soils than MultiVI Vs (differences between the two Vs 

smaller than 0.03 in Figure 7), the bias of the statistical FVC is much larger than that of the MultiVI FVC (Figure 8). This 425 

indicates that the MultiVI algorithm derives more accurate Vv values than statistical methods especially for arid or semi-arid 

regions, thereby enhancing the precision of FVC estimation. 

As a critical vegetation parameter, FVC is frequently demanded in various studies, serving as an input for models or as 

fundamental data for ecological analyses. The VI-based mixture is the simplest method for converting remotely sensed images 

into FVC products, provided that the pure NDVI values are obtained beforehand. However, the two essential parameters in the 430 

VI-based model, Vv and Vs, currently lack standardized and reliable data sources. The newly generated 30 m Vv and Vs maps 

address this gap. Users can now calculate accurate FVC values quickly using the MultiVI Vv and Vs with corresponding NDVI 

to meet their specific requirements. 

6 Conclusion 

This study demonstrates the feasibility of generating pixel-wise NDVI for pure vegetation (Vv) and bare soil (Vs) for the VI-435 

based mixture model. In this study, 30 m resolution maps of pure NDVI values for the year 2014 were produced for China’s 

mainland using multi-angle remotely sensed data. The assessment and validation of the Vv and Vs maps were conducted from 

three aspects: 1) comparing the MultiVI Vv and Vs maps with those generated using the statistical method; 2) comparing the 

derived Vs with reference soil NDVI from the ICRAF soil spectral library; and 3) validating the accuracy of FVC calculated 

from the pure NDVI values against field-measured FVC. Our findings reveal the urgent need for reliable Vv and Vs per pixel 440 

for large-area FVC production. Traditional statistical methods are impractical to achieve this goal due to their reliance on pure 

pixels. The MultiVI algorithm has proven to be a viable solution, yielding Vv and Vs with a more coherent spatial pattern and 

magnitude than statistical methods. The MultiVI Vs closely aligned with soil NDVI across various soil types in China’s 

mainland. Furthermore, the FVC estimated using the MultiVI Vv and Vs demonstrated improved accuracy in comparison to 

those derived from the statistical Vv and Vs, with RMSD values around 0.1 and R2 values near 0.8 for all validation sites. 445 

Moreover, the products generated in this study show broad applicability across a variation of climate zones and soil types. 

The MultiVI Vv and Vs maps provide essential parameters for FVC estimation using the widely adopted VI-based mixture 

model, which is known for its ease of use and reasonable accuracy. Hence, these derived Vv and Vs maps are anticipated to 

facilitate the estimation of fine-resolution, high-frequency FVC with reliable quality at large scales. 
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7 Data availability 450 

The 30 m MultiVI Vv and Vs maps are available at https://zenodo.org/records/14060222 (Zhao et al., 2024). The Vv and Vs 

data are stored in GeoTIFF files using the WGS-84 (World Geodetic System 1984) coordinate system with UTM (Universal 

Transverse Mercator) projection. The data are categorized into tiles based on a latitude size of 5° and a longitude size of 6°. 

The file names consist of 18 characters following these rules: North-South latitude abbreviation (1 digit) + 6-degree zone 

number (2 digits) + "_" + starting latitude (2 digits) + "_" + product time (4 digits) + "_ " + resolution (3 digits) + "_ " + data 455 

attribute (2 digits). Additionally, each image contains a pure NDVI value band range from 0 to 100, with invalid values or 

water surfaces labelled as 0. 
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