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Abstract.  

Understanding the spatial-temporal distribution of grazing livestock is crucial for assessing the sustainability of livestock 

systems, managing animal diseases, mitigating climate change risks, and controlling greenhouse gas emissions. In China, 

grazing ruminants are mostly distributed across the vast grasslands in semi-humid and alpine areas. However, existing datasets 

of gridded distribution of grazing ruminants in China do not distinguish grazing ruminants with other livestock production 25 

systems, nor capture their long-term and seasonal dynamics, and tend to overestimate grazing livestock distribution. This study 

uses the county-level data from the Grassland Ecological Protection Subsidies to differentiate grazing livestock from other 

forms of livestock rearing. Interpretable machine learning models were used to detect the seasonality of grazing pasture and 

map the China’s long-term annual ruminant livestock distribution in grazing livestock production systems from 2000 to 2021 

(CLRD-GLPS). The model's internal ten-fold cross-validation results (adjusted R²) for cattle ranged from 0.850 to 0.952 and 30 

for sheep from 0.780 to 0.836. External validation using province-level livestock meat production data yielded Pearson 

correlation coefficients of 0.88-0.90 for cattle and 0.92-0.94 for sheep, respectively. The CLRD-GLPS datasets provide more 

detailed, gridded information on local livestock distribution than census-based data. Compared to actual census data and the 

GLW datasets, they better capture the spatial-temporal dynamics of livestock distribution. Spatially, the largest cattle numbers 

on seasonal pastures were in the south-eastern edge of the Qinghai-Tibet Plateau (QTP), while the largest sheep numbers were 35 

in north-eastern Qinghai and Xinjiang. Temporally (2000-2021), cattle numbers increased near the Three-River Source 
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National Park and Helan Mountains, while sheep numbers decreased on seasonal pastures on the QTP, with no significant 

changes on year-round pastures in Inner Mongolia. The datasets provide essential information for understanding the spatial-

temporal dynamics of grazing ruminants and formulating relevant livestock management policies, among other applications. 

Additionally, the research framework developed in this study can serve as a new framework for creating livestock distribution 40 

datasets in other regions and livestock production systems. 

1 Introduction 

Livestock play an important role in global food systems, contributing 40% to the global agricultural gross domestic product. 

The global livestock sector is rapidly changing in response to growing demand for animal-source foods, employing over 1.3 

billion people and supporting 600 million poor smallholder farmers in developing countries (Herrero et al., 2013; Thornton, 45 

2010). Meanwhile, increasing livestock numbers contribute to a rise in greenhouse gas (GHG) emissions and places a 

significant burden on herders to gain access to the feed for livestock from natural resources (Gerber et al., 2013; Herrero et al., 

2013). In the livestock sector, ruminant animals—such as cattle, sheep, and goats—occupy the largest land area worldwide 

compared to other livestock species, predominantly on grasslands (Pulina et al., 2017). Additionally, the lower feed use 

efficiency in ruminant than in monogastric livestock (such as pigs and poultry), has led to relatively higher GHG emissions 50 

intensities (Cheng et al., 2022a; Knapp et al., 2014). Therefore, it is important to capture the spatial-temporal distribution of 

ruminant livestock for showcasing their role in studying sustainability (Michalk et al., 2019), managing disease (Li et al., 2024), 

mitigating climate change risks (Thornton et al., 2021), and especially in predicting GHG emissions (Uwizeye et al., 2020) 

associated with livestock production systems. Despite many efforts (Gilbert et al., 2018; Robinson et al., 2014), existing 

datasets often lack the spatial-temporal resolution and seasonal dynamics necessary for sustainability assessments and climate 55 

change impact studies in diverse livestock systems. 

 

Existing of global ruminant livestock distribution maps, such as the Food and Agriculture Organization of the United Nations 

(FAO)'s Gridded Livestock of the World (GLW3) using machine learning methods with a spatial resolution of 10 km (Gilbert 

et al., 2018). However, since most ruminant livestock depend on grasslands for grazing and often move seasonally, especially 60 

in regions like China that adopt a two-season transhumance system, the coarse resolution of GLW3 and its lack of consideration 

for seasonal livestock movements within local boundaries limit its applicability. This is particularly true for studies focused 

on seasonal environmental stresses, such as heat stress and snow disasters (Thornton et al., 2021; Ye et al., 2021), and on 

seasonal grazing intensity (Fetzel et al., 2017). The high-resolution livestock maps enable more accurate tracking of livestock 

movements across different seasons (Ocholla et al., 2024). To address this gap in spatial resolution and the associated seasonal 65 

movements, Zhan et al. leveraged China's county-level livestock census data to generate cattle and sheep distribution data for 

the Qinghai-Tibet Plateau (QTP), particularly emphasizing seasonal variations with greater spatial resolution of 500m (Zhan 

et al. 2023). Additionally, the long-term distribution of livestock affects land use change and herd management, amongst others. 
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However, predicting long-term livestock distributions has become a challenge as there is currently no dataset that 

simultaneously meets the seasonal pattern and long-term series requirements for the diverse distribution patterns of livestock 70 

in grazing LPS. Understanding and explaining the mechanisms behind spatial-temporal changes in livestock distribution are 

equally important. However, machine learning methods are often considered black-box models and cannot directly explain the 

mechanisms behind the data(Hassija et al., 2024). Interpretable machine learning (IML) methods can address this by extracting 

relevant knowledge from machine learning models regarding relationships present in the data or learned by the model 

(Murdoch et al., 2019). For example, feature importance scores provide insights into which features the model has identified 75 

as significant for specific outcomes and their relative importance (Breiman, 2001). Structural equation modelling (SEM), a 

statistical technique based on multivariate linear regression, can be used to test conceptual models based on cause-effect 

relationships, further enhancing our understanding of these mechanisms (Chernozhukov et al., 2024; Feuerriegel et al., 2024). 

 

Apart from the above challenges in mapping long-term grazing livestock distribution, another key issue is that existing datasets 80 

often model livestock distribution directly based on census data, without distinguishing livestock numbers among various 

livestock production systems. Livestock production systems (LPS) have been previously classified into three basic types: 

grazing LPS, mixed farming LPS and landless LPS (Robinson et al., 2011). With China emerging as a significant new 

consumer market for ruminant products and having one of the largest expanses of remaining grasslands on Earth, these 

grasslands currently support a large number of ruminant livestock (Du et al., 2018). Previous studies have directly used census 85 

data to build models and to assign livestock numbers in census polygons for predicting livestock distribution in grazing LPS 

based on grassland (Gilbert et al., 2018; Zhan et al., 2023). However, as census data cannot distinguish grazing livestock from 

the total livestock, for China, it is difficult to separate ruminants distributed in western China from those in mixed-farming 

LPS. Ruminants in landless LPS are relatively few according to the statistical data (Ministry of Agriculture and Rural Affairs 

China, 2000). Previous studies on predicting livestock distribution have seldom differentiated between different LPS, often 90 

overlooking the variations in distribution patterns among these systems. Even when studies focus on grazing livestock within 

a single livestock production system, they typically use overall livestock numbers to predict the distribution of grazing 

livestock in grazing LPS, leading to an overestimation of the actual grazing livestock numbers.  

 

This study aims to develop a long-term dataset mapping the distribution of grazing ruminant livestock in China from 2000 to 95 

2021 (CLRD-GLPS), with a specific focus on the grazing LPS. The methodology for constructing this dataset involves 

addressing three key aspects. Firstly, long-term county-level statistical livestock data are collected and grazing ruminant 

livestock are identified within the total ruminant population. Secondly, grassland areas are differentiated into seasonal and 

year-round pastures using sampled seasonal pasture data. Lastly, the spatial-temporal distribution of ruminant livestock from 

2000 to 2021 is predicted and explained using well-developed interpretable machine learning models and structural equation 100 

modelling. 
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2 Data and method 

 

Figure 1: Framework of mapping grazing ruminant livestock distributions in China's grazing livestock production system. 105 

 

In this study, there are six detailed steps to  produce the CLRD-GLPS datasets and analyse their spatial-temporal distribution 

(Figure 1): (1) Preparation of data and variables, especially in segmenting grazing livestock from the whole livestock system, 

(2) preparation of a pasture mask suitable for livestock grazing and random forest classification modelling for predicting 

seasonal pastures, (3) construction of livestock distribution prediction models using machine learning models, (4) prediction 110 

of grazing ruminant livestock in 1 km grids and assignment livestock numbers within county boundary, (5) comparison with 

GLW and actual patterns, and external cross-validation between livestock numbers and meat production, and (6) analysis and 

explanation of the spatial-temporal distribution of grazing ruminant livestock. 

2.1 Data  

The data used for this study are categorized into four types: livestock number data, mask data, pasture data, and predictor data. 115 

All these categories are listed in Table A1, with detailed descriptions provided below. 
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2.1.1 Livestock data 

County-level livestock data were collected from the livestock statistical yearbooks, encompassing information from 29 

provinces across China (excluding Jiangsu, Fujian, Guangxi, Hong Kong, Macao, and Taiwan). These yearbooks provide the 120 

2000-2021 year-end of cattle, sheep and pig (the data in some provinces of some years can’t be found). In total, livestock 

numbers data are available for 16, 204 year·county. 

 

For comparison, we downloaded the Gridded Livestock of the World (GLW) datasets for 2010, 2015, and 2020 from the FAO 

website (https://data.apps.fao.org/catalog/organization/gridded-livestock-of-the-world-glw), selecting the cattle and sheep 125 

species available. The units for GLW in 2010 and 2015 represent absolute livestock numbers (Gilbert et al., 2018), whereas in 

2020, the data is provided as livestock density (heads per km²). 

 

For province-level validation, we collected animal husbandry production data from the China Statistical Yearbook 

(https://www.stats.gov.cn/english/Statisticaldata/yearbook/) spanning the years 2000 to 2021. This data set includes production 130 

figures for pork, beef, and mutton, with the unit of measurement expressed in ten thousand tons. 

 

2.1.2 Mask data 

The annual China Land Cover Dataset with a 30 m spatial resolution was utilized to create a suitable distribution mask for 

livestock (Yang and Huang, 2021). Land cover types including grassland, cropland, shrub, and wetland are considered suitable 135 

for grazing livestock. To generate a valid pasture boundary, we also obtained the boundaries of national nature reserves 

from National Nature Reserve Boundary Data published in the Resource and Environment Science and Data Center, Chinese 

Academy of Science (https://www.resdc.cn/data.aspx?DATAID=272). It includes 169 national nature reserves in China. The 

boundary of grazing ban regions was collected from the article (Sun et al., 2020). These regions are banned for livestock 

grazing. 140 

 

2.1.3 Pasture Survey Data 

The sampled seasonal pasture data were collected for generating seasonal pasture of grazing livestock in the regions of Xinjiang, 

Tibet, and Qinghai. The warm-season, cold-season, and year-round pasture division maps for entire Xinjiang were obtained 

from the Xinjiang Autonomous Region Grassland Station. The 1365 grassland survey sample locations of seasonal pasture of 145 

Qinghai Province were obtained from the Qinghai Province Grassland Station. For the Tibet Autonomous Region, the division 

maps of warm/cold-season pastures of 48 townships were obtained from Zhada, Geji, Jilong, and Dingjie County Forestry 

and Grassland Administrations.  
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2.1.4 Predictor Data 150 

Topography data such as digital elevation model (DEM) and slope were considered in the livestock density distribution model. 

Climate data, crucial for assessing the productivity of grasslands and other land cover types, also impacts the challenges posed 

by climatic conditions on livestock. From 2000 to 2021, we included monthly near-surface temperature and precipitation (Peng 

et al., 2019), and snow cover data ( Hall, D. K. and G. A. Riggs, 2016). Vegetation productivity was represented by the 

normalized difference vegetation index (NDVI) data spanning from 2000 to 2021 (Didan, 2015). Additionally, the 155 

socioeconomic data comprised population distribution from 2000 to 2021(Oak Ridge National Laboratory, 2020) and travel 

time data from 2015 (Weiss et al., 2018). 

 

2.2 Method  

2.2.1 Preparation of suitable grazing pastures and Segmentation of livestock population data in grazing LPS 160 

The suitable land cover types for grazing livestock in grazing LPS include grassland (Howard et al., 2012), shrubland (Sanz et 

al., 2017), and wetland (Burton et al., 2009). Considering the impact of land use changes on grazing livestock distribution, the 

30 m spatial resolution at five-year intervals China Land Cover Dataset from 2000 to 2020 were used to create a suitable 

grazing distribution mask. The grid data from the China Land Cover Dataset were resampled to a 1km spatial resolution, and 

only the pixels representing grassland, shrubland, and wetland land cover types were retained in the mask. To generate a valid 165 

pasture boundary, we used the boundaries of National Nature Reserves and the boundary of grazing ban regions, which are 

banned for livestock grazing (Figure A1). 

 

To segment grazing ruminant livestock from whole ruminant livestock, we used the detailed tables on Grassland Ecological 

Protection Subsides (Table A2), which included data on livestock carrying capacities for grasslands and agricultural by-170 

products across 74 counties from Tibet and Qinghai province. Based on such tables, we can get the average livestock carrying 

capacities between grazing LPS and mixed-farming LPS. Additionally, we use the livestock carrying capacities as weighting 

factors for different LPS types, where grazing LPS typically encompasses land uses such as grasslands, shrublands, and 

wetlands, whereas mixed-farming system primarily involves cropland. We calculated the area covered by each LPS type within 

each county with the data from China Land Cover Dataset for every five year, then multiply these areas by their corresponding 175 

livestock carrying capacities (in grazing LPS or other LPS) to compute a weighted area. This weighted area serves as the basis 

for allocating livestock across grazing and other LPS within the counties.  

·

· ·
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where GiW  is weighted ratio for grazing LPS in county i; GCC  is average carrying capacity for grazing LPS, meanwhile 180 

MCC is the same for mixed-farming LPS; GiArea  is the area for grazing LPS in the county i, and MiArea is the same for 

mixed-farming LPS in the county i; GiLN  is the livestock numbers for grazing LPS in the county i, and TiLN is the total 

livestock numbers in the county i from county-level statistical yearbook. 

 

2.2.2 Classification for seasonal pastures and year-round pasture 185 

Based on the suitable grazing pastures, the distribution of seasonal pasture samples (warm-season pastures vs. cold-season 

pastures) was used to predict the seasonal pasture distribution across the entirety of China (Figure A1). Data collected from 

the scientific survey show that livestock in the QTP (Tibet, Qinghai, Sichuan, Yunnan, Gansu) follow seasonal grazing rules, 

grazing on cold-season pastures during the cold season and on warm-season pastures during the warm season. Although 

Xinjiang has seasonal pastures, there are also some areas with year-round pastures that can support grazing in either the cold 190 

or warm season. In other provinces of China, grazing typically occurs on year-round pastures without strict seasonal restrictions.  

 

Therefore, this study predicted the seasonal pasture distribution separately for QTP, Xinjiang, and other provinces. For the 

QTP, we used a Random Forest Classification (RFC) model to predict seasonal pasture(warn-season/cold-season) (Breiman, 

2001; Zhan et al., 2023). The Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) demonstrates the 195 

performance of the seasonal pasture prediction model (Negnevitsky, 2005). Detailed methods can be found in our previous 

study focused on livestock seasonal mapping (Zhan et al., 2023). For Xinjiang, the distribution maps of seasonal and year-

round pastures were directly converted into raster maps with a spatial resolution of 1 km, covering the entire region. In other 

provinces, pastures are all year-round. 

 200 

2.2.3 Construction of the livestock density distribution models and assignment of livestock numbers 

This study employed interpretable machine learning techniques to develop distribution models for the ruminant livestock 

(cattle and sheep). Initially, the response variables required for the machine learning models are processed. Specifically, for 

different ruminant livestock types (cattle and sheep), statistical county-level livestock density was calculated by dividing the 

annual livestock numbers for grazing LPS ( GiLN ) by the area covered by a suitability mask for each county's single pasture 205 

types (warm-season pastures/cold-season pastures/year-round pastures). This density served as the response variable for 

constructing distribution models in the grazing LPS. Consequently, the study constructed a total of six livestock distribution 
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models: three models each for cattle and sheep within the single pasture types (warm-season pastures/cold-season 

pastures/year-round pastures), with livestock density as the response variable, measured in heads per square kilometer 

(head/km²). 210 

 

In developing livestock distribution models within grazing LPS, factors including terrain, climate, vegetation, snow cover, and 

human activities were considered as predictors. The distribution patterns of livestock within grazing LPS and mixed-farming 

LPS differ significantly. In grazing LPS, the seasonal distribution of livestock was closely linked to the availability of grassland 

resources, environmental stress, and the activities of pastoralists. Specifically, terrain acts as a macro-control factor, climate 215 

determines the type and productivity of grasslands, and the productivity of grassland vegetation is crucial in determining the 

carrying capacity for livestock.  

 

Interpretable machine learning models were utilized to predict the relationship between the response variable (livestock density) 

and various predictors. This study employed several types of machine learning algorithms, including Random Forest (RF) 220 

(Breiman, 2001), Extreme Gradient Boosting (XGBoost) (Friedman, 2001), and Extreme Randomized Trees (ET) (Geurts et 

al., 2006). Machine learning model training and predictions were implemented using Python 3.8.18, incorporating recursive 

feature elimination (Guyon and Elisseeff, 2003) and grid search algorithm (Bergstra and Bengio, 2012) to identify the optimal 

predictive variables and parameter combinations for each model. During the model training phase, the performance of these 

models was quantitatively assessed. This assessment was based on the error metrics adjusted R2 and Root Mean Squared Error 225 

(RMSE) obtained through ten-fold cross-validation. These metrics helped select the model that exhibits the highest simulation 

accuracy and generalization capability. The model with the highest adjusted R² and the smallest RMSE was considered the 

optimal model and was then used to predict the distribution of livestock. Feature importance was introduced to identify the 

most importance feature in different interpretable machine learning methods (Breiman, 2001). 

 230 

The optimal models selected in this study were converted into grid-based weights within the pasture mask (warm-season 

pastures, cold-season pastures, year-round pastures) for each county-level polygon to assign county-level livestock numbers 

for grazing LPS  ( GiLN ) using the dasymetric mapping method (Mennis, 2009). The final distribution maps of livestock 

numbers (CLRD-GLPS) were produced with units per grid cell in heads (as each grid cell is 1 km, this can be considered 

heads/km²). 235 

 

2.2.4 Comparison and validation of grazing ruminant livestock distribution  

To compare our results (CLRD-GLPS) with other livestock distribution maps and actual distribution patterns, we used the 

GLW datasets for 2010, 2015, and 2020, standardized to livestock density (heads/km²) as representatives of widely used global 
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datasets. Actual livestock distribution patterns were derived from county-level livestock numbers for grazing LPS ( GiLN ) in 240 

corresponding years, also turned to density (heads/km²) within the pasture mask (warm-season, cold-season, and year-round 

pastures) for each county-level polygon. First, we compared their livestock densities spatially. Second, we aggregated values 

to the county level and calculated the R2 to assess validation accuracy. 

 

To conduct external cross-validation and further ensure the robustness of our machine learning models, we used livestock meat 245 

production data at the provincial level. Before validation, livestock meat production data at the provincial level were adjusted 

using grazing weights to accurately reflect the livestock meat production from grazing LPS within each administrative unit. 

Predicted livestock distribution data was aggregated within the boundaries of corresponding administrative units. Pearson 

correlation coefficient (r) (Adler and Parmryd, 2010)  was calculated to assess validation accuracy.  

 250 

2.2.5 Time trend of grazing ruminant livestock distribution 

Temporal trends in livestock distribution datasets and statistical county-level livestock density were analysed using the Theil-

Sen estimator and the non-parametric Mann-Kendall (MK) trend test (Sen, 1968). For livestock distribution dataset, the Theil-

Sen estimator provided the slope of the trend in livestock numbers (unit: heads/year), while the MK trend test assessed the 

significance of these trends at a grid scale. As for statistical county-level livestock density, the Theil-Sen estimator provided 255 

the slope of the trend in livestock density (unit: (heads/km2)/year), while the MK trend test assessed the significance of these 

trends at a county scale. Notably, we only calculated trends for counties with statistical data that included at least five 

consecutive years without missing values.  

 

2.2.6 Mechanism explanation using structural equation modelling 260 

To further explain the mechanisms of the spatial-temporal changes in CLRD-GLPS, structural equation modelling (SEM) was 

employed. SEM is a multivariate data analysis method used to analyse complex relationships among constructs and indicators 

(Hair et al., 2021). Path diagrams can represent a structural equation model that addresses causal questions, where variables 

are depicted as nodes, causal paths are indicated by directed arrows, and causal parameters are denoted by symbols adjacent 

to the arrows (Chernozhukov et al., 2024). 265 

 

In this analysis, we calculated the province-level mean livestock density based on the CLRD-GLPS results from 2000 to 2021 

as the dependent variable in the SEM. The independent variables, calculated by province-level means for the corresponding 

years, included DEM, slope, GSpre, Wpre, GStmp, Wtmp, snow cover, NDVI, travel time, and POP (Table A1). Additionally, 

land use change was taken into account by incorporating the province-level ratio of suitable grazing pastures. The Comparative 270 
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Fit Index (CFI), Root Mean Square Error of Approximation (RMSEA), Chi-Square, and Degrees of Freedom (df) were used 

to assess the model fit of the SEM. An excellent model fit is indicated by a CFI value between 0.9 and 1, an RMSEA value 

below 0.06, and a Chi-Square/df ratio below 3 with a p-value greater than 0.05 (Suhr, 2006). 

 

3 Results 275 

3.1 Pasture mask and grazing ruminant livestock density distribution  

The ten-fold cross-validation results of the RFC model are shown in Figure A2, with the mean AUC of the ten cross-validations 

being 0.98, demonstrating the model's ability to predict seasonal pastures for livestock. Using the RFC model, we predicted 

the seasonal pastures in the five provinces of the Qinghai-Tibet Plateau. By combining these predictions with the suitable 

distribution mask and the seasonal and year-round pasture distribution maps of Xinjiang, we obtained a 1km seasonal and 280 

year-round pasture distribution mask for ruminant grazing livestock in a single livestock production system, as shown in Figure 

2. Figure 2 depicts the mask for the year 2020, and similar masks were created for the years 2000, 2005, 2010, and 2015. 

 

Figure 2: Seasonal and year-round pasture mask for livestock grazing in China (2020).  

Based on the seasonal and year-round pasture masks, RF/XGB/ET models were utilized to predict the distribution of livestock 285 

in warm-season, cold-season, and year-round pastures respectively, covering all three pasture types with each model. The 

cattle model outperformed the sheep model, with R2 values greater than 0.8 (Figure A3). Additionally, the seasonal pasture 

https://doi.org/10.5194/essd-2024-534
Preprint. Discussion started: 10 December 2024
c© Author(s) 2024. CC BY 4.0 License.



11 

 

model for cattle performed better than the year-round pasture model, with RMSE values of approximately 0.3 for the seasonal 

pasture model and about 0.7 for the year-round pasture model. For sheep, the R2 values for all models ranged from 0.76 to 

0.85. with the year-round pasture model having better R2 values compared to the seasonal pasture model, but also a higher 290 

RMSE. This higher RMSE is due to the sample mean livestock density being higher in year-round pastures than in seasonal 

pastures.  

 

The differences between the machine learning models are small, with the RF and ET models performing slightly better than 

the XGB model. Considering the similar performance of both RF and ET models in cross-validation, and the broader utilization 295 

of the random forest model in previous livestock prediction modelling, RF was chosen as the final model for predicting 

livestock density distribution (Gilbert et al., 2018; Zhan et al., 2023). The average of the ten-fold results for each grid was 

computed to determine the final predicted livestock density (Figure 3). 

 

Figure 3: Kernel Density Estimation (KDE) plots of ten-fold cross-validation for predicting cattle (a-c) and sheep (e-g) distribution 300 
in warm-season, cold-season, and year-round pastures using the Random Forest models.  
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3.2 Grazing ruminant livestock numbers distribution (CLRD-GLPS) and validation 

Using the livestock density distribution predicted by the Random Forest model, we assigned county-level cattle and sheep 

numbers through dasymetric mapping. This approach resulted in the distribution of livestock numbers (CLRD-GLPS) across 

warm-season, cold-season, and year-round pastures.  The CLRD-GLPS cover 22 years from 2000 to 2021, with results for 305 

every five years (2000, 2005, 2010, and 2015) shown in Figure A4 - Figure A9.  

 

To validate the CLRD-GLPS, we first compared the CLRD-GLPS (Figure 4 (a)–(b)) and GLW (Figure 4 (c)–(d)) datasets 

separately with county-level census data. The validation results showed an R2 of 0.984 for cattle and 0.999 for sheep in the 

CLRD-GLPS, while the R2 for the GLW was only 0.003 for cattle and 0.291 for sheep. These findings demonstrate that CLRD-310 

GLPS more accurately reflect the actual total livestock numbers in grazing livestock production systems at the county level. 

 

Figure 4: Validation of livestock numbers across all pasture types at the county level in 2010, 2015, and 2020, comparing CLRD-

GLPS ((a)–(b)) and GLW ((c)–(d)) datasets separately with census data. 
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 315 

Figure 5: Comparison of CLRD-GLPS with GLW and actual census cattle density distribution in 2020. (a) CLRD-GLPS prediction 

map of cattle density across all pastures in China using Random Forest models; (b) actual census map of cattle density in warm-

season pastures; zonal cattle density distribution for CLRD-GLPS (c), GLW (d), and census (e) across different pasture types.  
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Figure 6: Similar to Figure 5, but for sheep.  320 
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Furthermore, we compared the spatial distribution of cattle (Figure 5) and sheep (Figure 6) in CLRD-GLPS with the GLW 

and actual census distributions across different types of pastures in 2020. Overall, the results of CLRD-GLPS are closer to the 

actual census data and provide more detailed information into livestock movements across different pastures compared to 

GLW in grazing livestock production systems. In seasonal pastures, cattle are most numerous in the southeast of the Qinghai-325 

Tibet Plateau (QTP), with numbers decreasing as they extend into Xinjiang (Figure 5). In contrast, sheep are most numerous 

in the north-eastern part of Qinghai Province and Xinjiang (Figure 6). In year-round pastures, the livestock density is lower 

than that in cold-season or warm-season pastures, as grazing can occur year-round. However, for sheep, there is still a relatively 

high density of livestock distribution in Xinjiang and the western part of Inner Mongolia (Figure 6). Based on the localized 

distribution maps for 2020, the detailed distributions of cattle and sheep are better illustrated in the three main regions ((c) - 330 

(e) in Figure 5 and Figure 6 ). Based on the future importance scores derived from the interpretable machine learning (RF 

model), the distribution of cattle and sheep in seasonal pastures is primarily influenced by vegetation growth and terrain (Figure 

A10 and Figure A11). In year-round pastures, however, travel time emerges as a more crucial factor influencing cattle and 

sheep distribution (Figure A10 and Figure A11). Additionally, the GLW datasets are overall overestimated compared to the 

CLRD-GLPS datasets and actual census data. 335 

 

Figure 7: External cross-validation for cattle (a-c) and sheep (e-g) in the CLRD-GLPS datasets across warm-season, cold-season, 

and year-round pastures by comparing the results with livestock meat production. 
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Finally, external cross-scale validations of the CLRD-GLPS results were conducted using livestock meat production data. 

Livestock meat production data at the provincial level were adjusted using weights to accurately reflect the figures for single 340 

livestock production systems within province unit. Each point in Figure 7 represents the livestock meat production (in ten 

thousand tons) from 2000 to 2021 in the provinces (excluding those where grazing livestock constitute less than 5% of the 

whole livestock) covered by cold-season, warm-season, or year-round pastures, corresponding to the predicted livestock 

numbers for the respective years and pastures. Although due to provincial differences, the scatter plots appear as dispersed 

clusters, all external cross-validation results demonstrate good validation accuracy, indicating effective capture of spatial- 345 

temporal variations in livestock distribution. The validation accuracy (Pearson correlation coefficient) for cattle ranges from 

0.88 to 0.90, while for sheep, it ranges from 0.92 to 0.94. 

3.3 Analysis of temporal trends and mechanisms in the CLRD-GLPS  

Based on the main regional distribution of grazing livestock in China, the overall time series analysis is divided into Xinjiang, 

the five provinces of the Qinghai-Tibet Plateau (Tibet, Qinghai, Gansu, Sichuan, and Yunnan), Inner Mongolia, and other 350 

provinces. We calculated the county-level average density for grazing ruminant livestock distribution datasets in the four 

regions and plotted the time series. For cattle, the density in the seasonal pastures of the QTP and Xinjiang shows a slow 

significant increase.  In year-round pastures, cattle density in Inner Mongolia displays a significant increasing trend, while in 

Xinjiang it shows a non-significant fluctuating trend, and in other provinces, a significant decreasing trend is observed (Figure 

8 (c)). When comparing these results to the statistical county-level cattle density trends, we found consistent conclusions 355 

(Figure 8 (d)-(f)).  
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Figure 8: Time series of grazing cattle distribution datasets in Xinjiang, the Qinghai-Tibet Plateau, Inner Mongolia, and other 

provinces for warm, cold, and year-round pastures ((a)-(c)). Temporal trends in statistical county-level cattle density, analysed using 

the Theil-Sen estimator, are marked with black crosses for significant trends (p < 0.05) using the Mann-Kendall test ((d)-(f)). 360 

For sheep, in the seasonal pastures of Xinjiang, some counties show a significant increase while others show a significant 

decrease (Figure 9 (d) and (e)), leading to an overall trend that shows only minor significant increases (Figure 9 (a) and (b)). 

In contrast, seasonal pastures in the QTP exhibit a significant overall decreasing trend (Figure 9 (a) and (b)). Comparison 

with statistical county-level data reveals that most counties in the QTP show significant reductions, with some counties 

experiencing declines of more than 20 heads per km² per year. In Inner Mongolia, year-round pastures show an overall 365 

upward trend, although it is not significant (Figure 9 (c)). For year-round pastures in Xinjiang and other provinces, there are 

slightly increasing trend changes (Figure 9 (c) and (f)). 

 

Figure 9: Similar to Figure 8, but for sheep.  

 370 

The Theil-Sen estimator and Mann-Kendall test were used in each pixels of livestock distribution datasets. Our results indicated 

an increase trend for cattle in most of the area in all types of pastures during 2000-2021, with some trends showing statistical 

significance. For cattle, seasonal pastures with significant increases are primarily concentrated near the source of the Three-

River Source National Park and some areas in Xinjiang (Figure A12). In year-round pastures, there is a significant increasing 

trend in cattle density near the Helan Mountains, with the grids showing the greatest change averaging an increase of over 10 375 

heads per year. For sheep, in seasonal pastures, there was a significant decreasing trend from 2000 to 2021, especially in the 
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QTP (Figure A13). In the year-round pastures of Inner Mongolia, sheep density shows an upward trend, though the overall 

change is not statistically significant. 

 

We explored the mechanisms underlying the spatial-temporal distribution in the CLRD-GLPS datasets using a structural 380 

equation modelling (SEM) approach. The results of the six distinct SEM models for cattle and sheep across different seasonal 

pasture types indicate optimal model fit, as evidenced by a CFI value between 0.9 and 1, an RMSEA value below 0.06, and a 

Chi-Square/df ratio below 3 with a p-value greater than 0.05 (Figure 10). The cattle density shows a significant increasing 

trend over the years across all seasonal pasture types, with a positive relationship between year and cattle density (Figure 10 

(a) - (c)). The year variable positively influences cattle density trend indirectly through its effect on NDVI in year-round 385 

pastures. Additionally, precipitation significantly affects cattle density. However, its impact varies across different seasons. 

Increased precipitation during the growing season often leads to higher cattle density, while increased precipitation in winter 

typically results in a decrease in cattle density (Figure 10 (a) - (c)).  

 

In contrast, the negative relationship between year and sheep density indicates a declining trend in sheep density, particularly 390 

in cold-season pastures, where the decline is significant (Figure 10 (d) - (f)). The primary factor influencing the trend in sheep 

density is also NDVI. Precipitation during the growing season and snow cover significantly impact sheep density positively 

by affecting NDVI. Additionally, factors such as temperature during the growing season and winter precipitation have a 

significant negative effect on sheep density, while land use changes positively affect sheep density in warm-season and year-

round pastures. 395 
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Figure 10: Path diagram of the structural equation models illustrating the factors affecting cattle density ((a)-(c)) and sheep density 

((d)-(f)) in different seasonal pastures.  
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4 Discussion 

4.1 Improvements of livestock distribution modelling framework 400 

In this study, we developed a new set of long-term livestock distribution data focusing on grazing livestock system in China 

(CLRD-GLPS). The main advancements in livestock distribution modelling in this study include three aspects. First, this study 

is the first to segment ruminant livestock within grazing livestock production systems from the total livestock count across all 

livestock production systems. Second, it expands the classification of grazing pastures to include seasonal types, specifically 

warm-season, cold-season, and year-round pastures across China, based on observed seasonal pastures and interpretable 405 

machine learning methods. Finally, using interpretable machine learning and structural equation modelling, we explore and 

explain the spatial-temporal distribution patterns of grazing ruminant livestock. 

 

Livestock density varies significantly across different livestock production systems due to differences in feed sources, climate, 

and human activities (Thornton, 2002). In East Asia, including China, Mongolia, and Korea, grazing LPS account for as much 410 

as 39.54% of the total area of all LPS (Kruska et al., 2003). The most common methods used for predicting livestock 

distribution in previous studies involve modelling the census statistics of livestock numbers (density) as response data in 

multivariate linear regression or machine learning models, and then allocating the census statistics of livestock numbers within 

grid cells in administrative units (Gilbert et al., 2018; Robinson et al., 2014). According to the livestock census statistics from 

the yearbook in China, only the total livestock number of the entire county can be recorded. Apart from pastoral counties, 415 

where there are both grazing and captive livestock, most counties have a mix of both. Consequently, relying solely on census 

statistics fails to capture the spatial variations brought about by different LPS within an administrative unit. This limitation 

leads to overestimation in predicting the number of grazing livestock in previous studies focusing on grazing livestock 

distribution. To address this issue, our study segregates grazing livestock from the total livestock count using county-level 

carrying capacity data. This approach allows for better control of livestock numbers, aiming to maintain them at their actual 420 

levels as much as possible. 

 

Seasonal distribution of grazing livestock in grazing LPS is a crucial issue. Influenced by policies, seasonal and year-round 

pastures are used concurrently within China's pasture-based grazing LPS. A crucial step prior to modelling livestock 

distribution in these grazing LPS is the delineation of seasonal and year-round pastures. By utilizing policy documents from 425 

the Chinese government and a relatively comprehensive sample of seasonal pastures, this study scientifically delineated 

seasonal and year-round pastures with the assistance of machine learning classification models. Leveraging interpretable 

machine learning methods, our findings reveal notable differences between year-round pastures and seasonal pastures in the 

factors influencing livestock distribution and livestock density. For cattle, grass quality and topography are the primary factors 

influencing distribution in both cold-season and warm-season pastures, whereas travel time, representing pastoral activities, 430 

becomes more crucial in year-round pastures (Figure A10); for sheep, topography features prominently as the main determinant 
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in seasonal pastures, while grass quality and travel time become the primary factors shaping distribution in year-round pastures 

(Figure A11). 

 

4.2 Long-term trends and mechanisms in livestock distribution and their implications for livestock management   435 

This study predicted trends in livestock density changes at a 1 km grid scale between 2000-2021. We found that while the 

interannual variation in average livestock density per province is small, at the grid scale, there is significant variation in 

livestock numbers, showing considerable movement of animals using grazing resources (Figure 8, Figure 9, Figure A12 and 

Figure A13). The highest changes show significant increases or decreases exceeding 20 heads per year, highlighting substantial 

spatial differences in livestock numbers changes. According to the SEM results, NDVI is a primary factor influencing changes 440 

in the spatial-temporal distribution of livestock, generally having a positive effect on livestock trends. This is likely because 

NDVI positively correlates with ground vegetation biomass, meaning that high NDVI values indicate abundant forage 

resources (Borowik et al., 2013). Additionally, precipitation during the growing season positively affects livestock distribution, 

likely because moderate increases in rainfall in arid regions support forage production and available water for livestock 

(Baumgard et al., 2012). In contrast, increased winter precipitation, especially in cold regions, may negatively impact livestock 445 

density due to cold stress effects on livestock (Godde et al., 2021; Young, 1983). 

 

From a policy perspective, since the release of the Opinions on Promoting the Development of Animal Husbandry in 1999, 

China’s animal husbandry industry has entered a new stage of development, characterized by significant improvements in 

livestock survival rates and production efficiency compared to previous years (Liu et al., 2016). Coupled with the rising 450 

demand for animal-source food in China, this explains the overall increase in livestock numbers. However, for grazing 

ruminant livestock, the increasing trend after 2000 is not significant in some areas, and there are even declining trends in 

certain periods. This is related to the rapid urbanization and economic development in China, as livestock farming has shifted 

from grazing to mixed farming and intensive feeding (Bai et al., 2018). Many labour forces have been diverted to the secondary 

and tertiary industries, and remaining herders have transitioned to mixed feeding with feed, leading to a decline in grazing 455 

ruminant livestock. Nevertheless, we still observe an increasing trend in livestock density in areas such as near the Three-River 

Source National Park, which is related to the fenced grazing policies implemented in the QTP (Sun et al., 2020). A series of 

measures including grazing bans and rotational grazing have restored grassland productivity, leading to an increase in the 

carrying capacity for livestock.  

 460 

These findings underscore the critical importance of predicting long-term livestock distribution at the grid scale. Concurrently, 

existing livestock studies also emphasize the necessity of dynamic livestock distribution dataset, a gap that this dataset partially 

addresses. Over extended periods, this dataset enables investigation into the risks of grazing livestock by climate change 

(Thornton et al., 2021), evaluation of grazing potential and overgrazing within the constraints of grassland resources (Fetzel 

et al., 2017), and analysis of greenhouse gas emissions from ruminant livestock (Cheng et al., 2022b). Livestock managers can 465 
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utilize these insights to effectively manage livestock distribution, thereby mitigating climate change impacts, enhancing crop-

livestock integration, and reducing environmental pollution—all vital for the sustainability of livestock production systems.  

 

4.4 Uncertainties and limitations 

This study still faces certain limitations. Firstly, our historical county-level livestock statistical data did not manage to cover 470 

every county and year, due to the availability or accessibility of the data. While each model ensures a minimum of 12,000 

training samples, collecting more statistical data in the future may reduce errors introduced by model response data and expand 

the analysis across more years. Secondly, land use changes significantly affected livestock distribution. Although we have 

utilized the CLCD land cover dataset, which provides the best trade-off in terms of time (every five years) and spatial resolution 

(30 meters), having access to annual land cover datasets could potentially enhance the accuracy of this study's results on an 475 

interannual uncertainties. Lastly, in the process of segmenting grazing livestock from the overall livestock population, the 

livestock carrying capacity sample data used primarily from the QTP. Despite the QTP accounting for over 50% of the national 

grassland area (Li et al., 2021), obtaining sample data from more provinces (such as Inner Mongolia) could further reduce 

uncertainties in this study's findings. 

5 Data availability 480 

China’s long-term annual ruminant livestock distribution in grazing livestock production systems from 2000 to 2021 (CLRD-

GLPS) is accessible on Zendo at the following link: https://doi.org/10.5281/zenodo.14093125(Zhan et al., 2024). The datasets 

include cattle and sheep distributions in warm-season, cold-season, and year-round pastures, organized in corresponding 

folders. Each folder contains 22 GeoTIFF files from 2000 to 2021, with a 1km resolution (0.00083° at the equator) and units 

in head per pixel (or heads/km²). 485 
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Appendices 635 

Table A1: List of datasets used in this study 

Data Type Variable Name Variable Description Data Source 

Livestock Data 

County-level 

Livestock Numbers 

Livestock (cattle/sheep/pigs) year-end stock 

numbers for 2000-2021 in 29 provinces 

China and Provincial Statistical 

Yearbooks (partially from 

Provincial Statistical Bureaus) 

Township-level 

Livestock Numbers 

Livestock (cattle/sheep/pigs) year-end stock 

numbers for 2000-2021 at the township level 

County-level Agriculture and 

Pastoral Bureaus 

Township-level 

Insured Livestock 

Numbers 

Number of insured livestock (cattle/sheep) at 

township level in 2020 

People's Insurance Company of 

China Property and Casualty, 

Tibet Branch 

Mask Data 

China Land Cover 

Dataset (CLCD) 

30-meter resolution land cover dataset of China 

for the years 2000, 2005, 2010, 2015, and 2020 
(Yang and Huang, 2021b) 

National Nature 

Reserves 

Boundaries of the core areas of national nature 

reserves 

Chinese Academy of Sciences 

Resource and Environmental 

Sciences and Data Center 

Grazing ban Areas 
Boundaries of fenced pastures where grazing is 

prohibited 
(Sun et al., 2020) 

Pasture Data 
Seasonal Pasture 

Sample Data 

Seasonal pasture location data and distribution 

maps 

Qinghai Province Grassland 

Station; County-level Forestry 

and Grassland Bureaus of Tibet 

Autonomous Region; Xinjiang 

Autonomous Region Grassland 

Station 

Topographic Data 

DEM Digital Elevation Model 

NASA Shuttle Radar 

Topography Mission (Jarvis et 

al., 2008) 

Slope Slope (Fischer et al., 2008) 

Climate Data 

Presum_year 
Average annual cumulative precipitation for 

2000-2021 
           (Peng et al., 2014) 

Tmpmean_year Average annual mean temperature for 2000-2021 (Peng et al., 2014) 

GSpre 
Average cumulative precipitation during the grass 

growth season (April-October) for 2000-2021 
(Peng et al., 2014) 

Wpre 
Average cumulative precipitation during winter 

(November-March) for 2000-2021 
(Peng et al., 2014) 

GStmp 
Average mean temperature during the grass 

growth season (April-October) for 2000-2021 
(Peng et al., 2014) 

Wtmp 
Average mean temperature during winter 

(November-March) for 2000-2021 
(Peng et al., 2014) 

ET Average total evapotranspiration for 2000-2021 MODIS Terra MOD16A2H 
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Data Type Variable Name Variable Description Data Source 

Snow Data 

Snow depth 
Average snow depth during winter (November-

March) for 2000-2021 

Spatial-temporal Tier 3 

Environmental Big Data 

Platform 

Snow Cover  
 Average number of snow cover days 

during winter (November-March) for 2000-2021 

US National Snow and Ice Data 

Center 

Vegetation Data 

GPP 
Maximum Gross Primary Productivity for 2000-

2021 
MOD17A3H v006 

NPP 
Maximum Net Primary Productivity for 2000-

2021 
MOD17A3H v006 

NDVI 
Maximum Normalized Difference Vegetation 

Index for 2000-2021 
MOD13Q1 

Socioeconomic 

Data 

Travel time 
Shortest travel time to cities with at least 50,000 

people in 2015 
(Weiss et al., 2018) 

POP LandScan 1-km Global population for 2000-2021 
(Oak Ridge National 

Laboratory, 2020) 

 

 

  

Figure A1: Sampling seasonal pasture mask and unsuitable mask for livestock grazing.  640 
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The ordinary words in the sample table of Grassland Ecological Protection Subsides are in Chinese (Table A2), the red 

words are translated into English, and the blue-framed column contains the data used in this study. Additionally, as this 

data is not permitted for publication, all numbers in the table are masked. 

  

Table A2: The sample basic information table on the grassland ecological protection subsidy and reward mechanism in Tibet. 645 
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Figure A2: Results of ten-fold cross-validation (a) and feature importance (b) for the Random Forest Classification model.  

  

Figure A3: Results of ten-fold cross-validation for cattle (a) and sheep (b) distribution prediction models in cold-season, warm-650 
season, and year-round pastures.  
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Figure A4: CLRD-GLPS prediction results for cattle in warm-season pastures. 

 

Figure A5: CLRD-GLPS prediction results for cattle in cold-season pastures. 655 
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Figure A6: CLRD-GLPS prediction results for cattle in year-round pastures. 

 

Figure A7: CLRD-GLPS prediction results for sheep in warm-season pastures. 
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 660 

Figure A8: CLRD-GLPS prediction results for sheep in cold-season pastures. 

 

Figure A9: CLRD-GLPS prediction results for sheep in year-round pastures. 
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 665 

Figure A10: Random forest feature importance of cattle distribution prediction in warm-season (a), cold-season (b), and year-round 

(c) pastures.  

 

Figure A11: Similar to Figure A10, but for sheep. 

 670 
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Figure A12: Temporal trend in grazing cattle spatial distribution in warm-season, cold-season, and year-round pastures tested by 

the Theil-Sen estimator. The black crosses in the panels indicate a significant trend with p < 0.05, tested by the Mann-Kendall test. 

The bar charts in the panels show the percentage of significant increases (In*), increases (In), significant decreases (De*), and 

decreases (De).  675 
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Figure A13: Similar to Figure A12, but for sheep. 
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