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Abstract. A hyperspectral reflectance database was acquired for the Baltic Sea submerged aquatic vegetation (SAV) and bare 

substrates by using Ramses (TriOS) radiometers capturing the spectral data within the visible (VIS) and near infrared (NIR) 

spectral range. The target samples included the most dominant and characteristic SAV species in the Baltic Sea, as well as 

several bare substrate types and beach cast communities. Target samples were measured within the 350 to 900 nm wavelength 

range under sunlight conditions without the water column influence i.e. samples were taken out of the water. Such library is 10 

expected to provide insight into the spectral properties of various SAV species and substrates occurring in the coastal waters 

of the temperate geographic regions facilitating development of algorithms for differentiation and mapping various SAV 

communities. Additionally, measured reflectance spectra can be used as spectral endmembers in physical models and 

classification algorithms for coastal vegetation mapping and quantification. Data is openly available at PANGAE online 

repository https://doi.pangaea.de/10.1594/PANGAEA.971518 (Vahtmäe et al., 2024). 15 

1 Introduction 

Vegetated coastal ecosystems provide valuable ecosystem services – constitute feeding, spawning, and sheltering grounds for 

wide variety of species, act as soft sediment stabilizers, protect coastline, remove nutrients and contaminants from the water 

column etc. (Cotas et al., 2023; Macreadie et al., 2017). They also play important role in climate change mitigation by 

sequestering and storing carbon from the atmosphere (Duarte et al., 2005; McLeod et al., 2011). Information on such highly 20 

valued ecosystems is important from both scientific and management perspectives. Optical remote sensing can provide 

information on large temporal and spatial scales, which has led to increased use of such technology in coastal studies (Kutser 

et al., 2020). To better implement those technologies, there is a need for improved knowledge of spectral properties of 

vegetation species and benthic substrates inhabiting coastal areas.  

The Baltic Sea is located in the temperate geographic region. It is semi-enclosed non-tidal water body, that lack intertidal zone 25 

and where benthic vegetation species mostly grow submerged. Submerged aquatic vegetation (SAV) in the Baltic Sea include 

several taxonomic groups of macroalgae, as well as higher plants e.g. vascular plants. Macroalgae are classified into three 

major groups: brown algae (Phaeophyceae), green algae (Chlorophyta), and red algae (Rhodophyta) according to their 

pigmentation (Vimala and Poonghuzhali, 2013). Consequently, there exist a need to generate substantiated dataset representing 
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reflectance spectra of SAV species from different taxonomic groups. Such dataset can be used to generate insights into the 30 

spectral properties of SAV species and substrates characteristic to the Baltic Sea, but also to the broader temperate geographic 

region. As such, the current database contributes to the global dataset of SAV reflectance spectra allowing further analysis, 

whether the spectral resolutions of current and future remote sensing sensors can discriminate broader SAV classes and/or 

species based on their spectral signatures.  

SAV distribution maps are mostly created by using different image-based classification approaches, such as unsupervised and 35 

supervised classification (Bouvet et al., 2003; Fornes et al., 2006; Phinn et al., 2012; Roelfsema et al., 2013; Traganos and 

Reinartz, 2018). Such image-based methods require high amount of ground truth data or detailed expert knowledge of the area 

to train classification algorithms (Campbell et al., 2023). Alternative here, is to use signal-based classification approaches, 

where measured and/or modelled spectral libraries are used to interpret imagery (Kutser et al., 2006; Lesser and Mobley, 2007; 

Vahtmäe and Kutser, 2013). The signal-based classification does not require simultaneous and continuous field surveys, 40 

instead given method requires availability of end-member spectral library. The data we propose in the current work is designed 

to be this kind of library for SAV classification applications.  

Benthic reflectance spectra are also required parameters in physics-based forward models e.g., HydroLight model for natural 

waters, where they can be used together with inherent water optical properties in numerical simulations if measured data are 

not sufficiently represented or lacking. Additionally, physics-based bio-optical inversion models (e.g., WASI-2D, BOMBER, 45 

IDA, HOPE) require benthic endmembers as input parameters to model benthic signatures through the water column. Then, 

modelled spectra are compared with measured spectra from remote sensing images and optimization algorithms can retrieve 

SAV distribution and abundance assessments from this comparison (Dekker et al., 2011; Fritz et al., 2019; Gege, 2014; 

Giardino et al., 2012; Hedley et al., 2009, 2018). The collected spectra can serve as endmembers in such bio-optical forward 

and inversion models. Spectral signatures of benthic endmembers can also be used to assess the quality of water column 50 

correction on satellite/airborne images, as benthic spectra without the water column influence should resemble to the spectra 

in our spectral library. 

To meet all the abovementioned needs, the current work aimed to collect a dataset of hyperspectral reflectance measurements 

from SAV species and substrate types that naturally occur in the coastal waters of the Baltic Sea. This spectral dataset was 

collected by the research team of the Estonian Marine Institute, University of Tartu. Various coastal areas were visited in 55 

Estonia and Sweden in the Baltic Sea to collect reflectance spectra of the most characteristic and dominant SAV species and 

substrate types. A subset of this database has already been used for example by (Kotta et al., 2014), where statistical differences 

between reflectance spectra of SAV species were quantified and spectral regions, contributing the most to the statistical 

differences, defined. 

Although we aimed to capture reflectance spectra of the most dominant and characteristic SAV species and substrate types 60 

present in the coastal waters of the Baltic Sea, the dataset presented here is not complete. More importantly, spectral properties 

of SAV species may vary depending on seasonality and environmental conditions e.g. decrease of the chlorophyll 

concentration during senescence/stress. As a result, there exists a considerable variation in pigment composition and quantity 
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among broad taxonomic groups and even within species (Kotta et al., 2014). In the future, we plan to complement the collected 

dataset with additional species and/or substrate types using similar approach presented here. Moreover, we aim to collect 65 

reflectance spectra of various SAV species all throughout the vegetation period to capture seasonal changes in their reflectance 

spectra. Still, we believe that in the present form, the dataset may lead to several implications to current and future satellite 

missions.  

Measured reflectance spectra of various SAV species are displayed in number of publications (Chao Rodríguez et al., 2017; 

Davies et al., 2023; Dekker et al., 2005; Fyfe, 2003; Kutser et al., 2006, 2020; Olmedo-Masat et al., 2020). However, such 70 

information is often lacking in the data format, which would allow to re-use the measured data. By making current dataset 

available to other researchers, we hope to encourage them to do similar work and propose new algorithms for SAV detection 

and classification.  

2 Materials and methods 

2.1 Samples 75 

This dataset has been collected over a period of 2 years (2011-2012) during field campaigns in the Baltic Sea coastal waters, 

in Estonia and Sweden. The set of target samples, presented in this database was divided into 6 groups: red macroalgae, green 

macroalgae, brown macroalgae, higher plants, bare substrates, and beach cast (Fig 1).  

 

Figure 1: Photographs of selected target samples of each of the 6 groups: (a) red macroalgae (Ceramium tenuicorne), (b) green 80 
macroalgae (Chara spp.), (c) brown macroalgae (Fucus vesiculosus), (d) higher plants (Myriophyllum spicatum), (e) bare substrate, 
(f) beach cast. 
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Green macroalgae, red macroalgae and brown macroalgae are three major taxonomic groups of macroalgae in the Baltic Sea 

according to their pigmentation, each of which exhibits its own characteristic spectral features (groups 1-3, Table 1). In addition 85 

to macroalgae, the Baltic Sea also hosts higher plants or vascular plants (group 4, Table 1). Beside to the vegetated habitats, 

the benthic environment of the Baltic Sea includes unvegetated bare substrates (group 5, Table 1). Finally, the last group is 

beach cast, which consists of decaying vegetation material (group 6, Table 1). Several benthic vegetation species and substrate 

types were measured under each of the given six groups.  

 90 

Table 2: Measured SAV species and substrate types. 

 Species/types Number of specimens 

Green macroalgae (Chlorophyta) 

 

Cladophora glomerata 4 

Chara spp. 6 

Monostroma balticum 1 

Ulva intestinalis 2 

Red macroalgae (Rhodophyta) Furcellaria lumbricalis 1 

Ceramium tenuicorne 4 

Polysiphonia fucoides 1 

Brown macroalgae (Phaeophyceae) Pilayella littoralis 3 

Fucus vesiculosus 5 

Dictyosiphon foeniculaceus 1 

Chorda filum 1 

Higher plants Zannihellia palustris 1 

 Stuckenia pectinate 3 

 Myriophyllum spicatum 3 

Bare substrate Sand 4 

Pebble 1 

Gravel 1 

Limestone plate 1 

Beach cast Fresh beach-cast 1 

Dry beach-cast 2 

 

Recorded red macroalgae species included Furcellaria lumbricalis, Ceramium tenuicorne, Polysiphonia fucoides; green 

macroalgae species included Cladophora glomerata, Chara spp., Monostroma balticum, Ulva intestinalis; brown macroalgae 
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species included Pilayella littoralis, Fucus vesiculosus, Dictyosiphon foeniculaceus, Chorda filum and higher plant species 95 

included Zannihellia palustris, Stuckenia pectinate, Myriophyllum spicatum (Table 1). Bare substrate reflectance spectra are 

measured for sand, pebble, gravel, and limestone plate. Beach cast communities included SAV communities that were either 

recently washed out of the sea or already dried in the sun. Most of the SAV species and substrates are measured more than 

once (up to six different specimens) in different locations and/or during different field campaigns. 

2.2 Spectral reflectance measurements  100 

Before conducting measurements, all samples were taken out of the water and SAV species were identified to the lowest 

possible taxonomic level by the biologist. Most of the samples were identified to the species level, only charophytes from 

green macroalgae group were identified to their genus level (Chara spp.). All reflectance measurements were performed 

outdoor in the field, using solar light as illumination source. Samples were measured in the boat or on the beach either on the 

natural background or placed on the artificial black background to minimize signal from the adjacent environment. Bare 105 

substrate samples (e.g., sand, gravel on the beach) and beach-casts were mostly measured at their location on the beach.  

Ramses (TriOS GmbH, Germany) portable field radiometers were used to capture the spectral data within the 350 to 900 nm 

wavelength range with a spectral resolution of 3.3 nm. It is important to point out, that the signal to noise ratio (SNR) for the 

measurements below 400 nm and above 850 nm is significantly higher than within the rest of the spectral range. Ramses 

measurement set consisted of two simultaneously operated sensors: irradiance and radiance sensors. The radiance sensor 110 

measured upwelling spectral radiance Lu (W m-2 nm-1 sr-1) and irradiance sensor measured downwelling spectral irradiance Ed 

(W m-2 nm-1). Remote sensing reflectance (Rrs, sr-1) was calculated as the ratio of Lu/Ed. As sensors measure at slightly different 

wavelengths, then before reflectance calculation, signals from both sensors were interpolated to a fixed wavelengths with a 2 

nm step.  

While the Ed sensor was always attached to the standard TriOS measuring frame, the Lu sensor was either attached to the frame 115 

or held in hand pointed down to the sample during measurements (Fig. 2). The field of view (FOV) of the Lu sensor is 7°, 

resulting in an imaged area of around 1.1 cm2 when positioned at a distance of 10 cm. For each sample, multiple consecutive 

measurements (5 to 10 individual measurements) were performed. All consecutively measured spectra were visually inspected, 

and outliers removed. After initial assessment, average spectra of multiple measurements were calculated for each sample to 

reduce the noise. 120 

For the current database Rrs was obtained for benthic species and substrates by using radiance and irradiance sensors. The 

spectral data can also be measured as reflectance (R), which is the ratio of upwelling radiance to downelling radiance (Lu/Ld) 

or upwelling irradiance to downwelling irradiance (Eu/Ed). Often R is measured with only one sensor by using white spectralon 

panel as a reference (Chao Rodríguez et al., 2017; Davies et al., 2023; Fyfe, 2003; Olmedo-Masat et al., 2020). The relationship 

between radiance and irradiance is not so straightforward, but in case of Lambertian surface, the radiance value can be 125 

multiplied by π to get irradiance. Similarly, the outcome of the atmospheric correction, applied to the remote sensing imageries, 

can either be Rrs or R. If the outcome of the atmospheric correction is irradiance reflectance, then our Ramses measured Rrs 
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can be multiplied by the Q-factor, which converts it to the irradiance reflectance, making Ramses measurements thereafter 

comparable to the outcome of the atmospheric correction. The Q-value may range from 0.3 to 6.5 (Gentili and Morel, 1993), 

but to simplify it, the Q-factor can be considered equal to π. 130 

 

 

Figure 2: Ramses two sensor measurement set (a), Lu sensor installed to the measuring frame while conducting measurements (b), 
Lu sensor held in hand while conducting measurements (c). 

3 Results 135 

Spectral properties of SAV species are determined by their tissue morphology, cellular structure and the concentration and 

distribution of leaf biochemical components, such as pigments, water, nitrogen, cellulose and lignin pigment contents, shaping 

the formation of spectral signature of each specimen (Penuelas and Filella, 1998). Pigments absorb light at certain distinctive 

wavelengths, affecting the shapes of the reflectance spectra, while tissular structures mostly affect the absolute reflectance 

(Chao Rodríguez et al., 2017). All SAV groups contain chlorophyll-a (Chl-a), which is predominant green pigment in plants 140 

with absorption maximums in the blue (435 nm) and red (675 nm) part of the spectrum (Chao Rodríguez et al., 2017; Haxo 
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and Blinks, 1950). Therefore, all SAV groups in the current database exhibit characteristic vegetation spectra e.g., low 

reflectance around 400-500 nm and 650-680 nm and a high reflectance in the near-infrared (NIR) spectral range (Fig. 3a-d).  

Green macroalgae contain mostly chlorophyll pigments (Chl-a, Chl-b) (Chao Rodríguez et al., 2017; Rowan, 1989). As a 

result, green macroalgae show absorption minimums near 440 and 675 nm, which correspond to the chlorophylls absorption 145 

peaks, and a broad reflectance peak in green spectral range centred around 550 nm giving them characteristic green colour 

(Fig 3a). Chl-a is also present in brown and red macroalgae, but their green colour is partially masked out by other accessory 

pigments. Brown algae predominantly contain the brown pigment fucoxanthin, which absorbs light up to 560 nm (Rowan, 

1989) shifting the reflectance maximums away from the green wavelengths further to the yellow spectral range. Typical 

spectral features of brown macroalgae are peaks around 600 and 650 nm and a shoulder around 575 nm (Fig. 3b). The red 150 

algae contain large quantities of the red pigment phycoerythrin, which absorbs light in the middle of the visible spectrum 

between 495 and 565 nm depressing also reflectance in the green part of the spectrum (Haxo and Blinks, 1950). Red 

macroalgae show two reflectance peaks in the red region of the visible spectrum, around 600 and 650 nm (Fig. 3c). Higher 

plants’ characteristic pigments are similar to those of green macroalgae, showing higher reflectivity in green spectral range 

(Chao Rodríguez et al., 2017; Kutser et al., 2006, 2020). However, higher plant spectra (Fig. 3d) show flatter spectral shapes 155 

between 550 and 640 nm if compared to the green macroalgae spectra (Fig. 3a). 

In contrast, bare substrates do not show specific red-edge reflectance or other pigment-induced spectral features in the visible 

wavelengths (Fig. 3e). The bare substrate group has the highest variability in absolute values, as this group includes substrate 

types with various brightness levels from muddy sand to bright limestone plate. The beach cast material in Fig. 3f show spectral 

characteristics different from both living SAV species and bare substrates. They exhibit very low signal in the visible spectral 160 

range and increasing reflectance in NIR spectral range. Beach-cast reflectance spectra were measured for fresh and dry beach-

cast. While fresh beach-cast still had visible Chl-a absorption feature near 675 nm, then dry beach-cast had lost the chlorophyll 

absorption feature. 
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 165 

Figure 3: Remote sensing reflectance (Lu/Ed) of six target groups: (a) green macroalgae, (b) brown macroalgae, (c) red macroalgae, 
(d) higher plants, (e) bare substrates, (f) beach cast. Mean spectra are represented with the solid lines and colour shading indicates 
the variability in standard deviation. 

4 Description of the dataset 

This dataset contains the reflectance spectra of each target in 276 spectral bands (between 350 and 900 nm). Picture of the 170 

target was included if available. A metadata section is added to each spectral measurement containing the following 

information: 

 Acquisition date. 

 Country, where samples were collected. 

 Location name. 175 
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 Latitude of measurement (approximate). 

 Longitude of measurement (approximate).  

 Illumination source. 

 Measurement instrument name. 

 Measurement unit. 180 

 Use of reference panel and its name. 

 Sampling environment (boat, beach, laboratory). 

 Sampling background (natural, artificial). 

 Target description (macrolagae, higher plants, substrate). 

 Target species/genus name in Latin. 185 

For every target sample, an average spectrum was calculated from 5-10 reflectance measurements. Averaging multiple 

measurements minimizes noise in the data.  

5 Data availability 

The current dataset is publicly available at PANGAE repository https://doi.pangaea.de/10.1594/PANGAEA.971518 (Vahtmäe 

et al., 2024). 190 

6 Recommendations and conclusions 

Remote sensing technology is increasingly used to detect, map, and monitor benthic ecosystems in shallow coastal waters. For 

the efficient implementation, the technology requires information about the spectral properties of benthic habitats. The 

database, presented here, aims to add new data on the spectral properties of the Baltic Sea benthic vegetation species enabling 

to identify and characterize them and allowing to evaluate the potential to discriminate between them based on their spectral 195 

signatures. At the same time, it allows to facilitate comparative analysis of SAV species from different locations and regions 

all over the globe to study spectral variations within broader and narrower SAV groups. Additionally, reflectance spectra of 

several bare substrate types were recorded to facilitate discrimination between vegetated and non-vegetated areas. 

Our hyperspectral reflectance database further improves scientific knowledge about optical characteristics of SAV species and 

substrates. We believe such information is essential in remote sensing algorithm development and defining requirements for 200 

future remote sensing missions (spectral resolution, band selection, bandwidth, signal-to-noise ratio, etc.). The presented 

database can also be used in remote sensing applications, which require spectral information e.g., algorithm development, 

numerical simulations. The database can be used in remote sensing image processing, which require benthic endmembers 

(physics based radiative transfer modelling) and image classifications, where spectral libraries are used for classification. 
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