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Abstract. South America is a global hotspot for land use and land cover (LULC) change, 25 

marked by dramatic agricultural land expansion and deforestation. While previous studies have 

documented land use and land cover changes in South America over recent decades, there is 

still a lack of spatially explicit, time series maps of crop types that capture shifts in crop 

distribution. Therefore, developing high-resolution, long-term, and crop-specific datasets is 

crucial for advancing our understanding of human-environment interactions and for assessing 30 
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the impacts of agricultural activities on carbon and biogeochemical cycles, biodiversity, and 

climate. In this study, we integrated multi-source data, including high-resolution remote 

sensing data, model-based data, and historical agricultural census data, to reconstruct the 

historical dynamics of four major commodity crops (i.e., soybean, maize, wheat, and rice) in 

South America at annual time scale and 1 km × 1 km spatial resolution from 1950 to 2020. The 35 

results showed that soybean and maize cultivation expanded rapidly in South America by 

encroaching on other vegetation (i.e., forest, pasture/rangeland, and unmanaged 

grass/shrubland) over the past 70 years, whereas wheat and rice areas remained relatively stable. 

Specifically, soybean is one of the most dramatically expanded crops, increasing from 

essentially zero in 1950 to 48.8 Mha in 2020, resulting in a total loss of 23.92 Mha of other 40 

vegetation. In addition, the area of maize increased by a factor of 2.1 from 12.7 Mha in 1950 

to 26.9 Mha in 2020. The newly developed crop type dataset provides important insights for 

assessing the impacts of cropland expansion on crop production, biodiversity, greenhouse gas 

emissions, and carbon and nitrogen cycles in South America. Moreover, these data are 

instrumental for developing national policies, sustainable trade, investment, and development 45 

strategies aimed at securing food supply and other human and environmental objectives in 

South America. The datasets are available at https://doi.org/10.5281/zenodo.14002960 (Xu et 

al., 2024). 

https://doi.org/10.5281/zenodo.14002960
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1 Introduction 

        South America is of critical importance due to its substantial contribution to global 50 

agriculture, which is essential for meeting the world’s growing food demand (Ceddia et al., 

2014; Hoang et al., 2023). Cropland expansion in this region has been a significant driver of 

land-use transformation, particularly through deforestation, with profound effects on 

ecosystems and biogeochemical processes (Song et al., 2021; Zalles et al., 2021). As one of the 

main types of land use and land cover (LULC), cropland plays a crucial role in supporting 55 

human nutritional needs and ensuring food security (He et al., 2017; Yu and Lu, 2017). 

However, to meet the growing demand for food and fiber driven by population growth and 

consumption patterns, cropland has increasingly encroached on natural vegetation (Winkler et 

al., 2021). Additionally, economic and policy factors have reshaped crop cultivation structures 

across the region (Cheng et al., 2023; Mueller and Mueller, 2010; Song et al., 2021). These 60 

changes are driven by a combination of trade dynamics, investment flows, and market 

concentration (Boyd, 2023; Clapp, 2021).  As a result, the transformation of crop types has 

occurred, weakening the resilience of agroecosystems and contributing to biodiversity loss 

(Frison et al., 2011; Renard and Tilman, 2019). In response to these challenges, the 

international community has increasingly emphasized the need to align agricultural systems 65 

with climate mitigation and food security goals (ICJ, 2025). Therefore, an improved 

understanding of the spatial distribution and historical dynamics of crop types is urgently 
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needed to assess the impacts of cropland expansion and crop pattern shifts across South 

America. Such insights are crucial for evaluating the environmental and socio-economic 

consequences of cropland expansion, particularly in terms of its impact on climate, ecosystems, 70 

and food security. 

        Agriculture in South America has experienced significant changes driven by agricultural 

policies, socio-economic shifts, and technological innovations after the 1950s (Altieri, 1992; 

Ceddia et al., 2014; Zalles et al., 2021). These changes have not only reshaped regional 

economies, as in other historical periods of agrarian reform, but have also been justified by 75 

global food security goals, alongside such other important drivers as trade relationships, 

investors, subsidies, and debt serving goals (Boyd, 2023; OAS, 2024). In this context, crop 

cultivation has shifted from traditional crops to high-yield and high-demand commodity crops, 

reflecting both the increasing global demand for food and fuel, as well as the urgent need to 

enhance agricultural efficiency and yields (Garrett et al., 2013; Meyfroidt et al., 2014). 80 

Specifically, the major commodity crops (i.e., maize, soybean, wheat, and rice) have become 

the core of agricultural production in South America (FAO, 2020). The cultivation of these 

crops has not only significantly boosted food production in the region but also secured a strong 

position for many producers in the global food market. After the 1950s, countries in South 

America (e.g., Bolivia, Brazil, Chile, Colombia, Ecuador, and Peru) undertook land reforms to 85 

reduce land concentration and promote agricultural production (De Janvry et al., 1998), which 
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significantly affected land use outputs and efficiency and laid a substantial foundation for the 

development of agriculture (De Janvry et al., 1998; Munoz and Lavadenz, 1997). After the 

1980s, neoliberal economic reforms were further carried out in South America, accelerating 

the ongoing agricultural modernization (Chonchol, 1990) and greatly facilitating the 90 

cultivation of soybeans by eliminating price controls and export restrictions on agricultural 

products (Campos Matos, 2013). Since the 2000s, soybeans have continued to grow 

dramatically due to global demand, technological advances, economic subsidies and other 

supportive policies (de LT Oliveira, 2017; Song et al., 2021). This growth has further bolstered 

the expansion of maize cultivation, driven by the promotion of maize-soybean cropping 95 

systems and the adoption of direct seeding, no-tillage practices, and double cropping (Klein 

and Luna, 2022). In comparison, the area under wheat and rice cultivation has remained 

relatively stable. Although there is a growing demand for wheat, its market price is less 

fluctuating, leading farmers, farm managers, and investors to prefer crops with higher market 

returns (Erenstein et al., 2022). Meanwhile, rice primarily serves domestic demand rather than 100 

being export-oriented (Dawe et al., 2010). Despite government reports and documents that have 

recorded changes in the dynamics of agriculture in South America over the past few decades, 

there is still a lack of spatially explicit and time-series maps of historical crop types that reflect 

changes in crop distribution. This deficiency makes it difficult to fully understand the spatial 
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and temporal evolution of major commodity crops and hinders understanding of their impacts 105 

on environmental changes.  

        Many efforts have produced commodity crop maps at regional or global scales. For 

example, datasets such as the Spatial Production Allocation Model (SPAM) (Yu et al., 2020), 

M3 (Monfreda et al., 2008), and CROPGRIDS (Tang et al., 2023) offer valuable solutions by 

providing detailed crop type information based on the census data and spatial allocation 110 

algorithms. SPAM, for instance, provides data on crop area, yield, and production for 42 major 

crops at a spatial resolution of 5 arcmin under four farming systems. However, these datasets 

have a coarse spatial resolution and are available for only a few years, which makes it 

challenging to accurately characterize the spatial-temporal distribution of crop types at finer 

scales (Becker-Reshef et al., 2023; Ye et al., 2024). In contrast, with the continuous evolution 115 

of remote sensing technologies, high-resolution data were increasingly being used to develop 

fine-scale crop type maps. For example, Song et al., (2021) developed annually updated 

soybean maps with a 30 m resolution for South America from 2000 to 2023 using all Landsat 

and MODIS images and a probability sample of continental field observations. MapBiomas 

also provides high-resolution crop type maps for Argentina, Brazil, and Uruguay, covering the 120 

period from 1985 to the present (De Abelleyra et al., 2020; Petraglia et al., 2019; Souza and 

Azevedo, 2017). However, these existing datasets are available only at partial national or local 

scales, cover only a single crop type, or lack rigorous validation. Furthermore, most remote 
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sensing data dates back only to 1985, making it challenging to depict crop dynamics further 

back. Therefore, it is imperative to develop high-resolution and time-series crop type data for 125 

driving terrestrial ecosystem models to quantify the impact of crop dynamics on ecosystems 

and climate. Such an dataset will draw on innovations in earth science and data use to contribute 

to related fields that address the “advance of the agricultural frontier” in South America, and 

its implications for human-environmental interactions (Liu et al., 2007; OAS, 2024). 

        In this study, we aim to develop an annual and 1-km crop-specific (i.e., soybean, wheat, 130 

maize, and rice) gridded data for South America from 1950 to 2020 by integrating agricultural 

census data, and remote sensing-based and model-based crop type distribution maps. This 

study focuses on understanding how the spatial-temporal patterns of these four commodity 

crops have evolved over the past seven decades and how these changes have influenced land-

use transitions in South America. The dataset is designed to support research on agricultural 135 

land-use change, its ecological impacts, and food security, offering insights into the effects of 

agricultural expansion on deforestation, biodiversity loss, and greenhouse gas emissions. It 

provides critical information for policymakers, researchers, and stakeholders engaged in 

sustainable agriculture, thereby assisting in the development of strategies that balance 

agricultural production with environmental conservation.  140 
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2 Materials and method 

2.1 Study area 

        This study aims to reconstruct crop type (i.e., soybean, wheat, maize, and rice) data at 

annual and 1 km resolution from 1950 to 2020 in South America using the high-resolution 

remote sensing-based crop type data, model-based crop type data, and historical agricultural 145 

census data. We focused on generating data for the 13 countries in South America, including 

Argentina, Bolivia, Brazil, Chile, Colombia, French Guiana, Ecuador, Guyana, Paraguay, Peru, 

Suriname, Uruguay, and Venezuela (Figure 1). Considering the data availability, we excluded 

the Falkland Islands and South Georgia and the South Sandwich Islands. We used GADM 

version 4.1 level 1 administrative units (i.e., province-level) as the basic unit for this study, 150 

which included a total of 243 administrative units (Table S1). Moreover, to maintain 

consistency with historical agricultural census data, some administrative units were regrouped 

and merged for area calibration. Specifically, we merged Buenos Aires and Ciudad de Buenos 

Aires in Argentina; Bogotá D.C. and Cundinamarca in Colombia; Asunción and Central in 

Paraguay; Callao, Lima, and Lima Province in Peru; and all regions together in French Guiana. 155 

Ultimately, a total of 237 administrative units were used to reconstruct historical cropland 

density and crop type data (Table S1). 
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Figure 1. Geopolitical and administrative divisions of South America. 

2.2 Workflow 160 

        The structure of this paper includes three main sections (Figure 2). The first section 

provides a detailed description of the input data and methods. The second section performs a 

comprehensive analysis of the spatial and temporal characteristics of four major commodity 

crops over the past seven decades. The third section compares the results of this study with 

other existing datasets and analyses the driving forces and uncertainties associated with the 165 

reconstructed data. 
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Figure 2. The flow chart of this study. CNA refers to Census National Agriculture. 

2.3 Input data 

2.3.1 Gridded datasets and preprocessing 170 

        In this study, we used both remote sensing-based and model-based LULC and crop type 

data to generate cropland density maps and crop type base maps in South America. As shown 

in Table 1, CGLS-LC100, GLC_FCS30D, and HYDE 3.2 were used to generate cropland 

density maps. SPAM 2010, GEOGLAM, GLAD, Argentina MNC, MapBiomas, and Uruguay 
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LC were used to generate base maps for crop types, and HILDA+ was used for land use 175 

transition analysis. 

Table 1. The datasets used in this study. C: cropland; M: maize; R: rice; S: soybean; W: wheat. For data sources, 

please refer to Table S3. 

Dataset Resolution Year range 
Category 

used 
Reference 

CGLS-LC100 
100 m, global 

Annual 
2015 - 2019 C 

(Buchhorn et al., 

2020) 

GLC_FCS30D 

30 m, global 

5-year interval (1985 - 2000) 

Annual (2000 - 2022) 

1985 - 2022 C 
(Zhang et al., 

2024) 

HYDE 3.2 
5 arcmin, global 

10-year interval 
1950 - 2000 C 

(Klein Goldewijk 

et al., 2017) 

HILDA + 
1 km, global 

Annual 
1899 - 2019 

8 

categories 

(Winkler et al., 

2021) 

SPAM 2010 5 arcmin, global 2010 
M, R, S, 

W 
(Yu et al., 2020) 

GEOGLAM 0.05 degree, global 

Integration of 

crop type data 

from 2010 to 

2020 

M 
(Becker-Reshef et 

al., 2023) 

GLAD 

30 m, all major biomes where 

soybeans are cultivated in 

South America, annual 

2020 S (Song et al., 2021) 

Argentina MNC 30 m, Argentina 2020 S, M, R 
(De Abelleyra et 

al., 2020) 

MapBiomas 30 m, Brazil 2020 S 
(Souza and 

Azevedo, 2017) 



12 

 

Uruguay LC 10 m, Uruguay 2018 R 
(Petraglia et al., 

2019) 

 

        Copernicus Global Land Service Land Cover Map (CGLS-LC100): CGLS-LC100 is a 180 

newly developed global LULC dataset with 100 m spatial resolution from 2015 to 2019, 

containing 23 land use types (Buchhorn et al., 2020). This product uses PROBA-V 100m time-

series data and high-quality land cover training samples to construct a land cover classification 

model with 80% accuracy at Level 1. It has been compared to other popular LULC products 

and proven to perform better, making it a good choice for generating a base map for cropland 185 

density maps (Tsendbazar et al., 2019). 

        Global 30 m Land Cover Dynamics Monitoring Dataset (GLC_FCS30D): GLC_FCS30D 

is a global land cover product with a 30 m resolution based on continuous change detection 

algorithms (Zhang et al., 2024). It uses a detailed classification system containing 35 land cover 

classes, covering the period from 1985 to 2022. The update cycle is 5 years before 2000 and 190 

annually after 2000. Moreover, it combines a continuous change detection algorithm, local 

adaptive classification models, and a spatial-temporal refinement method for dense time series 

to describe the land cover dynamics, verifying that the overall accuracy of the basic 

classification system for the 10 major land cover types exceeds 80%. 

        The History Database of the Global Environment (HYDE version 3.2): HYDE 3.2 uses a 195 

spatial allocation algorithm to generate spatially explicit maps from 10,000 BCE to 2017 CE 
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by integrating historical statistical data with recent satellite information (Klein Goldewijk et 

al., 2017). It includes cropland (irrigated and rain-fed crops, and irrigated and rain-fed rice), 

grazing land (pasture and rangeland), and population maps with 5 arcmin spatial resolution. 

Numerous studies have demonstrated that HYDE 3.2 provides an excellent basis for 200 

reconstructing cropland density for historical periods (Li et al., 2023; Mao et al., 2023). 

        Historic Land Dynamics Assessment + (HILDA+): HILDA+ is a comprehensive global 

dataset designed to track changes in land use and cover from 1899 to 2019 at a spatial resolution 

of 1 km (Winkler et al., 2021). This dataset is notable for integrating multiple datasets, 

including high-resolution remote sensing data, land use reconstructions, and long-term 205 

statistical records. HILDA+ captures the dynamics of various land use categories, such as urban 

areas, cropland, pasture/rangeland, forests, unmanaged grass/shrublands, and areas with sparse 

or no vegetation. 

        Spatial Production Allocation Model (SPAM 2010): SPAM 2010 integrates high-

resolution remote sensing data and agricultural statistics to generate a comprehensive product 210 

of crop area, yield, and production (Yu et al., 2020). This dataset enhances previous models by 

including data for 42 major crops under four different farming systems across a global 5 arc-

minute grid. SPAM2010 addresses the limitations of administrative-level agricultural statistics 

by disaggregating them to a finer spatial resolution, thereby revealing the diversity and spatial 

patterns of agricultural production. 215 
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        Group on Earth Observations Global Agriculture Monitoring (GEOGLAM): GEOGLAM 

is a global and up-to-date crop type map at 0.05-degree spatial resolution for four major 

commodity crops: wheat, maize, rice, and soybeans (Becker-Reshef et al., 2023). The 

development process involved extensive dataset selection and unification, considering factors 

such as seasonality, spatial resolution, accuracy, and data source specificity. These criteria 220 

ensure that the final maps are both accurate and useful for operational agricultural monitoring. 

        Global Land Analysis & Discovery (GLAD): GLAD provides soybean maps with a 30 m 

resolution for South America covering the period from 2000 to 2023 (Song et al., 2021). The 

products were derived by integrating all Landsat and MODIS images captured during the 

growth stage of soybeans. GLAD soybeans maps cover all major biomes in South America 225 

(i.e., Pampas, Chiquitania, Chaco, Cerrado, Atlantic Forest, Amazonia, and the Pantanal and 

Caatinga biomes). Validated using a probability sample of field observations across the 

continent, the GLAD soybean maps have an overall accuracy exceeding 94% with both high 

user’s and producer’s accuracy. 

        MapBiomas provides land use and land cover maps with a 30 m resolution for Argentina, 230 

Brazil, and Uruguay, which include the major land use and cover types, as well as some crop-

specific information (e.g., soybean and rice). Argentina MNC provides detailed crop type maps 

(e.g., soybean, maize, and rice) with a 30 m resolution for Argentina from 2018 to 2022 (De 

Abelleyra et al., 2020). The data was generated by supervised classification of Landsat-8 
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observations using a random forest classifier to independently classify different agricultural 235 

zones, achieving an overall accuracy exceeding 80% for both summer and winter crops. 

MapBiomas Brazil was generated using all available Landsat observations covering from 1985 

to 2022 and processed in Google Earth Engine, achieving an overall accuracy of around 80% 

in most biomes at Level 1 (Souza and Azevedo, 2017). Integrated Land Cover/Use Map of 

Uruguay (Uruguay LC) was also generated in 10 m resolution with crop-specific information 240 

in 2018 (Petraglia et al., 2019). 

        To reconstruct the historical cropland and crop type dynamics, all datasets needed to be 

preprocessed. First, the high-resolution datasets (i.e., CGLS-LC100, GLC_FCS30D, GLAD, 

Argentina MNC, MapBiomas, and Uruguay LC) were aggregated to a 1 km resolution to attain 

the fractional cropland and crop type. Second, HYDE3.2, SPAM2010, and GEOGLAM were 245 

resampled to 1 km spatial resolution using the bilinear method. Finally, the projection of all 

datasets was transformed into WGS84 for further analysis, with all processes carried out in 

Google Earth Engine. 

2.3.2 Inventory datasets 

        The inventory datasets were collected at three levels: national, provincial, and municipal. 250 

The national data mainly come from the Food and Agriculture Organization (FAO), while the 

provincial and municipal data primarily come from agriculture censuses released by 

governments (Table 2). Eventually, a total of 136 provincial-level statistics on LULC and crop-
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specific information from 13 countries were collected and sorted to reconstruct historical crop-

specific areas at the provincial level. Additionally, 10 municipal-level statistics were used to 255 

evaluate the crop-specific maps generated in this study.  

Table 2. The inventory datasets used in this study. NAT: National; PRO: Provincial; MUN: Municipal; C: 

cropland; M: maize; R: rice; S: soybean; W: wheat; P: Production. CNA: National Agricultural Census; INDEC, 

INE, IBGE, and INE are the national statistics and census bureaus of the corresponding countries. Due to the large 

number of data sources, detailed information is provided in Table S3. 260 

Country Resolution Year range Category Source 

Argentina 
PRO, MUN 

5- to 10-year interval 
1960 - 2018 C, M, R, S, W 

INDEC 

CNA 

Bolivia 

PRO 

Annual (1984 -2022) 
1950 - 2020 M, R, S, W 

INE 

CNA PRO 1950, 1984, 2013 C 

MUN 1950 C, M, R, S, W 

Brazil 

PRO 

5- to 10-year interval 
1940 - 2006 P 

IBGE 

CNA 
PRO 

5- to 10-year interval 
1970 - 2017 C, M, R, S, W 

MUN 1995, 2017 C, M, R, S, W 

Chile 

PRO 

10-year interval 
1997 - 2020 C, M, R, S, W INE 

CNA 
MUN 2007 C, M, R, S, W 

Colombia 

PRO 

5-year interval (1996 - 2011) 

Annual (2011 - 2019) 

1960 - 2019 C, M, R, S, W 
CNA 

MUN 1960 M, R 

Ecuador 
PRO 

10-year interval 
1995 - 2020 C, M, R, S, W CNA 

Guyana CNT 1960 - 2016 R CNA 
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Annual 

PRO 

Annual (2007 - 2016) 
1994 - 2016 R 

Paraguay 

PRO 2008, 2020 C 

CNA PRO 

Annual (2000 - 2022) 
1991 - 2020 M, R, S, W 

Peru 
PRO 1929, 1993 M, R, S, W 

CNA 
PRO 2012 C 

Suriname 
PRO 1995, 2008 M, R, S, W 

CNA 
PRO 2008 C 

Uruguay PRO 1990, 2000 M, R, S, W CNA 

Venezuela PRO 1995 M, R CNA 

Global NAT 1961 - 2020 C, M, R, S, W FAO 

2.4 Generating cropland density maps 

        We used both grided and inventory datasets to generate cropland density maps at a 

resolution of 1 km × 1 km, covering the period from 1950 to 2020 (Figure 2). All gridded 

datasets used in this section were first aggregated to a common spatial resolution of 1km. All 

subsequent operations, including trend operation, interpolation, and cropland density 265 

adjustment, were performed at this resolution to ensure spatial consistency. Specifically, the 

reconstruction process consists of the following steps: (1) the reconstruction of a total cropland 

area at the provincial level covers the period from 1950 to 2020. In this step, we mainly used 

two complementary interpolation approaches: ratio-based interpolation and linear interpolation. 

For years with available national-level cropland area but missing provincial-level cropland area, 270 



18 

 

we estimated provincial-level cropland area by scaling the nearest known provincial-level 

cropland area according to the relative change in national-level cropland area (Equation 1). 

This assumes that provincial-level changes follow the same relative trend as those observed on 

the national scale. From 1961 to 2020, national cropland areas from FAO were used to calculate 

annual change rates. For years prior to 1961, we relied on agricultural census records or HYDE 275 

data. In cases where neither provincial nor national cropland areas were available, we applied 

linear interpolation between known provincial cropland areas. Since data availability and 

reference years differ across countries, the reconstruction was performed separately for each 

country. (2) Second, we generated the potential cropland density maps with a resolution of 1 

km × 1 km from 1950 to 2020. Based on the definitions of various datasets and a comparison 280 

of total cropland area at the provincial level, we selected CGLS-LC100 (2015-2019), GLC 

FCS30D (1985-2022), and HYDE (1950-1990) as sources to generate potential cropland 

density maps (Table S1 & S2 & Figure S1). Since CGLS-LC100 and the reconstructed cropland 

area exhibit high agreement at the provincial level (R2 = 0.92, RMSE = 0.46 Mha), we choose 

CGLS-LC100 as the baseline data for generating the potential cropland density maps. To 285 

extend cropland density maps prior to the availability of CGLS-LC100, we employed a 

backward projection method using GLC_FCS30D and HYDE. Specifically, we selected 

CGLS-LC100 in 2015 as the base map for GLC_FCS30D, and 1990 as the base year for HYDE 

due to its decadal resolution. We then projected cropland density backward by applying annual 
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or decadal fractional changes from these two datasets to their respective base maps. 290 

Accordingly, we applied the following rules to handle dataset integration: (a) GLC_FCS30D > 

0, CGLS_LC100 > 0: The relative change in cropland density between the years (e.g., 2014 to 

2015 from GLC_FCS30D) was applied directly to the corresponding CGLS-LC100 grid cell; 

(b) GLC_FCS30D > 0, CGLS-LC100 = 0: The product of any change rate and zero yields zero; 

thus, the cropland density for that year and grid cell remained zero; (c) GLC_FCS30D = 0, 295 

CGLS-LC100 > 0: This implies no recorded change in cropland presence; thus, the CGLS-

LC100 value was retained without adjustment. A similar method was applied when using 

HYDE to reconstruct cropland density maps prior to 1985, with decadal change rates applied 

to the 1990 baseline. Since HYDE provides data at decadal intervals, we applied linear 

interpolation to fill in the annual gaps between 1950 and 1985 on a grid-by-grid basis. (3) Third, 300 

we adjusted the potential cropland density maps using reconstructed provincial-level cropland 

area to obtain an annual cropland density map between 1950 and 2020 (Equation 2). If the 

cropland density of a grid is less than 0 or greater than 1, we assign it a value of 0 or 1, 

respectively. This adjustment process is repeated until the difference between the adjusted area 

and the total cropland area at the provincial level is less than 100 ha. 305 

𝐶𝑟𝑜𝑝𝐴𝑟𝑒𝑎𝑐,𝑠,𝑖 =  𝐶𝑟𝑜𝑝𝐴𝑟𝑒𝑎𝑐,𝑠,𝑖+𝑗 ×
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑑𝑎𝑡𝑎𝑐,𝑖

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑑𝑎𝑡𝑎 𝑐,𝑖+𝑗
  (1) 

where, CropAreac,s,j and CropAreac,s,i+j are the reconstructed cropland area of province s in 

country c in year i and i + j; Reference datac,i and Reference datac,i+j are the reference values 
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for the total cropland area in country c in year i and i + j, respectively. Between 1961 and 2020, 

the value of j is 1; While before 1961, the value of j corresponds to the year difference in the 310 

reference data. 

𝐺𝑟𝑖𝑑𝑘′ =  𝐺𝑟𝑖𝑑𝑘 +  
(𝑇𝑜𝑡𝑎𝑙𝐴𝑟𝑒𝑎− ∑ 𝐺𝑟𝑖𝑑𝑘

𝑛
1 )

𝑛
 (2) 

where, Gridk′ is the adjusted cropland density for the kth grid, Gridk is the potential cropland 

density, TotalArea is the reconstructed cropland area at the provincial level, and n is the total 

number of valid crop grids (cropland density > 0) in a province. 315 

2.5 Generating gridded crop-specific maps 

2.5.1 Building crop-specific base map for the year 2020 

        We set 2020 as the base year and generated the base map of four commodity crops (i.e., 

maize, rice, soybean, and wheat) by integrating multiple remote sensing-based and model-

based datasets. First, considering that high-resolution crop distribution maps do not cover the 320 

whole of South America, we used the resampled SPAM2010 data to generate the initial base 

map. We then replaced the corresponding regions with higher-resolution data available for 

around 2020. Specifically, the base map for maize was generated from Argentina MNC (2020) 

and SPAM (2010). The base map for soybean was generated from Argentina MNC (2020), 

MapBiomas (2020), GLAD (2020), and SPAM (2010). The base map for rice was generated 325 

from Uruguay LC (2018), Argentina MNC (2020), and SPAM (2010). The base map for wheat 
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was generated from GEOGLAM (2020). Finally, we used reconstructed crop-specific 

harvested area in 2020 at the provincial level to further adjust the base map (Equation 2). 

2.5.2 Reconstructing the annual crop-specific harvested area at the provincial level 

        Long-term historical crop-specific harvested areas at the provincial level were 330 

reconstructed from 1950 to 2020 using multiple sources of historical inventory data (Table 2). 

The detailed reconstruction processes are described below. First, the time series of crop-

specific harvested areas at the provincial level were obtained from the National Agricultural 

Census (CNA), the national statistics office (e.g., INDEC, IBGE, and INE, etc), and literature.  

Second, anomaly values in the time-series of crop-specific harvested area were identified and 335 

removed through visual inspection, based on the assumption that harvested area typically 

follows a gradual upward or downward trend over time. Years with abrupt deviations 

inconsistent with adjacent values were flagged as potential anomalies. Third, the FAO trend 

was used to fill the gaps between 1961 and 2020 (Equation 1). Fourth, in countries where 

harvested area statistics were unavailable, crop-specific harvested areas were reconstructed 340 

using production data, based on the strong correlation between production and harvested area 

(R2 = 0.92, Equation 3). Specifically, in Brazil from 1950 to 1970, provincial-level crop 

production data were used to estimate harvested areas, as no public statistics data were 

available during this period. For countries with no available data before 1961, we maintain 
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consistency by using the data from 1961. Finally, the liner interpolation was used to fill the 345 

crop-specific harvested area with the missing values. 

𝐶𝑇𝐴𝑟𝑒𝑎𝑐,𝑠,𝑖 = 𝐶𝑇𝐴𝑟𝑒𝑎𝑐,𝑠,𝑖+𝑗  ×
𝑃𝑟𝑜𝑑𝑐,𝑠,𝑖

𝑃𝑟𝑜𝑑𝑐,𝑠,𝑖+𝑗
  (3) 

where, CTAreac,s,j and CTAreac,s,i+j are the reconstructed crop-specific harvested area of 

province s in country c in year i and i + j; Prodc,s,i and Prodc,s,i+j are the crop production of 

province s in country c in year i and i + j. 350 

2.5.3 Spatializing provincial-level data to generate annual crop-specific maps 

        The reconstructed crop-specific harvested area at the provincial level was spatially 

allocated to the grid level based on the generated crop-specific base map and annual cropland 

density to obtain 1 km crop-specific maps from 1950 to 2020.  Specifically, we took 2020 as 

the baseline and used the ratio of cropland density between two adjacent years to obtain the 355 

density of the crop-specific harvested area in the previous year (Equation 4). We assumed that 

the inter-annual trend in crop-specific harvested area is consistent with the trend in area changes 

in cropland density. To ensure that the allocated area is consistent with the total harvested area 

at the provincial level, we further adjusted the allocated crop-specific harvested area using 

Equation 2.  360 

𝐶𝑇𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑘,𝑖−1 =  
𝐶𝑟𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑘,𝑖−1

𝐶𝑟𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑘,𝑖
× 𝐶𝑇𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑘,𝑖 (4) 
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where, CTDensityk,i-1 and CTDensityk,i are the density of crop-specific harvested area for the 

kth grid in years i and i-1; CropDensityk,i-1 and CropDensityk,i are the cropland density for the 

kth grid in years i and i-1. 

2.5.4 Analyzing crop-specific land-use transitions 365 

        To assess the transitions between land use and specific crop types, we first converted the 

annual crop-specific density maps into Boolean crop-type maps for each year from 1950 to 

2020, following the method described by (Li et al., 2023). For each crop and year, grid cells 

were ranked in descending order based on crop-specific density. Boolean values (presence = 1, 

absence = 0) were then assigned to the top-ranked grid cells until the cumulative area matched 370 

the reconstructed provincial-level harvested area within a 100-hectare margin. This allocation 

was performed sequentially for soybean, maize, wheat, and rice, based on the availability and 

reliability of high-resolution crop-specific datasets. In particular, soybean and maize were 

prioritized because they are supported by well-validated spatial products (e.g., GLAD and 

Argentina MNC), which offer a reliable basis for anchoring the allocation and maintaining 375 

spatial consistency with observed crop distributions. To identify land-use transitions associated 

with specific crops, we overlaid the annual Boolean crop-type maps with the annual land-use 

maps from the Historic Land Dynamics Assessment + (HILDA +) (Winkler et al., 2021). This 

spatial overlay allowed us to determine which crop types occupied areas that had been newly 

converted cropland in a given year. It is important to note that this approach assumes that the 380 
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spatial allocation based on crop-specific density rankings reflects the dominant crop type 

established after cropland conversion. While this process introduces some uncertainty, the 

method offers a consistent and spatially explicit framework for attributing land-use change 

processes to specific crops in the absence of pixel-level crop rotation data. 

2.6 Accuracy assessment 385 

        We performed accuracy assessments using three strategies: (1) comparing crop-specific 

areas derived from existing gridded products with those from this study at the provincial level. 

To ensure the reliability of the assessment, we used data from years not included as inputs, 

serving as an independent reference for the evaluation (i.e., MapBiomas (2000, 2005, and 

2010), SPAM (2000 and 2005), GEOGLAM (2020), GLAD (2005 and 2010), and Brazil 390 

Conba (2017 – 2020, Table S3)). (2) validating reconstructed crop-specific maps in this study 

with crop-specific areas collected from agricultural censuses at the municipal level. (3) 

performing visual comparisons using existing remote sensing-based high-resolution data 

(Argentina MNC, GLAD, Uruguay LC, and WorldCereal) at the grid level. This process is 

primarily evaluated by calculating the difference between the fraction of our developed data 395 

and the fraction of other datasets within each grid. Given the limited availability of high-

resolution data, we began by comparing data from around 2020 (i.e., Argentina MNC (2020), 

Uruguay LC (2018), and WorldCereal (2021)). Additionally, GLAD data (2001, 2010, and 

2020) were used for long-term series comparisons. For evaluation at the provincial and 
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municipal levels, we used the coefficient of determination (R2, Equation 5), Normalized Root 400 

Mean Square Error (nRMSE, Equation 6), and slope (Equation 7) to quantify the performance 

of our developed crop-specific data relative to other datasets. Higher R2 values, lower nRMSE, 

and slope closer to 1 indicate better agreement between actual and estimated crop-specific areas, 

and vice versa. 

𝑅2 = 1 − 
∑ (𝑥𝑖− 𝑦𝑖)2𝑛

𝑖=1

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

                                                     (5) 405 

𝑛𝑅𝑀𝑆𝐸 =  
√

1

𝑛
∑ (𝑥𝑖− 𝑦𝑖)2𝑛

𝑖=1

𝑥̅
                                                 (6) 

𝑆𝑙𝑜𝑝𝑒 =  
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

                                                  (7) 

Where 𝑛 represents the number of samples; 𝑥𝑖 and 𝑦𝑖 are the actual and estimated crop-specific 

areas for the 𝑖th sample; and 𝑥̅ and 𝑦̅ represent the average of the actual crop-specific areas. 

3 Results 410 

3.1 Dynamics of crop types from 1950 to 2020 in South America 

        Figure 3 shows the spatial pattern of soybean, wheat, maize, and rice from 1950 to 2020 

in South America. Overall, there has been a significant increase over time in the area and 

density of cultivation for all major crops. Soybean and maize have expanded significantly in 

Argentina and Brazil. Specifically, soybean was practically not cultivated in South America in 415 
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1950, with small amounts starting to appear in 1980. After 2000, soybean cultivation increased 

significantly, covering large areas in central and southern Brazil and central Argentina. Maize 

was initially cultivated mainly in central Argentina, southern Brazil, and northern Colombia 

and Venezuela. The extent and density of maize cultivation gradually increased, showing a 

trend of expansion from south to north. Rice is cultivated in a relatively small area in South 420 

America, mainly in Uruguay, northern parts of Colombia and Venezuela, and in the Brazilian 

states of Maranhão, Tocantins, and Rio Grande do Sul. Except for an increase in the extent of 

cultivation around 1980, there has been relatively little change in the rest of the years. Wheat 

is more concentrated in southern South America, including the provinces of Buenos Aires, 

Córdoba, and Santa Fe in Central Argentina; Rio Grande do Sul in southern Brazil; and 425 

Araucanía, Biobío in central Chile. Between 1950 and 2020, the extent of wheat cultivation 

has remained relatively stable. Additionally, we calculated the changes in the total area of 

different crops in different countries and the entire South America (Figure 4 & Figure S2). 

Soybean is the crop with the most rapid change in the area, growing from 0.08 Mha in 1950 to 

48.8 Mha in 2020, an increase of 610 times. The area of maize showed a slow growth trend 430 

until 2000, increasing from 12.7 Mha in 1950 to 16.5 Mha in 2000. Since 2000, the growth rate 

has gradually increased, reaching a total area of 26.9 Mha in 2020, with an average annual 

growth rate of 6.8 times higher than that of the pre-2000 period. The area of rice increased 

gradually before 1980, growing from 3.2 Mha in 1950 to 6.7 Mha in 1980, followed by a 
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gradual decline, falling back to 3.8 Mha by 2020. In contrast, wheat is relatively stable, 435 

increasing slightly from 7.6 Mha in 1950 to 7.9 Mha in 2020. At the country level, Brazil has 

the largest area of soybean, maize, and rice, while Argentina has the largest area of wheat. 

These trends reflect the significant agricultural transformations in South America. The rapid 

growth in soybean and maize cultivation is especially notable, aligning with global shifts in 

commodity markets, while rice and wheat have shown more moderate changes over time. 440 
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Figure 3. The spatial pattern of soybean, maize, rice, and wheat from 1950 to 2020. The first, second, third, and 

fourth rows represent the crop-specific fraction of soybean, maize, rice, and wheat. Crop-specific density 

represents the proportion of a given crop within each 1 × 1 km grid. 
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 445 

Figure 4. Temporal changes in crop-specific areas in South America during 1950-2020. 

3.2 Crop-specific land-use transitions 

        Over the past 70 years, soybean and maize have expanded dramatically through 

encroachment on other vegetation, including forest, pasture/rangeland, and unmanaged 

grass/shrubland (Figure 5 & Table 3). Specifically, 24.49 Mha of the forest was converted to 450 

the four major crops. Additionally, 13.82 Mha of pasture/rangeland, 11.26 Mha of unmanaged 

grass/shrubland, and 0.20 Mha of sparse/no vegetation were also converted. Most of this 

conversion was to soybean, accounting for 23.92 Mha, which represents 48.1 % of the total 

converted area. Regarding crops, different types exhibit varying extents of spatial expansion 

and encroachment on other vegetation. The total area of soybean encroaching upon forest, 455 
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pasture/rangeland, and unmanaged grass/shrubland was 12.26 Mha, 5.26 Mha, and 6.39 Mha, 

respectively. The growth rate of encroachment upon forests increased rapidly from 0.05 

Mha/year in 1950-1980 to 0.32 Mha/year in 2000-2020. In terms of spatial distribution, 

soybean encroachment occurred mainly in the Brazilian provinces of Mato Grosso, Paraná, and 

Rio Grande do Sul, as well as southeastern Paraguay and central Bolivia for forests; in eastern 460 

Argentina and parts of Brazil for pasture/rangeland; and at the confluence of the provinces of 

Maranhão, Piauí, and Bahia for grasslands. On the other hand, the total area of maize 

encroachment from forest, pasture/rangeland, and unmanaged grass/shrubland was 9.22 Mha, 

5.44 Mha, and 3.57 Mha, respectively. The growth rate of encroachment from forests increased 

from 0.13 Mha/year in 1950-1980 to 0.36 Mha/year in 2000-2020. The spatial pattern of maize 465 

encroachment was similar to that of soybean. The expansions of other crops are smaller in area 

compared to soybeans and maize, and more dispersed in their spatial distribution. Overall, 

cropland expansion led to significant reductions in other vegetation, with the most dramatic 

increase occurring in staple crops, particularly soybean and maize. 
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 470 

Figure 5. Spatial pattern of transitions between LULC and crop-specific areas from 1950 to 2020. (a) 1950 – 

1980; (b) 1980 – 2000; (c) 2000 – 2020; (d) 1950 – 2020. Pasture: pasture/rangeland; Shrub: unmanaged 

grass/shrubland. 
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Table 3. Statistics of transition areas in South America from 1950 to 2020 (Unit: Mha). 

Transition types 
1950 - 1980 1980 - 2000 2000 - 2020 1950 - 2020 

Past Present 

Forest 

Soybean 1.43 1.92 6.47 12.26 

Maize 4.00 3.07 7.26 9.22 

Wheat 1.14 0.38 1.16 1.76 

Rice 1.11 0.88 0.80 1.25 

Sub-total 7.68 6.25 15.69 24.49 

Pasture/rangeland 

Soybean 0.87 1.00 2.81 5.26 

Maize 3.35 2.94 5.04 5.44 

Wheat 1.75 1.27 1.59 2.08 

Rice 1.30 1.34 1.30 1.04 

Sub-total 7.27 6.55 10.74 13.82 

Unmanaged 

grass/shrubland 

Soybean 0.92 0.49 1.03 6.39 

Maize 2.00 0.82 1.76 3.57 

Wheat 1.07 0.64 0.59 0.91 

Rice 0.99 0.14 0.25 0.39 

Sub-total 4.98 2.09 3.63 11.26 

Sparse/no 

vegetation 

Soybean 0.00 0.00 0.00 0.01 

Maize 0.10 0.07 0.08 0.12 

Wheat 0.01 0.01 0.01 0.01 

Rice 0.02 0.02 0.03 0.06 

Sub-total 0.13 0.10 0.12 0.20 
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3.3 Evaluation of the crop-specific maps 480 

3.3.1 Evaluation against existing datasets at the provincial level 

        We compared the crop-specific areas (i.e., soybean, wheat, maize, and rice) derived from 

existing datasets with the crop-specific maps developed in this study at the provincial level 

(Figure 6). We used gridded datasets that were not involved in the base map generation to 

ensure independence form the reconstruction process, including MapBiomas (soybean and rice 485 

in 2000, 2005, and 2010), SPAM (soybean, wheat, maize, and rice in 2000 and 2005), 

GEOGLAM (soybean, maize, and rice), GLAD (soybean in 2005 and 2010), and Brazil Conab 

(soybean and rice from 2017 to 2020). The soybean areas from this study are consistent with 

Brazil Conab (Figure 6a: R2 = 1, slope = 1.38) and SPAM (R2 = 0.96, slope = 1.15) but lower 

than those from MapBiomas (R2 = 0.99, slope = 1.41), GEOGLAM (R2 = 0.92, slope = 1.49), 490 

and GLAD (R2 = 0.91, slope = 1.56). The wheat areas from this study are consistent with SPAM 

(Figure 6b: R2 = 0.93, slope = 1.15). The maize areas from this study are generally consistent 

with SPAM (Figure 6c: R2 = 0.94, slope = 1.01). However, they differ significantly from those 

of GEOGLAM (R2 = 0.65, slope = 3.36). For rice, the areas from this study match well with 

Brazil Conba (Figure 6d: R2 = 1, slope = 1.93) and SPAM (R2 = 0.87, slope = 1.15) but differ 495 

significantly from those of GEOGLAM (R2 = 0.70, slope = 0.83) and MapBiomas (R2 = 0.66, 

slope = 0.55). Generally, the crop-specific areas reconstructed in this study were consistent 

with other datasets, with most R2 values exceeding 0.87, except for maize and rice in 
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GEOGLAM and wheat in MapBiomas. This suggests that our method is reliable in 

reconstructing crop-specific areas at the provincial level despite some discrepancies. These 500 

discrepancies may be attributed to variations in data sources, processing methods, or 

classification criteria. 

 

Figure 6. Comparison of crop type areas between this study and existing datasets (gridded datasets that were not 

involved in reconstruction process, i.e., Brazil Conba (2017-2020), MapBiomas (2000, 2005, 2010), SPAM (2000, 505 

2005), GEOGLAM (2020), GLAD (2005, 2010) at the provincial level. (a) Soybean; (b) Wheat; (c) Maize; (d) 

Rice. The numbers in parentheses represent the total number of samples. 
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3.3.2 Evaluation using inventory data at the municipal level 

        To ensure the effectiveness of the evaluation, we collected crop type areas from various 

countries across different years at the municipal level to evaluate our reconstructed crop type 510 

maps (Argentina: 1960, 2008, and 2018; Bolivia: 1950; Brazil: 1995, 2006, 2017; Chile: 2017; 

Colombia: 1960; Paraguay: 2008). Figure 7 shows the comparison results of crop-specific areas 

for soybean, wheat, maize, and rice at the municipal level between census data and this study. 

We used R2 and nRMSE to quantify the precision and reliability of our data. Specifically, the 

soybean and wheat areas derived from this study fit well with those from census data (soybean: 515 

R2 = 0.93, nRMSE = 0.0106; wheat: R2 = 0.79, nRMSE = 0.0151), whereas the performance of 

the maize and rice is relatively less accurate (maize: R2 = 0.65, nRMSE = 0.0143; rice: R2 = 

0.61, nRMSE = 0.0184). Additionally, the spatial pattern of soybean, maize, wheat, and rice 

proportions (i.e., crop-specific area/municipal area) is consistent with the census data (Figure 

8 & Figure S3-S5). Soybean cultivation in Brazil is concentrated in the southern and central 520 

regions, and the soybean proportions derived from this study are relatively close to the census 

data, with minor over- and underestimates in only a few areas, such as Paraná and Rio Grande 

do Sul. On the other hand, Argentina shows a similar geographical distribution pattern, with 

the main cultivation areas concentrated in the central region, but with overestimation in some 

areas. The main concentration is in the provinces of Córdoba and Buenos Aires. The areas for 525 
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the remaining three crops (i.e., maize, wheat, and rice) are in good agreement with the census 

data, except for Brazilian maize in 2017, which is slightly underestimated in central Brazil. 

 

Figure 7. Comparison of the crop-specific areas between this study and census data at the municipal level. (a) 

soybean; (b) wheat; (c) maize; (d) rice. The municipal-level inventory data used include Argentina (1960, 2008, 530 

and 2018), Bolivia (1950), Brazil (1995, 2006, and 2017), Chile (2017), Colombia (1960), and Paraguay (2008). 
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Figure 8. Spatial comparison of the soybean proportion (i.e., soybean area/municipal area) between this study 

and census data at the municipal level in Argentina (2008 and 2018) and Brazil (1995, 2006, and 2017). 

Proportions were calculated by aggregating gridded crop-type data (allocated from provincial level statistics) and 535 

dividing by municipal area. These were compared with official municipal statistics processed in the same way. 
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Left column: soybean proportion from this study; Middle column: soybean proportion from census data; Right 

column: the difference in soybean proportion between this study and census data.  

3.3.3 Evaluation using satellite-based datasets at the grid level 

        We also compared satellite-based crop type maps with our reconstructed data at the grid 540 

level. Due to the lack of crop type maps for the entire South America, we used Argentina MNC 

and Uruguay LC as baselines for the comparison of soybean, wheat, and maize. However, some 

maps generated by satellite data do not distinguish wheat from winter cereals (Van Tricht et 

al., 2023), so we used the resampled GEOGLAM as the baseline for the comparison of wheat. 

Figure 9 shows the spatial comparison of soybean, wheat, maize, and rice between satellite-545 

based data and reconstructed data at the grid level. The results of the estimation of the 

proportion of soybean, wheat, maize, and rice cultivation show high agreement with the 

satellite data in terms of spatial distribution. However, there were slight over- or under-

estimates in some areas, especially in regions with concentrated crop cultivation. The 

percentage histograms provide detailed information on the distribution of differences, with 550 

most of the differences being less than 10 %, indicating that the estimation results of this study 

are generally reliable. Since most satellite-based crop maps are from around 2020 and are used 

as base maps to reconstruct historical crop distributions, we used soybean time-series data from 

GLAD to further assess the reliability of our reconstructed data. We chose 2001, 2010, and 

2020 for comparison, with only the 2020 data used to construct the base map in Section 2.5.1. 555 
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As shown in Figure 10, the estimates from this study also show high agreement with the GLAD 

data in terms of spatial distribution for 2001, 2010, and 2020, with differences of less than 

10 %. 

 

Figure 9. Spatial comparison of soybean, wheat, maize, and rice maps between satellite-based high-resolution 560 

data and the reconstructed data from this study. The soybean and maize maps are from Argentina MNC, the rice 

map is from Uruguay LC, and the wheat map is from GEOGLAM due to the lack of high-resolution data. 
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Figure 10. Spatial comparison of soybean maps between satellite-based high-resolution data (i.e. GLAD soybean) 

and the reconstructed data from this study for the years 2001, 2010, and 2020. 565 

4 Discussion 

4.1 Comparison with other datasets 

        We first compared the area changes of four main crops (maize, rice, soybean, and wheat) 

in South America from 1950 to 2020 using FAO, GEOGLAM, GLAD, SPAM, and our 

reconstructed data (Table 4). Before 2000, the soybean area reconstructed in this study was 570 

highly consistent with FAO data, but after 2000, the reconstructed soybean area was lower. 



41 

 

This discrepancy mainly originates from countries with larger soybean areas, such as Argentina 

and Brazil (Figure S6). The census data we used were collected from the national statistical 

offices and the agricultural census inventory. In contrast, FAO data are mainly provided by 

member countries, making it challenging to ensure data accuracy (FAOSTAT). Additionally, 575 

Song et al., (2021) reported that the soybean area in the major biomes of South America 

increased from 26.4 Mha in 2001 to 55.1 Mha in 2019, which is comparable to the data 

reconstructed in this study and shows greater consistency at the country level. It is worth noting 

that SPAM also used provincial-level data for modeling, but the total soybean area is consistent 

with FAO and higher than that in this study. This is because SPAM corrected the allocation 580 

results using FAO national-level data, whereas our results were corrected based on provincial-

level statistics (Yu et al., 2020). On the other hand, the soybean area in GEOGLAM is much 

higher than in other datasets. This difference arises because GEOGLAM integrates crop-

specific maps at global and regional scales, spanning a wide range of periods (Becker-Reshef 

et al., 2023). For the remaining three crops (i.e., Maize, Wheat, and Rice), our reconstructed 585 

data and other datasets showed high agreement across South America. However, the area of 

maize derived from GEOGLAM data is much higher than the others, for the reasons discussed 

above. Therefore, due to the lack of high-resolution data for wheat and relatively stable wheat 

area after 2010, we used only the GEOGLAM wheat distribution map as a base map. 

Additionally, the comparison with multiple reference datasets shows that slope values between 590 
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our reconstructed cropland area at the provincial level vary across sources (Figure 6). When 

compared to SPAM — a dataset that also incorporates official statistics — the slope values are 

largely within the range of 0.90 to 1.21 across crop types, indicating strong agreement and 

suggesting that our product is reliable in representing provincial-scale cropland distribution. In 

contrast, comparisons with remote sensing-based datasets exhibit larger deviations. These 595 

discrepancies are expected due to differences in data sources and classification uncertainties. 

Overall, our reconstructed data are in good agreement with other existing datasets and utilize 

finer-grained statistics to generate spatially explicit crop type distribution maps.  

Table 4. Comparison of crop-specific areas with other datasets in South America from 1950 to 2020 (Unit: Mha). 

Corps Year This study FAO SPAM GEOGLAM 

Soybean 

1950 0.08 / / / 

1980 11.28 11.46 / / 

2000 25.02 24.17 24.50 / 

2020 48.83 59.89 / 54.05 

Maize 

1950 12.72 / / / 

1980 15.38 16.26 / / 

2000 16.51 17.70 17.32 / 

2020 26.91 29.23 / 55.45 

Wheat 

1950 7.62 / 8.90 / 

1980 7.81 9.31 / / 

2000 7.97 8.32 9.01 / 

2020 7.98 10.41 / 8.83 

Rice 

1950 3.22 / / / 

1980 6.74 7.53 / / 

2000 4.44 5.66 5.60 / 
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2020 3.81 4.13 / 3.52 

 600 

        Additionally, we performed a comparison of the distribution of different crop types at both 

spatial and temporal scales (Figure 11 & 12). Specifically, the spatial distribution of soybean, 

maize, and rice is highly consistent with the high-resolution crop-specific distribution maps 

derived from remote sensing imagery and has a higher spatial resolution compared to 

GEOGLAM, providing more detailed information on crop-specific cultivation patterns. Due to 605 

the lack of high-resolution wheat distribution maps, we used WorldCereal as a potential wheat 

distribution map for comparison. The WorldCereal is a winter cereal map that includes wheat, 

barley, and rye (Van Tricht et al., 2023).  Although Figure 11 demonstrates strong spatial 

agreement between our reconstructed data and existing high-resolution crop maps for 2020, 

some of these maps were also used to construct the base map, which may partially account for 610 

the high levels of consistency. To further evaluate the temporal reliability of our dataset, GLAD, 

being the only soybean distribution maps in South America with a high-resolution and long-

time series and validation accuracy, allows us to compare spatial distributions of reconstructed 

data over time (Song et al., 2021). As shown in Figure 12, we selected the Brazilian state of 

Mato Grosso, one of the most significant regions for soybean expansion since 2000, as an 615 

example to present comparative results. GLAD maps show clear signals of frontier expansion, 

while our results emphasize more gradual intensification. This difference may be attributed to 

the fact that our reconstruction is based on harmonized census data and historical cropland 
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density, which may limit its ability to capture abrupt shifts as precisely as the high-resolution 

satellite-based maps. Nevertheless, our results remain broadly consistent with high-resolution 620 

products in terms of spatial patterns. Importantly, our dataset provides long-term, annually 

resolved crop-specific maps from 1950 to 2020, filling key temporal gaps that satellite-only 

datasets cannot address. Thus, despite limitations in detecting fine-scale expansion, the 

HISLAND-SA dataset complements existing remote-sensing products by offering a coherent 

and historically extended view of crop type dynamics in South America. 625 
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Figure 11. Visual comparison of crop-specific maps between this study and other datasets. The left column shows 

the crop-specific maps in this study, with high-resolution data in the middle and coarse-resolution data on the 

right. Panels b, e, h, and l were also used as input layers in generating the 2020 base map. 
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Figure 12. Temporal visual comparison of soybean fraction with GLAD. 

4.2 Drivers of crop type changes 

        Agricultural expansion has led to dramatic land use changes in South America over the 

past few decades (Potapov et al., 2022; Winkler et al., 2021). In this study, we reconstructed 

crop-specific maps for South America over the past 70 years by integrating agricultural census 635 

data, model-based data, and remote sensing-based crop type data and quantified the land use 

transitions caused by agricultural expansion. Our results show that the soybean area in South 

America increased from nearly zero in 1950 to 48.8 Mha in 2020. In South America, soybeans 

were initially cultivated on small farms primarily to provide animal feed and serve as a rotation 
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crop adjunct to wheat (Klein and Luna, 2021). By the 1970s, the soybean industry began to 640 

emerge, driven by the surge in global protein meal prices (Richards et al., 2012; Warnken, 

1999), new geopolitical alliances, and grain-livestock-fuel dynamics (de LT Oliveira, 2017). 

Simultaneously, the Brazilian National Agricultural Research Centre of Brazil (i.e., Embrapa) 

developed new soybean varieties adapted to the tropical climate and successfully introduced 

them to the Cerrado region in the Brazilian Midwest, which contributed to the “tropicalization 645 

of the soybean” and significantly expanded the soybean cultivation area (Klein and Luna, 2021). 

Driven by market-oriented reforms, globalization, and advancements in technology, the total 

soybean exports have burgeoned, further leading to a surge in soybean acreage (da Silva et al., 

2021; Song et al., 2021). However, such a dramatic expansion in the soybean area is bound to 

have far-reaching consequences for land use change in South America. Over the past 70 years, 650 

soybean expansion has led to the loss of nearly 23.92 Mha of other vegetation, with forest 

accounting for 12.26 Mha, pasture/rangeland for 5.26 Mha, and unmanaged grass/shrubland 

for 6.39 Mha (Table 3). This extensive land use change has led to several environmental 

problems, including biodiversity loss, carbon emissions, land degradation, and water pollution 

(Baumann et al., 2017; Fearnside, 2002; Fehlenberg et al., 2017; Pengue, 2005; Song et al., 655 

2021). Additionally, maize expansion is also one of the primary factors contributing to land 

use change and environmental threats in South America. Until the 1990s, changes in maize 

area were relatively stable and concentrated in traditional agricultural regions (e.g., the Pampas 
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region in Argentina and the southern region in Brazil), primarily for domestic consumption as 

a major source of food for humans and livestock (Warnken, 1999). After the year 2000, maize 660 

cultivation in South America witnessed rapid growth, with maize being widely used not only 

as a food crop but also for biofuel production (Costantini and Bacenetti, 2021). During this 

period, maize acreage and yield increased significantly, with Brazil and Argentina becoming 

two of the world's leading producers and exporters of maize (Klein and Luna, 2022). By 2020, 

the maize area in South America had increased by a factor of 2.1 compared to 1950, 665 

encroaching on a total of 18.35 Mha of other vegetation, including 9.22 Mha of forests, 5.44 

Mha of pasture/rangeland, and 3.57 Mha of unmanaged grass/shrubland (Table 3). Despite the 

importance of soybean and maize in the agricultural expansion of South America, wheat and 

rice have maintained their position as the main food crops. The expansion of soybean and maize 

cultivation has largely encroached on non-traditional farmland, such as forest and pasture, 670 

while wheat and rice growing areas have changed less. For wheat and rice, the change in area 

has remained relatively stable over the past 70 years, generally staying between 5 and 10 Mha. 

Wheat and rice are grown in relatively stable areas to ensure food security, even though other 

crops may offer higher economic returns (Jat et al., 2016). Additionally, several governments 

in South America have traditionally provided sustained policy support for wheat and rice 675 

cultivation, encouraging farmers to maintain a certain level of cultivation to ensure a stable 

food supply (Altieri, 1992; Warnken, 1999). The more recent notable expansions in South 
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America invite attention to the broader economic and legal changes that have facilitated or 

incentivized these drastic farming and agriculture changes, including through capital, finance, 

trade and investment dynamics (Pistor, 2019; Saab, 2018). 680 

4.3 Uncertainty analysis 

4.3.1 Spatial and temporal gaps in census data 

        A key consideration in reconstructing historical land use dynamics is the availability of 

agricultural census data. Ideally, sub-national level (e.g., municipality, county, or district) 

agricultural statistics would allow for more detailed spatial allocation of crop-specific 685 

harvested areas. However, their availability across South America is highly limited and 

temporally inconsistent. Most countries provide only a few isolated years of data at the 

municipal level (i.e., Argentina: 1960, 2008, 2018; Bolivia: 1950; Brazil: 1995, 2006, 2017; 

Chile: 1960; Paraguay: 2008), which creates large temporal gaps and hampers their direct use 

in annual time series reconstruction. In contrast, provincial level data are more consistently 690 

reported over time, typically at 10-year intervals. These more frequent observations enable 

more robust interpolation and better constrain the temporal evolution of harvested area. While 

these provincial units represent a coarser administrative granularity, we combined them with a 

high-resolution crop-specific base map and temporal cropland density maps to spatially 

disaggregate the data across all years. This approach allows us to preserve long-term trends 695 

while capturing spatial variability. To address the temporal discontinuities between census 

years, we applied linear interpolation to construct continuous annual times series of harvested 

areas at the administrative level. While we acknowledge that the use of linear interpolation may 

not fully reflect potential non-linear trends driven by policy, market, or environmental drivers, 
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it remains a practical and widely used method under the constraints of sparse historical data 700 

(Klein Goldewijk et al., 2017; Leite et al., 2011; Li et al., 2023; Liu and Tian, 2010; Ye et al., 

2024). Additionally, linear interpolation in this study is always bounded by observed census 

points, which help to preserve long-term trends and prevent fluctuations. 

4.3.2 Resampling-related spatial uncertainty 

        To ensure spatial consistency across input datasets, we employed two resampling 705 

strategies to achieve a standardized 1 km resolution: (1) aggregation of high-resolution remote 

sensing products, and (2) upsampling of lower-resolution datasets, such as SPAM. While 

resampling is essential for harmonizing spatial scales, it introduces varying degrees of 

uncertainty depending on the original resolution and classification accuracy of the source data.               

        Aggregation of high-resolution datasets does not introduce additional spatial uncertainty 710 

beyond the inherent classification errors present in the original data. However, these 

classification errors can propagate into aggregated outputs and finally affect spatial statistics. 

To quantify this aggregation-induced uncertainty, we conducted a Monte Carlo simulation by 

introducing symmetric random noise at various classification error rates (i.e., 3% to 15%), 

whereby a proportion of target and non-target pixels were randomly flipped. For each 715 

combination of classification error rate and true fraction, we aggregated the modified raster to 

1 km resolution and calculated the resulting aggregated fraction. This process was repeated 100 

times per fraction to obtain stable estimates of the mean and standard deviation of the 

aggregated values (Figure S7). We then computed the uncertainty as a function of both 

classification error and spatial resolution. Specifically, total uncertainty was defined as the 720 

average absolute deviation between aggregated and true values across the full range of possible 

true fractions (i.e., 0% to 100%). This allowed us to isolate the magnitude of uncertainty 

attributable to aggregation process. This simulation framework was applied to each of the 
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aggregation datasets, yielding the acceptable uncertainties (Table 5). These results 

demonstrated that total uncertainty increases with both classification error and coarser input 725 

resolution. Datasets with higher native resolution (e.g., Uruguay LC) tend to exhibit lower 

aggregation uncertainty, even when classification error is moderate. This underscores that 

aggregation-induced uncertainty is not solely a function of accuracy, but also of the granularity 

of the input data. This uncertainty component must be explicitly considered when integrating 

heterogeneous land cover datasets for spatial modelling or policy-relevant assessments. 730 

Table 5. Aggregation-induced uncertainty under varying classification errors and spatial resolutions. 

Dataset Spatial resolution (m) Classification error (%) Total uncertainty (%) 

Uruguay LC 10 11.5 5.81 

MapBiomas 30 14.2 7.36 

Argentia MNC 30 9.0 4.59 

GLAD 30 4.0 2.08 

CGLS-LC100 100 20.0 10.49 

 

        To evaluate the spatial uncertainty introduced by the upsampling process, we conducted 

a quantitative comparison between SPAM and GLAD soybean maps for 2010 in South 

America. The original SPAM data were upsampled to 1 km using bilinear interpolation, while 735 

the GLAD soybean layer was aggregated to 1 km resolution and treated as reference. A pixel-

by-pixel comparison was performed between the two datasets across the continent. First, the 

pixel-wise comparison yielded a coefficient of determination (R2) of 0.50, indicating moderate 

agreement between resampled SPAM and GLAD data. Second, the distribution and frequency 

of pixel-level differences revealed that over 70% of the pixels fell within a ±0.1 range, while 740 

larger deviations (greater than ±0.3) were mainly observed in fragmented and heterogeneous 

cropping regions (Figure S8). Although the resampling process introduced local structure 

uncertainty and smoothed fine-scale heterogeneity, these results suggest that the unsampled 1 
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km SPAM data retain meaningful broad-scale spatial patterns. Therefore, the resampled dataset 

in this study remains suitable for use as a baseline crop distribution map at continental scale. 745 

4.3.3 Spatial-temporal consistency assessment 

        To assess the spatial and temporal consistency of our reconstructed crop type maps, we 

conducted an uncertainties analysis using the resampled GLAD 1-km soybean density dataset 

from 2001 to 2020 as an independent benchmark. This analysis focuses on evaluating whether 

the interannual variation in soybean density reflects actual crop dynamics. Figure 13 illustrates 750 

the annual difference in soybean density at the pixel level across South America. The results 

show that the median and mean differences remain close to zero over time, with narrow 

interquartile ranges (25%-75%) and relatively stable 5%-95% quantile envelopes. These 

findings suggest that the year-to-year fluctuations in our dataset are not random but follow a 

consistent trend with GLAD data, indicating reliable temporal comparability. In addition, 755 

Figure S9 presents the spatial distribution of the mean soybean density difference averaged 

over the 20-year period, along with a histogram of its pixel-wise distribution. Most regions 

exhibit minimal bias, with more than 50% of grids falling within ±0.1. The distribution is 

systematically centred around zero, and areas of substantial over- or underestimation are 

spatially limited. These two evaluations together evidence that our data maintains robust 760 

agreement with independent observations (i.e., GLAD) both spatially and temporally. While 

similar high-resolution and long-term crop-specific datasets are currently unavailable for maize, 

wheat, and rice across South America, and thus prevent a comparable validation. However, the 

consistency observed in the soybean evaluation provides indirect support for the robustness of 

our spatial allocation framework. Given that the same methodological approach and 765 

harmonized inventory inputs were applied across all four crops, we expect the reconstructed 

patterns for other crop types to similarly reflect plausible spatial and temporal dynamics. 
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Nonetheless, further evaluation using future regional datasets will be essential to assess the 

reliability of crop-specific maps beyond soybean.  

 770 

Figure 13. Temporal variation in soybean density difference between GLAD and this study (2001-2020). 

4.4 Limitations 

        This study provides a set of crop type data with 1 km × 1 km resolution and annual steps 

from 1950 to 2020 in South America. The evaluation at different scales (i.e., provincial, 

municipal, and grid levels) showed that our reconstructed data are comparable to other datasets. 775 

However, some limitations and uncertainties remain in this study. (1) The base maps of 

cropland density and crop types are crucial for constraining the spatial patterns of crops. In 

general, reconstructing historical crop type distributions requires using the present crop type 

distribution as a benchmark to project back into the past. In this study, we used several high-

resolution remote sensing products (i.e., Argentina MNC, MapBiomas, and Uruguay LC) to 780 

construct a base map. However, these datasets do not provide full spatial coverage of South 

America and are limited to specific years, which introduces spatial gaps and temporal 
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inconsistencies across the region. As a result, we selectively supplemented the base map with 

SPAM 2010 in areas where high-resolution products were unavailable, despite its coarser 

resolution. This highlights the pressing need to develop long-term and high-resolution crop 785 

type datasets with consistent spatial and temporal coverage at the regional or global scales. 

Such datasets would greatly enhance the accuracy and reliability of historical crop-specific 

reconstructions. (2) In some countries, historical agricultural census data are limited. Adequate 

historical agricultural census data is the basis for the reconstruction of historical spatial data. 

Although provincial-level data are available in every country, only a few years of data are 790 

accessible in some countries due to inconsistencies in national policies and agricultural census 

years. Even though this data can be reconstructed in various ways (i.e., interpolation) (Li et al., 

2023; Mao et al., 2023), some uncertainties remain. Additionally, national-level trends and 

interpolation methods were used to reconstruct provincial-level data, which to some extent may 

miss internal trends of some provinces. Interannual variability at the provincial level is 795 

generally not fully consistent with that at the national level, and such reconstruction methods 

may introduce some overestimation or underestimation of the results. (3) Cropping practices 

complexity (e.g., crop rotation and multiple cropping) poses a significant challenge for accurate 

crop distribution mapping. These practices can substantially influence both the spatial patterns 

and intensity of agriculture land use. Crop rotation, the practice of growing different crops in 800 

the same field across multiple years, contributes to soil health, pest control, and long-term 
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cropland management. Ye et al., (2024) considered crop rotation to reconstruct the historical 

crop distribution maps for the United States, relying on Cropland Data Layer (CDL) data for 

crop rotation information; however, similar high-resolution products are lacking for South 

America. In addition, Pott et al., (2023) visualized crop rotation information for soybean, maize, 805 

and rice in Rio Grande do Sul, southern Brazil, but it did not sufficiently represent the overall 

rotation patterns across South America. In contrast, multiple cropping involves the cultivation 

of more than one crop within the same year in the same field. This practice is common in 

regions with favourable climate conditions and contributes significantly to agricultural 

intensity. However, our current method does not differentiate between single- and multi-season 810 

cropping systems, which limits its ability to reflect cropping intensity in areas with prevalent 

double and triple cropping. Therefore, future research should focus on crop type mapping in 

South America to obtain crop rotation and multiple cropping patterns, enabling the generation 

of more accurate historical crop-specific maps in subsequent versions. (4) Crop yield was not 

considered in this version of dataset. While harvested area provides valuable insights into land 815 

use patterns, crop yield remains a critical variable for assessing agricultural production and 

food security. Accurately reconstructing historical crop yields would require multiple 

additional factors, including cropping systems (e.g., rainfed or irrigated), input use, farm scale, 

climate and weather data. However, such data are generally unavailable or lack consistency 

across long-term and sub-national scales in South America, particularly before the 2000s. As a 820 
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result, this version of the dataset focuses exclusively on harvested areas. Future developments 

could explore the integration of satellite-derived biophysical indicators (e.g., NDVI, LAI), 

historical production statistics, and climatic data to support the reconstruction of spatial-

temporal yield dynamics. (5) Limitations in representing socioeconomic and environmental 

drivers. While our data provides long-term, annually resolved reconstructions of crop-specific 825 

harvested areas, we did not consider the explicit socioeconomic and environmental drivers such 

as soil conditions, management practices, or market access. However, incorporating such 

factors into a harmonized reconstruction presents considerable challenges. First, long-term, 

high-resolution data on these drivers are unavailable or inconsistently reported across countries. 

Second, the effects of these drivers are typically region-specific, non-linear, and time-lagged, 830 

which poses challenges for systematic modelling. Third, integrating them would require strong 

assumptions, potentially introducing additional uncertainties into the reconstruction. As a result, 

our current framework relies on observed statistical records to ensure internal consistency over 

time but may be less responsive to abrupt cropland shifts induced by major policy or market 

events. Future improvements could explore the integration of these factors into a hybrid 835 

modelling framework (e.g., machine learning or statistical downscaling models such as the 

GAEZ crop suitability layers) to improve the spatial and temporal realism of crop allocation 

patterns. Despite these limitations and uncertainties, this study is still the first attempt at crop 

type reconstruction in South America and has significant implications for analysing the impacts 
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of agricultural expansion on local livelihoods and food security, trade and agricultural support 840 

policies. 

5 Data and code availability 

The developed dataset and codes are available at https://doi.org/10.5281/zenodo.14002960 (Xu 

et al., 2024). The annual and 1-km crop-specific gridded data with GeoTiff format. The state 

mask with shapefile and GeoTiff formats are also provided.  845 

6 Conclusions 

        In this study, we developed spatially explicit crop-specific maps (i.e., soybean, maize, 

wheat, and rice) at a 1 km × 1 km resolution and annual step in South America from 1950 to 

2020 by integrating historical agricultural census data, model-based crop type data, and high-

resolution remote sensing-based crop type data. The results showed that agricultural expansion 850 

has severely encroached on the other vegetation of South America over the past 70 years. 

Specifically, soybean is one of the most dramatically expanded crops increasing from 

essentially zero in 1950 to 48.8 Mha in 2020, resulting in a total loss of 23.92 Mha of other 

vegetation. Additionally, the maize area in South America had increased from 12.7 Mha in 

1950 to 26.9 Mha in 2020, encroaching on a total of 18.35 Mha of other vegetation. In contrast, 855 

the area of wheat and rice kept relatively stable. Compared with existing data, our reconstructed 

https://doi.org/10.5281/zenodo.14002960
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data have higher spatial and temporal resolution which can better capture the dynamics of crop 

type changes during the historical period. Overall, this newly developed data can be used to 

assess the impacts of agricultural expansion on greenhouse gas emissions, ecosystem services, 

biodiversity loss, and to guide the formulation of land management and conservation policies 860 

for sustainable agricultural development and ecological conservation. 
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