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Abstract. South America is a global hotspot for land use and land cover (LULC) change,
marked by dramatic agricultural land expansion and deforestation. While previous studies have
documented land use and land cover changes in South America over recent decades, there is
still a lack of spatially explicit, time series maps of crop types that capture shifts in crop
distribution. Therefore, developing high-resolution, long-term, and crop-specific datasets is

crucial for advancing our understanding of human-environment interactions and for assessing
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the impacts of agricultural activities on carbon and biogeochemical cycles, biodiversity, and
climate. In this study, we integrated multi-source data, including high-resolution remote
sensing data, model-based data, and historical agricultural census data, to reconstruct the
historical dynamics of four major commodity crops (i.e., soybean, maize, wheat, and rice) in
South America at annual time scale and 1 km % 1 km spatial resolution from 1950 to 2020. The
results showed that soybean and maize cultivation expanded rapidly in South America by
encroaching on other vegetation (i.e., forest, pasture/rangeland, and unmanaged
grass/shrubland) over the past 70 years, whereas wheat and rice areas remained relatively stable.
Specifically, soybean is one of the most dramatically expanded crops, increasing from
essentially zero in 1950 to 48.8 Mha in 2020, resulting in a total loss of 23.92 Mha of other
vegetation. In addition, the area of maize increased by a factor of 2.1 from 12.7 Mha in 1950
to 26.9 Mha in 2020. The newly developed crop type dataset provides important insights for
assessing the impacts of cropland expansion on crop production, biodiversity, greenhouse gas
emissions, and carbon and nitrogen cycles in South America. Moreover, these data are
instrumental for developing national policies, sustainable trade, investment, and development
strategies aimed at securing food supply and other human and environmental objectives in
South America. The datasets are available at https://doi.org/10.5281/zenodo.14002960 (Xu et

al., 2024).
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1 Introduction

South America is of critical importance due to its substantial contribution to global
agriculture, which is essential for meeting the world’s growing food demand (Ceddia et al.,
2014; Hoang et al., 2023). Cropland expansion in this region has been a significant driver of
land-use transformation, particularly through deforestation, with profound effects on
ecosystems and biogeochemical processes (Song et al., 2021; Zalles et al., 2021). As one of the
main types of land use and land cover (LULC), cropland plays a crucial role in supporting
human nutritional needs and ensuring food security (He et al., 2017; Yu and Lu, 2017).
However, to meet the growing demand for food and fiber driven by population growth and
consumption patterns, cropland has increasingly encroached on natural vegetation (Winkler et
al., 2021). Additionally, economic and policy factors have reshaped crop cultivation structures
across the region (Cheng et al., 2023; Mueller and Mueller, 2010; Song et al., 2021). These
changes are driven by a combination of trade dynamics, investment flows, and market
concentration (Boyd, 2023; Clapp, 2021). As a result, the transformation of crop types has
occurred, weakening the resilience of agroecosystems and contributing to biodiversity loss
(Frison et al., 2011; Renard and Tilman, 2019). In response to these challenges, the
international community has increasingly emphasized the need to align agricultural systems
with climate mitigation and food security goals (ICJ, 2025). Therefore, an improved

understanding of the spatial distribution and historical dynamics of crop types is urgently
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needed to assess the impacts of cropland expansion and crop pattern shifts across South
America. Such insights are crucial for evaluating the environmental and socio-economic
consequences of cropland expansion, particularly in terms of its impact on climate, ecosystems,
and food security.

Agriculture in South America has experienced significant changes driven by agricultural
policies, socio-economic shifts, and technological innovations after the 1950s (Altieri, 1992;
Ceddia et al., 2014; Zalles et al., 2021). These changes have not only reshaped regional
economies, as in other historical periods of agrarian reform, but have also been justified by
global food security goals, alongside such other important drivers as trade relationships,
investors, subsidies, and debt serving goals (Boyd, 2023; OAS, 2024). In this context, crop
cultivation has shifted from traditional crops to high-yield and high-demand commodity crops,
reflecting both the increasing global demand for food and fuel, as well as the urgent need to
enhance agricultural efficiency and yields (Garrett et al., 2013; Meyfroidt et al., 2014).
Specifically, the major commodity crops (i.e., maize, soybean, wheat, and rice) have become
the core of agricultural production in South America (FAO, 2020). The cultivation of these
crops has not only significantly boosted food production in the region but also secured a strong
position for many producers in the global food market. After the 1950s, countries in South
America (e.g., Bolivia, Brazil, Chile, Colombia, Ecuador, and Peru) undertook land reforms to

reduce land concentration and promote agricultural production (De Janvry et al., 1998), which
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significantly affected land use outputs and efficiency and laid a substantial foundation for the
development of agriculture (De Janvry et al., 1998; Munoz and Lavadenz, 1997). After the
1980s, neoliberal economic reforms were further carried out in South America, accelerating
the ongoing agricultural modernization (Chonchol, 1990) and greatly facilitating the
cultivation of soybeans by eliminating price controls and export restrictions on agricultural
products (Campos Matos, 2013). Since the 2000s, soybeans have continued to grow
dramatically due to global demand, technological advances, economic subsidies and other
supportive policies (de LT Oliveira, 2017; Song et al., 2021). This growth has further bolstered
the expansion of maize cultivation, driven by the promotion of maize-soybean cropping
systems and the adoption of direct seeding, no-tillage practices, and double cropping (Klein
and Luna, 2022). In comparison, the area under wheat and rice cultivation has remained
relatively stable. Although there is a growing demand for wheat, its market price is less
fluctuating, leading farmers, farm managers, and investors to prefer crops with higher market
returns (Erenstein et al., 2022). Meanwhile, rice primarily serves domestic demand rather than
being export-oriented (Dawe et al., 2010). Despite government reports and documents that have
recorded changes in the dynamics of agriculture in South America over the past few decades,
there is still a lack of spatially explicit and time-series maps of historical crop types that reflect

changes in crop distribution. This deficiency makes it difficult to fully understand the spatial
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and temporal evolution of major commodity crops and hinders understanding of their impacts
on environmental changes.

Many efforts have produced commodity crop maps at regional or global scales. For
example, datasets such as the Spatial Production Allocation Model (SPAM) (Yu et al., 2020),
M3 (Monfreda et al., 2008), and CROPGRIDS (Tang et al., 2023) offer valuable solutions by
providing detailed crop type information based on the census data and spatial allocation
algorithms. SPAM, for instance, provides data on crop area, yield, and production for 42 major
crops at a spatial resolution of 5 arcmin under four farming systems. However, these datasets
have a coarse spatial resolution and are available for only a few years, which makes it
challenging to accurately characterize the spatial-temporal distribution of crop types at finer
scales (Becker-Reshef et al., 2023; Ye et al., 2024). In contrast, with the continuous evolution
of remote sensing technologies, high-resolution data were increasingly being used to develop
fine-scale crop type maps. For example, Song et al., (2021) developed annually updated
soybean maps with a 30 m resolution for South America from 2000 to 2023 using all Landsat
and MODIS images and a probability sample of continental field observations. MapBiomas
also provides high-resolution crop type maps for Argentina, Brazil, and Uruguay, covering the
period from 1985 to the present (De Abelleyra et al., 2020; Petraglia et al., 2019; Souza and
Azevedo, 2017). However, these existing datasets are available only at partial national or local

scales, cover only a single crop type, or lack rigorous validation. Furthermore, most remote



125

130

135

140

sensing data dates back only to 1985, making it challenging to depict crop dynamics further
back. Therefore, it is imperative to develop high-resolution and time-series crop type data for
driving terrestrial ecosystem models to quantify the impact of crop dynamics on ecosystems
and climate. Such an dataset will draw on innovations in earth science and data use to contribute
to related fields that address the “advance of the agricultural frontier” in South America, and
its implications for human-environmental interactions (Liu et al., 2007; OAS, 2024).

In this study, we aim to develop an annual and 1-km crop-specific (i.e., soybean, wheat,
maize, and rice) gridded data for South America from 1950 to 2020 by integrating agricultural
census data, and remote sensing-based and model-based crop type distribution maps. This
study focuses on understanding how the spatial-temporal patterns of these four commodity
crops have evolved over the past seven decades and how these changes have influenced land-
use transitions in South America. The dataset is designed to support research on agricultural
land-use change, its ecological impacts, and food security, offering insights into the effects of
agricultural expansion on deforestation, biodiversity loss, and greenhouse gas emissions. It
provides critical information for policymakers, researchers, and stakeholders engaged in
sustainable agriculture, thereby assisting in the development of strategies that balance

agricultural production with environmental conservation.
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2 Materials and method

2.1 Study area

This study aims to reconstruct crop type (i.e., soybean, wheat, maize, and rice) data at
annual and 1 km resolution from 1950 to 2020 in South America using the high-resolution
remote sensing-based crop type data, model-based crop type data, and historical agricultural
census data. We focused on generating data for the 13 countries in South America, including
Argentina, Bolivia, Brazil, Chile, Colombia, French Guiana, Ecuador, Guyana, Paraguay, Peru,
Suriname, Uruguay, and Venezuela (Figure 1). Considering the data availability, we excluded
the Falkland Islands and South Georgia and the South Sandwich Islands. We used GADM
version 4.1 level 1 administrative units (i.e., province-level) as the basic unit for this study,
which included a total of 243 administrative units (Table S1). Moreover, to maintain
consistency with historical agricultural census data, some administrative units were regrouped
and merged for area calibration. Specifically, we merged Buenos Aires and Ciudad de Buenos
Aires in Argentina; Bogotd D.C. and Cundinamarca in Colombia; Asuncion and Central in
Paraguay; Callao, Lima, and Lima Province in Peru; and all regions together in French Guiana.
Ultimately, a total of 237 administrative units were used to reconstruct historical cropland

density and crop type data (Table S1).
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Figure 1. Geopolitical and administrative divisions of South America.

160 2.2 Workflow

The structure of this paper includes three main sections (Figure 2). The first section

provides a detailed description of the input data and methods. The second section performs a
comprehensive analysis of the spatial and temporal characteristics of four major commodity
crops over the past seven decades. The third section compares the results of this study with

165 other existing datasets and analyses the driving forces and uncertainties associated with the

reconstructed data.
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Figure 2. The flow chart of this study. CNA refers to Census National Agriculture.

2.3 Input data

2.3.1 Gridded datasets and preprocessing

In this study, we used both remote sensing-based and model-based LULC and crop type
data to generate cropland density maps and crop type base maps in South America. As shown
in Table 1, CGLS-LC100, GLC FCS30D, and HYDE 3.2 were used to generate cropland

density maps. SPAM 2010, GEOGLAM, GLAD, Argentina MNC, MapBiomas, and Uruguay

10



175 LC were used to generate base maps for crop types, and HILDA+ was used for land use

transition analysis.

Table 1. The datasets used in this study. C: cropland; M: maize; R: rice; S: soybean; W: wheat. For data sources,
please refer to Table S3.

Category
Dataset Resolution Year range Reference
used
100 m, global (Buchhorn et al.,
CGLS-LC100 2015-2019 C
Annual 2020)
30 m, global
) (Zhang et al.,
GLC FCS30D 5-year interval (1985 - 2000) 1985 - 2022 C 2024)
Annual (2000 - 2022)
5 arcmin, global (Klein Goldewijk
HYDE 3.2 ) 1950 - 2000 C
10-year interval etal., 2017)
1 km, global 8 (Winkler et al.,
HILDA + 1899 - 2019
Annual categories 2021)
M, R, S,
SPAM 2010 5 arcmin, global 2010 W (Yu et al., 2020)
Integration of
crop type data (Becker-Reshef et
GEOGLAM 0.05 degree, global M
from 2010 to al., 2023)
2020
30 m, all major biomes where
GLAD soybeans are cultivated in 2020 S (Song et al., 2021)
South America, annual
(De Abelleyra et
Argentina MNC 30 m, Argentina 2020 S,M, R
al., 2020)
(Souza and
MapBiomas 30 m, Brazil 2020 S

Azevedo, 2017)

11
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(Petraglia et al.,

Uruguay LC 10 m, Uruguay 2018 R
2019)

Copernicus Global Land Service Land Cover Map (CGLS-LC100): CGLS-LC100 is a
newly developed global LULC dataset with 100 m spatial resolution from 2015 to 2019,
containing 23 land use types (Buchhorn et al., 2020). This product uses PROBA-V 100m time-
series data and high-quality land cover training samples to construct a land cover classification
model with 80% accuracy at Level 1. It has been compared to other popular LULC products
and proven to perform better, making it a good choice for generating a base map for cropland
density maps (Tsendbazar et al., 2019).

Global 30 m Land Cover Dynamics Monitoring Dataset (GLC_FCS30D): GLC_FCS30D
is a global land cover product with a 30 m resolution based on continuous change detection
algorithms (Zhang et al., 2024). It uses a detailed classification system containing 35 land cover
classes, covering the period from 1985 to 2022. The update cycle is 5 years before 2000 and
annually after 2000. Moreover, it combines a continuous change detection algorithm, local
adaptive classification models, and a spatial-temporal refinement method for dense time series
to describe the land cover dynamics, verifying that the overall accuracy of the basic
classification system for the 10 major land cover types exceeds 80%.

The History Database of the Global Environment (HYDE version 3.2): HYDE 3.2 uses a

spatial allocation algorithm to generate spatially explicit maps from 10,000 BCE to 2017 CE

12
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by integrating historical statistical data with recent satellite information (Klein Goldewijk et
al., 2017). It includes cropland (irrigated and rain-fed crops, and irrigated and rain-fed rice),
grazing land (pasture and rangeland), and population maps with 5 arcmin spatial resolution.
Numerous studies have demonstrated that HYDE 3.2 provides an excellent basis for
reconstructing cropland density for historical periods (Li et al., 2023; Mao et al., 2023).

Historic Land Dynamics Assessment + (HILDA+): HILDA+ is a comprehensive global
dataset designed to track changes in land use and cover from 1899 to 2019 at a spatial resolution
of 1 km (Winkler et al., 2021). This dataset is notable for integrating multiple datasets,
including high-resolution remote sensing data, land use reconstructions, and long-term
statistical records. HILDA+ captures the dynamics of various land use categories, such as urban
areas, cropland, pasture/rangeland, forests, unmanaged grass/shrublands, and areas with sparse
or no vegetation.

Spatial Production Allocation Model (SPAM 2010): SPAM 2010 integrates high-
resolution remote sensing data and agricultural statistics to generate a comprehensive product
of crop area, yield, and production (Yu et al., 2020). This dataset enhances previous models by
including data for 42 major crops under four different farming systems across a global 5 arc-
minute grid. SPAM2010 addresses the limitations of administrative-level agricultural statistics
by disaggregating them to a finer spatial resolution, thereby revealing the diversity and spatial

patterns of agricultural production.

13
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Group on Earth Observations Global Agriculture Monitoring (GEOGLAM): GEOGLAM
is a global and up-to-date crop type map at 0.05-degree spatial resolution for four major
commodity crops: wheat, maize, rice, and soybeans (Becker-Reshef et al., 2023). The
development process involved extensive dataset selection and unification, considering factors
such as seasonality, spatial resolution, accuracy, and data source specificity. These criteria
ensure that the final maps are both accurate and useful for operational agricultural monitoring.

Global Land Analysis & Discovery (GLAD): GLAD provides soybean maps with a 30 m
resolution for South America covering the period from 2000 to 2023 (Song et al., 2021). The
products were derived by integrating all Landsat and MODIS images captured during the
growth stage of soybeans. GLAD soybeans maps cover all major biomes in South America
(i.e., Pampas, Chiquitania, Chaco, Cerrado, Atlantic Forest, Amazonia, and the Pantanal and
Caatinga biomes). Validated using a probability sample of field observations across the
continent, the GLAD soybean maps have an overall accuracy exceeding 94% with both high
user’s and producer’s accuracy.

MapBiomas provides land use and land cover maps with a 30 m resolution for Argentina,
Brazil, and Uruguay, which include the major land use and cover types, as well as some crop-
specific information (e.g., soybean and rice). Argentina MNC provides detailed crop type maps
(e.g., soybean, maize, and rice) with a 30 m resolution for Argentina from 2018 to 2022 (De

Abelleyra et al., 2020). The data was generated by supervised classification of Landsat-8

14
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observations using a random forest classifier to independently classify different agricultural
zones, achieving an overall accuracy exceeding 80% for both summer and winter crops.
MapBiomas Brazil was generated using all available Landsat observations covering from 1985
to 2022 and processed in Google Earth Engine, achieving an overall accuracy of around 80%
in most biomes at Level 1 (Souza and Azevedo, 2017). Integrated Land Cover/Use Map of
Uruguay (Uruguay LC) was also generated in 10 m resolution with crop-specific information
in 2018 (Petraglia et al., 2019).

To reconstruct the historical cropland and crop type dynamics, all datasets needed to be
preprocessed. First, the high-resolution datasets (i.e., CGLS-LC100, GLC FCS30D, GLAD,
Argentina MNC, MapBiomas, and Uruguay LC) were aggregated to a 1 km resolution to attain
the fractional cropland and crop type. Second, HYDE3.2, SPAM2010, and GEOGLAM were
resampled to 1 km spatial resolution using the bilinear method. Finally, the projection of all
datasets was transformed into WGS84 for further analysis, with all processes carried out in

Google Earth Engine.

2.3.2 Inventory datasets

The inventory datasets were collected at three levels: national, provincial, and municipal.
The national data mainly come from the Food and Agriculture Organization (FAO), while the
provincial and municipal data primarily come from agriculture censuses released by

governments (Table 2). Eventually, a total of 136 provincial-level statistics on LULC and crop-

15



specific information from 13 countries were collected and sorted to reconstruct historical crop-
255 specific areas at the provincial level. Additionally, 10 municipal-level statistics were used to

evaluate the crop-specific maps generated in this study.

Table 2. The inventory datasets used in this study. NAT: National, PRO: Provincial; MUN: Municipal; C:

cropland; M: maize; R: rice; S: soybean; W: wheat; P: Production. CNA: National Agricultural Census; INDEC,

INE, IBGE, and INE are the national statistics and census bureaus of the corresponding countries. Due to the large
260 number of data sources, detailed information is provided in Table S3.

Country Resolution Year range Category Source
PRO, MUN INDEC
Argentina 1960 - 2018 C,M,R,S, W
5-to 10-year interval CNA
PRO
1950 - 2020 M,R,S, W
Annual (1984 -2022) INE
Bolivia
PRO 1950, 1984, 2013 C CNA
MUN 1950 C,M,R,S, W
PRO
) 1940 - 2006 P
5-to 10-year interval
IBGE
Brazil PRO
1970 - 2017 C,M,R, S, W CNA
5-to 10-year interval
MUN 1995, 2017 C,M,R,S, W
PRO
1997 - 2020 C,M,R,S, W INE
Chile 10-year interval
CNA
MUN 2007 C, MR, S, W
PRO
5-year interval (1996 - 2011) 1960 - 2019 C,M,R, S, W
Colombia CNA
Annual (2011 - 2019)
MUN 1960 M, R
PRO
Ecuador 1995 - 2020 C,M,R, S, W CNA
10-year interval

Guyana CNT 1960 - 2016 R CNA

16



Annual

PRO
1994 - 2016 R
Annual (2007 - 2016)
PRO 2008, 2020 C
Paraguay PRO CNA
1991 - 2020 M,R,S, W
Annual (2000 - 2022)
PRO 1929, 1993 M,R,S, W
Peru CNA
PRO 2012 C
PRO 1995, 2008 M,R,S, W
Suriname CNA
PRO 2008 C
Uruguay PRO 1990, 2000 M,R,S, W CNA
Venezuela PRO 1995 M, R CNA
Global NAT 1961 - 2020 C,M,R,S, W FAO

2.4 Generating cropland density maps

We used both grided and inventory datasets to generate cropland density maps at a

resolution of 1 km X 1 km, covering the period from 1950 to 2020 (Figure 2). All gridded

datasets used in this section were first aggregated to a common spatial resolution of 1km. All
265 subsequent operations, including trend operation, interpolation, and cropland density
adjustment, were performed at this resolution to ensure spatial consistency. Specifically, the
reconstruction process consists of the following steps: (1) the reconstruction of a total cropland
area at the provincial level covers the period from 1950 to 2020. In this step, we mainly used
two complementary interpolation approaches: ratio-based interpolation and linear interpolation.

270  For years with available national-level cropland area but missing provincial-level cropland area,
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we estimated provincial-level cropland area by scaling the nearest known provincial-level
cropland area according to the relative change in national-level cropland area (Equation 1).
This assumes that provincial-level changes follow the same relative trend as those observed on
the national scale. From 1961 to 2020, national cropland areas from FAO were used to calculate
annual change rates. For years prior to 1961, we relied on agricultural census records or HYDE
data. In cases where neither provincial nor national cropland areas were available, we applied
linear interpolation between known provincial cropland areas. Since data availability and
reference years differ across countries, the reconstruction was performed separately for each
country. (2) Second, we generated the potential cropland density maps with a resolution of 1

km X 1 km from 1950 to 2020. Based on the definitions of various datasets and a comparison

of total cropland area at the provincial level, we selected CGLS-LC100 (2015-2019), GLC
FCS30D (1985-2022), and HYDE (1950-1990) as sources to generate potential cropland
density maps (Table S1 & S2 & Figure S1). Since CGLS-LC100 and the reconstructed cropland
area exhibit high agreement at the provincial level (R’ = 0.92, RMSE = 0.46 Mha), we choose
CGLS-LC100 as the baseline data for generating the potential cropland density maps. To
extend cropland density maps prior to the availability of CGLS-LC100, we employed a
backward projection method using GLC FCS30D and HYDE. Specifically, we selected
CGLS-LC100in 2015 as the base map for GLC_FCS30D, and 1990 as the base year for HYDE

due to its decadal resolution. We then projected cropland density backward by applying annual

18
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or decadal fractional changes from these two datasets to their respective base maps.
Accordingly, we applied the following rules to handle dataset integration: (a) GLC FCS30D >
0, CGLS LC100 > 0: The relative change in cropland density between the years (e.g., 2014 to
2015 from GLC FCS30D) was applied directly to the corresponding CGLS-LC100 grid cell;
(b) GLC_FCS30D >0, CGLS-LC100 = 0: The product of any change rate and zero yields zero;
thus, the cropland density for that year and grid cell remained zero; (c) GLC FCS30D = 0,
CGLS-LC100 > 0: This implies no recorded change in cropland presence; thus, the CGLS-
LC100 value was retained without adjustment. A similar method was applied when using
HYDE to reconstruct cropland density maps prior to 1985, with decadal change rates applied
to the 1990 baseline. Since HYDE provides data at decadal intervals, we applied linear
interpolation to fill in the annual gaps between 1950 and 1985 on a grid-by-grid basis. (3) Third,
we adjusted the potential cropland density maps using reconstructed provincial-level cropland
area to obtain an annual cropland density map between 1950 and 2020 (Equation 2). If the
cropland density of a grid is less than O or greater than 1, we assign it a value of 0 or 1,
respectively. This adjustment process is repeated until the difference between the adjusted area

and the total cropland area at the provincial level is less than 100 ha.

Reference data.;

CropArea.s; = CropArea s ;,; X (D)

Reference data j4j
where, CropAreacs;and CropAreacs,i+ are the reconstructed cropland area of province s in

country c in year i and i + j; Reference data.;and Reference data.i+; are the reference values
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for the total cropland area in country ¢ in year i and i + j, respectively. Between 1961 and 2020,
the value of j is 1; While before 1961, the value of j corresponds to the year difference in the

reference data.

(TotalArea— Y} Gridy)
n

G‘ridk' = Gridk +

2
where, Gridy' is the adjusted cropland density for the kth grid, Grid is the potential cropland

density, TotalArea is the reconstructed cropland area at the provincial level, and » is the total

number of valid crop grids (cropland density > 0) in a province.

2.5 Generating gridded crop-specific maps

2.5.1 Building crop-specific base map for the year 2020

We set 2020 as the base year and generated the base map of four commodity crops (i.e.,
maize, rice, soybean, and wheat) by integrating multiple remote sensing-based and model-
based datasets. First, considering that high-resolution crop distribution maps do not cover the
whole of South America, we used the resampled SPAM2010 data to generate the initial base
map. We then replaced the corresponding regions with higher-resolution data available for
around 2020. Specifically, the base map for maize was generated from Argentina MNC (2020)
and SPAM (2010). The base map for soybean was generated from Argentina MNC (2020),
MapBiomas (2020), GLAD (2020), and SPAM (2010). The base map for rice was generated

from Uruguay LC (2018), Argentina MNC (2020), and SPAM (2010). The base map for wheat
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was generated from GEOGLAM (2020). Finally, we used reconstructed crop-specific

harvested area in 2020 at the provincial level to further adjust the base map (Equation 2).
2.5.2 Reconstructing the annual crop-specific harvested area at the provincial level

Long-term historical crop-specific harvested areas at the provincial level were
reconstructed from 1950 to 2020 using multiple sources of historical inventory data (Table 2).
The detailed reconstruction processes are described below. First, the time series of crop-
specific harvested areas at the provincial level were obtained from the National Agricultural
Census (CNA), the national statistics office (e.g., INDEC, IBGE, and INE, etc), and literature.
Second, anomaly values in the time-series of crop-specific harvested area were identified and
removed through visual inspection, based on the assumption that harvested area typically
follows a gradual upward or downward trend over time. Years with abrupt deviations
inconsistent with adjacent values were flagged as potential anomalies. Third, the FAO trend
was used to fill the gaps between 1961 and 2020 (Equation 1). Fourth, in countries where
harvested area statistics were unavailable, crop-specific harvested areas were reconstructed
using production data, based on the strong correlation between production and harvested area
(R> = 0.92, Equation 3). Specifically, in Brazil from 1950 to 1970, provincial-level crop
production data were used to estimate harvested areas, as no public statistics data were

available during this period. For countries with no available data before 1961, we maintain
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consistency by using the data from 1961. Finally, the liner interpolation was used to fill the

crop-specific harvested area with the missing values.

Prod i
CTArea.,; = CTArea.s;,; X =2

3)

PTOdC,S,i+j
where, CTArea.s; and CTArea.s,+; are the reconstructed crop-specific harvested area of
province s in country ¢ in year i and i + j; Prod.s; and Prod.,+; are the crop production of

province s in country c in year i and i +j.
2.5.3 Spatializing provincial-level data to generate annual crop-specific maps

The reconstructed crop-specific harvested area at the provincial level was spatially
allocated to the grid level based on the generated crop-specific base map and annual cropland
density to obtain 1 km crop-specific maps from 1950 to 2020. Specifically, we took 2020 as
the baseline and used the ratio of cropland density between two adjacent years to obtain the
density of the crop-specific harvested area in the previous year (Equation 4). We assumed that
the inter-annual trend in crop-specific harvested area is consistent with the trend in area changes
in cropland density. To ensure that the allocated area is consistent with the total harvested area
at the provincial level, we further adjusted the allocated crop-specific harvested area using

Equation 2.

CropDensityy;_q

CTDensityy ;—4 = X CTDensityy ; 4

CropDensityy ;
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where, CTDensityr.1 and CTDensityy; are the density of crop-specific harvested area for the
kth grid in years i and i-/; CropDensityii.1 and CropDensityy,; are the cropland density for the

kth grid in years i and i-/.

2.5.4 Analyzing crop-specific land-use transitions

To assess the transitions between land use and specific crop types, we first converted the
annual crop-specific density maps into Boolean crop-type maps for each year from 1950 to
2020, following the method described by (Li et al., 2023). For each crop and year, grid cells
were ranked in descending order based on crop-specific density. Boolean values (presence =1,
absence = 0) were then assigned to the top-ranked grid cells until the cumulative area matched
the reconstructed provincial-level harvested area within a 100-hectare margin. This allocation
was performed sequentially for soybean, maize, wheat, and rice, based on the availability and
reliability of high-resolution crop-specific datasets. In particular, soybean and maize were
prioritized because they are supported by well-validated spatial products (e.g., GLAD and
Argentina MNC), which offer a reliable basis for anchoring the allocation and maintaining
spatial consistency with observed crop distributions. To identify land-use transitions associated
with specific crops, we overlaid the annual Boolean crop-type maps with the annual land-use
maps from the Historic Land Dynamics Assessment + (HILDA +) (Winkler et al., 2021). This
spatial overlay allowed us to determine which crop types occupied areas that had been newly

converted cropland in a given year. It is important to note that this approach assumes that the
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spatial allocation based on crop-specific density rankings reflects the dominant crop type
established after cropland conversion. While this process introduces some uncertainty, the
method offers a consistent and spatially explicit framework for attributing land-use change

processes to specific crops in the absence of pixel-level crop rotation data.

2.6 Accuracy assessment

We performed accuracy assessments using three strategies: (1) comparing crop-specific
areas derived from existing gridded products with those from this study at the provincial level.
To ensure the reliability of the assessment, we used data from years not included as inputs,
serving as an independent reference for the evaluation (i.e., MapBiomas (2000, 2005, and
2010), SPAM (2000 and 2005), GEOGLAM (2020), GLAD (2005 and 2010), and Brazil
Conba (2017 — 2020, Table S3)). (2) validating reconstructed crop-specific maps in this study
with crop-specific areas collected from agricultural censuses at the municipal level. (3)
performing visual comparisons using existing remote sensing-based high-resolution data
(Argentina MNC, GLAD, Uruguay LC, and WorldCereal) at the grid level. This process is
primarily evaluated by calculating the difference between the fraction of our developed data
and the fraction of other datasets within each grid. Given the limited availability of high-
resolution data, we began by comparing data from around 2020 (i.e., Argentina MNC (2020),
Uruguay LC (2018), and WorldCereal (2021)). Additionally, GLAD data (2001, 2010, and

2020) were used for long-term series comparisons. For evaluation at the provincial and
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400 municipal levels, we used the coefficient of determination (R, Equation 5), Normalized Root
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415

Mean Square Error (nRMSE, Equation 6), and slope (Equation 7) to quantify the performance
of our developed crop-specific data relative to other datasets. Higher R2 values, lower nRMSE,
and slope closer to 1 indicate better agreement between actual and estimated crop-specific areas,

and vice versa.

2 _ 4 _ 2 O—yi)?
RE=1 Limq (xi—%)? ®)
/%Z?=1(xi_ yi)?
nRMSE = s (6)
SlOpe — Zizl(xi_f)(yi_y) (7)

2?:1(7511_3?)2
Where n represents the number of samples; x; and y; are the actual and estimated crop-specific

areas for the ith sample; and X and y represent the average of the actual crop-specific areas.

3 Results

3.1 Dynamics of crop types from 1950 to 2020 in South America

Figure 3 shows the spatial pattern of soybean, wheat, maize, and rice from 1950 to 2020
in South America. Overall, there has been a significant increase over time in the area and
density of cultivation for all major crops. Soybean and maize have expanded significantly in

Argentina and Brazil. Specifically, soybean was practically not cultivated in South America in
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1950, with small amounts starting to appear in 1980. After 2000, soybean cultivation increased
significantly, covering large areas in central and southern Brazil and central Argentina. Maize
was initially cultivated mainly in central Argentina, southern Brazil, and northern Colombia
and Venezuela. The extent and density of maize cultivation gradually increased, showing a
trend of expansion from south to north. Rice is cultivated in a relatively small area in South
America, mainly in Uruguay, northern parts of Colombia and Venezuela, and in the Brazilian
states of Maranhao, Tocantins, and Rio Grande do Sul. Except for an increase in the extent of
cultivation around 1980, there has been relatively little change in the rest of the years. Wheat
is more concentrated in southern South America, including the provinces of Buenos Aires,
Cordoba, and Santa Fe in Central Argentina; Rio Grande do Sul in southern Brazil; and
Araucania, Biobio in central Chile. Between 1950 and 2020, the extent of wheat cultivation
has remained relatively stable. Additionally, we calculated the changes in the total area of
different crops in different countries and the entire South America (Figure 4 & Figure S2).
Soybean is the crop with the most rapid change in the area, growing from 0.08 Mha in 1950 to
48.8 Mha in 2020, an increase of 610 times. The area of maize showed a slow growth trend
until 2000, increasing from 12.7 Mha in 1950 to 16.5 Mha in 2000. Since 2000, the growth rate
has gradually increased, reaching a total area of 26.9 Mha in 2020, with an average annual
growth rate of 6.8 times higher than that of the pre-2000 period. The area of rice increased

gradually before 1980, growing from 3.2 Mha in 1950 to 6.7 Mha in 1980, followed by a
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435 gradual decline, falling back to 3.8 Mha by 2020. In contrast, wheat is relatively stable,
increasing slightly from 7.6 Mha in 1950 to 7.9 Mha in 2020. At the country level, Brazil has
the largest area of soybean, maize, and rice, while Argentina has the largest area of wheat.
These trends reflect the significant agricultural transformations in South America. The rapid
growth in soybean and maize cultivation is especially notable, aligning with global shifts in

440 commodity markets, while rice and wheat have shown more moderate changes over time.
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Figure 3. The spatial pattern of soybean, maize, rice, and wheat from 1950 to 2020. The first, second, third, and
fourth rows represent the crop-specific fraction of soybean, maize, rice, and wheat. Crop-specific density

represents the proportion of a given crop within each 1 % 1 km grid.
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Figure 4. Temporal changes in crop-specific areas in South America during 1950-2020.

3.2 Crop-specific land-use transitions

Over the past 70 years, soybean and maize have expanded dramatically through
encroachment on other vegetation, including forest, pasture/rangeland, and unmanaged
grass/shrubland (Figure 5 & Table 3). Specifically, 24.49 Mha of the forest was converted to
the four major crops. Additionally, 13.82 Mha of pasture/rangeland, 11.26 Mha of unmanaged
grass/shrubland, and 0.20 Mha of sparse/no vegetation were also converted. Most of this
conversion was to soybean, accounting for 23.92 Mha, which represents 48.1 % of the total
converted area. Regarding crops, different types exhibit varying extents of spatial expansion

and encroachment on other vegetation. The total area of soybean encroaching upon forest,
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pasture/rangeland, and unmanaged grass/shrubland was 12.26 Mha, 5.26 Mha, and 6.39 Mha,
respectively. The growth rate of encroachment upon forests increased rapidly from 0.05
Mha/year in 1950-1980 to 0.32 Mha/year in 2000-2020. In terms of spatial distribution,
soybean encroachment occurred mainly in the Brazilian provinces of Mato Grosso, Parana, and
Rio Grande do Sul, as well as southeastern Paraguay and central Bolivia for forests; in eastern
Argentina and parts of Brazil for pasture/rangeland; and at the confluence of the provinces of
Maranhdo, Piaui, and Bahia for grasslands. On the other hand, the total area of maize
encroachment from forest, pasture/rangeland, and unmanaged grass/shrubland was 9.22 Mha,
5.44 Mha, and 3.57 Mha, respectively. The growth rate of encroachment from forests increased
from 0.13 Mha/year in 1950-1980 to 0.36 Mha/year in 2000-2020. The spatial pattern of maize
encroachment was similar to that of soybean. The expansions of other crops are smaller in area
compared to soybeans and maize, and more dispersed in their spatial distribution. Overall,
cropland expansion led to significant reductions in other vegetation, with the most dramatic

increase occurring in staple crops, particularly soybean and maize.
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Figure 5. Spatial pattern of transitions between LULC and crop-specific areas from 1950 to 2020. (a) 1950 —
1980; (b) 1980 — 2000; (c) 2000 — 2020; (d) 1950 — 2020. Pasture: pasture/rangeland; Shrub: unmanaged

grass/shrubland.
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Table 3. Statistics of transition areas in South America from 1950 to 2020 (Unit: Mha).

Transition types
1950 - 1980 1980 - 2000 2000 - 2020 1950 - 2020

Past Present
Soybean 1.43 1.92 6.47 12.26
Maize 4.00 3.07 7.26 9.22
Forest Wheat 1.14 0.38 1.16 1.76
Rice 1.11 0.88 0.80 1.25
Sub-total 7.68 6.25 15.69 24.49
Soybean 0.87 1.00 2.81 5.26
Maize 3.35 2.94 5.04 5.44
Pasture/rangeland Wheat 1.75 1.27 1.59 2.08
Rice 1.30 1.34 1.30 1.04
Sub-total 7.27 6.55 10.74 13.82
Soybean 0.92 0.49 1.03 6.39
Maize 2.00 0.82 1.76 3.57
Unmanaged
Wheat 1.07 0.64 0.59 0.91
grass/shrubland
Rice 0.99 0.14 0.25 0.39
Sub-total 4.98 2.09 3.63 11.26
Soybean 0.00 0.00 0.00 0.01
Maize 0.10 0.07 0.08 0.12
Sparse/no
Wheat 0.01 0.01 0.01 0.01
vegetation
Rice 0.02 0.02 0.03 0.06
Sub-total 0.13 0.10 0.12 0.20
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3.3 Evaluation of the crop-specific maps

3.3.1 Evaluation against existing datasets at the provincial level

We compared the crop-specific areas (i.e., soybean, wheat, maize, and rice) derived from
existing datasets with the crop-specific maps developed in this study at the provincial level
(Figure 6). We used gridded datasets that were not involved in the base map generation to
ensure independence form the reconstruction process, including MapBiomas (soybean and rice
in 2000, 2005, and 2010), SPAM (soybean, wheat, maize, and rice in 2000 and 2005),
GEOGLAM (soybean, maize, and rice), GLAD (soybean in 2005 and 2010), and Brazil Conab
(soybean and rice from 2017 to 2020). The soybean areas from this study are consistent with
Brazil Conab (Figure 6a: R’ = 1, slope = 1.38) and SPAM (R’ = 0.96, slope = 1.15) but lower
than those from MapBiomas (R? = 0.99, slope = 1.41), GEOGLAM (R’ = 0.92, slope = 1.49),
and GLAD (R?=0.91, slope = 1.56). The wheat areas from this study are consistent with SPAM
(Figure 6b: R’ = 0.93, slope = 1.15). The maize areas from this study are generally consistent
with SPAM (Figure 6¢: R? = 0.94, slope = 1.01). However, they differ significantly from those
of GEOGLAM (R’ = 0.65, slope = 3.36). For rice, the areas from this study match well with
Brazil Conba (Figure 6d: R’ = 1, slope = 1.93) and SPAM (R’ = 0.87, slope = 1.15) but differ
significantly from those of GEOGLAM (R’ = 0.70, slope = 0.83) and MapBiomas (R’ = 0.66,
slope = 0.55). Generally, the crop-specific areas reconstructed in this study were consistent

with other datasets, with most R’ values exceeding 0.87, except for maize and rice in
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GEOGLAM and wheat in MapBiomas. This suggests that our method is reliable in
500 reconstructing crop-specific areas at the provincial level despite some discrepancies. These
discrepancies may be attributed to variations in data sources, processing methods, or

classification criteria.
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Figure 6. Comparison of crop type areas between this study and existing datasets (gridded datasets that were not
505 involved in reconstruction process, i.e., Brazil Conba (2017-2020), MapBiomas (2000, 2005, 2010), SPAM (2000,
2005), GEOGLAM (2020), GLAD (2005, 2010) at the provincial level. (a) Soybean; (b) Wheat; (c) Maize; (d)

Rice. The numbers in parentheses represent the total number of samples.
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3.3.2 Evaluation using inventory data at the municipal level

To ensure the effectiveness of the evaluation, we collected crop type areas from various
countries across different years at the municipal level to evaluate our reconstructed crop type
maps (Argentina: 1960, 2008, and 2018; Bolivia: 1950; Brazil: 1995, 2006, 2017; Chile: 2017,
Colombia: 1960; Paraguay: 2008). Figure 7 shows the comparison results of crop-specific areas
for soybean, wheat, maize, and rice at the municipal level between census data and this study.
We used R? and nRMSE to quantify the precision and reliability of our data. Specifically, the
soybean and wheat areas derived from this study fit well with those from census data (soybean:
R?=0.93, nRMSE = 0.0106; wheat: R =0.79, nRMSE = 0.0151), whereas the performance of
the maize and rice is relatively less accurate (maize: R’ = 0.65, nRMSE = 0.0143; rice: R’ =
0.61, nRMSE = 0.0184). Additionally, the spatial pattern of soybean, maize, wheat, and rice
proportions (i.e., crop-specific area/municipal area) is consistent with the census data (Figure
8 & Figure S3-S5). Soybean cultivation in Brazil is concentrated in the southern and central
regions, and the soybean proportions derived from this study are relatively close to the census
data, with minor over- and underestimates in only a few areas, such as Paran4 and Rio Grande
do Sul. On the other hand, Argentina shows a similar geographical distribution pattern, with
the main cultivation areas concentrated in the central region, but with overestimation in some

areas. The main concentration is in the provinces of Cordoba and Buenos Aires. The areas for
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the remaining three crops (i.e., maize, wheat, and rice) are in good agreement with the census

data, except for Brazilian maize in 2017, which is slightly underestimated in central Brazil.
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Figure 7. Comparison of the crop-specific areas between this study and census data at the municipal level. (a)
530 soybean; (b) wheat; (c) maize; (d) rice. The municipal-level inventory data used include Argentina (1960, 2008,
and 2018), Bolivia (1950), Brazil (1995, 2006, and 2017), Chile (2017), Colombia (1960), and Paraguay (2008).
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Figure 8. Spatial comparison of the soybean proportion (i.e., soybean area/municipal area) between this study
and census data at the municipal level in Argentina (2008 and 2018) and Brazil (1995, 2006, and 2017).
Proportions were calculated by aggregating gridded crop-type data (allocated from provincial level statistics) and

dividing by municipal area. These were compared with official municipal statistics processed in the same way.
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Left column: soybean proportion from this study; Middle column: soybean proportion from census data; Right

column: the difference in soybean proportion between this study and census data.

3.3.3 Evaluation using satellite-based datasets at the grid level

We also compared satellite-based crop type maps with our reconstructed data at the grid
level. Due to the lack of crop type maps for the entire South America, we used Argentina MNC
and Uruguay LC as baselines for the comparison of soybean, wheat, and maize. However, some
maps generated by satellite data do not distinguish wheat from winter cereals (Van Tricht et
al., 2023), so we used the resampled GEOGLAM as the baseline for the comparison of wheat.
Figure 9 shows the spatial comparison of soybean, wheat, maize, and rice between satellite-
based data and reconstructed data at the grid level. The results of the estimation of the
proportion of soybean, wheat, maize, and rice cultivation show high agreement with the
satellite data in terms of spatial distribution. However, there were slight over- or under-
estimates in some areas, especially in regions with concentrated crop cultivation. The
percentage histograms provide detailed information on the distribution of differences, with
most of the differences being less than 10 %, indicating that the estimation results of this study
are generally reliable. Since most satellite-based crop maps are from around 2020 and are used
as base maps to reconstruct historical crop distributions, we used soybean time-series data from
GLAD to further assess the reliability of our reconstructed data. We chose 2001, 2010, and

2020 for comparison, with only the 2020 data used to construct the base map in Section 2.5.1.
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As shown in Figure 10, the estimates from this study also show high agreement with the GLAD

data in terms of spatial distribution for 2001, 2010, and 2020, with differences of less than

10 %.
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map is from Uruguay LC, and the wheat map is from GEOGLAM due to the lack of high-resolution data.
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4 Discussion

4.1 Comparison with other datasets

We first compared the area changes of four main crops (maize, rice, soybean, and wheat)
in South America from 1950 to 2020 using FAO, GEOGLAM, GLAD, SPAM, and our
570 reconstructed data (Table 4). Before 2000, the soybean area reconstructed in this study was

highly consistent with FAO data, but after 2000, the reconstructed soybean area was lower.
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This discrepancy mainly originates from countries with larger soybean areas, such as Argentina
and Brazil (Figure S6). The census data we used were collected from the national statistical
offices and the agricultural census inventory. In contrast, FAO data are mainly provided by
member countries, making it challenging to ensure data accuracy (FAOSTAT). Additionally,
Song et al., (2021) reported that the soybean area in the major biomes of South America
increased from 26.4 Mha in 2001 to 55.1 Mha in 2019, which is comparable to the data
reconstructed in this study and shows greater consistency at the country level. It is worth noting
that SPAM also used provincial-level data for modeling, but the total soybean area is consistent
with FAO and higher than that in this study. This is because SPAM corrected the allocation
results using FAO national-level data, whereas our results were corrected based on provincial-
level statistics (Yu et al., 2020). On the other hand, the soybean area in GEOGLAM is much
higher than in other datasets. This difference arises because GEOGLAM integrates crop-
specific maps at global and regional scales, spanning a wide range of periods (Becker-Reshef
et al., 2023). For the remaining three crops (i.e., Maize, Wheat, and Rice), our reconstructed
data and other datasets showed high agreement across South America. However, the area of
maize derived from GEOGLAM data is much higher than the others, for the reasons discussed
above. Therefore, due to the lack of high-resolution data for wheat and relatively stable wheat
area after 2010, we used only the GEOGLAM wheat distribution map as a base map.

Additionally, the comparison with multiple reference datasets shows that slope values between
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our reconstructed cropland area at the provincial level vary across sources (Figure 6). When
compared to SPAM — a dataset that also incorporates official statistics — the slope values are
largely within the range of 0.90 to 1.21 across crop types, indicating strong agreement and
suggesting that our product is reliable in representing provincial-scale cropland distribution. In
contrast, comparisons with remote sensing-based datasets exhibit larger deviations. These
discrepancies are expected due to differences in data sources and classification uncertainties.
Overall, our reconstructed data are in good agreement with other existing datasets and utilize

finer-grained statistics to generate spatially explicit crop type distribution maps.

Table 4. Comparison of crop-specific areas with other datasets in South America from 1950 to 2020 (Unit: Mha).

Corps Year This study FAO SPAM GEOGLAM
1950 0.08 / / /
1980 11.28 11.46 / /
Soybean
2000 25.02 24.17 24.50 /
2020 48.83 59.89 / 54.05
1950 12.72 / / /
1980 15.38 16.26 / /
Maize
2000 16.51 17.70 17.32 /
2020 26.91 29.23 / 55.45
1950 7.62 / 8.90 /
1980 7.81 9.31 / /
Wheat
2000 7.97 8.32 9.01 /
2020 7.98 10.41 / 8.83
1950 3.22 / / /
Rice 1980 6.74 7.53 / /
2000 4.44 5.66 5.60 /
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2020 3.81 4.13 / 3.52

Additionally, we performed a comparison of the distribution of different crop types at both
spatial and temporal scales (Figure 11 & 12). Specifically, the spatial distribution of soybean,
maize, and rice is highly consistent with the high-resolution crop-specific distribution maps
derived from remote sensing imagery and has a higher spatial resolution compared to
GEOGLAM, providing more detailed information on crop-specific cultivation patterns. Due to
the lack of high-resolution wheat distribution maps, we used WorldCereal as a potential wheat
distribution map for comparison. The WorldCereal is a winter cereal map that includes wheat,
barley, and rye (Van Tricht et al., 2023). Although Figure 11 demonstrates strong spatial
agreement between our reconstructed data and existing high-resolution crop maps for 2020,
some of these maps were also used to construct the base map, which may partially account for
the high levels of consistency. To further evaluate the temporal reliability of our dataset, GLAD,
being the only soybean distribution maps in South America with a high-resolution and long-
time series and validation accuracy, allows us to compare spatial distributions of reconstructed
data over time (Song et al., 2021). As shown in Figure 12, we selected the Brazilian state of
Mato Grosso, one of the most significant regions for soybean expansion since 2000, as an
example to present comparative results. GLAD maps show clear signals of frontier expansion,
while our results emphasize more gradual intensification. This difference may be attributed to

the fact that our reconstruction is based on harmonized census data and historical cropland
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density, which may limit its ability to capture abrupt shifts as precisely as the high-resolution
satellite-based maps. Nevertheless, our results remain broadly consistent with high-resolution
products in terms of spatial patterns. Importantly, our dataset provides long-term, annually
resolved crop-specific maps from 1950 to 2020, filling key temporal gaps that satellite-only
datasets cannot address. Thus, despite limitations in detecting fine-scale expansion, the
HISLAND-SA dataset complements existing remote-sensing products by offering a coherent

and historically extended view of crop type dynamics in South America.
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Figure 11. Visual comparison of crop-specific maps between this study and other datasets. The left column shows
the crop-specific maps in this study, with high-resolution data in the middle and coarse-resolution data on the

right. Panels b, e, h, and 1 were also used as input layers in generating the 2020 base map.
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Figure 12. Temporal visual comparison of soybean fraction with GLAD.

4.2 Drivers of crop type changes

Agricultural expansion has led to dramatic land use changes in South America over the
past few decades (Potapov et al., 2022; Winkler et al., 2021). In this study, we reconstructed
crop-specific maps for South America over the past 70 years by integrating agricultural census
data, model-based data, and remote sensing-based crop type data and quantified the land use
transitions caused by agricultural expansion. Our results show that the soybean area in South
America increased from nearly zero in 1950 to 48.8 Mha in 2020. In South America, soybeans
were initially cultivated on small farms primarily to provide animal feed and serve as a rotation
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crop adjunct to wheat (Klein and Luna, 2021). By the 1970s, the soybean industry began to
emerge, driven by the surge in global protein meal prices (Richards et al., 2012; Warnken,
1999), new geopolitical alliances, and grain-livestock-fuel dynamics (de LT Oliveira, 2017).
Simultaneously, the Brazilian National Agricultural Research Centre of Brazil (i.e., Embrapa)
developed new soybean varieties adapted to the tropical climate and successfully introduced
them to the Cerrado region in the Brazilian Midwest, which contributed to the “tropicalization
ofthe soybean” and significantly expanded the soybean cultivation area (Klein and Luna, 2021).
Driven by market-oriented reforms, globalization, and advancements in technology, the total
soybean exports have burgeoned, further leading to a surge in soybean acreage (da Silva et al.,
2021; Song et al., 2021). However, such a dramatic expansion in the soybean area is bound to
have far-reaching consequences for land use change in South America. Over the past 70 years,
soybean expansion has led to the loss of nearly 23.92 Mha of other vegetation, with forest
accounting for 12.26 Mha, pasture/rangeland for 5.26 Mha, and unmanaged grass/shrubland
for 6.39 Mha (Table 3). This extensive land use change has led to several environmental
problems, including biodiversity loss, carbon emissions, land degradation, and water pollution
(Baumann et al., 2017; Fearnside, 2002; Fehlenberg et al., 2017; Pengue, 2005; Song et al.,
2021). Additionally, maize expansion is also one of the primary factors contributing to land
use change and environmental threats in South America. Until the 1990s, changes in maize

area were relatively stable and concentrated in traditional agricultural regions (e.g., the Pampas
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region in Argentina and the southern region in Brazil), primarily for domestic consumption as
a major source of food for humans and livestock (Warnken, 1999). After the year 2000, maize
cultivation in South America witnessed rapid growth, with maize being widely used not only
as a food crop but also for biofuel production (Costantini and Bacenetti, 2021). During this
period, maize acreage and yield increased significantly, with Brazil and Argentina becoming
two of the world's leading producers and exporters of maize (Klein and Luna, 2022). By 2020,
the maize area in South America had increased by a factor of 2.1 compared to 1950,
encroaching on a total of 18.35 Mha of other vegetation, including 9.22 Mha of forests, 5.44
Mha of pasture/rangeland, and 3.57 Mha of unmanaged grass/shrubland (Table 3). Despite the
importance of soybean and maize in the agricultural expansion of South America, wheat and
rice have maintained their position as the main food crops. The expansion of soybean and maize
cultivation has largely encroached on non-traditional farmland, such as forest and pasture,
while wheat and rice growing areas have changed less. For wheat and rice, the change in area
has remained relatively stable over the past 70 years, generally staying between 5 and 10 Mha.
Wheat and rice are grown in relatively stable areas to ensure food security, even though other
crops may offer higher economic returns (Jat et al., 2016). Additionally, several governments
in South America have traditionally provided sustained policy support for wheat and rice
cultivation, encouraging farmers to maintain a certain level of cultivation to ensure a stable

food supply (Altieri, 1992; Warnken, 1999). The more recent notable expansions in South
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America invite attention to the broader economic and legal changes that have facilitated or
incentivized these drastic farming and agriculture changes, including through capital, finance,

trade and investment dynamics (Pistor, 2019; Saab, 2018).

4.3 Uncertainty analysis

4.3.1 Spatial and temporal gaps in census data

A key consideration in reconstructing historical land use dynamics is the availability of
agricultural census data. Ideally, sub-national level (e.g., municipality, county, or district)
agricultural statistics would allow for more detailed spatial allocation of crop-specific
harvested areas. However, their availability across South America is highly limited and
temporally inconsistent. Most countries provide only a few isolated years of data at the
municipal level (i.e., Argentina: 1960, 2008, 2018; Bolivia: 1950; Brazil: 1995, 2006, 2017;
Chile: 1960; Paraguay: 2008), which creates large temporal gaps and hampers their direct use
in annual time series reconstruction. In contrast, provincial level data are more consistently
reported over time, typically at 10-year intervals. These more frequent observations enable
more robust interpolation and better constrain the temporal evolution of harvested area. While
these provincial units represent a coarser administrative granularity, we combined them with a
high-resolution crop-specific base map and temporal cropland density maps to spatially
disaggregate the data across all years. This approach allows us to preserve long-term trends
while capturing spatial variability. To address the temporal discontinuities between census
years, we applied linear interpolation to construct continuous annual times series of harvested
areas at the administrative level. While we acknowledge that the use of linear interpolation may

not fully reflect potential non-linear trends driven by policy, market, or environmental drivers,
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it remains a practical and widely used method under the constraints of sparse historical data
(Klein Goldewijk et al., 2017; Leite et al., 2011; Li et al., 2023; Liu and Tian, 2010; Ye et al.,
2024). Additionally, linear interpolation in this study is always bounded by observed census

points, which help to preserve long-term trends and prevent fluctuations.

4.3.2 Resampling-related spatial uncertainty

To ensure spatial consistency across input datasets, we employed two resampling
strategies to achieve a standardized 1 km resolution: (1) aggregation of high-resolution remote
sensing products, and (2) upsampling of lower-resolution datasets, such as SPAM. While
resampling is essential for harmonizing spatial scales, it introduces varying degrees of
uncertainty depending on the original resolution and classification accuracy of the source data.

Aggregation of high-resolution datasets does not introduce additional spatial uncertainty
beyond the inherent classification errors present in the original data. However, these
classification errors can propagate into aggregated outputs and finally affect spatial statistics.
To quantify this aggregation-induced uncertainty, we conducted a Monte Carlo simulation by
introducing symmetric random noise at various classification error rates (i.e., 3% to 15%),
whereby a proportion of target and non-target pixels were randomly flipped. For each
combination of classification error rate and true fraction, we aggregated the modified raster to
1 km resolution and calculated the resulting aggregated fraction. This process was repeated 100
times per fraction to obtain stable estimates of the mean and standard deviation of the
aggregated values (Figure S7). We then computed the uncertainty as a function of both
classification error and spatial resolution. Specifically, total uncertainty was defined as the
average absolute deviation between aggregated and true values across the full range of possible
true fractions (i.e., 0% to 100%). This allowed us to isolate the magnitude of uncertainty

attributable to aggregation process. This simulation framework was applied to each of the
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aggregation datasets, yielding the acceptable uncertainties (Table 5). These results
demonstrated that total uncertainty increases with both classification error and coarser input
resolution. Datasets with higher native resolution (e.g., Uruguay LC) tend to exhibit lower
aggregation uncertainty, even when classification error is moderate. This underscores that
aggregation-induced uncertainty is not solely a function of accuracy, but also of the granularity
of the input data. This uncertainty component must be explicitly considered when integrating

heterogeneous land cover datasets for spatial modelling or policy-relevant assessments.

Table 5. Aggregation-induced uncertainty under varying classification errors and spatial resolutions.

Dataset Spatial resolution (m) Classification error (%) Total uncertainty (%)
Uruguay LC 10 11.5 5.81
MapBiomas 30 14.2 7.36

Argentia MNC 30 9.0 4.59

GLAD 30 4.0 2.08

CGLS-LC100 100 20.0 10.49

To evaluate the spatial uncertainty introduced by the upsampling process, we conducted
a quantitative comparison between SPAM and GLAD soybean maps for 2010 in South
America. The original SPAM data were upsampled to 1 km using bilinear interpolation, while
the GLAD soybean layer was aggregated to 1 km resolution and treated as reference. A pixel-
by-pixel comparison was performed between the two datasets across the continent. First, the
pixel-wise comparison yielded a coefficient of determination (R?) of 0.50, indicating moderate
agreement between resampled SPAM and GLAD data. Second, the distribution and frequency

of pixel-level differences revealed that over 70% of the pixels fell within a 0.1 range, while
larger deviations (greater than 3-0.3) were mainly observed in fragmented and heterogeneous

cropping regions (Figure S8). Although the resampling process introduced local structure

uncertainty and smoothed fine-scale heterogeneity, these results suggest that the unsampled 1
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km SPAM data retain meaningful broad-scale spatial patterns. Therefore, the resampled dataset

in this study remains suitable for use as a baseline crop distribution map at continental scale.

4.3.3 Spatial-temporal consistency assessment

To assess the spatial and temporal consistency of our reconstructed crop type maps, we
conducted an uncertainties analysis using the resampled GLAD 1-km soybean density dataset
from 2001 to 2020 as an independent benchmark. This analysis focuses on evaluating whether
the interannual variation in soybean density reflects actual crop dynamics. Figure 13 illustrates
the annual difference in soybean density at the pixel level across South America. The results
show that the median and mean differences remain close to zero over time, with narrow
interquartile ranges (25%-75%) and relatively stable 5%-95% quantile envelopes. These
findings suggest that the year-to-year fluctuations in our dataset are not random but follow a
consistent trend with GLAD data, indicating reliable temporal comparability. In addition,
Figure S9 presents the spatial distribution of the mean soybean density difference averaged
over the 20-year period, along with a histogram of its pixel-wise distribution. Most regions
exhibit minimal bias, with more than 50% of grids falling within £0.1. The distribution is
systematically centred around zero, and areas of substantial over- or underestimation are
spatially limited. These two evaluations together evidence that our data maintains robust
agreement with independent observations (i.e., GLAD) both spatially and temporally. While
similar high-resolution and long-term crop-specific datasets are currently unavailable for maize,
wheat, and rice across South America, and thus prevent a comparable validation. However, the
consistency observed in the soybean evaluation provides indirect support for the robustness of
our spatial allocation framework. Given that the same methodological approach and
harmonized inventory inputs were applied across all four crops, we expect the reconstructed

patterns for other crop types to similarly reflect plausible spatial and temporal dynamics.
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Nonetheless, further evaluation using future regional datasets will be essential to assess the

reliability of crop-specific maps beyond soybean.
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Figure 13. Temporal variation in soybean density difference between GLAD and this study (2001-2020).

4.4 Limitations

This study provides a set of crop type data with 1 km X 1 km resolution and annual steps

from 1950 to 2020 in South America. The evaluation at different scales (i.e., provincial,
775 municipal, and grid levels) showed that our reconstructed data are comparable to other datasets.
However, some limitations and uncertainties remain in this study. (1) The base maps of
cropland density and crop types are crucial for constraining the spatial patterns of crops. In
general, reconstructing historical crop type distributions requires using the present crop type
distribution as a benchmark to project back into the past. In this study, we used several high-
780 resolution remote sensing products (i.e., Argentina MNC, MapBiomas, and Uruguay LC) to
construct a base map. However, these datasets do not provide full spatial coverage of South

America and are limited to specific years, which introduces spatial gaps and temporal
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inconsistencies across the region. As a result, we selectively supplemented the base map with
SPAM 2010 in areas where high-resolution products were unavailable, despite its coarser
resolution. This highlights the pressing need to develop long-term and high-resolution crop
type datasets with consistent spatial and temporal coverage at the regional or global scales.
Such datasets would greatly enhance the accuracy and reliability of historical crop-specific
reconstructions. (2) In some countries, historical agricultural census data are limited. Adequate
historical agricultural census data is the basis for the reconstruction of historical spatial data.
Although provincial-level data are available in every country, only a few years of data are
accessible in some countries due to inconsistencies in national policies and agricultural census
years. Even though this data can be reconstructed in various ways (i.e., interpolation) (Li et al.,
2023; Mao et al., 2023), some uncertainties remain. Additionally, national-level trends and
interpolation methods were used to reconstruct provincial-level data, which to some extent may
miss internal trends of some provinces. Interannual variability at the provincial level is
generally not fully consistent with that at the national level, and such reconstruction methods
may introduce some overestimation or underestimation of the results. (3) Cropping practices
complexity (e.g., crop rotation and multiple cropping) poses a significant challenge for accurate
crop distribution mapping. These practices can substantially influence both the spatial patterns
and intensity of agriculture land use. Crop rotation, the practice of growing different crops in

the same field across multiple years, contributes to soil health, pest control, and long-term
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cropland management. Ye et al., (2024) considered crop rotation to reconstruct the historical
crop distribution maps for the United States, relying on Cropland Data Layer (CDL) data for
crop rotation information; however, similar high-resolution products are lacking for South
America. In addition, Pott et al., (2023) visualized crop rotation information for soybean, maize,
and rice in Rio Grande do Sul, southern Brazil, but it did not sufficiently represent the overall
rotation patterns across South America. In contrast, multiple cropping involves the cultivation
of more than one crop within the same year in the same field. This practice is common in
regions with favourable climate conditions and contributes significantly to agricultural
intensity. However, our current method does not differentiate between single- and multi-season
cropping systems, which limits its ability to reflect cropping intensity in areas with prevalent
double and triple cropping. Therefore, future research should focus on crop type mapping in
South America to obtain crop rotation and multiple cropping patterns, enabling the generation
of more accurate historical crop-specific maps in subsequent versions. (4) Crop yield was not
considered in this version of dataset. While harvested area provides valuable insights into land
use patterns, crop yield remains a critical variable for assessing agricultural production and
food security. Accurately reconstructing historical crop yields would require multiple
additional factors, including cropping systems (e.g., rainfed or irrigated), input use, farm scale,
climate and weather data. However, such data are generally unavailable or lack consistency

across long-term and sub-national scales in South America, particularly before the 2000s. As a
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result, this version of the dataset focuses exclusively on harvested areas. Future developments
could explore the integration of satellite-derived biophysical indicators (e.g., NDVI, LAI),
historical production statistics, and climatic data to support the reconstruction of spatial-
temporal yield dynamics. (5) Limitations in representing socioeconomic and environmental
drivers. While our data provides long-term, annually resolved reconstructions of crop-specific
harvested areas, we did not consider the explicit socioeconomic and environmental drivers such
as soil conditions, management practices, or market access. However, incorporating such
factors into a harmonized reconstruction presents considerable challenges. First, long-term,
high-resolution data on these drivers are unavailable or inconsistently reported across countries.
Second, the effects of these drivers are typically region-specific, non-linear, and time-lagged,
which poses challenges for systematic modelling. Third, integrating them would require strong
assumptions, potentially introducing additional uncertainties into the reconstruction. As a result,
our current framework relies on observed statistical records to ensure internal consistency over
time but may be less responsive to abrupt cropland shifts induced by major policy or market
events. Future improvements could explore the integration of these factors into a hybrid
modelling framework (e.g., machine learning or statistical downscaling models such as the
GAEZ crop suitability layers) to improve the spatial and temporal realism of crop allocation
patterns. Despite these limitations and uncertainties, this study is still the first attempt at crop

type reconstruction in South America and has significant implications for analysing the impacts
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of agricultural expansion on local livelihoods and food security, trade and agricultural support

policies.

5 Data and code availability

The developed dataset and codes are available at https://doi.org/10.5281/zenodo.14002960 (Xu
et al., 2024). The annual and 1-km crop-specific gridded data with GeoTiff format. The state

mask with shapefile and GeoTiff formats are also provided.

6 Conclusions

In this study, we developed spatially explicit crop-specific maps (i.e., soybean, maize,

wheat, and rice) at a 1 km X 1 km resolution and annual step in South America from 1950 to

2020 by integrating historical agricultural census data, model-based crop type data, and high-
resolution remote sensing-based crop type data. The results showed that agricultural expansion
has severely encroached on the other vegetation of South America over the past 70 years.
Specifically, soybean is one of the most dramatically expanded crops increasing from
essentially zero in 1950 to 48.8 Mha in 2020, resulting in a total loss of 23.92 Mha of other
vegetation. Additionally, the maize area in South America had increased from 12.7 Mha in
1950 to 26.9 Mha in 2020, encroaching on a total of 18.35 Mha of other vegetation. In contrast,

the area of wheat and rice kept relatively stable. Compared with existing data, our reconstructed
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data have higher spatial and temporal resolution which can better capture the dynamics of crop
type changes during the historical period. Overall, this newly developed data can be used to
assess the impacts of agricultural expansion on greenhouse gas emissions, ecosystem services,
biodiversity loss, and to guide the formulation of land management and conservation policies

for sustainable agricultural development and ecological conservation.
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