Responses to reviewers’ comments on “HIStory of LAND transformation by humans in
South America (HISLAND-SA): annual and 1-km crop-specific gridded data (1950 - 2020)”
(manuscript number essd-2024-527)

We sincerely thank the reviewers for their thoughtful and constructive comments. We have revised
the manuscript accordingly. The detailed point-by-point responses are provided below (highlighted
in blue), and the corresponding revisions in the manuscript are marked in red.

Responses to Reviewer 1:

The authors made an effort to map the long-term crop distribution in South America by
synthesizing multiple sourced datasets. Their efforts should be acknowledged. Overall, the paper
presents a clear storyline, which is divided into three sections.

Response: We thank the reviewer for the positive comments.

Unfortunately, I did not see the scientific question that the paper aims to address. Additionally, the
intended application of the research is not clear, given the existence of several relevant datasets.

Response: We sincerely thank the reviewer for the thoughtful and valuable comment. While data
papers in Earth System Science Data typically focus on dataset development, we fully agree that
clarifying the scientific question and intended application for developing the HISLAND-SA
dataset further improves the manuscript.

= Scientific question: The scientific question addressed by our dataset is to understand how
agricultural land-use dynamics in South America have evolved over the past 70 years, with
a focus on four major commodity crops: soybean, maize, wheat, and rice. We aim to
analyze how the spatial-temporal patterns of these crops have shifted over time and how
these shifts have influenced land-use transitions in South America. Our dataset fills a
significant gap by providing long-term, high-resolution, and crop-specific information for
South America— key attributes that are often missing from existing datasets.

= Intended application: The HISLAND-SA dataset serves multiple purposes, supporting
research on agricultural land-use change, its ecological impacts, and the implications for
food security. It is a valuable resource for assessing the impacts of agricultural expansion
on deforestation, biodiversity loss, and greenhouse gas emissions. The dataset offers
critical information for policymakers, researchers, and stakeholders involved in sustainable
agriculture, climate change mitigation, and food security, helping to shape strategies that
balance agricultural production with environmental conservation.



We have incorporated these points into the manuscript.

Revisions: Lines 26-32: While previous studies have documented land use and land cover changes
in South America over recent decades, there is still a lack of spatially explicit, time series maps of
crop types that capture shifts in crop distribution. Therefore, developing high-resolution, long-term,
and crop-specific datasets is crucial for advancing our understanding of human-environment
interactions and for assessing the impacts of agricultural activities on carbon and biogeochemical
cycles, biodiversity, and climate.

Lines 132-140: This study focuses on understanding how the spatial-temporal patterns of these
four commodity crops have evolved over the past seven decades and how these changes have
influenced land-use transitions in South America. The dataset is designed to support research on
agricultural land-use change, its ecological impacts, and food security, offering insights into the
effects of agricultural expansion on deforestation, biodiversity loss, and greenhouse gas emissions.
It provides critical information for policymakers, researchers, and stakeholders engaged in
sustainable agriculture, thereby assisting in the development of strategies that balance agricultural
production with environmental conservation.

It appears that the work is somewhat hobby-oriented, with the research area, spatial resolution,
time scale, and targeted crop types being arbitrarily determined by the authors’ interests.
Furthermore, I have a few comments that are worth considering.

Response: We sincerely thank the reviewer for the thoughtful and valuable comment. We
understand the concern regarding the selection of the research area, spatial resolution, time scale,
and targeted crop types. We would like to clarify that these choices were based on solid scientific
and practical considerations rather than personal interests. Below is an explanation of each
selection:

= Research area: The focus on South America was driven by its critical role as both a global
agricultural and deforestation hotspots. Agricultural expansion in this region has been a
primary driver of land-use change, particularly through deforestation. The widespread
increase in agricultural activities across South America makes it an ideal case for studying
human-environment interactions, especially in the context of land-use change and its
environmental consequences.

= Spatial resolution: The 1 km spatial resolution was selected to ensure sufficient detail for
both regional and global assessments. This resolution meets the requirements of many
ecosystem models and land-use change studies. Most long-term datasets for South America
have a resolution greater than 10 km (Adalibieke et al., 2023; Klein Goldewijk et al., 2017),
limiting their ability to capture fine-scale spatial patterns. Recent studies developing 1 km
datasets also highlight the need for higher-resolution data (Cao et al., 2021; Li et al., 2023;



Ye et al., 2024), making 1 km resolution in this study essential for accurate analyses of
land-use change and environmental impacts in South America

= Time scale: The choice of 1950 as the starting point reflects the significant shifts in
agricultural practices and land-use dynamics that began in the mid-20th century. This
period marks the onset of large-scale agricultural expansion, driven by technological
advances, policy changes, and global demand. Additionally, the widespread conversion of
natural vegetation into agricultural land makes the period from 1950 to 2020 critical for
understanding the transformation of landscapes and ecosystems in South America.

= Targeted crop types: Soybean, maize, wheat, and rice were selected as focus crops
because they are the primary staple crops in South America, driving large-scale production
with significant economic and ecological impacts. These crops account for most
agricultural land-use changes in South America, making them crucial for understanding
broader environmental effects.

Revisions: Lines 50-71 (Research area): South America is of critical importance due to its
substantial contribution to global agriculture, which is essential for meeting the world’s growing
food demand (Ceddia et al., 2014; Hoang et al., 2023). Cropland expansion in this region has been
a significant driver of land-use transformation, particularly through deforestation, with profound
effects on ecosystems and biogeochemical processes (Song et al., 2021; Zalles et al., 2021). As
one of the main types of land use and land cover (LULC), cropland plays a crucial role in
supporting human nutritional needs and ensuring food security (He et al., 2017; Yu and Lu, 2017).
However, to meet the growing demand for food and fiber driven by population growth and
consumption patterns, cropland has increasingly encroached on natural vegetation (Winkler et al.,
2021). Additionally, economic and policy factors have reshaped crop cultivation structures across
the region (Cheng et al., 2023; Mueller and Mueller, 2010; Song et al., 2021). These changes are
driven by a combination of trade dynamics, investment flows, and market concentration (Boyd,
2023; Clapp, 2021). As a result, the transformation of crop types has occurred, weakening the
resilience of agroecosystems and contributing to biodiversity loss (Frison et al., 2011; Renard and
Tilman, 2019). In response to these challenges, the international community has increasingly
emphasized the need to align agricultural systems with climate mitigation and food security goals
(ICJ, 2025). Therefore, an improved understanding of the spatial distribution and historical
dynamics of crop types is urgently needed to assess the impacts of cropland expansion and crop
pattern shifts across South America. Such insights are crucial for evaluating the environmental and
socio-economic consequences of cropland expansion, particularly in terms of its impact on climate,
ecosystems, and food security.

Lines 72-106 (Time scale and targeted crop types): Agriculture in South America has
experienced significant changes driven by agricultural policies, socio-economic shifts, and
technological innovations after the 1950s (Altieri, 1992; Ceddia et al., 2014; Zalles et al., 2021).
These changes have not only reshaped regional economies, as in other historical periods of agrarian
reform, but have also been justified by global food security goals, alongside such other important



drivers as trade relationships, investors, subsidies, and debt serving goals (Boyd, 2023; OAS,
2024). In this context, crop cultivation has shifted from traditional crops to high-yield and high-
demand commodity crops, reflecting both the increasing global demand for food and fuel, as well
as the urgent need to enhance agricultural efficiency and yields (Garrett et al., 2013; Meyfroidt et
al., 2014). Specifically, the major commodity crops (i.e., maize, soybean, wheat, and rice) have
become the core of agricultural production in South America (FAO, 2020). The cultivation of these
crops has not only significantly boosted food production in the region but also secured a strong
position for many producers in the global food market. After the 1950s, countries in South America
(e.g., Bolivia, Brazil, Chile, Colombia, Ecuador, and Peru) undertook land reforms to reduce land
concentration and promote agricultural production (De Janvry et al., 1998), which significantly
affected land use outputs and efficiency and laid a substantial foundation for the development of
agriculture (De Janvry et al., 1998; Munoz and Lavadenz, 1997). After the 1980s, neoliberal
economic reforms were further carried out in South America, accelerating the ongoing agricultural
modernization (Chonchol, 1990) and greatly facilitating the cultivation of soybeans by eliminating
price controls and export restrictions on agricultural products (Campos Matos, 2013). Since the
2000s, soybeans have continued to grow dramatically due to global demand, technological
advances, economic subsidies and other supportive policies (de LT Oliveira, 2017; Song et al.,
2021). This growth has further bolstered the expansion of maize cultivation, driven by the
promotion of maize-soybean cropping systems and the adoption of direct seeding, no-tillage
practices, and double cropping (Klein and Luna, 2022). In comparison, the area under wheat and
rice cultivation has remained relatively stable. Although there is a growing demand for wheat, its
market price is less fluctuating, leading farmers, farm managers, and investors to prefer crops with
higher market returns (Erenstein et al., 2022). Meanwhile, rice primarily serves domestic demand
rather than being export-oriented (Dawe et al., 2010). Despite government reports and documents
that have recorded changes in the dynamics of agriculture in South America over the past few
decades, there is still a lack of spatially explicit and time-series maps of historical crop types that
reflect changes in crop distribution. This deficiency makes it difficult to fully understand the spatial
and temporal evolution of major commodity crops and hinders understanding of their impacts on
environmental changes.

Lines 107-129 (Spatial resolution): Many efforts have produced commodity crop maps at
regional or global scales. For example, datasets such as the Spatial Production Allocation Model
(SPAM) (Yu et al., 2020), M3 (Monfreda et al., 2008), and CROPGRIDS (Tang et al., 2023) offer
valuable solutions by providing detailed crop type information based on the census data and spatial
allocation algorithms. SPAM, for instance, provides data on crop area, yield, and production for
42 major crops at a spatial resolution of 5 arcmin under four farming systems. However, these
datasets have a coarse spatial resolution and are available for only a few years, which makes it
challenging to accurately characterize the spatial-temporal distribution of crop types at finer scales
(Becker-Reshef et al., 2023; Ye et al., 2024). In contrast, with the continuous evolution of remote
sensing technologies, high-resolution data were increasingly being used to develop fine-scale crop
type maps. For example, Song et al., (2021) developed annually updated soybean maps with a 30
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m resolution for South America from 2000 to 2023 using all Landsat and MODIS images and a
probability sample of continental field observations. MapBiomas also provides high-resolution
crop type maps for Argentina, Brazil, and Uruguay, covering the period from 1985 to the present
(De Abelleyra et al., 2020; Petraglia et al., 2019; Souza and Azevedo, 2017). However, these
existing datasets are available only at partial national or local scales, cover only a single crop type,
or lack rigorous validation. Furthermore, most remote sensing data dates back only to 1985,
making it challenging to depict crop dynamics further back. Therefore, it is imperative to develop
high-resolution and time-series crop type data for driving terrestrial ecosystem models to quantify
the impact of crop dynamics on ecosystems and climate. Such an dataset will draw on innovations
in earth science and data use to contribute to related fields that address the “advance of the
agricultural frontier” in South America, and its implications for human-environmental interactions
(OAS, 2024).

1. Alot of work relates to raster data resampling. How can we assess the uncertainty and sensitivity
of cross-scale data resampling?

Response: Thank you for your thoughtful comments. In our study, we employed two resampling
strategies to achieve a consistent 1 km resolution: (1) aggregation of high-resolution remote
sensing products, and (2) upsampling of the SPAM dataset.

= Aggregation: This process does not introduce additional spatial uncertainty, aside from
inherent classification errors in the high-resolution input data. To quantify the uncertainty
resulting from classification errors during aggregation, we performed a Monte Carlo
simulation. We assumed a range of classification error rates (i.e., 3-15%) and introduced
symmetric noise by randomly flipping a proportion of target (e.g., cropland or crop types)
and non-target pixels in simulated high-resolution raster data. For each classification error
rate and true fraction, we aggregated the modified high-resolution raster to 1 km resolution
and computed the aggregated fraction. This process was repeated 100 times per fraction to
estimate the mean and deviation of the aggregated fraction, allowing us to assess the
magnitude and variability of the estimation error of aggregation under different
classification error rates (Figure S1). Given a specific spatial resolution and classification
error rate, the overall uncertainty was quantified as the expected absolute estimation error
across the full range of possible true fractions (i.e., 0-100%). This was calculated by
averaging the absolute difference between the aggregated and true fractions across all
simulated fractions. Therefore, we separately quantified the potential aggregation-induced
uncertainty for each dataset, including Uruguay LC (spatial resolution: 10 m, classification
error: 11.5%, total uncertainty: 5.81%), MapBiomas (30 m, 14.2%, 7.36%), Argentina
MNC (30 m, 9%, 4.59%), GLAD (30 m, 4%, 2.08%), and CGLS-LC100 (100 m, 20%,
10.49%). It is evident that aggregation is influenced not only by classification errors but
also by sensitivity to spatial resolution. We have added this part in the revised manuscript.



Revisions: Lines 705-732: To ensure spatial consistency across input datasets, we
employed two resampling strategies to achieve a standardized 1 km resolution: (1)
aggregation of high-resolution remote sensing products, and (2) upsampling of lower-
resolution datasets, such as SPAM. While resampling is essential for harmonizing spatial
scales, it introduces varying degrees of uncertainty depending on the original resolution
and classification accuracy of the source data.

Aggregation of high-resolution datasets does not introduce additional spatial uncertainty
beyond the inherent classification errors present in the original data. However, these
classification errors can propagate into aggregated outputs and finally affect spatial
statistics. To quantify this aggregation-induced uncertainty, we conducted a Monte Carlo
simulation by introducing symmetric random noise at various classification error rates (i.e.,
3% to 15%), whereby a proportion of target and non-target pixels were randomly flipped.
For each combination of classification error rate and true fraction, we aggregated the
modified raster to 1 km resolution and calculated the resulting aggregated fraction. This
process was repeated 100 times per fraction to obtain stable estimates of the mean and
standard deviation of the aggregated values (Figure S7). We then computed the uncertainty
as a function of both classification error and spatial resolution. Specifically, total
uncertainty was defined as the average absolute deviation between aggregated and true
values across the full range of possible true fractions (i.e., 0% to 100%). This allowed us
to isolate the magnitude of uncertainty attributable to aggregation process. This simulation
framework was applied to each of the aggregation datasets, yielding the acceptable
uncertainties (Table 5). These results demonstrated that total uncertainty increases with
both classification error and coarser input resolution. Datasets with higher native resolution
(e.g., Uruguay LC) tend to exhibit lower aggregation uncertainty, even when classification
error is moderate. This underscores that aggregation-induced uncertainty is not solely a
function of accuracy, but also of the granularity of the input data. This uncertainty
component must be explicitly considered when integrating heterogeneous land cover

datasets for spatial modelling or policy-relevant assessments.
Table 4. Aggregation-induced uncertainty under varying classification errors and spatial resolutions.

Dataset Spatial resolution (m) Classification error (%) Total uncertainty (%)
Uruguay LC 10 11.5 5.81
MapBiomas 30 14.2 7.36

Argentia MNC 30 9.0 4.59

GLAD 30 4.0 2.08

CGLS-LC100 100 20.0 10.49




Estimation error(%)

-
w0

-
N

©

D

W

o

Classification error(%) Classification error(%) Classification error(%)
(@) &eEieinTe W (b) s 21 1P (©) 5355 s 121
X X
=12 =12
£ £
D g ]
: =) [ o=
9 9
T 6 T 6
£ =
@ 3 @ 3
w w
0 0
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
True fraction(%) True fraction(%) True fraction(%)

Figure S7. Monte Carlo simulation of aggregation-induced estimation error under varying classification error
rates and spatial resolutions. (a), (b), and (c) represent the spatial resolution of 10 m, 30 m, and 100 m,
respectively. The x-axis represents the true fraction (%) of the target class in a 1 km grid, while the y-axis
shows the absolute estimation error (%) after aggregating the modified high-resolution raster. Each line
corresponds to different simulated classification error rates (i.e., 3%, 6%, 9%, 12%, and 15%). Shaded areas
represent the standard deviation across 100 Monte Carlo iterations.

Upsampling: To assess the uncertainty introduced by upsampling, we conducted a spatial
comparison using soybean as a case — the only crop for which SPAM (10 km) and high-
resolution crop map (i.e., GLAD, 30 m) are available for South America. We first
upsampled the SPAM soybean layer in 2010 to 1 km using bilinear interpolation. To
evaluate spatial consistency, we aggregated the 30 m GLAD soybean in 2010 to 1 km as
the “ground truth” and compared the two datasets on a pixel-by-pixel basis across the
continent. Then, we conducted two complementary assessments. First, a pixel-wise
comparison at the 1 km resolution yielded a coefficient of determination (R°) of 0.50,
indicating a moderate level of agreement. Second, the distribution of pixel-wise differences
showed that over 70% of the values fell within +0.1, where larger discrepancies (greater

than +0.3) were mainly concentrated in fragmented or heterogeneous cropping regions

(Figure S1). Despite the presence of local structure uncertainty, these results suggest that
the resampled 1 km SPAM data retain broad-scale spatial patterns that are reasonably
consistent with reference data. This supports its application as a baseline crop distribution
map at regional and continental scales. We have incorporated this part into the revised
manuscript.

Revisions: Lines 733-745: To evaluate the spatial uncertainty introduced by the
upsampling process, we conducted a quantitative comparison between SPAM and GLAD
soybean maps for 2010 in South America. The original SPAM data were upsampled to 1
km using bilinear interpolation, while the GLAD soybean layer was aggregated to 1 km
resolution and treated as reference. A pixel-by-pixel comparison was performed between
the two datasets across the continent. First, the pixel-wise comparison yielded a coefticient
of determination (R?) of 0.50, indicating moderate agreement between resampled SPAM
and GLAD data. Second, the distribution and frequency of pixel-level differences revealed
that over 70% of the pixels fell within a +0.1 range, while larger deviations (greater than

+0.3) were mainly observed in fragmented and heterogeneous cropping regions (Figure



S8). Although the resampling process introduced local structure uncertainty and smoothed
fine-scale heterogeneity, these results suggest that the unsampled 1 km SPAM data retain
meaningful broad-scale spatial patterns. Therefore, the resampled dataset in this study
remains suitable for use as a baseline crop distribution map at continental scale.
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Figure S8. Spatial distribution (left) and frequency (right) of pixel-wise differences between SPAM
(resampled to 1 km) and GLAD (aggregated to 1 km) soybean map in 2010 for South America.

2. Figure 3 presents the spatial distribution of crop-specific density. I find it somewhat difficult to
understand. Does it represent the proportion of a given crop in a 1x1 km grid, or does it indicate
the fraction of a given crop in the total cropland area within a 1x1 km grid? This is a bit confusing.

Response: Thank you for your thoughtful comments. We appreciate your feedback and apologize
for any confusion caused by the presentation of crop-specific density in Figure 3. To clarify, Figure
3 represents the proportion of a given crop within each 1 x 1 km grid, rather than the proportion
of the crop in the total cropland area within the grid. We have revised the caption of Figure 3 to
improve clarity.

Revisions: Lines 442-444: Figure 3. The spatial pattern of soybean, maize, rice, and wheat from
1950 to 2020. The first, second, third, and fourth rows represent the crop-specific density of
soybean, maize, rice, and wheat. Crop-specific density represents the proportion of a given crop
within each 1 x 1 km grid.

3. From Figure 3, it is also difficult to interpret the areas of multiple cropping, assuming multiple
cropping significantly exists in this region.

Response: Thank you for your thoughtful comments. We agree that multiple cropping, including
double and even triple cropping in certain regions and/or years, plays an important role in shaping



agriculture landscapes. However, the primary focus of our study is on the spatial and temporal
distribution of four major commodity crops (i.e., soybean, maize, wheat, and rice) at an annual
scale, and the current analysis does not explicitly distinguish between single- and multi-season
cropping systems. We acknowledge that this may limit the interpretability of some regions where
intensive cropping practices are present. To address this, we have revised the manuscript to
acknowledge the existence of multiple cropping systems and to discuss this limitation and potential
extensions of our method in future work.

Revisions: Lines 797-814: Cropping practices complexity (e.g., crop rotation and multiple
cropping) poses a significant challenge for accurate crop distribution mapping. These practices can
substantially influence both the spatial patterns and intensity of agriculture land use. Crop rotation,
the practice of growing different crops in the same field across multiple years, contributes to soil
health, pest control, and long-term cropland management. Ye et al., (2024) considered crop rotation
to reconstruct the historical crop distribution maps for the United States, relying on Cropland Data
Layer (CDL) data for crop rotation information; however, similar high-resolution products are
lacking for South America. In addition, Pott et al., (2023) visualized crop rotation information for
soybean, maize, and rice in Rio Grande do Sul, southern Brazil, but it did not sufficiently represent
the overall rotation patterns across South America. In contrast, multiple cropping involves the
cultivation of more than one crop within the same year in the same field. This practice is common
in regions with favorable climate conditions and contributes significantly to agricultural intensity.
However, our current method does not differentiate between single- and multi-season cropping
systems, which limits its ability to reflect cropping intensity in areas with prevalent double and
triple cropping. Therefore, future research should focus on crop type mapping in South America
to obtain crop rotation and multiple cropping patterns, enabling the generation of more accurate
historical crop-specific maps in subsequent versions.

4. The purpose of presenting Figure 4 is unclear. This figure could simply be produced when
statistics on harvested areas are available.

Response: Thank you for your thoughtful comments. We agree that the data presented in Figure 4
could indeed be derived from statistics on the harvested area. However, the main purpose of Figure
4 is to show the temporal changes in the total harvested area of different crops in South America
from 1950 to 2020, highlighting trends in agricultural expansion and shifts in crop dominance. We
thought this information was important for readers to know, especially for those who are unfamiliar
with the crop change patterns in South America.

5. If Figure 3 represents the proportion of crop-specific density, then Figure 5 is hard to understand.
By what method can this proportion be allocated to a specific land change process?



Response: Thank you for your thoughtful comments. To assess the transitions between land use
and specific crop types, we first converted the annual crop-specific density maps into Boolean
crop-type maps for each year from 1950 to 2020, following the method described by Li et al.,
(2023). For each crop and each year, grid cells were ranked in descending order by crop-specific
density. Boolean values (presence = 1, absence = 0) were then assigned to the top-ranked grid cells
until the total area assigned to each crop matched the reconstructed provincial-level harvested area
within a 100-hectare margin. Second, we overlaid the annual Boolean crop-type maps with the
annual land use maps (i.e., the Historic Land Dynamics Assessment +) (Winkler et al., 2021) to
identify crop-specific land-use change processes. We have added additional methodological details
to the revised manuscript to clarify how crop-specific land-use changes were identified.

Revisions: Lines 365-384:
2.5.4 Analyzing crop-specific land-use transitions

To assess the transitions between land use and specific crop types, we first converted the annual
crop-specific density maps into Boolean crop-type maps for each year from 1950 to 2020,
following the method described by Li et al., (2023). For each crop and year, grid cells were ranked
in descending order based on crop-specific density. Boolean values (presence = 1, absence = 0)
were then assigned to the top-ranked grid cells until the cumulative area matched the reconstructed
provincial-level harvested area within a 100-hectare margin. This allocation was performed
sequentially for soybean, maize, and rice in that order. To identify land-use transitions associated
with specific crops, we overlaid the annual Boolean crop-type maps with the annual land-use maps
from the Historic Land Dynamics Assessment + (HILDA +) (Winkler et al., 2021). This spatial
overlay allowed us to determine which crop types occupied areas that had been newly converted
cropland in a given year. It is important to note that this approach assumes that the spatial allocation
based on crop-specific density rankings reflects the dominant crop type established after cropland
conversion. While this process introduces some uncertainty, the method offers a consistent and
spatially explicit framework for attributing land-use change processes to specific crops in the
absence of pixel-level crop rotation data.

6. The validation scheme is unclear and lacks a systematic approach. Given that existing datasets
have been used for modeling, it is difficult to understand why they are also used for evaluation.
For example, Section 3.3.1, “Evaluation Against Existing Datasets at the Provincial Level,” is
puzzling, as in many cases R* = 1.

Response: Thank you for your thoughtful comments. We apologize for the lack of clarity in the
original manuscript. We would like to clarify that we did not use any datasets involved in the
modeling process for evaluation purposes. In the modeling process, we primarily used two types
of data: (1) gridded datasets for base map generation, including Argentina MNC (2020),
MapBiomas (2020), GLAD (2020), GEOGLAM (2020, only for wheat), Uruguay LC (2018, only
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for rice), and SPAM (2010); and (2) historical inventory statistics. In Section 3.3.1, the gridded
data used for evaluation come from years that were not involved in the base map generation,
including Brazil Conab (2017-2020), MapBiomas (2000, 2005, 2010), GEOGLAM (2020, for
soybean, maize, and rice), GLAD (2005, 2010), SPAM (2000, 2005). Therefore, these datasets
serve as independent references for assessing the consistency of our reconstruction across time.

In the case of Brazil Conab data, although the R? =1, the slope deviates from 1, indicating a
decrease of underestimation in our reconstructed dataset. Moreover, the Brazil Conab dataset only
reports provincial-level statistics for 9 records over the period of 2017-2020, which is insufficient
in both spatial and temporal coverage to serve as an input data for long-term model development.
We have clarified it in the revised manuscript.

Revisions: Lines 484-488: We used gridded datasets that were not involved in the base map
generation to ensure independence form the reconstruction process, including MapBiomas
(soybean and rice in 2000, 2005, and 2010), SPAM (soybean, wheat, maize, and rice in 2000 and
2005), GEOGLAM (soybean, maize, and rice), GLAD (soybean in 2005 and 2010), and Brazil
Conab (soybean and rice from 2017 to 2020).

Lines 503-507:
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Figure 6. Comparison of crop type areas between this study and existing datasets (gridded datasets that were not
involved in reconstruction process, i.e., MapBiomas (2000, 2005, 2010), SPAM (2000, 2005), GEOGLAM (2020),
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GLAD (2005, 2010) at the provincial level. (a) Soybean; (b) Wheat; (c) Maize; (d) Rice. The numbers in parentheses
represent the total number of samples.

7. Figure 7 presents the comparison of the crop-specific areas between this study and census data
at the municipal level. However, it is not clear why to present Argentina (1960, 2008, and 2018),
Bolivia (1950), Brazil (1995, 2006, and 2017), Chile (2017), Colombia (1960), and Paraguay
(2008)? Rather than other regions in other years? Similar question to Figure 8, 9, and 10.

Response: Thank you for your thoughtful comments. The selected regions and years reflect the
limited availability of publicly released municipal-level statistical data and high-resolution crop-
specific maps. We included all accessible datasets that align with our reconstruction period.
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Responses to Reviewer 2:

The paper reconstructs the historical expansion of four major crops—soybean, maize, wheat, and
rice—across South America at an annual time scale and high spatial resolution (1 km x 1 km). By
integrating multiple data sources such as remote sensing, model-based reconstructions, and
historical agricultural census data, the researchers aim to provide a comprehensive dataset that
captures long-term trends in land use change. The study covers 13 South American countries and
employs validation methods using existing datasets (FAO, GEOGLAM, SPAM, GLAD) and
accuracy assessments at various administrative levels. The findings reveal a dramatic expansion
of agricultural land, particularly for soybean and maize, mainly at the expense of natural vegetation.
Soybean cultivation grew from almost zero in 1950 to 48.8 million hectares (Mha) in 2020, leading
to the loss of 23.92 Mha of forests, pastures, and shrublands. Maize also saw significant growth,
doubling from 12.7 Mha in 1950 to 26.9 Mha in 2020, with rapid acceleration after 2000. In
contrast, wheat and rice areas remained relatively stable over the study period. The analysis of land
use transitions shows that 24.49 Mha of forests and 13.82 Mha of pastures were converted into
croplands, largely for soybean and maize production. The dataset developed in this study is
valuable for assessing the environmental impacts of agricultural expansion, such as deforestation,
carbon emissions, and biodiversity loss. It also has critical implications for policymakers looking
to balance food security and environmental conservation in South America. By providing a long-
term, high-resolution record of crop-specific land transformation, this dataset enhances our
understanding of human-environment interactions and supports global efforts in sustainable
agriculture and climate change mitigation. While this paper presents a significant contribution to
historical land use mapping in South America, it has several notable weaknesses.

Response: We sincerely thank the reviewer for the thoughtful comments and for recognizing the
significance of our contribution to historical land use mapping in South America. We have
carefully considered all the comments and revised the manuscript accordingly. Below, we provide
detailed point-by-point responses to each comment.

1. The authors spend little effort in collecting, processing raw data sources. Instead they overly
rely on statistical interpolation and integration of existing datasets. For a data product, the most
important and also most time-consuming task is to collect the original, raw data. In this HISLAND,
it should be sub-national crop area (e.g. upto 2nd admin level) and production data from 1950-
2020. Without a great effort to assemble such a long-time series ( currently mostly at 1st admin
(e.g. province) level), the study instead uses linear interpolation to fill gaps in crop-specific data,
assuming constant trends between known data points. This approach can oversimplify non-linear
trends in agricultural expansion, particularly in regions where crop cultivation was influenced by
policy shifts, market dynamics, or environmental changes. In contrast, studies using machine
learning or geostatistical modeling (e.g., SPAM series though the authors only used SPAM2010 )
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often produce more accurate reconstructions by focusing on the fundamental effort of collecting
sub-national crop data and capturing complex relationships between variables.

Response: We sincerely thank the reviewer for the thoughtful comments. Our detailed responses

to each point are provided below:

Data collection: We agree that assembling agricultural census data at the municipality-
level can provide more spatially detailed and accurate inputs for developing long-term,
high-resolution land use datasets. However, municipality-level data in South America are
extremely limited in terms of public availability — only for selected countries and specific
years (Argentina: 1960, 2008, 2018; Bolivia: 1950; Brazil: 1995, 2006, 2017; Chile: 1960;
Paraguay: 2008), leaving large temporal gaps without constraints. This lack of temporal
continuity can lead to inconsistencies in the reconstructed time series if municipality-level
data were used directly for interpretation or trend estimation. In contrast, provincial-level
data provided more frequent observations over time (Table S1), which offer better temporal
continuity and constraints for long-term series reconstruction. Therefore, we primarily used
provincial-level data to reconstruct the long-term series of crop-specific harvested areas,
while municipality-level data were used to validate the reliability of our datasets. While
province-level data represents a coarser administrative granularity compared to
municipalities, our disaggregation results demonstrate that the reconstructed crop-specific
distributions align well with municipality-level statistics (Figure 7).

Interpolation: We acknowledge that linear interpolation may not fully capture potential
non-linear trends in crop-specific harvested areas caused by policy, market, or
environmental drivers. However, this approach was chosen due to the temporal
characteristics of available agricultural census data in South America, which are typically
reported at intervals of 10 years or more. Given these data constraints, linear interpolation
remains a widely used and practical method in historical land use reconstruction at the
administrative level (Klein Goldewijk et al., 2017; Leite et al., 2011; Li et al., 2023; Liu
and Tian, 2010; Ye et al., 2024). While it may introduce some uncertainty, the interpolation
is bounded by observed data points at both ends, ensuring that the overall trends remain
grounded in empirical data. It is also important to note that SPAM is designed for static
allocation of crop production in selected benchmark years (e.g., 2000, 2005, 2010, and
2020) and does not provide continuous temporal information. In contrast, our
reconstruction aims to generate a consistent annual time series of crop-specific harvested
areas from 1950 to 2020, offering valuable temporal dynamics to support long-term land
use and environmental analyses.

We have further discussed the limitations and future improvements of data collection and

interpolation-based approach in the revised manuscript.

Revisions: Lines 682-703:

4.3.1 Spatial and temporal gaps in census data
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A key consideration in reconstructing historical land use dynamics is the availability of agricultural
census data. Ideally, sub-national level (e.g., municipality, county, or district) agricultural statistics
would allow for more detailed spatial allocation of crop-specific harvested areas. However, their
availability across South America is highly limited and temporally inconsistent. Most countries
provide only a few isolated years of data at the municipal level (i.e., Argentina: 1960, 2008, 2018;
Bolivia: 1950; Brazil: 1995, 2006, 2017; Chile: 1960; Paraguay: 2008), which creates large
temporal gaps and hampers their direct use in annual time series reconstruction. In contrast,
provincial level data are more consistently reported over time, typically at 10-year intervals. These
more frequent observations enable more robust interpolation and better constrain the temporal
evolution of harvested areas. While these provincial units represent a coarser administrative
granularity, we combined them with a high-resolution crop-specific base map and temporal
cropland density maps to spatially disaggregate the data across all years. This approach allows us
to preserve long-term trends while capturing spatial variability. To address the temporal
discontinuities between census years, we applied linear interpolation to construct continuous
annual times series of harvested areas at the administrative level. While we acknowledge that the
use of linear interpolation may not fully reflect potential non-linear trends driven by policy, market,
or environmental drivers, it remains a practical and widely used method under the constraints of
sparse historical data(Klein Goldewijk et al., 2017; Leite et al., 2011; Li et al., 2023; Liu and Tian,
2010; Ye et al., 2024). Additionally, linear interpolation in this study is always bounded by
observed census points, which help to preserve long-term trends and prevent fluctuations.

2. One of the great strengths of this long-term, high-resolution maps is to compare and contrast the
crop area/production changes from year to year and to show the crop switches and crop pattern
changes at a spatially granular level of gridcells. Figure 2(The flow chart in this study) shows the
methodology, and I could hardly see how crop type transition from year to year is handled, or how
is the cropland intensity comparable from year to year. For example, if I compare the maize area
in one gridcell from Year 1 to Year 2, the change of maize area between these two years are the
REAL maize area change or simply the error from the modelling/allocation?

Response: Thank you for your thoughtful comments. To address the concern regarding the
temporal comparability and reliability of interannual crop-type changes at the grid cell level, we
conducted an evaluation using the 1-km GLAD soybean dataset from 2001 to 2020. Specifically,
we analyzed the pixel-wise annual differences between our reconstructed soybean fraction and the
GLAD data to assess whether year-to-year changes in crop distribution represent actual dynamics
or modeling artifacts. Figure 13 presents the temporal variation of the soybean fraction difference
(Model — GLAD) across years. The median and mean differences remain close to zero throughout
the study period, with narrow interquartile ranges (25-75%) and relatively stable 5-95% quantile
envelopes. This indicates that the model’s interannual fluctuations are consistent and not driven by
random noise or allocation instability. Figure S9 shows the spatial distribution and frequency
histogram of the 20-year average difference. The majority of pixels fall within £0.1, and the

15



histogram is tightly centered around zero, suggesting no systematic spatial bias in model estimates
over time. These results together support the temporal consistency of our crop-type maps and
suggest that the observed interannual changes are not dominated by allocation error but rather
reflect meaningful shifts in crop distribution. While some uncertainty remains inherent to crop
mapping, the strong agreement with independent GLAD observations indicates that year-to-year
comparisons and crop-switching signals in our dataset are reliable at the 1-km grid cell level.

Revisions: Lines 747-771: To assess the spatial and temporal consistency of our reconstructed
crop type maps, we conducted an uncertainties analysis using the resampled GLAD 1-km soybean
density dataset from 2001 to 2020 as an independent benchmark. This analysis focuses on
evaluating whether the interannual variation in soybean density reflects actual crop dynamics.
Figure 13 illustrates the annual difference in soybean density at the pixel level across South
America. The results show that the median and mean differences remain close to zero over time,
with narrow interquartile ranges (25%-75%) and relatively stable 5%-95% quantile envelopes.
These findings suggest that the year-to-year fluctuations in our dataset are not random but follow
a consistent trend with GLAD data, indicating reliable temporal comparability. In addition, Figure
S9 presents the spatial distribution of the mean soybean density difference averaged over the 20-
year period, along with a histogram of its pixel-wise distribution. Most regions exhibit minimal
bias, with more than 50% of grids falling within +0.1. The distribution is systematically centred

around zero, and areas of substantial over- or underestimation are spatially limited. These two
evaluations together evidence that our data maintains robust agreement with independent
observations (i.e., GLAD) both spatially and temporally. While similar high-resolution and long-
term crop-specific datasets are currently unavailable for maize, wheat, and rice across South
America, and thus prevent a comparable validation. However, the consistency observed in the
soybean evaluation provides indirect support for the robustness of our spatial allocation framework.
Given that the same methodological approach and harmonized inventory inputs were applied
across all four crops, we expect the reconstructed patterns for other crop types to similarly reflect
plausible spatial and temporal dynamics. Nonetheless, further evaluation using future regional
datasets will be essential to assess the reliability of crop-specific maps beyond soybean.
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Figure 13. Temporal variation in soybean density difference between GLAD and this study (2001-2020).
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Figure S9. Spatial distribution (left) and frequency (right) of mean soybean density difference between GLAD and
this study at the 1-km resolution from 2001 to 2020 for South America.

3. Uncertainty and Validation Issues. While the study integrates multiple datasets and performs
validation at different administrative levels, it lacks a comprehensive uncertainty analysis. Unlike
datasets such as HYDE or MapBiomas, which provide detailed error estimates and confidence
intervals for their reconstructions, this study does not explicitly quantify the uncertainties in its
spatial allocation methods or crop-specific data modeling. Additionally, validation is largely
dependent on comparisons with existing datasets, some of which have their own biases. A more
robust ground-truth validation (e.g., field data or higher-resolution satellite imagery) would
strengthen the dataset's reliability.

Response: Thank you for your thoughtful comments. Given the temporal sparsity of historical
inventories, varying spatial resolutions of input datasets, and the necessity of interpolations and
resampling, a formal uncertainty assessment is indeed essential to ensure the reliability and
interpretability of our results. Therefore, we conducted a structured uncertainty analysis targeting
three key aspects:

= The temporal limitations and spatial granularity of historical census data.
= The effects of spatial aggregation and resampling.
= The overall spatiotemporal consistency of the final product.

Then, we implemented a Monte Carlo simulation framework to quantify aggregation-induced
uncertainty under varying classification error rates and resolutions (Section 4.3.2). We further
evaluated the consistency of crop dynamics through comparison with independent remote sensing-
derived crop maps (Section 4.3.3), and explicitly discussed the constraints associated with
subnational inventory availability and interpolation-based time series reconstruction (Section
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4.3.1). These components were newly introduced in Section 4.3 to provide a more transparent and
systematic quantification of uncertainty in both the input data and final outputs.

Revisions: Lines 681-771:
4.3 Uncertainty analysis
4.3.1 Spatial and temporal gaps in census data

A key consideration in reconstructing historical land use dynamics is the availability of
agricultural census data. Ideally, sub-national level (e.g., municipality, county, or district)
agricultural statistics would allow for more detailed spatial allocation of crop-specific harvested
areas. However, their availability across South America is highly limited and temporally
inconsistent. Most countries provide only a few isolated years of data at the municipal level (i.e.,
Argentina: 1960, 2008, 2018; Bolivia: 1950; Brazil: 1995, 2006, 2017; Chile: 1960; Paraguay:
2008), which creates large temporal gaps and hampers their direct use in annual time series
reconstruction. In contrast, provincial level data are more consistently reported over time, typically
at 10-year intervals. These more frequent observations enable more robust interpolation and better
constrain the temporal evolution of harvested area. While these provincial units represent a coarser
administrative granularity, we combined them with a high-resolution crop-specific base map and
temporal cropland density maps to spatially disaggregate the data across all years. This approach
allows us to preserve long-term trends while capturing spatial variability. To address the temporal
discontinuities between census years, we applied linear interpolation to construct continuous
annual times series of harvested areas at the administrative level. While we acknowledge that the
use of linear interpolation may not fully reflect potential non-linear trends driven by policy, market,
or environmental drivers, it remains a practical and widely used method under the constraints of
sparse historical data (Klein Goldewijk et al., 2017; Leite et al., 2011; Li et al., 2023; Liu and Tian,
2010; Ye et al., 2024). Additionally, linear interpolation in this study is always bounded by
observed census points, which help to preserve long-term trends and prevent fluctuations.

4.3.2 Resampling-related spatial uncertainty

To ensure spatial consistency across input datasets, we employed two resampling strategies
to achieve a standardized 1 km resolution: (1) aggregation of high-resolution remote sensing
products, and (2) upsampling of lower-resolution datasets, such as SPAM. While resampling is
essential for harmonizing spatial scales, it introduces varying degrees of uncertainty depending on
the original resolution and classification accuracy of the source data.

Aggregation of high-resolution datasets does not introduce additional spatial uncertainty
beyond the inherent classification errors present in the original data. However, these classification
errors can propagate into aggregated outputs and finally affect spatial statistics. To quantify this
aggregation-induced uncertainty, we conducted a Monte Carlo simulation by introducing
symmetric random noise at various classification error rates (i.e., 3% to 15%), whereby a
proportion of target and non-target pixels were randomly flipped. For each combination of
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classification error rate and true fraction, we aggregated the modified raster to 1 km resolution and
calculated the resulting aggregated fraction. This process was repeated 100 times per fraction to
obtain stable estimates of the mean and standard deviation of the aggregated values (Figure S7).
We then computed the uncertainty as a function of both classification error and spatial resolution.
Specifically, total uncertainty was defined as the average absolute deviation between aggregated
and true values across the full range of possible true fractions (i.e., 0% to 100%). This allowed us
to isolate the magnitude of uncertainty attributable to aggregation process. This simulation
framework was applied to each of the aggregation datasets, yielding the acceptable uncertainties
(Table 5). These results demonstrated that total uncertainty increases with both classification error
and coarser input resolution. Datasets with higher native resolution (e.g., Uruguay LC) tend to
exhibit lower aggregation uncertainty, even when classification error is moderate. This underscores
that aggregation-induced uncertainty is not solely a function of accuracy, but also of the granularity
of the input data. This uncertainty component must be explicitly considered when integrating
heterogeneous land cover datasets for spatial modelling or policy-relevant assessments.

Table 5. Aggregation-induced uncertainty under varying classification errors and spatial resolutions.

Dataset Spatial resolution (m) Classification error (%) Total uncertainty (%)
Uruguay LC 10 11.5 5.81

MapBiomas 30 14.2 7.36

Argentia MNC 30 9.0 4.59

GLAD 30 4.0 2.08

CGLS-LC100 100 20.0 10.49

To evaluate the spatial uncertainty introduced by the upsampling process, we conducted a
quantitative comparison between SPAM and GLAD soybean maps for 2010 in South America.
The original SPAM data were unsampled to 1 km using bilinear interpolation, while the GLAD
soybean layer was aggregated to 1 km resolution and treated as reference. A pixel-by-pixel
comparison was performed between the two datasets across the continent. First, the pixel-wise
comparison yielded a coefficient of determination (R2) of 0.50, indicating moderate agreement
between resampled SPAM and GLAD data. Second, the distribution and frequency of pixel-level
differences revealed that over 70% of the pixels fell within a +0.1 range, while larger deviations

(greater than +0.3) were mainly observed in fragmented and heterogeneous cropping regions

(Figure S8). Although the resampling process introduced local structure uncertainty and smoothed
fine-scale heterogeneity, these results suggest that the unsampled 1 km SPAM data retain
meaningful broad-scale spatial patterns. Therefore, the resampled dataset in this study remains
suitable for use as a baseline crop distribution map at continental scale.

4.3.3 Spatial-temporal consistency assessment

To assess the spatial and temporal consistency of our reconstructed crop type maps, we
conducted an uncertainties analysis using the resampled GLAD 1-km soybean density dataset from
2001 to 2020 as an independent benchmark. This analysis focuses on evaluating whether the
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interannual variation in soybean density reflects actual crop dynamics. Figure 13 illustrates the
annual difference in soybean density at the pixel level across South America. The results show that
the median and mean differences remain close to zero over time, with narrow interquartile ranges
(25%-T75%) and relatively stable 5%-95% quantile envelopes. These findings suggest that the year-
to-year fluctuations in our dataset are not random but follow a consistent trend with GLAD data,
indicating reliable temporal comparability. In addition, Figure S9 presents the spatial distribution
of the mean soybean density difference averaged over the 20-year period, along with a histogram
of its pixel-wise distribution. Most regions exhibit minimal bias, with more than 50% of grids
falling within £0.1. The distribution is systematically centred around zero, and areas of substantial

over- or underestimation are spatially limited. These two evaluations together evidence that our
data maintains robust agreement with independent observations (i.e., GLAD) both spatially and
temporally. While similar high-resolution and long-term crop-specific datasets are currently
unavailable for maize, wheat, and rice across South America, and thus prevent a comparable
validation. However, the consistency observed in the soybean evaluation provides indirect support
for the robustness of our spatial allocation framework. Given that the same methodological
approach and harmonized inventory inputs were applied across all four crops, we expect the
reconstructed patterns for other crop types to similarly reflect plausible spatial and temporal
dynamics. Nonetheless, further evaluation using future regional datasets will be essential to assess
the reliability of crop-specific maps beyond soybean.
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Figure 13. Temporal variation in soybean density difference between GLAD and this study (2001-2020).
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Figure S7. Monte Carlo simulation of aggregation-induced estimation error under varying classification error rates
and spatial resolutions. (a), (b), and (c) represent the spatial resolution of 10 m, 30 m, and 100 m, respectively. The x-
axis represents the true fraction (%) of the target class in a 1 km grid, while the y-axis shows the absolute estimation
error (%) after aggregating the modified high-resolution raster. Each line corresponds to different simulated
classification error rates (i.c., 3%, 6%, 9%, 12%, and 15%). Shaded areas represent the standard deviation across 100
Monte Carlo iterations.
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Figure S8. Mean soybean density difference (GLAD-this study) at 1-km resolution across South America (2001-2020):
spatial pattern (left) and pixel-wise frequency (right).
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Figure S9. Spatial distribution (left) and frequency (right) of mean soybean density difference between GLAD and
this study at the 1-km resolution from 2001 to 2020 for South America.
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4. Lack of Socioeconomic and Policy Considerations. Although the study acknowledges the role
of economic and policy drivers (e.g., subsidies, trade policies, and neoliberal reforms), it does not
quantitatively integrate these factors into the model. Other land-use datasets, such as those from
GFSAD (Global Food Security-support Analysis Data) and EarthStat, incorporate economic and
climate factors to model cropland changes more dynamically. Without this integration, the dataset
may overestimate or underestimate cropland expansion in response to policy shifts and market
fluctuations.

Response: Thank you for your thoughtful comments. We fully agree that socioeconomic and
policy factors have played a critical role in shaping cropland dynamic in South America. However,
unlike products such as GFSAD or EarthStat, which focus on either remote sensing-based
classification or static allocation using production statistics and suitability layers (e.g., cropping
systems, economic and climate factors), our dataset reconstructs long-term crop-specific harvested
areas directly from historical census records, prioritizing consistency and continuity across
decades. Incorporating such factors into annually resolved, multi-decadal reconstructions face
several key challenges. First, long-term, sub-national policy and economic data are often
unavailable or inconsistently reported across countries. Second, the impacts of these drivers are
typically region-specific, non-linear, and time-lagged, posing challenges for systematic modeling.
Third, coupling them with harvested area data would require strong assumptions, which may
introduce additional uncertainties and compromise the robustness of the reconstruction.
Nevertheless, we acknowledge that this may reduce the model’s sensitivity to abrupt shifts in
cropland patterns. We have discussed this limitation in the revised manuscript.

Revisions: Line 824-838: Limitations in representing socioeconomic and environmental drivers.
While our data provides long-term, annually resolved reconstructions of crop-specific harvested
areas, we did not consider the explicit socioeconomic and environmental drivers such as soil
conditions, management practices, or market access. However, incorporating such factors into a
harmonized reconstruction presents considerable challenges. First, long-term, high-resolution data
on these drivers are unavailable or inconsistently reported across countries. Second, the effects of
these drivers are typically region-specific, non-linear, and time-lagged, which poses challenges for
systematic modelling. Third, integrating them would require strong assumptions, potentially
introducing additional uncertainties into the reconstruction. As a result, our current framework
relies on observed statistical records to ensure internal consistency over time but may be less
responsive to abrupt cropland shifts induced by major policy or market events. Future
improvements could explore the integration of these factors into a hybrid modelling framework
(e.g., machine learning or statistical downscaling models such as the GAEZ crop suitability layers)
to improve the spatial and temporal realism of crop allocation patterns.

5. Crop yield is not mapped. A critical component for such mappings is the crop yield, which has
great spatial heterogeneity and much more critical for food security. Admittedly mapping crop
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yields is more challenging as cropping system (e.g. rainfed vs irrigated, smallholder vs large estate
farming), management is far difficult to map. And yet missing this critical component severely
limits the value and usefulness of this product.

Response: Thank you for your thoughtful comments. We agree that crop yield is a critical variable
for understanding food production dynamics and food security. However, the focus of this study
is specifically on reconstructing historical patterns of crop-specific harvested areas rather than
production or yield. Accurately mapping yield would require integrating additional factors — such
as cropping systems (e.g., rainfed or irrigated), input use, farm scale, and climate variability —
which are currently unavailable or inconsistent at long-term, sub-national scales across South
America. We acknowledge that the absence of crop yield data limits the applicability of our dataset
for certain application scenarios. We have added a statement in the revised manuscript to
acknowledge this limitation and to outline our intention to explore historical yield reconstruction
in future versions of the dataset.

Revisions: Lines 814-824: Crop yield was not considered in this version of dataset. While
harvested areas provide valuable insights into land use patterns, crop yield remains a critical
variable for assessing agricultural production and food security. Accurately reconstructing
historical crop yields would require multiple additional factors, including cropping systems (e.g.,
rainfed or irrigated), input use, farm scale, climate and weather data. However, such data are
generally unavailable or lack consistency across long-term and sub-national scales in South
America, particularly before the 2000s. As a result, this version of the dataset focuses exclusively
on harvested areas. Future developments could explore the integration of satellite-derived
biophysical indicators (e.g., NDVI, LAI), historical production statistics, and climatic data to
support the reconstruction of spatial-temporal yield dynamics.
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Responses to Reviewer 3:

This study presents a long-term, high-resolution spatial dataset of four major crops across South
America. The topic is timely, and the dataset has clear potential for impactful use in agricultural,
environmental, and economic research. The manuscript is generally well-written and logically
structured.

Response: We thank the reviewer for the positive comments.

However, significant methodological simplifications and a lack of uncertainty quantification
weaken confidence in the reliability and robustness of the dataset. My concerns are detailed below.

Response: Thank you for your thoughtful comments. We acknowledge the importance of
methodological transparency and uncertainty assessment in enhancing the credibility of our dataset.
A point-by-point response is provided below to address the specific concerns raised.

1. Methodological Uncertainty in Reconstructing Historical Maps (Section 2.4.3)

This section is the methodological core of the dataset, reconstructing 70 years of crop-specific
spatial maps. However, the approach introduces several sources of uncertainty that compromise
the robustness of the dataset:

= Temporal Anchoring to 2020:

The spatial allocation relies heavily on crop distribution circa 2020. Although cropland density
based on inventory is used to constrain the extent, this approach assumes that spatial distribution
patterns have remained relatively stable over seven decades, which is unlikely. For example, Figure
12 shows clear cropland expansion in GLAD data from 2001 to 2020, whereas the developed maps
reflect more intensification than expansion—an inconsistency that may misrepresent true land use
change.

Response: Thank you for your thoughtful comments. We agree that using 2020 crop distribution
as a baseline assumes spatial stability that may not fully hold over seven decades, especially in
dynamic regions like Mato Grosso. This is a known limitation in long-term crop reconstructions
due to the lack of historical high-resolution crop maps. To address this, we constrained spatial
allocation with annual cropland density maps derived from multi-source datasets which ensure that
total cropland expansion is preserved even if crop type shifts are smoothed. In Figure 12, GLAD
shows more pronounced expansion, while our maps emphasize intensification. This difference
likely reflects methodological limitations in our reconstruction approach. While GLAD can
directly detect recent frontier expansion using high-resolution satellite imagery, our method—
relying on harmonized census data and constrained by historical cropland density—does not fully
capture abrupt spatial shifts, especially in newly cultivated frontiers. Nevertheless, our maps
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maintain broad consistency with high-resolution products in terms of spatial patterns and offer a
unique, long-term perspective from 1950 to 2020 that complements satellite-based datasets.

Revisions: Lines 616-625: GLAD maps show clear signals of frontier expansion, while our

results emphasize more gradual intensification. This difference may be attributed to the fact that
our reconstruction is based on harmonized census data and historical cropland density, which may
limit its ability to capture abrupt shifts as precisely as satellite-based maps. Nevertheless, our
results remain broadly consistent with high-resolution products in terms of spatial patterns.
Importantly, our dataset provides long-term, annually resolved crop-specific maps from 1950 to
2020, filling key temporal gaps that satellite-only datasets cannot address. Thus, despite limitations
in detecting fine-scale expansion, the HISLAND-SA dataset complements existing remote-sensing
products by offering a coherent and historically extended view of crop type dynamics in South
America.

= Shared Temporal Trends Across Crops

The temporal variation of crop-specific area is derived from cropland density of ratios between
years. As a result, all four crops follow the same temporal trend within each pixel, which
oversimplifies the complexity of crop dynamics and ignores crop substitution or rotation over time.

Response: Thank you for your thoughtful comments. We acknowledge that deriving temporal
trends using the same ratio-based approach across all crop types within a pixel may oversimplify
crop dynamics and does not capture crop rotation or substitution. This simplification was necessary
due to the limited availability of long-term, crop-specific spatial data at high resolution. We
recognize that this assumption may introduce some uncertainty into the temporal allocation of
individual crops. However, as more high-resolution, crop-specific datasets become available in the
future, particularly those with annual coverage, our framework can be refined to better reflect true
crop transitions and improve the reliability of the reconstructed time series.

Revisions: Lines 797-814: Cropping practices complexity (e.g., crop rotation and multiple
cropping) poses a significant challenge for accurate crop distribution mapping. These practices can
substantially influence both the spatial patterns and intensity of agriculture land use. Crop rotation,
the practice of growing different crops in the same field across multiple years, contributes to soil
health, pest control, and long-term cropland management. Ye et al., (2024) considered crop rotation
to reconstruct the historical crop distribution maps for the United States, relying on Cropland Data
Layer (CDL) data for crop rotation information; however, similar high-resolution products are
lacking for South America. In addition, Pott et al., (2023) visualized crop rotation information for
soybean, maize, and rice in Rio Grande do Sul, southern Brazil, but it did not sufficiently represent
the overall rotation patterns across South America. In contrast, multiple cropping involves the
cultivation of more than one crop within the same year in the same field. This practice is common
in regions with favorable climate conditions and contributes significantly to agricultural intensity.
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However, our current method does not differentiate between single- and multi-season cropping
systems, which limits its ability to reflect cropping intensity in areas with prevalent double and
triple cropping. Therefore, future research should focus on crop type mapping in South America
to obtain crop rotation and multiple cropping patterns, enabling the generation of more accurate
historical crop-specific maps in subsequent versions.

= QOrder of Allocation:

The order of crop allocation (soybean — maize — wheat — rice) could significantly affect the
final spatial distribution. The rationale behind this sequence should be clearly justified, or
alternative orders tested to assess sensitivity.

Response: Thank you for your thoughtful comments. Thank you for your thoughtful comments.
The allocation order was chosen primarily based on the availability and quality of spatial data.
Specifically, high-resolution remote sensing datasets such as GLAD and Argentina MNC provide
the most accurate and validated spatial information for soybean and maize, particularly around the
baseline year (2020). By assigning these crops first, we are able to leverage the strongest spatial
signals available to anchor the allocation process. This approach helps ensure that the most reliable
crop-specific distributions are preserved, especially in areas where multiple crops compete for
limited cropland. We acknowledge that this choice may not fully reflect historical dominance
patterns, but it reflects a practical trade-off based on data confidence. We have clarified this point
in the revised manuscript.

Revisions: Lines 371-376: This allocation was performed sequentially for soybean, maize, wheat,
and rice, based on the availability and reliability of high-resolution crop-specific datasets. In
particular, soybean and maize were prioritized because they are supported by well-validated spatial
products (e.g., GLAD and Argentina MNC), which offer a reliable basis for anchoring the
allocation and maintaining spatial consistency with observed crop distributions.

Suggestions to Reduce Uncertainty:

* Incorporate higher-resolution statistical data (e.g., Admin 2 or subnational data) where
available to improve spatial representativeness.

Response: Thank you for your thoughtful suggestion. We agree that assembling agricultural census
data at the municipality-level can provide more spatially detailed and accurate inputs for
developing long-term, high-resolution land use datasets. However, municipality-level data in
South America are extremely limited in terms of public availability — only for selected countries
and specific years (Argentina: 1960, 2008, 2018; Bolivia: 1950; Brazil: 1995, 2006, 2017; Chile:
1960; Paraguay: 2008), leaving large temporal gaps without constraints. This lack of temporal
continuity can lead to inconsistencies in the reconstructed time series if municipality-level data
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were used directly for interpretation or trend estimation. In contrast, provincial-level data provided
more frequent observations over time (Table S1), which offer better temporal continuity and
constraints for long-term series reconstruction. Therefore, we primarily used provincial-level data
to reconstruct the long-term series of crop-specific harvested areas, while municipality-level data
were used to validate the reliability of our datasets. While province-level data represents a coarser
administrative granularity compared to municipalities, our disaggregation results demonstrate that
the reconstructed crop-specific distributions align well with municipality-level statistics (Figure
7). We have further discussed the limitations and future improvements of data collection in the
revised manuscript.

Revisions: Lines 682-703:
4.3.1 Spatial and temporal gaps in census data

A key consideration in reconstructing historical land use dynamics is the availability of agricultural
census data. Ideally, sub-national level (e.g., municipality, county, or district) agricultural statistics
would allow for more detailed spatial allocation of crop-specific harvested areas. However, their
availability across South America is highly limited and temporally inconsistent. Most countries
provide only a few isolated years of data at the municipal level (i.e., Argentina: 1960, 2008, 2018;
Bolivia: 1950; Brazil: 1995, 2006, 2017; Chile: 1960; Paraguay: 2008), which creates large
temporal gaps and hampers their direct use in annual time series reconstruction. In contrast,
provincial level data are more consistently reported over time, typically at 10-year intervals. These
more frequent observations enable more robust interpolation and better constrain the temporal
evolution of harvested areas. While these provincial units represent a coarser administrative
granularity, we combined them with a high-resolution crop-specific base map and temporal
cropland density maps to spatially disaggregate the data across all years. This approach allows us
to preserve long-term trends while capturing spatial variability. To address the temporal
discontinuities between census years, we applied linear interpolation to construct continuous
annual times series of harvested areas at the administrative level. While we acknowledge that the
use of linear interpolation may not fully reflect potential non-linear trends driven by policy, market,
or environmental drivers, it remains a practical and widely used method under the constraints of
sparse historical data(Klein Goldewijk et al., 2017; Leite et al., 2011; Li et al., 2023; Liu and Tian,
2010; Ye et al., 2024). Additionally, linear interpolation in this study is always bounded by
observed census points, which help to preserve long-term trends and prevent fluctuations.

Lines 788-797: In some countries, historical agricultural census data are limited. Adequate
historical agricultural census data is the basis for the reconstruction of historical spatial data.
Although provincial-level data are available in every country, only a few years of data are
accessible in some countries due to inconsistencies in national policies and agricultural census
years. Even though this data can be reconstructed in various ways (i.e., interpolation) (Li et al.,
2023; Mao et al., 2023), some uncertainties remain. Additionally, national-level trends and
interpolation methods were used to reconstruct provincial-level data, which to some extent may
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miss internal trends of some provinces. Interannual variability at the provincial level is generally
not fully consistent with that at the national level, and such reconstruction methods may introduce
some overestimation or underestimation of the results.

= Integrate additional spatial products across the time series (e.g., SPAM maps for 2000, 2005,
2010, and 2020) as anchor points or for calibration.

Response: Thank you for your thoughtful comments. We fully agree that incorporating additional
spatial datasets across the time series is a valuable strategy to improve temporal consistency and
support spatial calibration. However, as shown in Figure S10, SPAM 2000 exhibits relatively
coarse resolution and spatial fragmentation that do not align well with either our reconstructed data
or high-resolution references such as GLAD 2001. These limitations make SPAM less suitable as
a spatial anchor. That said, we did incorporate SPAM 2010 into the construction of our crop-
specific base map for 2020, but only in regions where high-resolution remote sensing products
(e.g., GLAD, MapBiomas, Argentina MNC) were unavailable. In those areas, SPAM served as a
supplementary data source to ensure full spatial coverage, despite its limitations. This selective
integration strategy helped balance spatial completeness with data quality.

Revisions: Lines 776-788: The base maps of cropland density and crop types are crucial for
constraining the spatial patterns of crops. In general, reconstructing historical crop type
distributions requires using the present crop type distribution as a benchmark to project back into
the past. In this study, we used several high-resolution remote sensing products (i.e., Argentina
MNC, MapBiomas, and Uruguay LC) to construct a base map. However, these datasets do not
provide full spatial coverage of South America and are limited to specific years, which introduces
spatial gaps and temporal inconsistencies across the region. As a result, we selectively
supplemented the base map with SPAM 2010 in areas where high-resolution products were
unavailable, despite its coarser resolution. This highlights the pressing need to develop long-term
and high-resolution crop type datasets with consistent spatial and temporal coverage at the regional
or global scales. Such datasets would greatly enhance the accuracy and reliability of historical
crop-specific reconstructions.
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Figure S10. Spatial comparison of soybean fraction maps in Mato Grosso: (a) this study (2001), (b) GLAD (2001),
and (¢) SPAM (2000).
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* Employ machine learning or statistical downscaling models (e.g., GAEZ crop suitability layers)
to guide spatial allocation based on biophysical, socioeconomic, and historical drivers.

Response: Thank you for your thoughtful comments. Integrating machine learning or statistical
downscaling approaches with biophysical or socioeconomic drivers could indeed enhance the
realism of crop spatial allocation, especially in regions or periods where high-resolution crop maps
are unavailable or incomplete. However, the implementation of such approaches is currently
constrained by the limited availability of consistent long-term gridded datasets on key variables
(e.g., soil conditions, management practices, market access), particularly across South America
over multiple decades. Nevertheless, this is still a promising direction for future work and we have
acknowledged it in the revised manuscript.

Revisions: Lines 824-838: Limitations in representing socioeconomic and environmental drivers.
While our data provides long-term, annually resolved reconstructions of crop-specific harvested
areas, we did not consider the explicit socioeconomic and environmental drivers such as soil
conditions, management practices, or market access. However, incorporating such factors into a
harmonized reconstruction presents considerable challenges. First, long-term, high-resolution data
on these drivers are unavailable or inconsistently reported across countries. Second, the effects of
these drivers are typically region-specific, non-linear, and time-lagged, which poses challenges for
systematic modelling. Third, integrating them would require strong assumptions, potentially
introducing additional uncertainties into the reconstruction. As a result, our current framework
relies on observed statistical records to ensure internal consistency over time but may be less
responsive to abrupt cropland shifts induced by major policy or market events. Future
improvements could explore the integration of these factors into a hybrid modelling framework
(e.g., machine learning or statistical downscaling models such as the GAEZ crop suitability layers)
to improve the spatial and temporal realism of crop allocation patterns.

2. Crop-to-Land Use Transition Methodology

The paper does not clearly explain how changes in crop-specific areas are reconciled with changes
in land use categories. Given the reliance on different products (e.g., HILDA+, inventory data), it
is unclear:

= How were increases or decreases in crop area assigned to different land use classes?

= In cases where crop-specific changes exceed the corresponding land use change within a pixel,
how was the conflict resolved?

= How was consistency maintained when both datasets carry uncertainties—particularly in
earlier decades?
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This aspect is critical to validate transitions over time and should be supported with additional
evidence, such as inventories, case studies, or literature-based benchmarks.

Response: Thank you for your thoughtful comments. First, our study did not impose hard
constraints linking crop expansion to specific land use types. Instead, transitions were assessed by
overlaying annual crop type maps with HILDA+ land use data to infer original land use classes.
Second, there is no conflict at the pixel level between crop-specific areas and land use capacity, as
crop type data was derived directly from reconstructed annual crop-specific density maps.
However, we acknowledge that uncertainty does exist. This uncertainty stems primarily from the
inherent limitations and discrepancies between our reconstructed data and HILDA+, rather than
from the land use transition method itself. To clarify, we have reorganized the method for land use
transition details to improve clarity and traceability.

Revisions: Lines 365-384:
2.5.4 Analyzing crop-specific land-use transitions

To assess the transitions between land use and specific crop types, we first converted the
annual crop-specific density maps into Boolean crop-type maps for each year from 1950 to 2020,
following the method described by (Li et al., 2023). For each crop and year, grid cells were ranked
in descending order based on crop-specific density. Boolean values (presence = 1, absence = 0)
were then assigned to the top-ranked grid cells until the cumulative area matched the reconstructed
provincial-level harvested area within a 100-hectare margin. This allocation was performed
sequentially for soybean, maize, wheat, and rice, based on the availability and reliability of high-
resolution crop-specific datasets. In particular, soybean and maize were prioritized because they
are supported by well-validated spatial products (e.g., GLAD and Argentina MNC), which offer a
reliable basis for anchoring the allocation and maintaining spatial consistency with observed crop
distributions. To identify land-use transitions associated with specific crops, we overlaid the annual
Boolean crop-type maps with the annual land-use maps from the Historic Land Dynamics
Assessment + (HILDA +) (Winkler et al., 2021). This spatial overlay allowed us to determine
which crop types occupied areas that had been newly converted cropland in a given year. It is
important to note that this approach assumes that the spatial allocation based on crop-specific
density rankings reflects the dominant crop type established after land conversion. While this
process introduces some uncertainty, the method offers a consistent and spatially explicit
framework for attributing land-use change processes to specific crops in the absence of pixel-level
crop rotation data.

3. Uncertainty Analysis is Essential

Given the simplified methodology and the integration of disparate datasets, a formal uncertainty
analysis is essential to strengthen the reliability of the product. Discrepancies visible in Figure 6
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and Table 4, as well as known limitations in source datasets (e.g., inventories), point to substantial
uncertainty that needs to be acknowledged and quantified.

Consider approaches such as:

= Sensitivity analysis to test different assumptions (e.g., crop order, data source weights).
= Comparison against independent datasets or national statistics (where available).
= Monte Carlo simulations or bootstrapping to evaluate variability in key assumptions.

Response: Thank you for your thoughtful comments. We acknowledge that the integration of
heterogeneous datasets and the use of simplified allocation assumptions inevitably introduce
uncertainty into our reconstructed crop type maps. Given the temporal sparsity of historical
inventories, varying spatial resolutions of input datasets, and the necessity of interpolations and
resampling, a formal uncertainty assessment is indeed essential to ensure the reliability and
interpretability of our results. Therefore, we conducted a structured uncertainty analysis targeting
three key aspects:

= The temporal limitations and spatial granularity of historical census data.
= The effects of spatial aggregation and resampling.
= The overall spatiotemporal consistency of the final product.

Then, we implemented a Monte Carlo simulation framework to quantify aggregation-induced
uncertainty under varying classification error rates and resolutions (Section 4.3.2). We further
evaluated the consistency of crop dynamics through comparison with independent remote sensing-
derived crop maps (Section 4.3.3), and explicitly discussed the constraints associated with
subnational inventory availability and interpolation-based time series reconstruction (Section
4.3.1). These components were newly introduced in Section 4.3 to provide a more transparent and
systematic quantification of uncertainty in both the input data and final outputs.

Revisions: Lines 681-771:
4.3 Uncertainty analysis
4.3.1 Spatial and temporal gaps in census data

A key consideration in reconstructing historical land use dynamics is the availability of
agricultural census data. Ideally, sub-national level (e.g., municipality, county, or district)
agricultural statistics would allow for more detailed spatial allocation of crop-specific harvested
areas. However, their availability across South America is highly limited and temporally
inconsistent. Most countries provide only a few isolated years of data at the municipal level (i.e.,
Argentina: 1960, 2008, 2018; Bolivia: 1950; Brazil: 1995, 2006, 2017; Chile: 1960; Paraguay:
2008), which creates large temporal gaps and hampers their direct use in annual time series
reconstruction. In contrast, provincial level data are more consistently reported over time, typically
at 10-year intervals. These more frequent observations enable more robust interpolation and better
constrain the temporal evolution of harvested area. While these provincial units represent a coarser
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administrative granularity, we combined them with a high-resolution crop-specific base map and
temporal cropland density maps to spatially disaggregate the data across all years. This approach
allows us to preserve long-term trends while capturing spatial variability. To address the temporal
discontinuities between census years, we applied linear interpolation to construct continuous
annual times series of harvested areas at the administrative level. While we acknowledge that the
use of linear interpolation may not fully reflect potential non-linear trends driven by policy, market,
or environmental drivers, it remains a practical and widely used method under the constraints of
sparse historical data (Klein Goldewijk et al., 2017; Leite et al., 2011; Li et al., 2023; Liu and Tian,
2010; Ye et al., 2024). Additionally, linear interpolation in this study is always bounded by
observed census points, which help to preserve long-term trends and prevent fluctuations.

4.3.2 Resampling-related spatial uncertainty

To ensure spatial consistency across input datasets, we employed two resampling strategies
to achieve a standardized 1 km resolution: (1) aggregation of high-resolution remote sensing
products, and (2) upsampling of lower-resolution datasets, such as SPAM. While resampling is
essential for harmonizing spatial scales, it introduces varying degrees of uncertainty depending on
the original resolution and classification accuracy of the source data.

Aggregation of high-resolution datasets does not introduce additional spatial uncertainty
beyond the inherent classification errors present in the original data. However, these classification
errors can propagate into aggregated outputs and finally affect spatial statistics. To quantify this
aggregation-induced uncertainty, we conducted a Monte Carlo simulation by introducing
symmetric random noise at various classification error rates (i.e., 3% to 15%), whereby a
proportion of target and non-target pixels were randomly flipped. For each combination of
classification error rate and true fraction, we aggregated the modified raster to 1 km resolution and
calculated the resulting aggregated fraction. This process was repeated 100 times per fraction to
obtain stable estimates of the mean and standard deviation of the aggregated values (Figure S7).
We then computed the uncertainty as a function of both classification error and spatial resolution.
Specifically, total uncertainty was defined as the average absolute deviation between aggregated
and true values across the full range of possible true fractions (i.e., 0% to 100%). This allowed us
to isolate the magnitude of uncertainty attributable to aggregation process. This simulation
framework was applied to each of the aggregation datasets, yielding the acceptable uncertainties
(Table 5). These results demonstrated that total uncertainty increases with both classification error
and coarser input resolution. Datasets with higher native resolution (e.g., Uruguay LC) tend to
exhibit lower aggregation uncertainty, even when classification error is moderate. This underscores
that aggregation-induced uncertainty is not solely a function of accuracy, but also of the granularity
of the input data. This uncertainty component must be explicitly considered when integrating
heterogeneous land cover datasets for spatial modelling or policy-relevant assessments.

Table 5. Aggregation-induced uncertainty under varying classification errors and spatial resolutions.

Dataset Spatial resolution (m) Classification error (%) Total uncertainty (%)
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Uruguay LC 10 11.5 5.81

MapBiomas 30 14.2 7.36
Argentia MNC 30 9.0 4.59
GLAD 30 4.0 2.08
CGLS-LC100 100 20.0 10.49

To evaluate the spatial uncertainty introduced by the upsampling process, we conducted a
quantitative comparison between SPAM and GLAD soybean maps for 2010 in South America.
The original SPAM data were unsampled to 1 km using bilinear interpolation, while the GLAD
soybean layer was aggregated to 1 km resolution and treated as reference. A pixel-by-pixel
comparison was performed between the two datasets across the continent. First, the pixel-wise
comparison yielded a coefficient of determination (R2) of 0.50, indicating moderate agreement
between resampled SPAM and GLAD data. Second, the distribution and frequency of pixel-level
differences revealed that over 70% of the pixels fell within a +0.1 range, while larger deviations

(greater than +0.3) were mainly observed in fragmented and heterogeneous cropping regions

(Figure S8). Although the resampling process introduced local structure uncertainty and smoothed
fine-scale heterogeneity, these results suggest that the unsampled 1 km SPAM data retain
meaningful broad-scale spatial patterns. Therefore, the resampled dataset in this study remains
suitable for use as a baseline crop distribution map at continental scale.

4.3.3 Spatial-temporal consistency assessment

To assess the spatial and temporal consistency of our reconstructed crop type maps, we
conducted an uncertainties analysis using the resampled GLAD 1-km soybean density dataset from
2001 to 2020 as an independent benchmark. This analysis focuses on evaluating whether the
interannual variation in soybean density reflects actual crop dynamics. Figure 13 illustrates the
annual difference in soybean density at the pixel level across South America. The results show that
the median and mean differences remain close to zero over time, with narrow interquartile ranges
(25%-75%) and relatively stable 5%-95% quantile envelopes. These findings suggest that the year-
to-year fluctuations in our dataset are not random but follow a consistent trend with GLAD data,
indicating reliable temporal comparability. In addition, Figure S9 presents the spatial distribution
of the mean soybean density difference averaged over the 20-year period, along with a histogram
of its pixel-wise distribution. Most regions exhibit minimal bias, with more than 50% of grids
falling within £0.1. The distribution is systematically centred around zero, and areas of substantial

over- or underestimation are spatially limited. These two evaluations together evidence that our
data maintains robust agreement with independent observations (i.e., GLAD) both spatially and
temporally. While similar high-resolution and long-term crop-specific datasets are currently
unavailable for maize, wheat, and rice across South America, and thus prevent a comparable
validation. However, the consistency observed in the soybean evaluation provides indirect support
for the robustness of our spatial allocation framework. Given that the same methodological
approach and harmonized inventory inputs were applied across all four crops, we expect the
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reconstructed patterns for other crop types to similarly reflect plausible spatial and temporal
dynamics. Nonetheless, further evaluation using future regional datasets will be essential to assess
the reliability of crop-specific maps beyond soybean.
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Figure 13. Temporal variation in soybean density difference between GLAD and this study (2001-2020).
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Figure S7. Monte Carlo simulation of aggregation-induced estimation error under varying classification error rates
and spatial resolutions. (a), (b), and (c) represent the spatial resolution of 10 m, 30 m, and 100 m, respectively. The x-
axis represents the true fraction (%) of the target class in a 1 km grid, while the y-axis shows the absolute estimation
error (%) after aggregating the modified high-resolution raster. Each line corresponds to different simulated

classification error rates (i.e., 3%, 6%, 9%, 12%, and 15%). Shaded areas represent the standard deviation across 100
Monte Carlo iterations.
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Figure S8. Mean soybean density difference (GLAD-this study) at 1-km resolution across South America (2001-2020):
spatial pattern (left) and pixel-wise frequency (right).
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Figure S9. Spatial distribution (left) and frequency (right) of mean soybean density difference between GLAD and
this study at the 1-km resolution from 2001 to 2020 for South America.

4. Clarification on Presentation of Results

= Figure 6: Since spatial data were adjusted at the provincial level using inventory data (Eq. 2),
comparisons shown are essentially against data already used for calibration. This limits the
independence of the validation and should be acknowledged.
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Response: Thank you for your thoughtful comments. We apologize for the lack of clarity in the
original manuscript. We would like to clarify that we did not use any datasets involved in the
modeling process for evaluation purposes. In the modeling process, we primarily used two types
of data: (1) gridded datasets for base map generation, including Argentina MNC (2020),
MapBiomas (2020), GLAD (2020), GEOGLAM (2020, only for wheat), Uruguay LC (2018, only
for rice), and SPAM (2010); and (2) historical inventory statistics. In Figure 6, the gridded data
used for evaluation come from years that were not involved in the base map generation, including
Brazil Conab (2017-2020), MapBiomas (2000, 2005, 2010), GEOGLAM (2020, for soybean,
maize, and rice), GLAD (2005, 2010), SPAM (2000, 2005). Therefore, these datasets serve as
independent references for assessing the consistency of our reconstruction across time. We have
clarified it in the revised manuscript.

Revisions: Lines 484-488: We used gridded datasets that were not involved in the base map
generation to ensure independence form the reconstruction process, including MapBiomas
(soybean and rice in 2000, 2005, and 2010), SPAM (soybean, wheat, maize, and rice in 2000 and
2005), GEOGLAM (soybean, maize, and rice), GLAD (soybean in 2005 and 2010), and Brazil
Conab (soybean and rice from 2017 to 2020).

Lines 503-507:

© Brazil Conba (4): R? = 1, Slope = 1.38 5|© SPAM (711): R*=0.93, Slope = 1.15
© MapBiomas (81): R?,0.99 , Slope= 1.41
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Figure 6. Comparison of crop type areas between this study and existing datasets (gridded datasets
that were not involved in reconstruction process, i.e., MapBiomas (2000, 2005, 2010), SPAM
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(2000, 2005), GEOGLAM (2020), GLAD (2005, 2010) at the provincial level. (a) Soybean; (b)
Wheat; (c) Maize; (d) Rice. The numbers in parentheses represent the total number of samples.

= Figure 11: Please clarify whether these 2020 maps are derived from existing products or
developed as part of this study. If they are pre-existing, the comparisons do not reflect the
added value of the developed dataset.

Response: Thank you for your thoughtful comments. The 2020 maps in the first column are
derived from existing products, but we calibrated using provincial-level inventory data to ensure
consistency with reported statistics (refer to section 2.4.1). Figure 11 aims to evaluate the spatial
consistency between our reconstructed dataset and high-resolution crop maps. However, due to the
lack of comparable remote sensing-based crop dataset (i.e., maize, wheat, and rice) for earlier years,
we used 2020 as a benchmark year for visual comparison. We acknowledge that some of the
reference datasets (i.e., panels b, e, h, and 1) were also used in constructing the 2020 base map,
which may partially contribute to the high agreement. To further assess the temporal robustness of
our reconstructed data, we compared our annual soybean maps with the GLAD product in Figure
12, which shows good spatial consistency across multiple years and supports the reliability of our
long-term reconstruction. We have clarified it in the revised manuscript.

Revisions: Line 608-625: Although Figure 11 demonstrates strong spatial agreement between our
reconstructed data and existing high-resolution crop maps for 2020, some of these maps were also
used to construct the base map, which may partially account for the high levels of consistency. To
further evaluate the temporal reliability of our dataset, GLAD, being the only soybean distribution
maps in South America with a high-resolution and long-time series and validation accuracy, allows
us to compare spatial distributions of reconstructed data over time (Song et al., 2021). As shown
in Figure 12, we selected the Brazilian state of Mato Grosso, one of the most significant regions
for soybean expansion since 2000, as an example to present comparative results. GLAD maps
show clear signals of frontier expansion, while our results emphasize more gradual intensification.
This difference may be attributed to the fact that our reconstruction is based on harmonized census
data and historical cropland density, which may limit its ability to capture abrupt shifts as precisely
as the high-resolution satellite-based maps. Nevertheless, our results remain broadly consistent
with high-resolution products in terms of spatial patterns. Importantly, our dataset provides long-
term, annually resolved crop-specific maps from 1950 to 2020, filling key temporal gaps that
satellite-only datasets cannot address. Thus, despite limitations in detecting fine-scale expansion,
the HISLAND-SA dataset complements existing remote-sensing products by offering a coherent
and historically extended view of crop type dynamics in South America.

Line 627-629: Figure 11. Visual comparison of crop-specific maps between this study and other
datasets. The left column shows the crop-specific maps in this study, with high-resolution data in
the middle and coarse-resolution data on the right. Panels b, e, h, and |1 were also used as input
layers in generating the 2020 base map.
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Specific Comments
= Title: Consider specifying the focus on four major commodity crops for clarity.

Response: Thank you for your suggestion. We have revised the title to explicitly include the four
major commodity crops — soybean, maize, wheat, and rice — for improved clarity.

Revisions:

Title: HIStory of LAND transformation by humans in South America (HISLAND-SA): annual
and 1-km gridded data for soybean, maize, wheat, and rice (1950-2020)

* Line 33: Replace “cropland” with the names of the four crops to avoid confusion.

Response: Thank you for your suggestion. We have replaced “cropland” with the specific crop
names (i.e., soybean, maize, wheat, and rice) in Line 33 to avoid confusion.

Revisions: Lines 35-38: The results showed that soybean and maize cultivation expanded rapidly
in South America by encroaching on other vegetation (i.e., forest, pasture/rangeland, and
unmanaged grass/shrubland) over the past 70 years, whereas wheat and rice areas remained
relatively stable.

= Line 36: If “other vegetation” in Line 36 matches the scope in Line 34, merge or clarify the
definitions.

Response: Thank you for your suggestion. We have clarified the definition of “other vegetation”
upon its first use to avoid confusion.

Revisions: Lines 35-41: The results showed that soybean and maize cultivation expanded rapidly
in South America by encroaching on other vegetation (i.e., forest, pasture/rangeland, and
unmanaged grass/shrubland) over the past 70 years, whereas wheat and rice areas remained
relatively stable. Specifically, soybean is one of the most dramatically expanded crops, increasing
from essentially zero in 1950 to 48.8 Mha in 2020, resulting in a total loss of 23.92 Mha of other
vegetation.

= Line 50-53: Specify whether this refers to global patterns or South America only.

Response: Thank you for your thoughtful comment. The original sentence referred to global land-
use patterns, which did not align with the South America-focused theme of the study. Therefore,
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we removed the sentence and revised the first paragraph of Introduction to better emphasize the
regional context.

Revisions: Lines 50-71: South America is of critical importance due to its substantial contribution
to global agriculture, which is essential for meeting the world’s growing food demand (Ceddia et
al., 2014; Hoang et al., 2023). Cropland expansion in this region has been a significant driver of
land-use transformation, particularly through deforestation, with profound effects on ecosystems
and biogeochemical processes (Song et al., 2021; Zalles et al., 2021). As one of the main types of
land use and land cover (LULC), cropland plays a crucial role in supporting human nutritional
needs and ensuring food security (He et al., 2017; Yu and Lu, 2017). However, to meet the growing
demand for food and fiber driven by population growth and consumption patterns, cropland has
increasingly encroached on natural vegetation (Winkler et al., 2021). Additionally, economic and
policy factors have reshaped crop cultivation structures across the region (Cheng et al., 2023;
Mueller and Mueller, 2010; Song et al., 2021). These changes are driven by a combination of trade
dynamics, investment flows, and market concentration (Boyd, 2023; Clapp, 2021). As a result,
the transformation of crop types has occurred, weakening the resilience of agroecosystems and
contributing to biodiversity loss (Frison et al., 2011; Renard and Tilman, 2019). In response to
these challenges, the international community has increasingly emphasized the need to align
agricultural systems with climate mitigation and food security goals (ICJ, 2025). Therefore, an
improved understanding of the spatial distribution and historical dynamics of crop types is urgently
needed to assess the impacts of cropland expansion and crop pattern shifts across South America.
Such insights are crucial for evaluating the environmental and socio-economic consequences of
cropland expansion, particularly in terms of its impact on climate, ecosystems, and food security.

* Figure I: Recommend adding GADM Admin 1 boundaries for better spatial context.

Response: Thank you for your suggestion. We have revised Figure 1 to include GADM Level 1
administrative boundaries for better geographic reference.

Revisions: Lines 158-159:
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Figure 1. Geopolitical and administrative divisions of South America.

= Lines 248-253 (Step 1): The interpolation process between missing years is unclear. While
Equation 1 is mentioned, how is this different from linear interpolation? Clarify the
assumptions behind using national trends versus pixel-level trends.

Response: Thank you for your thoughtful comment. The first step aims to reconstruct the total
cropland area at the provincial level, using two complementary interpolation approaches: ratio-
based interpolation and standard linear interpolation. When provincial-level cropland area was
missing but national-level cropland area was available, we estimated the missing value by scaling
the closest available provincial-level cropland area according to the relative change in national-
level cropland area (as defined in Equation 1). This approach assumes that changes in the cropland
area at the provincial-level follow the same relative trend as those observed at the national scale.
In cases where national-level cropland area was unavailable, we applied standard linear
interpolation between known provincial-level cropland areas to interpolate missing values. We
have clarified this process in the revised manuscript.

Revisions: Lines 267-279: The reconstruction of a total cropland area at the provincial level
covers the period from 1950 to 2020. In this step, we mainly used two complementary interpolation
approaches: ratio-based interpolation and linear interpolation. For years with available national-
level cropland area but missing provincial-level cropland area, we estimated provincial-level
cropland area by scaling the nearest known provincial-level cropland area according to the relative
change in national-level cropland area (Equation 1). This assumes that provincial-level changes
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follow the same relative trend as those observed on the national scale. From 1961 to 2020, national

cropland areas from FAO were used to calculate annual change rates. For years prior to 1961, we

relied on agricultural census records or HYDE data. In cases where neither provincial nor national

cropland areas were available, we applied linear interpolation between known provincial cropland
areas. Since data availability and reference years differ across countries, the reconstruction was

performed separately for each country.

= Line 260-269 (Step 2): Clarify how mismatches were handled when one product had spatial
coverage but the other did not. How did interpolation behave near transition years (e.g., 1984,
2014)? Were there artificial spatial jumps in coverage? Given HILDA+ provides annual maps,
why wasn’t it used for interpolation?

Response: Thank you for your thoughtful and detailed comments. We appreciate your attention to

the spatial and temporal consistency of our cropland reconstruction methodology. Please find our

point-by-point responses and revisions below:

Spatial coverage mismatches: To extend cropland density maps prior to the availability
of CGLS-LC100 (2015-2019), we employed a backward projection method using
GLC _FCS30D (1985-2022) and HYDE (1950-1990). Specifically, we selected CGLS-
LC100 in 2015 as the base map for GLC FCS30D, and 1990 as the base year for HYDE
due to its decadal resolution. We then projected cropland density backward by applying
annual or decadal fractional changes from these two datasets to their respective base maps.
Accordingly, we applied the following rules to handle dataset integration:

e GLC_FCS30D > 0, CGLS_LC100 > 0: The relative change in cropland density
between the years (e.g., 2014 to 2015 from GLC_FCS30D) was applied directly to
the corresponding CGLS-LC100 grid cell.

e GLC _FCS30D > 0, CGLS-LC100 = 0: The product of any change rate and zero
yields zero; thus, the cropland density for that year and grid cell remained zero.

e GLC_FCS30D = 0, CGLS-LC100 > 0: This implies no recorded change in
cropland presence; thus, the CGLS-LC100 value was retained without adjustment.

A similar method was applied when using HYDE to reconstruct pre-1985 cropland density
maps.

Revisions: Lines 285-299: To extend cropland density maps prior to the availability of
CGLS-LC100, we employed a backward projection method using GLC FCS30D and
HYDE. Specifically, we selected CGLS-LC100 in 2015 as the base map for GLC_FCS30D,
and 1990 as the base year for HYDE due to its decadal resolution. We then projected
cropland density backward by applying annual or decadal fractional changes from these
two datasets to their respective base maps. Accordingly, we applied the following rules to
handle dataset integration: (a) GLC_FCS30D > 0, CGLS LC100 > 0: The relative change
in cropland density between the years (e.g., 2014 to 2015 from GLC_FCS30D) was applied
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directly to the corresponding CGLS-LC100 grid cell; (b) GLC FCS30D >0, CGLS-LC100
= 0: The product of any change rate and zero yields zero; thus, the cropland density for that
year and grid cell remained zero; (¢) GLC_FCS30D = 0, CGLS-LC100 > 0: This implies
no recorded change in cropland presence; thus, the CGLS-LC100 value was retained
without adjustment. A similar method was applied when using HYDE to reconstruct
cropland density maps prior to 1985, with decadal change rates applied to the 1990 baseline.

= Interpolation: To ensure spatial consistency, all datasets were processed at a lkm
resolution. Specifically, we did not directly stitch CGLS-LC100, GLC FCS30D, or HYDE.
Instead, we used the cropland density of CGLS-LC100 in 2015 as a structural baseline and
generated a temporally continuous set of potential cropland density maps from 1950 to
2014. This was achieved by applying backward trends from GLC_FCS30D (1985-2014)
and HYDE (1950-1990) to generate “CGLS-like” cropland density. Since HYDE provides
data at decadal intervals, we applied linear interpolation to fill in the annual gaps between
1950 and 1985. As a result, transitions between these datasets were inherently smoothed,
and no abrupt spatial jumps were observed. As for HILDA+, although it provides annual
land use/cover information in a Boolean format (i.e., presence or absence of cropland).
This format is not suitable for constructing continuous cropland density maps.
Revisions: Lines 263-266: All gridded datasets used in this section were first aggregated
to a common spatial resolution of lkm. All subsequent operations, including trend
operation, interpolation, and cropland density adjustment, were performed at this
resolution to ensure spatial consistency.
Lines 299-300: Since HYDE provides data at decadal intervals, we applied linear
interpolation to fill in the annual gaps between 1950 and 1985 on a grid-by-grid basis.

= Figure 2: Suggest moving this figure earlier (e.g., at the beginning of Section 2) to help readers
follow the workflow.

Response: Thank you for your suggestion. We have moved Figure 2 to the beginning of the Section
2 to help readers better understand the overall workflow of this study.

Revisions: Lines 161-168: The structure of this paper includes three main sections. The first
section provides a detailed description of the input data and methods. The second section performs
a comprehensive analysis of the spatial and temporal characteristics of four major commodity
crops over the past seven decades. The third section compares the results of this study with other
existing datasets and analyses the driving forces and uncertainties associated with the
reconstructed data.
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Figure 2. The flow chart of this study. CNA refers to Census National Agriculture.

= Line 309: How were the upward/downward trends and anomaly values identified? Over what
period was the trend computed? Again, clarify the role of Equation 1 versus linear interpolation.

Response: Thank you for your thoughtful comments. The identification of upward/downward
trends and anomalies was based on visual inspection. No statistical method was applied to detect
anomalies. Instead, we assumed that harvested area should generally follow a gradual trend over
time. Years showing abrupt increases or drops inconsistent with adjacent years were manually
flagged as potential data issues. This screening was necessary due to the heterogeneous nature of
input data sources. Regarding Equation 1, we used two complementary approaches to reconstruct
the total cropland area at the provincial level: ratio-based interpolation and standard linear
interpolation. When provincial-level cropland area was missing but national-level cropland area
was available, we estimated the missing value by scaling the closest available provincial-level
cropland area according to the relative change in national-level cropland area (as defined in
Equation 1). This approach assumes that changes in the cropland area at the provincial-level follow
the same relative trend as those observed at the national scale. In cases where national-level
cropland area was unavailable, we applied standard linear interpolation between known provincial-
level cropland areas to interpolate missing values. We have clarified this process in the revised
manuscript.
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Revisions: Lines 335-338: Second, anomaly values in the time-series of crop-specific harvested
area were identified and removed through visual inspection, based on the assumption that
harvested area typically follows a gradual upward or downward trend over time. Years with abrupt
deviations inconsistent with adjacent values were flagged as potential anomalies.

Lines 267-279: The reconstruction of a total cropland area at the provincial level covers the period
from 1950 to 2020. In this step, we mainly used two complementary interpolation approaches:
ratio-based interpolation and linear interpolation. For years with available national-level cropland
area but missing provincial-level cropland area, we estimated provincial-level cropland area by
scaling the nearest known provincial-level cropland area according to the relative change in
national-level cropland area (Equation 1). This assumes that provincial-level changes follow the
same relative trend as those observed on the national scale. From 1961 to 2020, national cropland
areas from FAO were used to calculate annual change rates. For years prior to 1961, we relied on
agricultural census records or HYDE data. In cases where neither provincial nor national cropland
areas were available, we applied linear interpolation between known provincial cropland areas.
Since data availability and reference years differ across countries, the reconstruction was
performed separately for each country.

= Equation 3: The model does not appear to account for long-term productivity changes due to
technological or genetic improvements. Consider integrating literature-based estimates or
assumptions for these factors.

Response: Thank you for your thoughtful comments. The current model does not incorporate long-
term productivity improvements due to technological or genetic advances. However, we would
like to clarify that crop production data were used only to fill gaps in Brazil from 1950 to 1970,
where harvested area statistics were unavailable. Equation 3 is applied only in this limited context.
Moreover, during this early period, the influence of technological and genetic improvements on
productivity was relatively modest, especially compared to post-1980 developments. We have
clarified this point in the revised manuscript.

Revisions: Lines 339-344: Fourth, in countries where harvested area statistics were unavailable,
crop-specific harvested areas were reconstructed using production data, based on the strong
correlation between production and harvested area (R2 = 0.92, Equation 3). Specifically, in Brazil
from 1950 to 1970, provincial-level crop production data were used to estimate harvested areas,
as no public statistics data were available during this period.

= Line 335: Define “top N grids”—how were they selected, and why?

Response: Thank you for your thoughtful comments. Cropland density maps might be treated as
a proxy for the probability of the presence of cropland. Thus, prioritizing high-density grid cells
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in the Boolean conversion process helps maximize the spatial accuracy and reflects the most likely
cropland distribution (Li et al., 2023). We have revised the text to clarify the definition of “top N
grids”.

Revisions: Lines 366-371: To assess the transitions between land use and specific crop types, we
first converted the annual crop-specific density maps into Boolean crop-type maps for each year
from 1950 to 2020, following the method described by (Li et al., 2023). For each crop and year,
grid cells were ranked in descending order based on crop-specific density. Boolean values
(presence = 1, absence = 0) were then assigned to the top-ranked grid cells until the cumulative
area matched the reconstructed provincial-level harvested area within a 100-hectare margin.

= Section 2.4.3: Clarify how crop-specific harvested areas were adjusted when provincial totals
and pixel-level cropland constraints conflicted. What happens if the sum of crop areas exceeds
the available cropland in a pixel?

Response: Thank you for your thoughtful comments. In the current version of our dataset, crop-
specific harvested areas were adjusted independently for each crop to match provincial-level
statistical totals. As a result, in some pixels, particularly in regions with intensive crop activity, the
total sum of all crops may exceed the available cropland area or even exceed 1.0. This is a known
limitation of the current method. We chose not to implement a pixel-level normalization step in
order to avoid introducing artificial proportions without reliable rotation or coexistence data. As a
related but distinct point, crop rotation was not considered due to the lack of consistent, high-
resolution, time-series crop-type datasets. Thus, crop allocation was performed on a per-crop, per-
year basis. We have acknowledged this limitation in the revised manuscript.

Revisions: Lines 797-814: Cropping practices complexity (e.g., crop rotation and multiple
cropping) poses a significant challenge for accurate crop distribution mapping. These practices can
substantially influence both the spatial patterns and intensity of agriculture land use. Crop rotation,
the practice of growing different crops in the same field across multiple years, contributes to soil
health, pest control, and long-term cropland management. Ye et al., (2024) considered crop rotation
to reconstruct the historical crop distribution maps for the United States, relying on Cropland Data
Layer (CDL) data for crop rotation information; however, similar high-resolution products are
lacking for South America. In addition, Pott et al., (2023) visualized crop rotation information for
soybean, maize, and rice in Rio Grande do Sul, southern Brazil, but it did not sufficiently represent
the overall rotation patterns across South America. In contrast, multiple cropping involves the
cultivation of more than one crop within the same year in the same field. This practice is common
in regions with favourable climate conditions and contributes significantly to agricultural intensity.
However, our current method does not differentiate between single- and multi-season cropping
systems, which limits its ability to reflect cropping intensity in areas with prevalent double and
triple cropping. Therefore, future research should focus on crop type mapping in South America
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to obtain crop rotation and multiple cropping patterns, enabling the generation of more accurate
historical crop-specific maps in subsequent versions.

= Figure 3: Use a background color to distinguish zero-value grids more clearly.

Response: Thank you for your thoughtful comments. We have revised the Figure 3 with a
background color.

Revisions: Lines 441-444:
1950 1980 2000 2020
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Figure 3. The spatial pattern of soybean, maize, rice, and wheat from 1950 to 2020. The first, second, third, and fourth
rows represent the crop-specific fraction of soybean, maize, rice, and wheat. Crop-specific density represents the
proportion of a given crop within each 1 x 1 km grid.
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= Figure 6: The slope values >1 suggest lower crop estimates in the developed dataset. Cross-
validate these values as the discrepancies are significant.

Response: Thank you for your thoughtful comments. We agree that slope values greater than 1
suggest that, in some regions, our reconstructed estimates may appear to be lower than the
reference datasets. However, our reconstruction is fundamentally constrained by official provincial
level statistics. Importantly, when compared with SPAM — a dataset that also relies on statistical
inputs — the slope values fall largely within the range of 0.90 to 1.21, indicating strong agreement
and supporting the reliability of our results. In contrast, greater variability appears when compared
with remote sensing-based datasets. These discrepancies are expected due to differences in data
sources and classification uncertainties. We have clarified this in the revised manuscript.

Revisions: Lines 590-596: Additionally, the comparison with multiple reference datasets shows
that slope values between our reconstructed cropland area at the provincial level vary across
sources (Figure 6). When compared to SPAM — a dataset that also incorporates official statistics
— the slope values are largely within the range of 0.90 to 1.21 across crop types, indicating strong
agreement and suggesting that our product is reliable in representing provincial-scale cropland
distribution. In contrast, comparisons with remote sensing-based datasets exhibit larger deviations.
These discrepancies are expected due to differences in data sources and classification uncertainties.

= Figure 8: Explain how spatial proportions from census data were allocated to grid cells. If all
grids within a municipal boundary received the same value, state this in the caption.

Response: Thank you for your thoughtful comments. We clarify that Figure 8 presents a
comparison at the municipal level rather than at the grid-cell level. Specifically, we first allocated
provincial level crop-type data to 1 km grids using the method described in Section 2.5.3. These
gridded values were then aggregated to the municipal level and compared with official municipal
statistics. Both the gridded aggregated values and the statistical data were divided by the
corresponding municipal area to obtain crop-type proportions. This standardized comparison
allowed us to evaluate the spatial consistency of the allocation method we developed. We have
clarified this in the figure caption.

Revisions: Lines 533-538: Figure 8. Spatial comparison of the soybean proportion (i.e., soybean
area/municipal area) between this study and census data at the municipal level in Argentina (2008
and 2018) and Brazil (1995, 2006, and 2017). Proportions were calculated by aggregating gridded
crop-type data (allocated from provincial level statistics) and dividing by municipal area. These
were compared with official municipal statistics processed in the same way. Left column: soybean
proportion from this study; Middle column: soybean proportion from census data; Right column:
the difference in soybean proportion between this study and census data.
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