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Responses to reviewers’ comments on “HIStory of LAND transformation by humans in 

South America (HISLAND-SA): annual and 1-km crop-specific gridded data (1950 - 2020)” 

(manuscript number essd-2024-527) 

 

We sincerely thank the reviewers for their thoughtful and constructive comments. We have revised 

the manuscript accordingly. The detailed point-by-point responses are provided below (highlighted 

in blue), and the corresponding revisions in the manuscript are marked in red. 

 

Responses to Reviewer 2: 

The paper reconstructs the historical expansion of four major crops—soybean, maize, wheat, and 

rice—across South America at an annual time scale and high spatial resolution (1 km × 1 km). By 

integrating multiple data sources such as remote sensing, model-based reconstructions, and 

historical agricultural census data, the researchers aim to provide a comprehensive dataset that 

captures long-term trends in land use change. The study covers 13 South American countries and 

employs validation methods using existing datasets (FAO, GEOGLAM, SPAM, GLAD) and 

accuracy assessments at various administrative levels. The findings reveal a dramatic expansion 

of agricultural land, particularly for soybean and maize, mainly at the expense of natural vegetation. 

Soybean cultivation grew from almost zero in 1950 to 48.8 million hectares (Mha) in 2020, leading 

to the loss of 23.92 Mha of forests, pastures, and shrublands. Maize also saw significant growth, 

doubling from 12.7 Mha in 1950 to 26.9 Mha in 2020, with rapid acceleration after 2000. In 

contrast, wheat and rice areas remained relatively stable over the study period. The analysis of land 

use transitions shows that 24.49 Mha of forests and 13.82 Mha of pastures were converted into 

croplands, largely for soybean and maize production. The dataset developed in this study is 

valuable for assessing the environmental impacts of agricultural expansion, such as deforestation, 

carbon emissions, and biodiversity loss. It also has critical implications for policymakers looking 

to balance food security and environmental conservation in South America. By providing a long-

term, high-resolution record of crop-specific land transformation, this dataset enhances our 

understanding of human-environment interactions and supports global efforts in sustainable 

agriculture and climate change mitigation. While this paper presents a significant contribution to 

historical land use mapping in South America, it has several notable weaknesses. 

Response: We sincerely thank the reviewer for the thoughtful comments and for recognizing the 

significance of our contribution to historical land use mapping in South America. We have 

carefully considered all the comments and revised the manuscript accordingly. Below, we provide 

detailed point-by-point responses to each comment. 
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1. The authors spend little effort in collecting, processing raw data sources. Instead they overly 

rely on statistical interpolation and integration of existing datasets. For a data product, the most 

important and also most time-consuming task is to collect the original, raw data. In this HISLAND, 

it should be sub-national crop area (e.g. upto 2nd admin level) and production data from 1950-

2020. Without a great effort to assemble such a long-time series ( currently mostly at 1st admin 

(e.g. province) level), the study instead uses linear interpolation to fill gaps in crop-specific data, 

assuming constant trends between known data points. This approach can oversimplify non-linear 

trends in agricultural expansion, particularly in regions where crop cultivation was influenced by 

policy shifts, market dynamics, or environmental changes. In contrast, studies using machine 

learning or geostatistical modeling (e.g., SPAM series though the authors only used SPAM2010 ) 

often produce more accurate reconstructions by focusing on the fundamental effort of collecting 

sub-national crop data and capturing complex relationships between variables. 

Response: We sincerely thank the reviewer for the thoughtful comments. Our detailed responses 

to each point are provided below: 

▪ Data collection: We agree that assembling agricultural census data at the municipality-

level can provide more spatially detailed and accurate inputs for developing long-term, 

high-resolution land use datasets. However, municipality-level data in South America are 

extremely limited in terms of public availability — only for selected countries and specific 

years (Argentina: 1960, 2008, 2018; Bolivia: 1950; Brazil: 1995, 2006, 2017; Chile: 1960; 

Paraguay: 2008), leaving large temporal gaps without constraints. This lack of temporal 

continuity can lead to inconsistencies in the reconstructed time series if municipality-level 

data were used directly for interpretation or trend estimation. In contrast, provincial-level 

data provided more frequent observations over time (Table S1), which offer better temporal 

continuity and constraints for long-term series reconstruction. Therefore, we primarily used 

provincial-level data to reconstruct the long-term series of crop-specific harvested areas, 

while municipality-level data were used to validate the reliability of our datasets. While 

province-level data represents a coarser administrative granularity compared to 

municipalities, our disaggregation results demonstrate that the reconstructed crop-specific 

distributions align well with municipality-level statistics (Figure 7).  

▪ Interpolation: We acknowledge that linear interpolation may not fully capture potential 

non-linear trends in crop-specific harvested areas caused by policy, market, or 

environmental drivers. However, this approach was chosen due to the temporal 

characteristics of available agricultural census data in South America, which are typically 

reported at intervals of 10 years or more. Given these data constraints, linear interpolation 

remains a widely used and practical method in historical land use reconstruction at the 

administrative level (Klein Goldewijk et al., 2017; Leite et al., 2011; Li et al., 2023; Liu 

and Tian, 2010; Ye et al., 2024). While it may introduce some uncertainty, the interpolation 

is bounded by observed data points at both ends, ensuring that the overall trends remain 

grounded in empirical data. It is also important to note that SPAM is designed for static 
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allocation of crop production in selected benchmark years (e.g., 2000, 2005, 2010, and 

2020) and does not provide continuous temporal information. In contrast, our 

reconstruction aims to generate a consistent annual time series of crop-specific harvested 

areas from 1950 to 2020, offering valuable temporal dynamics to support long-term land 

use and environmental analyses. 

We have further discussed the limitations and future improvements of data collection and 

interpolation-based approach in the revised manuscript. 

Revisions: Lines 682-703: 

4.3.1 Spatial and temporal gaps in census data 

A key consideration in reconstructing historical land use dynamics is the availability of agricultural 

census data. Ideally, sub-national level (e.g., municipality, county, or district) agricultural statistics 

would allow for more detailed spatial allocation of crop-specific harvested areas. However, their 

availability across South America is highly limited and temporally inconsistent. Most countries 

provide only a few isolated years of data at the municipal level (i.e., Argentina: 1960, 2008, 2018; 

Bolivia: 1950; Brazil: 1995, 2006, 2017; Chile: 1960; Paraguay: 2008), which creates large 

temporal gaps and hampers their direct use in annual time series reconstruction. In contrast, 

provincial level data are more consistently reported over time, typically at 10-year intervals. These 

more frequent observations enable more robust interpolation and better constrain the temporal 

evolution of harvested areas. While these provincial units represent a coarser administrative 

granularity, we combined them with a high-resolution crop-specific base map and temporal 

cropland density maps to spatially disaggregate the data across all years. This approach allows us 

to preserve long-term trends while capturing spatial variability. To address the temporal 

discontinuities between census years, we applied linear interpolation to construct continuous 

annual times series of harvested areas at the administrative level. While we acknowledge that the 

use of linear interpolation may not fully reflect potential non-linear trends driven by policy, market, 

or environmental drivers, it remains a practical and widely used method under the constraints of 

sparse historical data(Klein Goldewijk et al., 2017; Leite et al., 2011; Li et al., 2023; Liu and Tian, 

2010; Ye et al., 2024). Additionally, linear interpolation in this study is always bounded by 

observed census points, which help to preserve long-term trends and prevent fluctuations. 

 

2. One of the great strengths of this long-term, high-resolution maps is to compare and contrast the 

crop area/production changes from year to year and to show the crop switches and crop pattern 

changes at a spatially granular level of gridcells. Figure 2(The flow chart in this study) shows the 

methodology, and I could hardly see how crop type transition from year to year is handled, or how 

is the cropland intensity comparable from year to year. For example, if I compare the maize area 

in one gridcell from Year 1 to Year 2, the change of maize area between these two years are the 

REAL maize area change or simply the error from the modelling/allocation? 
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Response: Thank you for your thoughtful comments. To address the concern regarding the 

temporal comparability and reliability of interannual crop-type changes at the grid cell level, we 

conducted an evaluation using the 1-km GLAD soybean dataset from 2001 to 2020. Specifically, 

we analyzed the pixel-wise annual differences between our reconstructed soybean fraction and the 

GLAD data to assess whether year-to-year changes in crop distribution represent actual dynamics 

or modeling artifacts. Figure 13 presents the temporal variation of the soybean fraction difference 

(Model − GLAD) across years. The median and mean differences remain close to zero throughout 

the study period, with narrow interquartile ranges (25–75%) and relatively stable 5–95% quantile 

envelopes. This indicates that the model’s interannual fluctuations are consistent and not driven by 

random noise or allocation instability. Figure S9 shows the spatial distribution and frequency 

histogram of the 20-year average difference. The majority of pixels fall within ±0.1, and the 

histogram is tightly centered around zero, suggesting no systematic spatial bias in model estimates 

over time. These results together support the temporal consistency of our crop-type maps and 

suggest that the observed interannual changes are not dominated by allocation error but rather 

reflect meaningful shifts in crop distribution. While some uncertainty remains inherent to crop 

mapping, the strong agreement with independent GLAD observations indicates that year-to-year 

comparisons and crop-switching signals in our dataset are reliable at the 1-km grid cell level. 

Revisions: Lines 747-771: To assess the spatial and temporal consistency of our reconstructed 

crop type maps, we conducted an uncertainties analysis using the resampled GLAD 1-km soybean 

density dataset from 2001 to 2020 as an independent benchmark. This analysis focuses on 

evaluating whether the interannual variation in soybean density reflects actual crop dynamics. 

Figure 13 illustrates the annual difference in soybean density at the pixel level across South 

America. The results show that the median and mean differences remain close to zero over time, 

with narrow interquartile ranges (25%-75%) and relatively stable 5%-95% quantile envelopes. 

These findings suggest that the year-to-year fluctuations in our dataset are not random but follow 

a consistent trend with GLAD data, indicating reliable temporal comparability. In addition, Figure 

S9 presents the spatial distribution of the mean soybean density difference averaged over the 20-

year period, along with a histogram of its pixel-wise distribution. Most regions exhibit minimal 

bias, with more than 50% of grids falling within ±0.1. The distribution is systematically centred 

around zero, and areas of substantial over- or underestimation are spatially limited. These two 

evaluations together evidence that our data maintains robust agreement with independent 

observations (i.e., GLAD) both spatially and temporally. While similar high-resolution and long-

term crop-specific datasets are currently unavailable for maize, wheat, and rice across South 

America, and thus prevent a comparable validation. However, the consistency observed in the 

soybean evaluation provides indirect support for the robustness of our spatial allocation framework. 

Given that the same methodological approach and harmonized inventory inputs were applied 

across all four crops, we expect the reconstructed patterns for other crop types to similarly reflect 

plausible spatial and temporal dynamics. Nonetheless, further evaluation using future regional 

datasets will be essential to assess the reliability of crop-specific maps beyond soybean.  
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Figure 13. Temporal variation in soybean density difference between GLAD and this study (2001-2020). 

 

Figure S9. Spatial distribution (left) and frequency (right) of mean soybean density difference between GLAD and 

this study at the 1-km resolution from 2001 to 2020 for South America. 

 

3. Uncertainty and Validation Issues. While the study integrates multiple datasets and performs 

validation at different administrative levels, it lacks a comprehensive uncertainty analysis. Unlike 

datasets such as HYDE or MapBiomas, which provide detailed error estimates and confidence 

intervals for their reconstructions, this study does not explicitly quantify the uncertainties in its 

spatial allocation methods or crop-specific data modeling. Additionally, validation is largely 

dependent on comparisons with existing datasets, some of which have their own biases. A more 

robust ground-truth validation (e.g., field data or higher-resolution satellite imagery) would 

strengthen the dataset's reliability. 

Response: Thank you for your thoughtful comments. Given the temporal sparsity of historical 

inventories, varying spatial resolutions of input datasets, and the necessity of interpolations and 

resampling, a formal uncertainty assessment is indeed essential to ensure the reliability and 
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interpretability of our results. Therefore, we conducted a structured uncertainty analysis targeting 

three key aspects: 

▪ The temporal limitations and spatial granularity of historical census data. 

▪ The effects of spatial aggregation and resampling. 

▪ The overall spatiotemporal consistency of the final product. 

Then, we implemented a Monte Carlo simulation framework to quantify aggregation-induced 

uncertainty under varying classification error rates and resolutions (Section 4.3.2). We further 

evaluated the consistency of crop dynamics through comparison with independent remote sensing-

derived crop maps (Section 4.3.3), and explicitly discussed the constraints associated with 

subnational inventory availability and interpolation-based time series reconstruction (Section 

4.3.1). These components were newly introduced in Section 4.3 to provide a more transparent and 

systematic quantification of uncertainty in both the input data and final outputs. 

Revisions: Lines 681-771: 

4.3 Uncertainty analysis 

4.3.1 Spatial and temporal gaps in census data 

        A key consideration in reconstructing historical land use dynamics is the availability of 

agricultural census data. Ideally, sub-national level (e.g., municipality, county, or district) 

agricultural statistics would allow for more detailed spatial allocation of crop-specific harvested 

areas. However, their availability across South America is highly limited and temporally 

inconsistent. Most countries provide only a few isolated years of data at the municipal level (i.e., 

Argentina: 1960, 2008, 2018; Bolivia: 1950; Brazil: 1995, 2006, 2017; Chile: 1960; Paraguay: 

2008), which creates large temporal gaps and hampers their direct use in annual time series 

reconstruction. In contrast, provincial level data are more consistently reported over time, typically 

at 10-year intervals. These more frequent observations enable more robust interpolation and better 

constrain the temporal evolution of harvested area. While these provincial units represent a coarser 

administrative granularity, we combined them with a high-resolution crop-specific base map and 

temporal cropland density maps to spatially disaggregate the data across all years. This approach 

allows us to preserve long-term trends while capturing spatial variability. To address the temporal 

discontinuities between census years, we applied linear interpolation to construct continuous 

annual times series of harvested areas at the administrative level. While we acknowledge that the 

use of linear interpolation may not fully reflect potential non-linear trends driven by policy, market, 

or environmental drivers, it remains a practical and widely used method under the constraints of 

sparse historical data (Klein Goldewijk et al., 2017; Leite et al., 2011; Li et al., 2023; Liu and Tian, 

2010; Ye et al., 2024). Additionally, linear interpolation in this study is always bounded by 

observed census points, which help to preserve long-term trends and prevent fluctuations. 

4.3.2 Resampling-related spatial uncertainty 
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        To ensure spatial consistency across input datasets, we employed two resampling strategies 

to achieve a standardized 1 km resolution: (1) aggregation of high-resolution remote sensing 

products, and (2) upsampling of lower-resolution datasets, such as SPAM. While resampling is 

essential for harmonizing spatial scales, it introduces varying degrees of uncertainty depending on 

the original resolution and classification accuracy of the source data.               

        Aggregation of high-resolution datasets does not introduce additional spatial uncertainty 

beyond the inherent classification errors present in the original data. However, these classification 

errors can propagate into aggregated outputs and finally affect spatial statistics. To quantify this 

aggregation-induced uncertainty, we conducted a Monte Carlo simulation by introducing 

symmetric random noise at various classification error rates (i.e., 3% to 15%), whereby a 

proportion of target and non-target pixels were randomly flipped. For each combination of 

classification error rate and true fraction, we aggregated the modified raster to 1 km resolution and 

calculated the resulting aggregated fraction. This process was repeated 100 times per fraction to 

obtain stable estimates of the mean and standard deviation of the aggregated values (Figure S7). 

We then computed the uncertainty as a function of both classification error and spatial resolution. 

Specifically, total uncertainty was defined as the average absolute deviation between aggregated 

and true values across the full range of possible true fractions (i.e., 0% to 100%). This allowed us 

to isolate the magnitude of uncertainty attributable to aggregation process. This simulation 

framework was applied to each of the aggregation datasets, yielding the acceptable uncertainties 

(Table 5). These results demonstrated that total uncertainty increases with both classification error 

and coarser input resolution. Datasets with higher native resolution (e.g., Uruguay LC) tend to 

exhibit lower aggregation uncertainty, even when classification error is moderate. This underscores 

that aggregation-induced uncertainty is not solely a function of accuracy, but also of the granularity 

of the input data. This uncertainty component must be explicitly considered when integrating 

heterogeneous land cover datasets for spatial modelling or policy-relevant assessments. 

Table 5. Aggregation-induced uncertainty under varying classification errors and spatial resolutions. 

Dataset Spatial resolution (m) Classification error (%) Total uncertainty (%) 

Uruguay LC 10 11.5 5.81 

MapBiomas 30 14.2 7.36 

Argentia MNC 30 9.0 4.59 

GLAD 30 4.0 2.08 

CGLS-LC100 100 20.0 10.49 

 

        To evaluate the spatial uncertainty introduced by the upsampling process, we conducted a 

quantitative comparison between SPAM and GLAD soybean maps for 2010 in South America. 

The original SPAM data were unsampled to 1 km using bilinear interpolation, while the GLAD 

soybean layer was aggregated to 1 km resolution and treated as reference. A pixel-by-pixel 

comparison was performed between the two datasets across the continent. First, the pixel-wise 

comparison yielded a coefficient of determination (R2) of 0.50, indicating moderate agreement 

between resampled SPAM and GLAD data. Second, the distribution and frequency of pixel-level 
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differences revealed that over 70% of the pixels fell within a ±0.1 range, while larger deviations 

(greater than ±0.3) were mainly observed in fragmented and heterogeneous cropping regions 

(Figure S8). Although the resampling process introduced local structure uncertainty and smoothed 

fine-scale heterogeneity, these results suggest that the unsampled 1 km SPAM data retain 

meaningful broad-scale spatial patterns. Therefore, the resampled dataset in this study remains 

suitable for use as a baseline crop distribution map at continental scale. 

4.3.3 Spatial-temporal consistency assessment 

        To assess the spatial and temporal consistency of our reconstructed crop type maps, we 

conducted an uncertainties analysis using the resampled GLAD 1-km soybean density dataset from 

2001 to 2020 as an independent benchmark. This analysis focuses on evaluating whether the 

interannual variation in soybean density reflects actual crop dynamics. Figure 13 illustrates the 

annual difference in soybean density at the pixel level across South America. The results show that 

the median and mean differences remain close to zero over time, with narrow interquartile ranges 

(25%-75%) and relatively stable 5%-95% quantile envelopes. These findings suggest that the year-

to-year fluctuations in our dataset are not random but follow a consistent trend with GLAD data, 

indicating reliable temporal comparability. In addition, Figure S9 presents the spatial distribution 

of the mean soybean density difference averaged over the 20-year period, along with a histogram 

of its pixel-wise distribution. Most regions exhibit minimal bias, with more than 50% of grids 

falling within ±0.1. The distribution is systematically centred around zero, and areas of substantial 

over- or underestimation are spatially limited. These two evaluations together evidence that our 

data maintains robust agreement with independent observations (i.e., GLAD) both spatially and 

temporally. While similar high-resolution and long-term crop-specific datasets are currently 

unavailable for maize, wheat, and rice across South America, and thus prevent a comparable 

validation. However, the consistency observed in the soybean evaluation provides indirect support 

for the robustness of our spatial allocation framework. Given that the same methodological 

approach and harmonized inventory inputs were applied across all four crops, we expect the 

reconstructed patterns for other crop types to similarly reflect plausible spatial and temporal 

dynamics. Nonetheless, further evaluation using future regional datasets will be essential to assess 

the reliability of crop-specific maps beyond soybean.  
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Figure 13. Temporal variation in soybean density difference between GLAD and this study (2001-2020). 

 

Figure S7. Monte Carlo simulation of aggregation-induced estimation error under varying classification error rates 

and spatial resolutions. (a), (b), and (c) represent the spatial resolution of 10 m, 30 m, and 100 m, respectively. The x-

axis represents the true fraction (%) of the target class in a 1 km grid, while the y-axis shows the absolute estimation 

error (%) after aggregating the modified high-resolution raster. Each line corresponds to different simulated 

classification error rates (i.e., 3%, 6%, 9%, 12%, and 15%). Shaded areas represent the standard deviation across 100 

Monte Carlo iterations. 

 

Figure S8. Mean soybean density difference (GLAD-this study) at 1-km resolution across South America (2001-2020): 

spatial pattern (left) and pixel-wise frequency (right). 
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Figure S9. Spatial distribution (left) and frequency (right) of mean soybean density difference between GLAD and 

this study at the 1-km resolution from 2001 to 2020 for South America. 

 

4. Lack of Socioeconomic and Policy Considerations. Although the study acknowledges the role 

of economic and policy drivers (e.g., subsidies, trade policies, and neoliberal reforms), it does not 

quantitatively integrate these factors into the model. Other land-use datasets, such as those from 

GFSAD (Global Food Security-support Analysis Data) and EarthStat, incorporate economic and 

climate factors to model cropland changes more dynamically. Without this integration, the dataset 

may overestimate or underestimate cropland expansion in response to policy shifts and market 

fluctuations. 

Response: Thank you for your thoughtful comments. We fully agree that socioeconomic and 

policy factors have played a critical role in shaping cropland dynamic in South America. However, 

unlike products such as GFSAD or EarthStat, which focus on either remote sensing-based 

classification or static allocation using production statistics and suitability layers (e.g., cropping 

systems, economic and climate factors), our dataset reconstructs long-term crop-specific harvested 

areas directly from historical census records, prioritizing consistency and continuity across 

decades. Incorporating such factors into annually resolved, multi-decadal reconstructions face 

several key challenges. First, long-term, sub-national policy and economic data are often 

unavailable or inconsistently reported across countries. Second, the impacts of these drivers are 

typically region-specific, non-linear, and time-lagged, posing challenges for systematic modeling. 

Third, coupling them with harvested area data would require strong assumptions, which may 

introduce additional uncertainties and compromise the robustness of the reconstruction. 

Nevertheless, we acknowledge that this may reduce the model’s sensitivity to abrupt shifts in 

cropland patterns. We have discussed this limitation in the revised manuscript.  
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Revisions: Line 824-838: Limitations in representing socioeconomic and environmental drivers. 

While our data provides long-term, annually resolved reconstructions of crop-specific harvested 

areas, we did not consider the explicit socioeconomic and environmental drivers such as soil 

conditions, management practices, or market access. However, incorporating such factors into a 

harmonized reconstruction presents considerable challenges. First, long-term, high-resolution data 

on these drivers are unavailable or inconsistently reported across countries. Second, the effects of 

these drivers are typically region-specific, non-linear, and time-lagged, which poses challenges for 

systematic modelling. Third, integrating them would require strong assumptions, potentially 

introducing additional uncertainties into the reconstruction. As a result, our current framework 

relies on observed statistical records to ensure internal consistency over time but may be less 

responsive to abrupt cropland shifts induced by major policy or market events. Future 

improvements could explore the integration of these factors into a hybrid modelling framework 

(e.g., machine learning or statistical downscaling models such as the GAEZ crop suitability layers) 

to improve the spatial and temporal realism of crop allocation patterns. 

 

5. Crop yield is not mapped. A critical component for such mappings is the crop yield, which has 

great spatial heterogeneity and much more critical for food security. Admittedly mapping crop 

yields is more challenging as cropping system (e.g. rainfed vs irrigated, smallholder vs large estate 

farming), management is far difficult to map. And yet missing this critical component severely 

limits the value and usefulness of this product. 

Response: Thank you for your thoughtful comments. We agree that crop yield is a critical variable 

for understanding food production dynamics and food security. However, the focus of this study 

is specifically on reconstructing historical patterns of crop-specific harvested areas rather than 

production or yield. Accurately mapping yield would require integrating additional factors — such 

as cropping systems (e.g., rainfed or irrigated), input use, farm scale, and climate variability — 

which are currently unavailable or inconsistent at long-term, sub-national scales across South 

America. We acknowledge that the absence of crop yield data limits the applicability of our dataset 

for certain application scenarios. We have added a statement in the revised manuscript to 

acknowledge this limitation and to outline our intention to explore historical yield reconstruction 

in future versions of the dataset. 

Revisions: Lines 814-824: Crop yield was not considered in this version of dataset. While 

harvested areas provide valuable insights into land use patterns, crop yield remains a critical 

variable for assessing agricultural production and food security. Accurately reconstructing 

historical crop yields would require multiple additional factors, including cropping systems (e.g., 

rainfed or irrigated), input use, farm scale, climate and weather data. However, such data are 

generally unavailable or lack consistency across long-term and sub-national scales in South 

America, particularly before the 2000s. As a result, this version of the dataset focuses exclusively 

on harvested areas. Future developments could explore the integration of satellite-derived 
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biophysical indicators (e.g., NDVI, LAI), historical production statistics, and climatic data to 

support the reconstruction of spatial-temporal yield dynamics. 
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