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Responses to reviewers’ comments on “HIStory of LAND transformation by humans in 

South America (HISLAND-SA): annual and 1-km crop-specific gridded data (1950 - 2020)” 

(manuscript number essd-2024-527) 

 

We sincerely thank the reviewers for their thoughtful and constructive comments. We have revised 

the manuscript accordingly. The detailed point-by-point responses are provided below (highlighted 

in blue), and the corresponding revisions in the manuscript are marked in red. 

 

Responses to Reviewer 1: 

The authors made an effort to map the long-term crop distribution in South America by 

synthesizing multiple sourced datasets. Their efforts should be acknowledged. Overall, the paper 

presents a clear storyline, which is divided into three sections. 

Response: We thank the reviewer for the positive comments. 

 

Unfortunately, I did not see the scientific question that the paper aims to address. Additionally, the 

intended application of the research is not clear, given the existence of several relevant datasets.  

Response: We sincerely thank the reviewer for the thoughtful and valuable comment. While data 

papers in Earth System Science Data typically focus on dataset development, we fully agree that 

clarifying the scientific question and intended application for developing the HISLAND-SA 

dataset further improves the manuscript.  

▪ Scientific question: The scientific question addressed by our dataset is to understand how 

agricultural land-use dynamics in South America have evolved over the past 70 years, with 

a focus on four major commodity crops: soybean, maize, wheat, and rice. We aim to 

analyze how the spatial-temporal patterns of these crops have shifted over time and how 

these shifts have influenced land-use transitions in South America. Our dataset fills a 

significant gap by providing long-term, high-resolution, and crop-specific information for 

South America — key attributes that are often missing from existing datasets.  

▪ Intended application: The HISLAND-SA dataset serves multiple purposes, supporting 

research on agricultural land-use change, its ecological impacts, and the implications for 

food security. It is a valuable resource for assessing the impacts of agricultural expansion 

on deforestation, biodiversity loss, and greenhouse gas emissions.  The dataset offers 

critical information for policymakers, researchers, and stakeholders involved in sustainable 

agriculture, climate change mitigation, and food security, helping to shape strategies that 

balance agricultural production with environmental conservation. 
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We have incorporated these points into the manuscript. 

Revisions: Lines 26-32: While previous studies have documented land use and land cover changes 

in South America over recent decades, there is still a lack of spatially explicit, time series maps of 

crop types that capture shifts in crop distribution. Therefore, developing high-resolution, long-term, 

and crop-specific datasets is crucial for advancing our understanding of human-environment 

interactions and for assessing the impacts of agricultural activities on carbon and biogeochemical 

cycles, biodiversity, and climate. 

Lines 132-140: This study focuses on understanding how the spatial-temporal patterns of these 

four commodity crops have evolved over the past seven decades and how these changes have 

influenced land-use transitions in South America. The dataset is designed to support research on 

agricultural land-use change, its ecological impacts, and food security, offering insights into the 

effects of agricultural expansion on deforestation, biodiversity loss, and greenhouse gas emissions. 

It provides critical information for policymakers, researchers, and stakeholders engaged in 

sustainable agriculture, thereby assisting in the development of strategies that balance agricultural 

production with environmental conservation. 

 

It appears that the work is somewhat hobby-oriented, with the research area, spatial resolution, 

time scale, and targeted crop types being arbitrarily determined by the authors’ interests. 

Furthermore, I have a few comments that are worth considering. 

Response: We sincerely thank the reviewer for the thoughtful and valuable comment. We 

understand the concern regarding the selection of the research area, spatial resolution, time scale, 

and targeted crop types. We would like to clarify that these choices were based on solid scientific 

and practical considerations rather than personal interests. Below is an explanation of each 

selection: 

▪ Research area: The focus on South America was driven by its critical role as both a global 

agricultural and deforestation hotspots. Agricultural expansion in this region has been a 

primary driver of land-use change, particularly through deforestation. The widespread 

increase in agricultural activities across South America makes it an ideal case for studying 

human-environment interactions, especially in the context of land-use change and its 

environmental consequences.  

▪ Spatial resolution: The 1 km spatial resolution was selected to ensure sufficient detail for 

both regional and global assessments. This resolution meets the requirements of many 

ecosystem models and land-use change studies. Most long-term datasets for South America 

have a resolution greater than 10 km (Adalibieke et al., 2023; Klein Goldewijk et al., 2017), 

limiting their ability to capture fine-scale spatial patterns. Recent studies developing 1 km 

datasets also highlight the need for higher-resolution data (Cao et al., 2021; Li et al., 2023; 
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Ye et al., 2024), making 1 km resolution in this study essential for accurate analyses of 

land-use change and environmental impacts in South America 

▪ Time scale: The choice of 1950 as the starting point reflects the significant shifts in 

agricultural practices and land-use dynamics that began in the mid-20th century. This 

period marks the onset of large-scale agricultural expansion, driven by technological 

advances, policy changes, and global demand. Additionally, the widespread conversion of 

natural vegetation into agricultural land makes the period from 1950 to 2020 critical for 

understanding the transformation of landscapes and ecosystems in South America. 

▪ Targeted crop types: Soybean, maize, wheat, and rice were selected as focus crops 

because they are the primary staple crops in South America, driving large-scale production 

with significant economic and ecological impacts. These crops account for most 

agricultural land-use changes in South America, making them crucial for understanding 

broader environmental effects. 

Revisions: Lines 50-71 (Research area): South America is of critical importance due to its 

substantial contribution to global agriculture, which is essential for meeting the world’s growing 

food demand (Ceddia et al., 2014; Hoang et al., 2023). Cropland expansion in this region has been 

a significant driver of land-use transformation, particularly through deforestation, with profound 

effects on ecosystems and biogeochemical processes (Song et al., 2021; Zalles et al., 2021). As 

one of the main types of land use and land cover (LULC), cropland plays a crucial role in 

supporting human nutritional needs and ensuring food security (He et al., 2017; Yu and Lu, 2017). 

However, to meet the growing demand for food and fiber driven by population growth and 

consumption patterns, cropland has increasingly encroached on natural vegetation (Winkler et al., 

2021). Additionally, economic and policy factors have reshaped crop cultivation structures across 

the region (Cheng et al., 2023; Mueller and Mueller, 2010; Song et al., 2021). These changes are 

driven by a combination of trade dynamics, investment flows, and market concentration (Boyd, 

2023; Clapp, 2021).  As a result, the transformation of crop types has occurred, weakening the 

resilience of agroecosystems and contributing to biodiversity loss (Frison et al., 2011; Renard and 

Tilman, 2019). In response to these challenges, the international community has increasingly 

emphasized the need to align agricultural systems with climate mitigation and food security goals 

(ICJ, 2025). Therefore, an improved understanding of the spatial distribution and historical 

dynamics of crop types is urgently needed to assess the impacts of cropland expansion and crop 

pattern shifts across South America. Such insights are crucial for evaluating the environmental and 

socio-economic consequences of cropland expansion, particularly in terms of its impact on climate, 

ecosystems, and food security. 

Lines 72-106 (Time scale and targeted crop types): Agriculture in South America has 

experienced significant changes driven by agricultural policies, socio-economic shifts, and 

technological innovations after the 1950s (Altieri, 1992; Ceddia et al., 2014; Zalles et al., 2021). 

These changes have not only reshaped regional economies, as in other historical periods of agrarian 

reform, but have also been justified by global food security goals, alongside such other important 
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drivers as trade relationships, investors, subsidies, and debt serving goals (Boyd, 2023; OAS, 

2024). In this context, crop cultivation has shifted from traditional crops to high-yield and high-

demand commodity crops, reflecting both the increasing global demand for food and fuel, as well 

as the urgent need to enhance agricultural efficiency and yields (Garrett et al., 2013; Meyfroidt et 

al., 2014). Specifically, the major commodity crops (i.e., maize, soybean, wheat, and rice) have 

become the core of agricultural production in South America (FAO, 2020). The cultivation of these 

crops has not only significantly boosted food production in the region but also secured a strong 

position for many producers in the global food market. After the 1950s, countries in South America 

(e.g., Bolivia, Brazil, Chile, Colombia, Ecuador, and Peru) undertook land reforms to reduce land 

concentration and promote agricultural production (De Janvry et al., 1998), which significantly 

affected land use outputs and efficiency and laid a substantial foundation for the development of 

agriculture (De Janvry et al., 1998; Munoz and Lavadenz, 1997). After the 1980s, neoliberal 

economic reforms were further carried out in South America, accelerating the ongoing agricultural 

modernization (Chonchol, 1990) and greatly facilitating the cultivation of soybeans by eliminating 

price controls and export restrictions on agricultural products (Campos Matos, 2013). Since the 

2000s, soybeans have continued to grow dramatically due to global demand, technological 

advances, economic subsidies and other supportive policies (de LT Oliveira, 2017; Song et al., 

2021). This growth has further bolstered the expansion of maize cultivation, driven by the 

promotion of maize-soybean cropping systems and the adoption of direct seeding, no-tillage 

practices, and double cropping (Klein and Luna, 2022). In comparison, the area under wheat and 

rice cultivation has remained relatively stable. Although there is a growing demand for wheat, its 

market price is less fluctuating, leading farmers, farm managers, and investors to prefer crops with 

higher market returns (Erenstein et al., 2022). Meanwhile, rice primarily serves domestic demand 

rather than being export-oriented (Dawe et al., 2010). Despite government reports and documents 

that have recorded changes in the dynamics of agriculture in South America over the past few 

decades, there is still a lack of spatially explicit and time-series maps of historical crop types that 

reflect changes in crop distribution. This deficiency makes it difficult to fully understand the spatial 

and temporal evolution of major commodity crops and hinders understanding of their impacts on 

environmental changes.  

Lines 107-129 (Spatial resolution): Many efforts have produced commodity crop maps at 

regional or global scales. For example, datasets such as the Spatial Production Allocation Model 

(SPAM) (Yu et al., 2020), M3 (Monfreda et al., 2008), and CROPGRIDS (Tang et al., 2023) offer 

valuable solutions by providing detailed crop type information based on the census data and spatial 

allocation algorithms. SPAM, for instance, provides data on crop area, yield, and production for 

42 major crops at a spatial resolution of 5 arcmin under four farming systems. However, these 

datasets have a coarse spatial resolution and are available for only a few years, which makes it 

challenging to accurately characterize the spatial-temporal distribution of crop types at finer scales 

(Becker-Reshef et al., 2023; Ye et al., 2024). In contrast, with the continuous evolution of remote 

sensing technologies, high-resolution data were increasingly being used to develop fine-scale crop 

type maps. For example, Song et al., (2021) developed annually updated soybean maps with a 30 
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m resolution for South America from 2000 to 2023 using all Landsat and MODIS images and a 

probability sample of continental field observations. MapBiomas also provides high-resolution 

crop type maps for Argentina, Brazil, and Uruguay, covering the period from 1985 to the present 

(De Abelleyra et al., 2020; Petraglia et al., 2019; Souza and Azevedo, 2017). However, these 

existing datasets are available only at partial national or local scales, cover only a single crop type, 

or lack rigorous validation. Furthermore, most remote sensing data dates back only to 1985, 

making it challenging to depict crop dynamics further back. Therefore, it is imperative to develop 

high-resolution and time-series crop type data for driving terrestrial ecosystem models to quantify 

the impact of crop dynamics on ecosystems and climate. Such an dataset will draw on innovations 

in earth science and data use to contribute to related fields that address the “advance of the 

agricultural frontier” in South America, and its implications for human-environmental interactions 

(OAS, 2024). 

 

1. A lot of work relates to raster data resampling. How can we assess the uncertainty and sensitivity 

of cross-scale data resampling? 

Response: Thank you for your thoughtful comments. In our study, we employed two resampling 

strategies to achieve a consistent 1 km resolution: (1) aggregation of high-resolution remote 

sensing products, and (2) upsampling of the SPAM dataset. 

▪ Aggregation: This process does not introduce additional spatial uncertainty, aside from 

inherent classification errors in the high-resolution input data. To quantify the uncertainty 

resulting from classification errors during aggregation, we performed a Monte Carlo 

simulation. We assumed a range of classification error rates (i.e., 3-15%) and introduced 

symmetric noise by randomly flipping a proportion of target (e.g., cropland or crop types) 

and non-target pixels in simulated high-resolution raster data. For each classification error 

rate and true fraction, we aggregated the modified high-resolution raster to 1 km resolution 

and computed the aggregated fraction. This process was repeated 100 times per fraction to 

estimate the mean and deviation of the aggregated fraction, allowing us to assess the 

magnitude and variability of the estimation error of aggregation under different 

classification error rates (Figure S1). Given a specific spatial resolution and classification 

error rate, the overall uncertainty was quantified as the expected absolute estimation error 

across the full range of possible true fractions (i.e., 0-100%). This was calculated by 

averaging the absolute difference between the aggregated and true fractions across all 

simulated fractions. Therefore, we separately quantified the potential aggregation-induced 

uncertainty for each dataset, including Uruguay LC (spatial resolution: 10 m, classification 

error: 11.5%, total uncertainty: 5.81%), MapBiomas (30 m, 14.2%, 7.36%), Argentina 

MNC (30 m, 9%, 4.59%), GLAD (30 m, 4%, 2.08%), and CGLS-LC100 (100 m, 20%, 

10.49%). It is evident that aggregation is influenced not only by classification errors but 

also by sensitivity to spatial resolution. We have added this part in the revised manuscript. 
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Revisions: Lines 705-732: To ensure spatial consistency across input datasets, we 

employed two resampling strategies to achieve a standardized 1 km resolution: (1) 

aggregation of high-resolution remote sensing products, and (2) upsampling of lower-

resolution datasets, such as SPAM. While resampling is essential for harmonizing spatial 

scales, it introduces varying degrees of uncertainty depending on the original resolution 

and classification accuracy of the source data.  

Aggregation of high-resolution datasets does not introduce additional spatial uncertainty 

beyond the inherent classification errors present in the original data. However, these 

classification errors can propagate into aggregated outputs and finally affect spatial 

statistics. To quantify this aggregation-induced uncertainty, we conducted a Monte Carlo 

simulation by introducing symmetric random noise at various classification error rates (i.e., 

3% to 15%), whereby a proportion of target and non-target pixels were randomly flipped. 

For each combination of classification error rate and true fraction, we aggregated the 

modified raster to 1 km resolution and calculated the resulting aggregated fraction. This 

process was repeated 100 times per fraction to obtain stable estimates of the mean and 

standard deviation of the aggregated values (Figure S7). We then computed the uncertainty 

as a function of both classification error and spatial resolution. Specifically, total 

uncertainty was defined as the average absolute deviation between aggregated and true 

values across the full range of possible true fractions (i.e., 0% to 100%). This allowed us 

to isolate the magnitude of uncertainty attributable to aggregation process. This simulation 

framework was applied to each of the aggregation datasets, yielding the acceptable 

uncertainties (Table 5). These results demonstrated that total uncertainty increases with 

both classification error and coarser input resolution. Datasets with higher native resolution 

(e.g., Uruguay LC) tend to exhibit lower aggregation uncertainty, even when classification 

error is moderate. This underscores that aggregation-induced uncertainty is not solely a 

function of accuracy, but also of the granularity of the input data. This uncertainty 

component must be explicitly considered when integrating heterogeneous land cover 

datasets for spatial modelling or policy-relevant assessments. 

Table 4. Aggregation-induced uncertainty under varying classification errors and spatial resolutions. 

Dataset Spatial resolution (m) Classification error (%) Total uncertainty (%) 

Uruguay LC 10 11.5 5.81 

MapBiomas 30 14.2 7.36 

Argentia MNC 30 9.0 4.59 

GLAD 30 4.0 2.08 

CGLS-LC100 100 20.0 10.49 
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Figure S7. Monte Carlo simulation of aggregation-induced estimation error under varying classification error 

rates and spatial resolutions. (a), (b), and (c) represent the spatial resolution of 10 m, 30 m, and 100 m, 

respectively. The x-axis represents the true fraction (%) of the target class in a 1 km grid, while the y-axis 

shows the absolute estimation error (%) after aggregating the modified high-resolution raster. Each line 

corresponds to different simulated classification error rates (i.e., 3%, 6%, 9%, 12%, and 15%). Shaded areas 

represent the standard deviation across 100 Monte Carlo iterations. 

▪ Upsampling: To assess the uncertainty introduced by upsampling, we conducted a spatial 

comparison using soybean as a case — the only crop for which SPAM (10 km) and high-

resolution crop map (i.e., GLAD, 30 m) are available for South America. We first 

upsampled the SPAM soybean layer in 2010 to 1 km using bilinear interpolation. To 

evaluate spatial consistency, we aggregated the 30 m GLAD soybean in 2010 to 1 km as 

the “ground truth” and compared the two datasets on a pixel-by-pixel basis across the 

continent. Then, we conducted two complementary assessments. First, a pixel-wise 

comparison at the 1 km resolution yielded a coefficient of determination (R2) of 0.50, 

indicating a moderate level of agreement. Second, the distribution of pixel-wise differences 

showed that over 70% of the values fell within ±0.1, where larger discrepancies (greater 

than ±0.3) were mainly concentrated in fragmented or heterogeneous cropping regions 

(Figure S1). Despite the presence of local structure uncertainty, these results suggest that 

the resampled 1 km SPAM data retain broad-scale spatial patterns that are reasonably 

consistent with reference data. This supports its application as a baseline crop distribution 

map at regional and continental scales. We have incorporated this part into the revised 

manuscript. 

Revisions: Lines 733-745: To evaluate the spatial uncertainty introduced by the 

upsampling process, we conducted a quantitative comparison between SPAM and GLAD 

soybean maps for 2010 in South America. The original SPAM data were upsampled to 1 

km using bilinear interpolation, while the GLAD soybean layer was aggregated to 1 km 

resolution and treated as reference. A pixel-by-pixel comparison was performed between 

the two datasets across the continent. First, the pixel-wise comparison yielded a coefficient 

of determination (R2) of 0.50, indicating moderate agreement between resampled SPAM 

and GLAD data. Second, the distribution and frequency of pixel-level differences revealed 

that over 70% of the pixels fell within a ±0.1 range, while larger deviations (greater than 

±0.3) were mainly observed in fragmented and heterogeneous cropping regions (Figure 
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S8). Although the resampling process introduced local structure uncertainty and smoothed 

fine-scale heterogeneity, these results suggest that the unsampled 1 km SPAM data retain 

meaningful broad-scale spatial patterns. Therefore, the resampled dataset in this study 

remains suitable for use as a baseline crop distribution map at continental scale. 

 

Figure S8. Spatial distribution (left) and frequency (right) of pixel-wise differences between SPAM 

(resampled to 1 km) and GLAD (aggregated to 1 km) soybean map in 2010 for South America. 

 

2. Figure 3 presents the spatial distribution of crop-specific density. I find it somewhat difficult to 

understand. Does it represent the proportion of a given crop in a 1x1 km grid, or does it indicate 

the fraction of a given crop in the total cropland area within a 1x1 km grid? This is a bit confusing. 

Response: Thank you for your thoughtful comments. We appreciate your feedback and apologize 

for any confusion caused by the presentation of crop-specific density in Figure 3. To clarify, Figure 

3 represents the proportion of a given crop within each 1 × 1 km grid, rather than the proportion 

of the crop in the total cropland area within the grid. We have revised the caption of Figure 3 to 

improve clarity.  

Revisions: Lines 442-444: Figure 3. The spatial pattern of soybean, maize, rice, and wheat from 

1950 to 2020. The first, second, third, and fourth rows represent the crop-specific density of 

soybean, maize, rice, and wheat. Crop-specific density represents the proportion of a given crop 

within each 1 × 1 km grid. 

 

3. From Figure 3, it is also difficult to interpret the areas of multiple cropping, assuming multiple 

cropping significantly exists in this region. 

Response: Thank you for your thoughtful comments. We agree that multiple cropping, including 

double and even triple cropping in certain regions and/or years, plays an important role in shaping 
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agriculture landscapes. However, the primary focus of our study is on the spatial and temporal 

distribution of four major commodity crops (i.e., soybean, maize, wheat, and rice) at an annual 

scale, and the current analysis does not explicitly distinguish between single- and multi-season 

cropping systems. We acknowledge that this may limit the interpretability of some regions where 

intensive cropping practices are present. To address this, we have revised the manuscript to 

acknowledge the existence of multiple cropping systems and to discuss this limitation and potential 

extensions of our method in future work. 

Revisions: Lines 797-814: Cropping practices complexity (e.g., crop rotation and multiple 

cropping) poses a significant challenge for accurate crop distribution mapping. These practices can 

substantially influence both the spatial patterns and intensity of agriculture land use. Crop rotation, 

the practice of growing different crops in the same field across multiple years, contributes to soil 

health, pest control, and long-term cropland management. Ye et al., (2024) considered crop rotation 

to reconstruct the historical crop distribution maps for the United States, relying on Cropland Data 

Layer (CDL) data for crop rotation information; however, similar high-resolution products are 

lacking for South America. In addition, Pott et al., (2023) visualized crop rotation information for 

soybean, maize, and rice in Rio Grande do Sul, southern Brazil, but it did not sufficiently represent 

the overall rotation patterns across South America. In contrast, multiple cropping involves the 

cultivation of more than one crop within the same year in the same field. This practice is common 

in regions with favorable climate conditions and contributes significantly to agricultural intensity. 

However, our current method does not differentiate between single- and multi-season cropping 

systems, which limits its ability to reflect cropping intensity in areas with prevalent double and 

triple cropping. Therefore, future research should focus on crop type mapping in South America 

to obtain crop rotation and multiple cropping patterns, enabling the generation of more accurate 

historical crop-specific maps in subsequent versions. 

 

4. The purpose of presenting Figure 4 is unclear. This figure could simply be produced when 

statistics on harvested areas are available. 

Response: Thank you for your thoughtful comments. We agree that the data presented in Figure 4 

could indeed be derived from statistics on the harvested area. However, the main purpose of Figure 

4 is to show the temporal changes in the total harvested area of different crops in South America 

from 1950 to 2020, highlighting trends in agricultural expansion and shifts in crop dominance. We 

thought this information was important for readers to know, especially for those who are unfamiliar 

with the crop change patterns in South America. 

 

5. If Figure 3 represents the proportion of crop-specific density, then Figure 5 is hard to understand. 

By what method can this proportion be allocated to a specific land change process? 
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Response: Thank you for your thoughtful comments. To assess the transitions between land use 

and specific crop types, we first converted the annual crop-specific density maps into Boolean 

crop-type maps for each year from 1950 to 2020, following the method described by Li et al., 

(2023). For each crop and each year, grid cells were ranked in descending order by crop-specific 

density. Boolean values (presence = 1, absence = 0) were then assigned to the top-ranked grid cells 

until the total area assigned to each crop matched the reconstructed provincial-level harvested area 

within a 100-hectare margin. Second, we overlaid the annual Boolean crop-type maps with the 

annual land use maps (i.e., the Historic Land Dynamics Assessment +) (Winkler et al., 2021) to 

identify crop-specific land-use change processes. We have added additional methodological details 

to the revised manuscript to clarify how crop-specific land-use changes were identified. 

Revisions: Lines 365-384:  

2.5.4 Analyzing crop-specific land-use transitions 

To assess the transitions between land use and specific crop types, we first converted the annual 

crop-specific density maps into Boolean crop-type maps for each year from 1950 to 2020, 

following the method described by Li et al., (2023). For each crop and year, grid cells were ranked 

in descending order based on crop-specific density. Boolean values (presence = 1, absence = 0) 

were then assigned to the top-ranked grid cells until the cumulative area matched the reconstructed 

provincial-level harvested area within a 100-hectare margin. This allocation was performed 

sequentially for soybean, maize, and rice in that order. To identify land-use transitions associated 

with specific crops, we overlaid the annual Boolean crop-type maps with the annual land-use maps 

from the Historic Land Dynamics Assessment + (HILDA +) (Winkler et al., 2021). This spatial 

overlay allowed us to determine which crop types occupied areas that had been newly converted 

cropland in a given year. It is important to note that this approach assumes that the spatial allocation 

based on crop-specific density rankings reflects the dominant crop type established after cropland 

conversion. While this process introduces some uncertainty, the method offers a consistent and 

spatially explicit framework for attributing land-use change processes to specific crops in the 

absence of pixel-level crop rotation data. 

 

6. The validation scheme is unclear and lacks a systematic approach. Given that existing datasets 

have been used for modeling, it is difficult to understand why they are also used for evaluation. 

For example, Section 3.3.1, “Evaluation Against Existing Datasets at the Provincial Level,” is 

puzzling, as in many cases R² = 1. 

Response: Thank you for your thoughtful comments. We apologize for the lack of clarity in the 

original manuscript.  We would like to clarify that we did not use any datasets involved in the 

modeling process for evaluation purposes. In the modeling process, we primarily used two types 

of data: (1) gridded datasets for base map generation, including Argentina MNC (2020), 

MapBiomas (2020), GLAD (2020), GEOGLAM (2020, only for wheat), Uruguay LC (2018, only 
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for rice), and SPAM (2010); and (2) historical inventory statistics. In Section 3.3.1, the gridded 

data used for evaluation come from years that were not involved in the base map generation, 

including Brazil Conab (2017-2020), MapBiomas (2000, 2005, 2010), GEOGLAM (2020, for 

soybean, maize, and rice), GLAD (2005, 2010), SPAM (2000, 2005).  Therefore, these datasets 

serve as independent references for assessing the consistency of our reconstruction across time. 

In the case of Brazil Conab data, although the R2 =1, the slope deviates from 1, indicating a 

decrease of underestimation in our reconstructed dataset. Moreover, the Brazil Conab dataset only 

reports provincial-level statistics for 9 records over the period of 2017-2020, which is insufficient 

in both spatial and temporal coverage to serve as an input data for long-term model development. 

We have clarified it in the revised manuscript. 

Revisions: Lines 484-488: We used gridded datasets that were not involved in the base map 

generation to ensure independence form the reconstruction process, including MapBiomas 

(soybean and rice in 2000, 2005, and 2010), SPAM (soybean, wheat, maize, and rice in 2000 and 

2005), GEOGLAM (soybean, maize, and rice), GLAD (soybean in 2005 and 2010), and Brazil 

Conab (soybean and rice from 2017 to 2020). 

Lines 503-507: 

 

Figure 6. Comparison of crop type areas between this study and existing datasets (gridded datasets that were not 

involved in reconstruction process, i.e., MapBiomas (2000, 2005, 2010), SPAM (2000, 2005), GEOGLAM (2020), 
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GLAD (2005, 2010) at the provincial level. (a) Soybean; (b) Wheat; (c) Maize; (d) Rice. The numbers in parentheses 

represent the total number of samples. 

 

7. Figure 7 presents the comparison of the crop-specific areas between this study and census data 

at the municipal level. However, it is not clear why to present Argentina (1960, 2008, and 2018), 

Bolivia (1950), Brazil (1995, 2006, and 2017), Chile (2017), Colombia (1960), and Paraguay 

(2008)? Rather than other regions in other years? Similar question to Figure 8, 9, and 10. 

Response: Thank you for your thoughtful comments. The selected regions and years reflect the 

limited availability of publicly released municipal-level statistical data and high-resolution crop-

specific maps. We included all accessible datasets that align with our reconstruction period. 
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