Preprints
https://doi.org/10.5194/essd-2024-526
https://doi.org/10.5194/essd-2024-526
03 Dec 2024
 | 03 Dec 2024
Status: this preprint is currently under review for the journal ESSD.

Permafrost-wildfire interactions: Active layer thickness estimates for paired burned and unburned sites in northern high-latitudes

Anna Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord

Abstract. As the northern high latitude permafrost zone experiences accelerated warming, permafrost has become vulnerable to widespread thaw. Simultaneously, wildfire activity across northern boreal forest and Arctic/subarctic tundra regions impact permafrost stability through the combustion of insulating organic matter, vegetation and post-fire changes in albedo. Efforts to synthesise the impacts of wildfire on permafrost are limited and are typically reliant on antecedent pre-fire conditions. To address this, we created the FireALT dataset by soliciting data contributions that included thaw depth measurements, site conditions, and fire event details with paired measurements at environmentally comparable burned and unburned sites. The solicitation resulted in 52,466 thaw depth measurements from 18 contributors across North America and Russia. Because thaw depths were taken at various times throughout the thawing season, we also estimated end of season active layer thickness (ALT) for each measurement using a modified version of the Stefan equation. Here, we describe our methods for collecting and quality checking the data, estimating ALT, the data structure, strengths and limitations, and future research opportunities. The final dataset includes 47,952 ALT estimates (27,747 burned, 20,205 unburned) with 32 attributes. There are 193 unique paired burned/unburned sites spread across 12 ecozones that span Canada, Russia, and the United States. The data span fire events from 1900 to 2022. Time since fire ranges from zero to 114 years. The FireALT dataset addresses a key challenge: the ability to assess impacts of wildfire on ALT when measurements are taken at various times throughout the thaw season depending on the time of field campaigns (typically June through August) by estimating ALT at the end of season maximum. This dataset can be used to address understudied research areas particularly algorithm development, calibration, and validation for evolving process-based models as well as extrapolating across space and time, which could elucidate permafrost-wildfire interactions under accelerated warming across the high northern latitude permafrost zone. The FireALT dataset is available through the Arctic Data Center.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Anna Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord

Status: open (until 22 Jan 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on essd-2024-526', Anonymous Referee #1, 07 Jan 2025 reply
Anna Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord

Data sets

FireALT dataset: estimated active layer thickness for paired burned unburned sites measured from 2001-2023 Anna Talucci, Michael Loranty, Jean Holloway, Brendan Rogers, Heather Alexander, Natalie Baillargeon, Jennifer Baltzer, Logan Berner, Amy Breen, Leya Brodt, Brian Buma, Clement Delcourt, Lucas Diaz, Catherine Dieleman, Thomas Douglas, Gerald Frost, Benjamin Gaglioti, Rebecca Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark Lara, Rachel Loehman, Michelle Mack, Kristen Manies, Christina Minions, Susan Natali, Jonathon O'Donnell, David Olefeldt, Alison Paulson, Adrian Rocha, Lisa Saperstein, Tatiana Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt Turetsky, Sander Veraverbeke, and Michelle Walvoord https://doi.org/10.18739/A2W950Q33

Anna Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord

Viewed

Total article views: 356 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
307 41 8 356 39 7 6
  • HTML: 307
  • PDF: 41
  • XML: 8
  • Total: 356
  • Supplement: 39
  • BibTeX: 7
  • EndNote: 6
Views and downloads (calculated since 03 Dec 2024)
Cumulative views and downloads (calculated since 03 Dec 2024)

Viewed (geographical distribution)

Total article views: 349 (including HTML, PDF, and XML) Thereof 349 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 07 Jan 2025
Download
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a data set of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Altmetrics