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S.1 Methodology Fossil Fuel CO2 emissions (EFOS) 4 

S.1.1 Cement carbonation 5 

From the moment it is created, cement begins to absorb CO2 from the atmosphere, a process known as ‘cement 6 
carbonation’. We estimate this CO2 sink, from 1931 onwards, as the average of two studies in the literature (Cao 7 
et al., 2020; Guo et al., 2021 extended by Huang et al., 2023). The Global Cement and Concrete Association 8 
reports a much lower carbonation rate, but this is based on the highly conservative assumption of 0% mortar 9 
(GCCA, 2021). Modelling cement carbonation requires estimation of a large number of parameters, including 10 
the different types of cement material in different countries, the lifetime of the structures before demolition, of 11 
cement waste after demolition, and the volumetric properties of structures, among others (Xi et al., 2016). 12 
Lifetime is an important parameter because demolition results in the exposure of new surfaces to the 13 
carbonation process. The main reasons for differences between the two studies appear to be the assumed 14 
lifetimes of cement structures and the geographic resolution, but the uncertainty bounds of the two studies 15 
overlap. 16 

S.1.2 Emissions embodied in goods and services 17 

CDIAC, UNFCCC, and BP national emission statistics ‘include greenhouse gas emissions and removals taking 18 
place within national territory and offshore areas over which the country has jurisdiction’ (Rypdal et al., 2006), 19 
and are called territorial emission inventories. Consumption-based emission inventories allocate emissions to 20 
products that are consumed within a country, and are conceptually calculated as the territorial emissions minus 21 
the ‘embodied’ territorial emissions to produce exported products plus the emissions in other countries to 22 
produce imported products (Consumption = Territorial – Exports + Imports). Consumption-based emission 23 
attribution results (e.g. Davis and Caldeira, 2010) provide additional information to territorial-based emissions 24 
that can be used to understand emission drivers (Hertwich and Peters, 2009) and quantify emission transfers by 25 
the trade of products between countries (Peters et al., 2011a). The consumption-based emissions have the same 26 
global total, but reflect the trade-driven movement of emissions across the Earth's surface in response to human 27 
activities. We estimate consumption-based emissions from 1990-2020 by enumerating the global supply chain 28 
using a global model of the economic relationships between economic sectors within and between every country 29 
(Andrew and Peters, 2013; Peters et al., 2011b). Our analysis is based on the economic and trade data from the 30 
Global Trade and Analysis Project (GTAP; Narayanan et al., 2015), and we make detailed estimates for the 31 
years 1997 (GTAP version 5), 2001 (GTAP6), and 2004, 2007, 2011, and 2014 (GTAP10.0a), covering 57 32 
sectors and 141 countries and regions. The detailed results are then extended into an annual time series from 33 
1990 to the latest year of the Gross Domestic Product (GDP) data (2020 in this budget), using GDP data by 34 
expenditure in current exchange rate of US dollars (USD; from the UN National Accounts main Aggregates 35 
database; UN, 2022) and time series of trade data from GTAP (based on the methodology in Peters et al., 36 
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2011b). We estimate the sector-level CO2 emissions using the GTAP data and methodology, add the flaring and 37 
cement emissions from our fossil CO2 dataset, and then scale the national totals (excluding bunker fuels) to 38 
match the emission estimates from the carbon budget. We do not provide a separate uncertainty estimate for the 39 
consumption-based emissions, but based on model comparisons and sensitivity analysis, they are unlikely to be 40 
significantly different than for the territorial emission estimates (Peters et al., 2012b). 41 

S.1.3 Uncertainty assessment for EFOS 42 

We estimate the uncertainty of the global fossil CO2 emissions at ±5% (scaled down from the published ±10 % 43 
at ±2σ to the use of ±1σ bounds reported here; Andres et al., 2012). This is consistent with a more detailed 44 
analysis of uncertainty of ±8.4% at ±2σ (Andres et al., 2014) and at the high-end of the range of ±5-10% at ±2σ 45 
reported by (Ballantyne et al., 2015). This includes an assessment of uncertainties in the amounts of fuel 46 
consumed, the carbon and heat contents of fuels, and the combustion efficiency. While we consider a fixed 47 
uncertainty of ±5% for all years, the uncertainty as a percentage of emissions is growing with time because of 48 
the larger share of global emissions from emerging economies and developing countries (Marland et al., 2009). 49 
Generally, emissions from mature economies with good statistical processes have an uncertainty of only a few 50 
per cent (Marland, 2008), while emissions from strongly developing economies such as China have 51 
uncertainties of around ±10% (for ±1σ; Gregg et al., 2008; Andres et al., 2014). Uncertainties of emissions are 52 
likely to be mainly systematic errors related to underlying biases of energy statistics and to the accounting 53 
method used by each country.  54 

S.1.4 Growth rate in emissions 55 

We report the annual growth rate in emissions for adjacent years (in percent per year) by calculating the 56 
difference between the two years and then normalising to the emissions in the first year: (EFOS(t0+1)-57 
EFOS(t0))/EFOS(t0)×100%. We apply a leap-year adjustment where relevant to ensure valid interpretations of 58 
annual growth rates. This affects the growth rate by about 0.3% yr-1 (1/366) and causes calculated growth rates 59 
to go up approximately 0.3% if the first year is a leap year and down 0.3% if the second year is a leap year. 60 

The relative growth rate of EFOS over time periods of greater than one year can be rewritten using its logarithm 61 
equivalent as follows: 62 
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Here we calculate relative growth rates in emissions for multi-year periods (e.g. a decade) by fitting a linear 64 
trend to ln(EFOS) in Eq. (2), reported in percent per year. 65 

S.1.5 Emissions projection for 2023 66 

To gain insight on emission trends for 2023, we provide an assessment of global fossil CO2 emissions, EFOS, by 67 
combining individual assessments of emissions for China, USA, the EU, and India (the four countries/regions 68 
with the largest emissions), and the rest of the world.  69 

The methods are specific to each country or region, as described in detail below. 70 
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China: We use a regression between monthly data for each fossil fuel and cement, and annual data for 71 
consumption of fossil fuels / production of cement to project full-year growth in fossil fuel consumption and 72 
cement production. The monthly data for each product consists of the following: 73 

· Coal: Production data from the National Bureau of Statistics (NBS), plus net imports from the China 74 
Customs Administration (i.e., gross supply of coal, not including inventory changes), adjusted 75 
using monthly production data for thermal electricity, crude steel, pig iron, coke and cement from 76 
NBS. 77 

·  Oil: Production data from NBS, plus net imports from the China Customs Administration (i.e., gross 78 
supply of oil, not including inventory changes) 79 

· Natural gas: Same as for oil 80 
· Cement: Production data from NBS 81 

For oil, we use data for production and net imports of refined oil products rather than crude oil. This choice is 82 
made because refined products are one step closer to actual consumption, and because crude oil can be subject 83 
to large market-driven and strategic inventory changes that are not captured by available monthly data. 84 
Furthermore, refinery output in 2022 was atypically low through August of that year compared to the rest of the 85 
year, which results in very high growth figures for the 2023 data compared to what one can likely expect for the 86 
last four months of this year. The estimate has been adjusted down by 0.8 percentage points to account for this, 87 
corresponding to how much lower the ratio of January-August and September-December refinery output was in 88 
2022 compared to the average for 2014-2022. 89 

For each fuel and cement, we make a Bayesian linear regression between year-on-year cumulative growth in 90 
supply (production for cement) and full-year growth in consumption (production for cement) from annual 91 
consumption data. In the regression model, the growth rate in annual consumption (production for cement) is 92 
modelled as a regression parameter multiplied by the cumulative year-on-year growth rate from the monthly 93 
data through August of each year for past years (through 2022). We use broad Gaussian distributions centered 94 
around 1 as priors for the ratios between annual and through-August growth rates. We then use the posteriors for 95 
the growth rates together with cumulative monthly supply/production data through August of 2023 to produce a 96 
posterior predictive distribution for the full-year growth rate for fossil fuel consumption / cement production in 97 
2023. 98 

If the growth in supply/production through August were an unbiased estimate of the full-year growth in 99 
consumption/production, the posterior distribution for the ratio between the monthly and annual growth rates 100 
would be centered around 1. However, in practice the ratios are different from 1 (in most cases below 1). This is 101 
a result of various biasing factors such as uneven evolution in the first and second half of each year, inventory 102 
changes that are somewhat anti-correlated with production and net imports, differences in statistical coverage, 103 
and other factors that are not captured in the monthly data. 104 

For fossil fuels, the mean of the posterior distribution is used as the central estimate for the growth rate in 2023, 105 
while the edges of a 68% credible interval (analogous to a 1-sigma confidence interval) are used for the upper 106 
and lower bounds. 107 
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USA: We use emissions estimated by the U.S. Energy Information Administration (EIA) in their Short-Term 108 
Energy Outlook (STEO) for emissions from fossil fuels to get both YTD and a full year projection (EIA, 2023). 109 
The STEO also includes a near-term forecast based on an energy forecasting model which is updated monthly 110 
(we use the November 2023 edition), and takes into account expected temperatures, household expenditures by 111 
fuel type, energy markets, policies, and other effects. We combine this with our estimate of emissions from 112 
cement production using the monthly U.S. cement clinker production data from USGS for January-August 113 
2023, assuming changes in clinker production over the first part of the year apply throughout the year. 114 

India: We use monthly emissions estimates for India updated from Andrew (2020b) through August-October 115 
2023. These estimates are derived from many official monthly energy and other activity data sources to produce 116 
direct estimates of national CO2 emissions, without the use of proxies. Emissions from coal are then extended to 117 
October using a regression relationship based on power generated from coal, coal dispatches by Coal India Ltd., 118 
the composite PMI, time, and days per month. For the last 3-5 months of the year, each series is extrapolated 119 
assuming typical (pre-2019) trends. 120 

EU: We use a refinement to the methods presented by Andrew (2021), deriving emissions from monthly energy 121 
data reported by Eurostat. Some data gaps are filled using data from the Joint Organisations Data Initiative 122 
(JODI, 2022). Sub-annual cement and cement-clinker production data are limited, but data for Germany, Poland 123 
and Spain, the three largest producers, suggest a decline of over 8%. For fossil fuels this provides estimates 124 
through July-September, varying by fuel. We extend coal emissions through October using a regression model 125 
built from generation of power from hard coal, power from brown coal, and the number of working days in 126 
Germany, the biggest coal consumer in the EU. These are then extended through the end of the year assuming 127 
typical trends. We extend oil emissions by building a regression model between our monthly CO2 estimates and 128 
oil consumption reported by the EIA for Europe in its Short-Term Energy Outlook (November edition), and then 129 
using this model with EIA’s monthly forecasts. For natural gas, the strong seasonal signal allows the use of the 130 
bias-adjusted Holt-Winters exponential smoothing method (Chatfield, 1978), although this comes with larger 131 
uncertainty given the unusual energy situation in Europe in 2022-23. 132 

Rest of the world: We use the close relationship between the growth in GDP and the growth in emissions 133 
(Raupach et al., 2007) to project emissions for the current year. This is based on a simplified Kaya Identity, 134 
whereby EFOS (GtC yr-1) is decomposed by the product of GDP (USD yr-1) and the fossil fuel carbon intensity of 135 
the economy (IFOS; GtC USD-1) as follows: 136 

𝐸*+, = 𝐺𝐷𝑃	 × 𝐼*+,         (3) 137 

Taking a time derivative of Equation (3) and rearranging gives: 138 
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where the left-hand term is the relative growth rate of EFOS, and the right-hand terms are the relative growth 140 
rates of GDP and IFOS, respectively, which can simply be added linearly to give the overall growth rate.  141 

The IFOS is based on GDP in constant PPP (Purchasing Power Parity) from the International Energy Agency 142 
(IEA) up to 2017 (IEA/OECD, 2019) and extended using the International Monetary Fund (IMF) growth rates 143 
through 2022 (IMF, 2023). Interannual variability in IFOS is the largest source of uncertainty in the GDP-based 144 
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emissions projections. We thus use the standard deviation of the annual IFOS for the period 2013-2022 as a 145 
measure of uncertainty, reflecting a ±1σ as in the rest of the carbon budget. For rest-of-world oil emissions 146 
growth, we use the global oil demand forecast published by the EIA less our projections for the other four 147 
regions, and estimate uncertainty as the maximum absolute difference over the period available for such 148 
forecasts using the specific monthly edition (e.g. August) compared to the first estimate based on more solid 149 
data in the following year (April). 150 

Bunkers: Given the divergence in behaviour of international shipping from countries’ emissions since the 151 
COVID-19 pandemic, we project international bunkers separately using sub-annual data on international 152 
aviation from the OECD (Clarke et al., 2022) and international shipping from MarineBenchmark and IMF 153 
(Cerdeiro et al., 2020). 154 

World: The global total is the sum of each of the countries and regions. 155 

 156 
S.2 Methodology CO2 emissions from land-use, land-use change and forestry (ELUC) 157 

The net CO2 flux from land-use, land-use change and forestry (ELUC, called land-use change emissions in the 158 
rest of the text) includes CO2 fluxes from deforestation, afforestation, logging and forest degradation (including 159 
harvest activity), shifting cultivation (cycle of cutting forest for agriculture, then abandoning), regrowth of 160 
forests following wood harvest or abandonment of agriculture, peat burning, and peat drainage. Land-161 
management activities are only partly included in our land-use change emissions estimates (Table S1). Some 162 
land-use change and land-management activities cause emissions of CO2 to the atmosphere, while others 163 
remove CO2 from the atmosphere. ELUC is the net sum of emissions and removals due to all anthropogenic 164 
activities considered. Our annual estimates for 1960-2022 are provided as the average of results from four 165 
bookkeeping approaches (Supplement S.2.1 below): the Bookkeeping of Land Use Emissions model (BLUE; 166 
Hansis et al., 2015), the compact Earth system model OSCAR (Gasser et al., 2020), an estimate from Houghton 167 
and Castanho (2023; hereafter H&C2023), and the Land-Use Change Emissions model (LUCE; Qin et al., 168 
2024). Peat emissions are added from external datasets (see Supplement S.2.1 below). BLUE and OSCAR are 169 
updated with new land-use forcing data covering the time period until 2023. All four data sets are extrapolated 170 
to provide a projection for 2024 (see Supplement S.2.5 below). In addition, we use results from Dynamic Global 171 
Vegetation Models (DGVMs; see Supplement S.2.2 and Table 4) to help quantify the uncertainty in ELUC 172 
(Supplement S.2.4), and thus better characterise the robustness of annual estimates and trends. In this budget, we 173 
follow the scientific ELUC definition as used by global carbon cycle models, which counts fluxes due to 174 
environmental changes on managed land towards SLAND, as opposed to the national greenhouse gas inventories 175 
(NGHGIs) under the UNFCCC, most of which include them in ELUC and thus often report smaller land-use 176 
emissions (Grassi et al., 2018; Petrescu et al., 2020). Following the methodology of Grassi et al. (2023), we 177 
provide harmonised estimates of the two approaches further below (see Supplement S.2.3). 178 

S.2.1 Bookkeeping models 179 

CO2 emissions and removals from land-use change are calculated by four bookkeeping models. These are based 180 
on the original bookkeeping approach of Houghton (2003), which keeps track of the carbon stored in vegetation 181 
and soils before and after a land-use change event (transitions between various natural vegetation types, 182 
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croplands, and pastures). Literature-based response curves describe the decay of vegetation and soil carbon, 183 
including carbon transfer to product pools of different lifetimes, as well as carbon uptake due to regrowth. In 184 
addition, the bookkeeping models represent long-term degradation of primary forest as lowered standing 185 
vegetation and soil carbon stocks in secondary forests, and include forest management practices such as wood 186 
harvests.  187 
BLUE, LUCE and H&C2023 exclude the transient response of land ecosystems to changes in climate, 188 
atmospheric CO2, and other environmental factors, and base the carbon densities of soil and vegetation on 189 
contemporary data from literature and inventory data. Since carbon densities thus remain fixed over time, the 190 
additional sink capacity that ecosystems provide in response to CO2 fertilisation and some other environmental 191 
changes are not captured by these models (Pongratz et al., 2014). OSCAR includes this transient response, and it 192 
follows a theoretical framework (Gasser and Ciais, 2013) that allows separating bookkeeping land-use 193 
emissions and the loss of additional sink capacity. Only the former is included here, while the latter is discussed 194 
in Supplement S.6.4. The bookkeeping models differ in (1) computational units (spatially explicit treatment of 195 
land-use change at 0.25° resolution for BLUE and LUCE, country-level for H&C2023 and OSCAR), (2) 196 
processes represented (see Table S1), and (3) carbon densities assigned to vegetation and soils for different 197 
types of vegetation (literature-based for BLUE and H&C2023, calibrated to DGVMs for OSCAR,  mainly 198 
literature-based but additionally considering the impact of land cohort age on secondary land carbon stocks for 199 
LUCE). A notable difference between models exists with respect to the treatment of shifting cultivation: 200 
H&C2023 assumes that forest loss—derived from the Global Forest Resources Assessment (FRA; FAO, 201 
2020)—in excess of increases in cropland and pastures—derived from FAOSTAT (FAO, 2021)—represents an 202 
increase in shifting cultivation. If the excess loss of forests in a year is negative, it is assumed that shifting 203 
cultivation is returned to forest. Historical areas in shifting cultivation are defined taking into account country-204 
based estimates of areas in fallow in 1980 (FAO/UNEP, 1981) and expert opinion (from Heinimann et al., 205 
2017). In contrast, BLUE, OSCAR, and LUCE include subgrid-scale transitions between all vegetation types. 206 
Furthermore, H&C2023 assumes conversion of natural grasslands to pasture, while BLUE,  OSCAR, and LUCE 207 
allocate pasture transitions proportionally to all natural vegetation that exists in a grid-cell. This is one reason 208 
for generally higher emissions in BLUE and OSCAR. In this GCB, we split CO2 emissions into emissions from 209 
permanent deforestation and from deforestation for shifting cultivation. Similarly, we separate the forest (re-210 
)growth estimates into (re-)growth from af/reforestation and from regrowth associated with shifting cultivation. 211 
This distinction is insightful with regard to the levers on the reduction of net emissions: as deforestation for 212 
shifting cultivation is only temporary, the associated CO2 emissions cannot easily be avoided without 213 
compromising the CO2 removals from regrowth in shifting cultivation cycles. By contrast, permanent 214 
deforestation is typically not directly related to af/reforestation. Stopping deforestation for permanent 215 
agricultural expansion and increasing the forest area provide two independent levers for net emissions reduction. 216 
Bookkeeping models do not directly capture carbon emissions from the organic layers of drained peat soils nor 217 
from peat fires. Particularly the latter can create large emissions and interannual variability due to synergies of 218 
land-use and climate variability in equatorial Southeast Asia, especially during El-Niño events. We add peat fire 219 
emissions based on the Global Fire Emission Database (GFED4s; van der Werf et al., 2017) to the bookkeeping 220 
models’ output. Peat fire emissions are calculated by multiplying the mass of dry matter emitted by peat fires 221 
with the C emission factor for peat fires indicated in the GFED4s database. Emissions from deforestation and 222 
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degradation fires used for extrapolating the H&C2023 data beyond 2020 and to derive the 2023 projection of all 223 
three models (see below) are calculated analogously. The satellite-derived GFED4s estimates of peat fire 224 
emissions start in 1997. For the previous years, we follow the approach by Houghton and Nassikas (2017), 225 
which linearly ramps up from zero emissions in 1980 to 0.04 GtC yr-1 in 1996, reflecting the onset of major 226 
clearing of peatlands in equatorial Southeast Asia in the 1980s. 227 
We further add estimates of peat drainage emissions, combining estimates from three spatially explicit datasets. 228 
We employ FAO peat drainage emissions 1990–2022 from croplands and grasslands (Conchedda and Tubiello, 229 
2020; FAO, 2023), peat drainage emissions 1700–2010 from simulations with the DGVM ORCHIDEE-PEAT 230 
(Qiu et al., 2021), and peat drainage emissions 1701–2023 from simulations with the DGVM LPX-Bern v1.5 231 
(Lienert and Joos, 2018; Müller and Joos, 2021), the latter applying the updated LUH2-GCB2024 forcing as 232 
also used by BLUE, OSCAR, LUCE, and the DGVMs. The LPX-Bern simulations started from a transient run 233 
over the last deglaciation (-20,050 to 1700 AD) following Müller and Joos (2020) and are forced by changes in 234 
climate, atmospheric CO2, nitrogen deposition/input, and land-use changes. Simulations were done with and 235 
without prescribing land-use changes since 1700 AD. The difference between the simulations represents 236 
anthropogenic peat drainage emissions. To account for internal variability, we used the median peat drainage 237 
emissions from a 20-member ensemble. In LPX-Bern, peat carbon is stored in (i) active peatlands, (ii) former 238 
peatlands (“natural”), and (iii) former peatlands under anthropogenic use. We average the two CO2 emission 239 
cases from Müller and Joos (2021), assuming that half the peat carbon is lost immediately to the atmosphere 240 
after transformation from active to former peatland, while the rest decays slowly, pending on local temperature 241 
and soil moisture. The LPX-Bern peat drainage emissions show a very high emission peak in Russia in 1959 242 
followed by very low emissions in 1960. This peak can be attributed to an artefact in the HYDE3.4 dataset, 243 
which was corrected for Brazil and the Democratic Republic of the Congo in GCB2022 (Friedlingstein et al. 244 
2022b) but remains for Russia where it strongly impacts the LPX-Bern peat drainage estimates in 1959 and 245 
1960. To correct for this unrealistic peak, we replace the LPX-Bern peat drainage emissions in Russia in 1959 246 
and 1960 by the average of the estimates in 1958 and 1961. FAO data are extrapolated to 1850-2023 by keeping 247 
the post-2020 emissions constant at 2020 levels and by linearly increasing tropical peat drainage emissions 248 
between 1980 and 1990 starting from 0 GtC yr-1 in 1980 (consistent with H&N2017’s assumption, Houghton 249 
and Nassikas, 2017), and by keeping pre-1990 emissions from the often old drained areas of the extra-tropics 250 
constant at 1990 emission levels. ORCHIDEE-PEAT data are extrapolated to 2011-2023 by replicating the 251 
average emissions in 2000-2010 (pers. comm. C. Qiu). Further, ORCHIDEE-PEAT only provides peat drainage 252 
emissions north of 30°N, and thus we fill the regions south of 30°N by the average peat drainage emissions from 253 
FAO and LPX-Bern. The final peat drainage emissions are calculated as the average of the estimates from the 254 
three different peat drainage datasets. The net ELUC values indicated in the manuscript are the sum of ELUC 255 
estimates from bookkeeping models, peat fire emissions, and peat drainage emissions. 256 
The four bookkeeping estimates used in this study differ with respect to the land-use change data used to drive 257 
the models. H&C2023 base their estimates directly on the Forest Resource Assessment (FRA) of FAO, which 258 
provides statistics on forest-area change and management at intervals of five years currently updated until 2020 259 
(FAO, 2020). The data is based on country reporting to FAO and may include remote-sensing information in 260 
more recent assessments. Changes in land use other than forests are based on annual, national changes in 261 
cropland and pasture areas reported by FAO (FAO, 2021). BLUE and LUCE use the harmonised land-use 262 
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change data LUH2-GCB2024 covering the period 850-2023 (an update to the previously released LUH2 v2h 263 
dataset; Hurtt et al., 2017; Hurtt et al., 2020), which was also used as input to the DGVMs (Supplement S.2.2). 264 
LUH2-GCB2024 provides land-use change data at 0.25° spatial resolution based on the FAO data (as described 265 
in Supplement S.2.2) as well as the HYDE3.4 dataset (Klein Goldewijk et al., 2017a, 2017b), considering 266 
subgrid-scale transitions between primary forest, secondary forest, primary non-forest, secondary non-forest, 267 
cropland, pasture, rangeland, and urban land (Hurtt et al., 2020; Chini et al., 2021). LUH2-GCB2024 provides a 268 
distinction between rangelands and pasture, based on inputs from HYDE. Rangeland establishment in forests is 269 
assumed to transform forests to grasslands, rangeland establishment in non-forest primary vegetation degrades 270 
primary to secondary vegetation, and rangeland establishment in non-forest secondary vegetation has no effect 271 
(e.g., browsing on shrubland) (Ma et al., 2020). This case distinction is implemented in BLUE based on a forest 272 
mask provided with LUH2-GCB2021. OSCAR was run with both LUH2-GCB2024 and FAO/FRA, where the 273 
drivers of the latter were linearly extrapolated to 2023 using their 2015-2020 trends. The best-guess OSCAR 274 
estimate used in our study is a combination of results for LUH2-GCB2024 and FAO/FRA land-use data and a 275 
large number of perturbed parameter simulations weighted against a constraint (the cumulative SLAND over 276 
1960-2022 of last year’s GCB). As the record of H&C2023 ends in 2020, we extend it up to 2023 by adding the 277 
yearly anomalies of the emissions from tropical deforestation and degradation fires from GFED4s between 2020 278 
and 2022 to the model’s estimate for 2020 (emissions from peat fires and peat drainage are added to all models 279 
later in the process). 280 
The annual ELUC from 1850 onwards is calculated as the average of the estimates from BLUE, H&C2023, 281 
OSCAR, and LUCE. For the cumulative numbers starting in 1750, emission estimates between 1750-1850 are 282 
added based on the average of four earlier publications (30 ± 20 GtC 1750-1850, rounded to nearest 5; Le Quéré 283 
et al., 2016). 284 
We provide a split of net ELUC into component fluxes to better identify reasons for divergence between 285 
bookkeeping estimates and to give more insight into the drivers of net ELUC. This split distinguishes between 286 
emissions from deforestation (including due to shifting cultivation), removals from forest (re-)growth (including 287 
regrowth in shifting cultivation cycles), fluxes from wood harvest and other forest management (i.e., emissions 288 
in forests from slash decay and emissions from product decay following wood harvesting, removals from 289 
regrowth after wood harvesting, and fire suppression), emissions from peat drainage and peat fires, and 290 
emissions and removals associated with all other land-use transitions. Additionally, we split deforestation 291 
emissions into emissions from permanent deforestation and emissions from deforestation in shifting cultivation 292 
cycles, and we split removals from forest (re-)growth into forest (re-)growth due to af/reforestation and forest 293 
regrowth in shifting cultivation cycles. This split helps to identify the emission reductions that would be 294 
achievable by halting permanent deforestation, and the removals that are caused by permanently increasing the 295 
forest cover through re/afforestation. Forest (re-)growth due to af/reforestation is calculated using a slightly 296 
updated method compared to GCB2023, now following the method used to calculate CDR due to 297 
re/afforestation in the 2nd State of CDR Report (Pongratz et al., 2024). ELUC data are provided as global sums, 298 
as spatially explicit estimates at 0.25° spatial resolution (i.e., the native LUH2 resolution), and for 199 countries 299 
(based on the list of UNFCCC parties). Spatially explicit ELUC estimates for BLUE and LUCE are directly 300 
available at 0.25°. For OSCAR and H&C2023, the country-level estimates were scaled to 0.25° based on the 301 
patterns of gross emissions and gross removals in BLUE (see Schwingshackl et al. 2022 for more details about 302 
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the methodology). The gridded net ELUC estimates of BLUE, LUCE,  OSCAR, and H&C2023 are averaged, and 303 
the gridded estimates of peat drainage emissions (average of FAO, LPX-Bern, and ORCHIDEE-PEAT) and of 304 
peat fire emissions (from GFED4s) are added. Country-level estimates for the gridded datasets (BLUE, LUCE, 305 
LPX-Bern, ORCHIDEE-PEAT, GFED4s) are calculated based on a country map from Eurostat (Eurostat, 306 
2024), which was remapped to 0.25°. In case multiple countries are present in a 0.25° grid cell, the ELUC 307 
estimates are allocated proportional to each country’s land fraction in that grid cell. 308 
 309 

S.2.2 Dynamic Global Vegetation Models (DGVMs) 310 

Land-use change CO2 emissions are also estimated by an ensemble of 20 DGVMs. The DGVMs account for 311 
deforestation and regrowth, the most important components of ELUC, but they do not represent all processes 312 
resulting directly from human activities on land (Table S1). All DGVMs represent processes of vegetation 313 
growth and mortality, as well as decomposition of dead organic matter associated with natural cycles, and 314 
include the vegetation and soil carbon response to increasing atmospheric CO2 concentration, to climate 315 
variability and to climate change. Most models explicitly simulate the coupling of carbon and nitrogen cycles 316 
and account for atmospheric N deposition and N fertilisers (Table S1). The DGVMs are independent from the 317 
other budget terms except for their use of atmospheric CO2 concentration to calculate the fertilisation effect of 318 
CO2 on plant photosynthesis.  319 
All DGVMs use the LUH2-GCB2024 dataset as input, which includes the HYDE cropland/grazing land dataset 320 
(Klein Goldewijk et al., 2017a, 2017b), and some additional information on land-use transitions, land-use 321 
management activities and wood harvest. This includes annual, quarter-degree (regridded from 5 minute 322 
resolution), fractional data on cropland and pasture from HYDE3.4.  323 
DGVMs that do not simulate subgrid-scale transitions (i.e., those estimating net land-use emissions; see Table 324 
S1) used the HYDE information on agricultural area change. For all countries, with the exception of Brazil, the 325 
Democratic Republic of the Congo, Indonesia, and China these data are based on the available annual FAO 326 
statistics of change in agricultural land area available from 1961 up to and including 2017. The FAO 327 
retrospectively revised their reporting for the Democratic Republic of the Congo, which was newly available 328 
until 2020 as reported in GCB2022. In addition to FAO country-level statistics, the HYDE3.4 cropland/grazing 329 
land dataset is constrained spatially based on multi-year satellite land cover maps from ESA CCI LC (see 330 
below). The extension of HYDE beyond the years that were directly informed by data was done as part of the 331 
LUH2 methodology this year and was a simple extension of the previous 5-year trend. The actual years for this 332 
extension varied by country since some countries were based on FAO data (2021), some used the China data 333 
(2019), and some used MapBiomas data (Brazil and Indonesia, 2022). This methodology is not appropriate for 334 
countries that have experienced recent rapid changes in the rate of land-use change, e.g. Brazil which has 335 
experienced a recent upturn in deforestation. For Brazil and Indonesia we replace FAO state-level data for 336 
cropland and grazing land in HYDE by those from the satellite-based land cover dataset MapBiomas (collection 337 
7) for 1985-2022 (Brazil) (Souza et al. 2020) and 2000-2022 (Indonesia). ESA-CCI is used to spatially 338 
disaggregate as described below.. The pre-1985 period is scaled with the per capita numbers from 1985 from 339 
MapBiomas, so this transition is smooth.  340 
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HYDE uses satellite imagery from ESA-CCI from 1992-2018 for more detailed yearly allocation of cropland 341 
and grazing land, with the ESA area data scaled to match the FAO annual totals at country-level. The original 342 
300 metre spatial resolution data from ESA was aggregated to a 5 arc minute resolution according to the 343 
classification scheme as described in Klein Goldewijk et al. (2017a).  344 
DGVMs that simulate subgrid-scale transitions (i.e., those estimating gross land-use emissions; see Table S1) 345 
use more detailed land use transition and wood harvest information from the LUH2-GCB2024 data set. LUH2-346 
GCB2024 is an update of the comprehensive harmonised land-use data set (Hurtt et al., 2020), that includes 347 
fractional data on primary and secondary forest vegetation, as well as all underlying transitions between land-348 
use states (850-2023; Hurtt et al., 2011, 2017, 2020; Chini et al., 2021; Table S1). This data set consists of 0.25° 349 
fractional areas of land-use states and all transitions between those states, including a new wood harvest 350 
reconstruction, new representation of shifting cultivation, crop rotations, management information including 351 
irrigation and fertiliser application. The land-use states include five different crop types in addition to splitting 352 
grazing land into managed pasture and rangeland. Wood harvest patterns are constrained with Landsat-based 353 
tree cover loss data (Hansen et al. 2013). Updates of LUH2-GCB2024 over last year’s version (LUH2-354 
GCB2023) are using the most recent HYDE release. HYDE4.3 is based on new FAO inputs for years 1961-355 
2021, new MapBiomas inputs for Brazil (for years 1985-2022) and Indonesia (for years 2000-2022) and new 356 
cropland data for China from Yu et al. 2022 (for years 1900-2019). 357 
We use updated FAO wood harvest data for all dataset years from 1961 to 2022, and linearly extended to the 358 
year 2023. The HYDE3.4 population data is also used to extend the wood harvest time series back in time. 359 
Other wood harvest inputs (for years prior to 1961) remain the same in LUH2. These updates in the land-use 360 
forcing are shown in Figure S7 in comparison to LUH2-GCB2022 and LUH2-GCB2023. DGVMs implement 361 
land-use change in different ways (e.g. an increased cropland fraction in a grid cell can either be at the expense 362 
of grassland, shrubs, or forest, the latter resulting in deforestation; land cover fractions of the non-agricultural 363 
land differ between models). Similarly, model-specific assumptions are applied to convert deforested biomass or 364 
deforested area, and other forest product pools into carbon, and different choices are made regarding the 365 
allocation of rangelands as natural vegetation or pastures. 366 
The difference between two DGVMs simulations (see Supplement S.4.1 below), one forced with historical 367 
changes in land-use and a second one with time-invariant pre-industrial land cover and pre-industrial wood 368 
harvest rates, allows quantification of the dynamic evolution of vegetation biomass and soil carbon pools in 369 
response to land-use change in each model (ELUC). Using the difference between these two DGVM simulations 370 
to diagnose ELUC means the DGVM estimate includes the loss of additional sink capacity (around 0.4 ± 0.3 GtC 371 
yr-1; see Section 2.10 and Supplement S.6.4), while the bookkeeping model estimate does not. 372 
As a criterion for inclusion in this carbon budget, we only retain models that simulate a positive ELUC during the 373 
1990s, as assessed in the IPCC AR4 (Denman et al., 2007) and AR5 (Ciais et al., 2013). All DGVMs met this 374 
criterion. 375 
 376 

S.2.3 Translation between NGHGIs and ELUC 377 

Land-use emissions estimates from bookkeeping models and from national GHG Inventories (NGHGIs) show a 378 
large gap (see Figure 8 and Table S10). This gap is due to different approaches for calculating “anthropogenic” 379 
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CO2 fluxes related to land-use change and land management (Grassi et al. 2018). Land sinks due to 380 
environmental change on managed lands are treated as non-anthropogenic in the global carbon budget, while 381 
they are generally considered as anthropogenic in NGHGIs (“indirect anthropogenic fluxes”; Eggleston et al., 382 
2006). Building on previous studies (Grassi et al. 2021), we implement an approach that adds the DGVM 383 
estimates of CO2 fluxes due to environmental change from managed forest areas (part of SLAND) to the ELUC 384 
estimate from bookkeeping models. This sum is expected to be conceptually more comparable to NGHGI 385 
estimates than ELUC. 386 
ELUC data are taken from bookkeeping models, in line with the global carbon budget approach. To determine 387 
SLAND in managed forest, the following steps were taken: Spatially gridded data of “natural” forest NBP (SLAND 388 
i.e., including carbon fluxes due to environmental change and excluding land use change fluxes) were obtained 389 
from DGVMs using S2 runs from the TRENDY v13 dataset. Results were first masked with a forest map that is 390 
based on tree cover data from Hansen et al. (2013). To perform the conversion “tree” cover to “forest” cover, we 391 
exclude gridcells with less than 20% tree cover and isolated pixels with maximum connectivity less than 0.5 ha 392 
following the FAO definition of forest. Forest NBP is then further masked with a map of “intact” forest for the 393 
year 2013, i.e. forest areas characterised by no remotely detected signs of human activity (Potapov et al. 2017). 394 
This way, we obtained SLAND in “intact” and “non-intact” forest areas, which previous studies (Grassi et al. 395 
2021) indicated to be a good proxy, respectively, for “unmanaged” and “managed” forest areas in the NGHGI. 396 
Note that only a subset of models had forest NBP at grid cell level. For the other DGVMs, when a grid cell had 397 
forest, all the NBP in that grid cell was allocated to forest. Since S2 simulations use pre-industrial forest cover 398 
masks that are at least 20% larger than today’s forest (Hurtt et al. 2020), we corrected this NBP by a ratio 399 
between observed (based on Hansen et al. 2013) and prescribed (from DGVMs) forest cover. This ratio is 400 
calculated for each individual DGVM that provides information on prescribed forest cover, and a common ratio 401 
(median ratio of this subset of models) is used. The details of the method used are explained in a GitHub 402 
repository (Alkama, 2022). 403 
LULUCF data from NGHGIs are from Grassi et al. (2023), updated up to August 2024. While Annex I countries 404 
report a complete time series 1990-2021, gap-filling was applied for Non-Annex I countries through linear 405 
interpolation between two points and/or through extrapolation backward (till 2000) and forward (till 2021) using 406 
the single closest available data. For all countries, the estimates of the years 2022 and 2023 are assumed to be 407 
equal to those of 2021. The managed forest area, used to filter SLAND data from DGVMs to derive the natural 408 
land sink in managed forests, accounts for temporal dynamics from 2000 to 2023. This data includes all CO2 409 
fluxes from land considered managed, which in principle encompasses all land uses (forest land, cropland, 410 
grassland, wetlands, settlements, and other land), changes among them, emissions from organic soils (i.e., from 411 
peat drainage) and from fires. In practice, although almost all Annex I countries report all land uses, many non-412 
Annex I countries report only on deforestation and forest land, and only few countries report on other land uses. 413 
In most cases, NGHGIs include most of the natural response to recent environmental change because they use 414 
direct observations (e.g., national forest inventories) that do not allow separating direct and indirect 415 
anthropogenic effects (Eggleston et al., 2006). 416 
Last, we also used the gridded data of net land flux from 14 atmospheric inversion systems (Table S4) to get an 417 
additional estimate of land-use fluxes in managed land. We applied a correction for riverine transport (see 418 
Supplement S.5.1.) and multiplied the resulting values with the fraction of managed land in each grid cell for 419 
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each inversion. For this purpose, we used masks of managed land from Grassi et al. (2023) available for the 420 
years 1994, 2002, 2010, and 2016. We linearly interpolated the masks in time and replicated the 2016 mask in 421 
the years 2017-2023. Subsequently, we applied another correction for lateral transport due to international wood 422 

and crop trade (data from Deng et al. 2024). The obtained values are summed globally and compared to the 423 

NGHGI estimates and the translated ELUC estimates. 424 
Figure 8 and Table S10 shows the resulting translation of global carbon cycle models' land flux definitions to 425 
that of the NGHGI (discussed in Section 3.2.2). For comparison we also show LULUCF estimates from 426 
FAOSTAT (FAO, 2024), which include emissions from net forest conversion and fluxes on forest land 427 
(Tubiello et al., 2021) as well as CO2 emissions from peat drainage and peat fires. Forest land stock change data 428 
for 2021-2023 are carried forward from the 2020 estimates. The FAO data shows global emissions of 0.30 GtC 429 
yr-1 averaged over 2014-2023, in contrast to the removals of -0.76 GtC yr-1 estimated by the gap-filled NGHGI 430 
data. Most of this difference is attributable to different scopes: a focus on carbon fluxes for the NGHGI and a 431 
focus on land-use area and biomass estimates for FAO. In particular, the NGHGI data includes a larger forest 432 
sink for non-Annex 1 countries resulting from a more complete coverage of non-biomass carbon pools and non-433 
forest land uses. NGHGI and FAO data also differ in terms of underlying data on forest land (Grassi et al., 434 
2022). 435 
 436 

S.2.4 Uncertainty assessment for ELUC 437 

Differences between the bookkeeping models and DGVMs originate from three main sources: different 438 
methodologies, which among others lead to inclusion of the loss of additional sink capacity in DGVMs (see 439 
Supplement S.6.4), different underlying land-use/land cover datasets, and different processes represented (Table 440 
S1). We examine both the results from DGVMs and from the bookkeeping method and use the resulting 441 
variations as a way to characterise the uncertainty in ELUC. 442 
Despite the existing differences, the ELUC estimate from the DGVM multi-model mean is consistent with the 443 
average of the emissions from the bookkeeping models (Table 5). However, there are large differences among 444 
individual DGVMs (standard deviation at 0.6 GtC yr-1; Table 5), between the bookkeeping estimates (standard 445 
deviation at 0.3 GtC yr-1 for cumulative emissions in 1850-2022), and between the H&C2023 model and its 446 
previous model version H&N2017 (average difference 1850-2015 of 0.2 GtC yr-1; see Table 1 in Houghton and 447 
Castanho, 2023). A factorial analysis of differences between BLUE and H&N2017 (the precursor of H&C2023) 448 
attributed them particularly to differences in carbon densities between primary and secondary vegetation (Bastos 449 
et al., 2021). Earlier studies additionally showed the relevance of the different land-use forcing as applied (in 450 
updated versions) also in the current study (Gasser et al., 2020). Ganzenmüller et al. (2022) showed that ELUC 451 
estimates with BLUE are substantially smaller when the model is driven by a new high-resolution land-use 452 
dataset (HILDA+). They identified shifting cultivation and the way it is implemented in LUH2 as a main reason 453 
for this divergence. They further showed that a higher spatial resolution reduces the estimates of both gross 454 
emissions and gross removals because successive transitions are not adequately represented at coarser 455 
resolution, which has the effect that—despite capturing the same extent of transition areas—overall less area 456 
remains pristine at the coarser compared to the higher resolution. 457 
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The uncertainty in ELUC of ±0.7 GtC yr-1 reflects our best value judgement that there is at least 68% chance 458 
(±1σ) that the true land-use change emissions lie within the given range, for the range of processes considered 459 
here. Prior to the year 1959, the uncertainty in ELUC is taken from the standard deviation of the DGVMs. We 460 
assign low confidence to the annual estimates of ELUC because of the inconsistencies among estimates and 461 
because of the difficulties to quantify some of the processes with DGVMs.  462 
 463 

S.2.5 Land-use emissions projection for 2024 464 

We project the 2024 land-use emissions for BLUE, H&C2023, OSCAR, and LUCE based on their ELUC 465 
estimates for 2023 and on the interannual variability of peat fires and tropical deforestation and degradation fires 466 
as estimated using active fire data (MCD14ML; Giglio et al., 2016). The latter scales almost linearly with GFED 467 
emissions estimates over large areas (van der Werf et al., 2017), and thus allows for tracking fire emissions in 468 
deforestation and tropical peat zones in near-real time. Peat drainage is assumed to be unaltered, as it has low 469 
interannual variability. We project the 2024 land-use emissions for BLUE, H&C2023, OSCAR, and LUCE 470 
based on their ELUC estimates for 2023 and add the change in carbon emissions from peat fires and tropical 471 
deforestation and degradation fires (2024 emissions relative to 2023 emissions) from GFED4s. The GFED4s 472 
estimates for 2024 are as of October 17. 473 
 474 

S.3 Methodology Ocean CO2 sink 475 

S.3.1 Observation-based estimates 476 

We primarily use the observational constraints assessed by IPCC of a mean ocean CO2 sink of 2.2 ± 0.7 GtC yr-1 477 
for the 1990s (90% confidence interval; Ciais et al., 2013) to verify that the GOBMs provide a realistic 478 
assessment of SOCEAN. This is based on indirect observations with seven different methodologies and their 479 
uncertainties, and further using three of these methods that are deemed most reliable for the assessment of this 480 
quantity (Denman et al., 2007; Ciais et al., 2013). The observation-based estimates use the ocean/land CO2 sink 481 
partitioning from observed atmospheric CO2 and O2/N2 concentration trends (Manning and Keeling, 2006; 482 
Keeling and Manning, 2014), an oceanic inversion method constrained by ocean biogeochemistry data 483 
(Mikaloff Fletcher et al., 2006), and a method based on penetration time scale for chlorofluorocarbons (McNeil 484 
et al., 2003). The IPCC estimate of 2.2 GtC yr-1 for the 1990s is consistent with a range of methods 485 
(Wanninkhof et al., 2013). We refrain from using the IPCC estimates for the 2000s (2.3 ± 0.7 GtC yr-1), and the 486 
period 2002-2011 (2.4 ± 0.7 GtC yr-1, Ciais et al., 2013) as these are based on trends derived mainly from 487 
models and one data-product (Ciais et al., 2013). Additional constraints summarised in AR6 (Canadell et al., 488 
2021) are the interior ocean anthropogenic carbon change (Gruber et al., 2019) and ocean sink estimate from 489 
atmospheric CO2 and O2/N2 (Tohjima et al., 2019) which are used for model evaluation and discussion, 490 
respectively. 491 
We also use nine estimates of the ocean CO2 sink and its variability based on surface ocean fCO2 maps obtained 492 
by the interpolation of surface ocean fCO2 measurements. Seven of the methods cover a period from 1990 493 
onwards due to severe restriction in data availability prior to 1990 (Figure 11), whereas two span the time period 494 
from 1957 and 1959 onwards. These estimates differ in many respects: they use different maps of surface fCO2, 495 
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different atmospheric CO2 concentrations, wind products and different gas-exchange formulations as specified 496 
in Table S3. We refer to them as fCO2-products. The measurements underlying the surface fCO2 maps are from 497 
the Surface Ocean CO2 Atlas version 2024 (SOCAT v2024; Bakker et al., 2024), which is an update of version 498 
3 (Bakker et al., 2016) and the subsequent annual updates used in previous versions of the global carbon budget.  499 
SOCAT v2024 has an additional 3.0 million fCO2 measurements with an estimated accuracy of better than 5 500 
µatm relative to v2023. Of these, 2 million are from 2023 in a total of 210 data sets (Table S7), while the largest 501 
addition from earlier years is from 2022 with 64 data sets new to SOCAT. For the 2023 data, there are a total of 502 
178 data sets with measurements in the Northern hemisphere, while there are only 52 with data from the 503 
Southern hemisphere. For the Southern Ocean, there are only 11 data sets from 2023 in the subpolar zone and 504 
further south (defined as south of 45°S), and only one from Austral winter (June-August).  The coverage of 505 
SOCAT observations in 2023 is only about 50% of that in 2016 (Fig. 11), with large reductions in sampling in 506 
both the Northern (from 391 to 178 data sets) as well as Southern hemisphere (from 109 to 52 data sets). This 507 
reduction cannot be explained only in terms of lags in data submission. The quality control criteria used for 508 
SOCATv2024 are described in Lauvset et al. (2018). 509 
. Each of the data-based estimates uses a different method to  map the SOCAT v2024 data to the global ocean. 510 
The methods include a data-driven diagnostic method combined with a multi linear regression approach to 511 
extend back to 1957 (Rödenbeck et al., 2022; referred to here as Jena-MLS), four neural network models 512 
(Landschützer et al., 2014; referred to as VLIZ-SOMFFN; Chau et al., 2022; Copernicus Marine Environment 513 
Monitoring Service, referred to here as CMEMS-LSCE-FFNN; Zeng et al., 2022; referred to as NIES-ML3; 514 
Gregor et al. 2019, referred to as CSIR-ML6), one cluster regression approach (Gregor et al., 2024; referred to 515 
as OceanSODA-ETHZv2), a multi-linear regression method (Iida et al., 2021; referred to as JMA-MLR), and one 516 
method that relates the fCO2 misfit between GOBMs and SOCAT to environmental predictors using the extreme 517 
gradient boosting method extending back to 1959 (Gloege et al., 2022).. The ensemble mean of the fCO2-based 518 
flux estimates is calculated from these eight mapping methods. Further, we show the flux estimate of the UExP-519 
FNN-U method (Watson et al., 2020; Ford et al., accepted) who also use a neural network model  to map  fCO2 520 
data to the globe, but resulting in a substantially larger ocean sink estimate, owing to a number of adjustments 521 
they applied to the surface ocean fCO2 data. Concretely, these authors adjusted the SOCAT fCO2 downward to 522 
account for differences in temperature between the depth of the ship intake and the relevant depth right near the 523 
surface, and included a further adjustment to account for the cool surface skin temperature effect. In 524 
Friedlingstein et al. 2023, the UExP-FNN-U product correction was applied illustrating that this temperature 525 
adjustment leads to an upward correction of the ocean carbon sink, up to 0.9 GtC yr-1, that, if correct, should be 526 
applied to all fCO2-based flux estimates. This year, the updated UExP-FFN-U method applies a smaller 527 
adjustment as proposed by Dong et al. (2022), who illustrate a smaller correction effect of 0.6 GtC yr-1. The 528 
impact of the cool skin effect on air-sea CO2 flux is based on established understanding of temperature gradients 529 
(as discussed by Goddijn-Murphy et al., 2015 and Woolf et al., 2016), and laboratory observations (Jähne and 530 
Haussecker, 1998; Jähne, 2019), but in situ field observational evidence is lacking (Dong et al., 2022).  The  531 
UExP-FNN-U method is thus, similar to the UExP-FNN-U flux estimate in previous editions,  not included in the 532 
ensemble mean of the fCO2-based flux estimates. This choice will be re-evaluated in upcoming budgets based 533 
on further lines of evidence.  534 
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Typically, fCO2-products do not cover the entire ocean due to missing coastal oceans and sea ice cover. The 535 
CO2 flux from each fCO2-based product is already at or above 99% coverage (either due to complete coverage 536 
or a posteriori filling) of the ice-free ocean surface area in several  products this year (UExP-FNN-U, JMA-MLR, 537 
VLIZ-SOMFFN, Jena-MLS, OceanSODA-ETHZv2), . The products that remained below 99% coverage of the 538 
ice-free ocean (CMEMS-LSCE-FFNN, NIES-ML3, UExP-FNN-U, CSIR-ML6 ) were scaled by the following 539 
procedure: 540 
Since v2022 of the GCB we now scale fluxes globally and regionally (North, Tropics, South) to match the ice-541 
free area (using the HadISST sea surface temperature and sea ice cover; Rayner et al., 2003): 542 
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In the equation, A represents area, (1 – ice) represents the ice free ocean, AFCO2region represents the coverage of 544 
the fCO2-product for a region, and FCO2region is the integrated flux for a region. 545 
We further use results from two diagnostic ocean models, Khatiwala et al. (2013) and DeVries (2014), to 546 
estimate the anthropogenic carbon accumulated in the ocean prior to 1959. The two approaches assume constant 547 
ocean circulation and biological fluxes, with SOCEAN estimated as a response in the change in atmospheric CO2 548 
concentration calibrated to observations. The uncertainty in cumulative uptake of ±20 GtC (converted to ±1σ) is 549 
taken directly from the IPCC’s review of the literature (Rhein et al., 2013), or about ±30% for the annual values 550 
(Khatiwala et al., 2009). 551 
 552 

S.3.2 Global Ocean Biogeochemistry Models (GOBMs) 553 

The ocean CO2 sink for 1959-2023 is estimated using ten GOBMs (Table S2). The GOBMs represent the 554 
physical, chemical, and biological processes that influence the surface ocean concentration of CO2 and thus the 555 
air-sea CO2 flux. The GOBMs are forced by meteorological reanalysis and atmospheric CO2 concentration data 556 
available for the entire time period. They mostly differ in the source of the atmospheric forcing data 557 
(meteorological reanalysis), spin up strategies, and in their horizontal and vertical resolutions (Table S2). All 558 
GOBMs except one (CESM-ETHZ) do not include the effects of anthropogenic changes in nutrient supply 559 
(Duce et al., 2008). They also do not include the perturbation associated with changes in riverine organic carbon 560 
(see Section 2.10 and Supplement S.6.3).  561 
Four sets of simulations were performed with each of the GOBMs. Simulation A applied historical changes in 562 
climate and atmospheric CO2 concentration. Simulation B is a control simulation with constant atmospheric 563 
forcing (normal year or repeated year forcing) and constant pre-industrial atmospheric CO2 concentration. 564 
Simulation C is forced with historical changes in atmospheric CO2 concentration, but repeated year or normal 565 
year atmospheric climate forcing. Simulation D is forced by historical changes in climate and constant pre-566 
industrial atmospheric CO2 concentration.  567 
The atmospheric CO2 forcing file was updated in GCB2024 to ensure consistency with the atmospheric CO2 568 
growth rate reported in the GCB. Since January 1980, we use the CO2 global growth rate reported by 569 
NOAA/GML (Lan et al., 2024). In the period March 1958-December 1979, we use bias-adjusted values of the 570 
global growth rate based on measurements of atmospheric CO2 made by the Scripps Institution of 571 
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Oceanography at the Mauna Loa Observatory, Hawaii (Keeling et al., 1976; full period of coverage 1758-2024). 572 
Bias adjustment of the Scripps data was performed in three sequential stages as follows: 573 

● First, to correct for differences in the mean atmospheric concentration of CO2 at Mauna Loa versus the 574 
globally averaged value, a constant of -0.231 ppm was added to all Scripps data to improve alignment 575 
of the “CO2[trend]” values from the Scripps data with the “CO2[trend]” values from the global NOAA 576 
data. The value of -0.231 ppm is the mean offset of “CO2[trend]” at Mauna Loa from the global 577 
“CO2[trend]” value during 1980-2000.  578 

● Second, to correct for differences in the seasonality of atmospheric CO2 concentrations at Mauna Loa 579 
versus globally, we shifted monthly anomalies between CO2 concentration data and “trend” values 580 
backward in time by one month in the Scripps data. This specifically corrects for the fact that 581 
peaks/troughs in the climatology of "CO2[monthly_observation] - CO2[trend]” at Mauna Loa occur 1 582 
month earlier than peaks/troughs in the climatology of "CO2[monthly_observation] - CO2[trend]” in the 583 
global data from NOAA. A one-month shift to the Scripps data was found to optimally align the 584 
climatologies of "CO2[monthly_observation] - CO2[trend]” in the Scripps and global data.  585 

● Third, to correct for the greater amplitude of seasonal anomalies at Mauna Loa from Scripps than the 586 
global data from NOAA, we apply a monthly multiplier that dampens the magnitude of monthly 587 
anomalies from “trend” values in the Scripps data. The monthly multiplier reduces values of 588 
"CO2[monthly_observation] - CO2[trend]” in the Scripps data to more closely match values of 589 
"CO2[monthly_observation] - CO2[trend]” in the NOAA global data.  590 

  591 
For the period Jan 1750 to February 1958, we use bias-adjusted values of the global growth rate based on 592 
measurements of atmospheric CO2 from air trapped in ice at Law Dome (Joos and Spahni, 2008; full period of 593 
coverage 1750-2004). Bias adjustments were made to improve alignment with the post-1980 time series of data 594 
from Scripps and NOAA, and were performed in two sequential stages as follows: 595 

● First, a constant of 0.973 was added to all data from Law Dome to improve alignment with the Scripps 596 
data (which had already been bias-corrected as described above). The constant of 0.973 is the mean 597 
offset of CO2 annual values (annual mean in the case of the Scripps data) in the period 1958-1979.  598 

● Second, the climatology of "CO2[monthly_observation] - CO2[trend]” from the period 1958-2000 was 599 
superimposed on the data from Law Dome (note that the 1958-2000 data includes both Scripps and 600 
NOAA data, combined as described above). To achieve this, a spline interpolation was fitted to 601 
downscale annual observations from CO2 concentration from Law Dome to monthly values of 602 
“CO2[trend]” and the climatological seasonality of "CO2[monthly_observation] - CO2[trend]” from 603 
1958-2000) was then added to the interpolated values of “CO2[trend]”.  604 

 605 
To derive SOCEAN from the model simulations, we subtracted the slope of a linear fit to the annual time series of 606 
the control simulation B from the annual time series of simulation A. Assuming that drift and bias are the same 607 
in simulations A and B, we thereby correct for any model drift. Further, this difference also removes the natural 608 
steady state flux (assumed to be 0 GtC yr-1 globally without rivers), which is often a major source of biases. 609 
Note, however, that Gürses et al. (2023) questioned the assumption of comparable bias and drift in simulations 610 
A and B as they compared two versions of FESOM-REcoM, and found a very similar air-sea CO2 flux in 611 



17 
 

simulation A despite a different bias as derived from simulation B. This approach works for all model set-ups, 612 
including IPSL, where simulation B was forced with variable historical climate changes (looping over a 10-year 613 
forcing). This approach assures that the interannual variability is not removed from IPSL simulation A. 614 
The absolute correction for bias and drift per model in the 1990s varied between <0.01 GtC yr-1 and 0.31 GtC 615 
yr-1, with five models having positive biases, four having negative biases and one model having essentially no 616 
bias (NorESM). The MPI model uses riverine input and therefore simulates outgassing in simulation B. By 617 
subtracting a linear fit of simulation B, also the ocean carbon sink of the MPI model follows the definition of 618 
SOCEAN. This correction increases the model mean ocean carbon sink by 0.07 GtC yr-1 in the 1990s. The ocean 619 
models cover 99% to 101% of the total ocean area, so that area-scaling is not necessary. 620 
 621 

S.3.3 GOBM evaluation  622 

The ocean CO2 sink for all GOBMs and the ensemble mean falls within 90% confidence of the observed range, 623 
or 1.5 to 2.9 GtC yr-1 for the 1990s (Ciais et al., 2013) before and after applying adjustments. The GOBMs and 624 
fCO2-products have been further evaluated using the fugacity of sea surface CO2 (fCO2) from the SOCAT v2024 625 
database (Bakker et al., 2016, 2024). We focused this evaluation on the root mean squared error (RMSE) 626 
between observed and modelled fCO2 and on a measure of the amplitude of the interannual variability of the 627 
flux (modified after Rödenbeck et al., 2015). The RMSE is calculated from detrended, annually and regionally 628 
averaged time series of fCO2 calculated from GOBMs and fCO2-products subsampled to SOCAT sampling 629 
points to measure the misfit between large-scale signals (Hauck et al., 2020). To this end, we apply the 630 
following steps: (i) subsample data points for where there are observations (GOBMs/fCO2-products as well as 631 
SOCAT), (ii) average spatially, (iii) calculate annual mean, (iv) detrend both time-series (GOBMs/fCO2-632 
products as well as SOCAT), (v) calculate RMSE. We use a mask based on the minimum area coverage of the 633 
fCO2-products. This ensures a fair comparison over equal areas. The amplitude of the SOCEAN interannual 634 
variability (A-IAV) is calculated as the temporal standard deviation of the detrended annual CO2 flux time series 635 
after area-scaling (Rödenbeck et al., 2015, Hauck et al., 2020). These metrics are chosen because RMSE is the 636 
most direct measure of data-model mismatch and the A-IAV is a direct measure of the variability of SOCEAN on 637 
interannual timescales. We apply these metrics globally and by latitude bands. Results are shown in Figure S2 638 
and discussed in Section 3.6.5.  639 
 640 
In addition to the interior ocean anthropogenic carbon accumulation (Section 3.6.5) and SOCAT fCO2, we 641 
evaluate the models with process-based metrics that were previously related to ocean carbon uptake. These are 642 
the Atlantic Meridional Overturning Circulation (Goris et al., 2018, Terhaar et al., 2022, Terhaar et al., in 643 
review), the Southern Ocean sea surface salinity (Terhaar et al., 2021, 2022, 2024, Hauck et al., 2023b), the 644 
Southern Ocean stratification index (Bourgeois et al., 2022) and the surface ocean Revelle factor (Terhaar et al., 645 
2022, 2024). 646 
  647 
We follow the methodology of previous studies wherever possible, particularly the RECCAP model evaluation 648 
chapter (Terhaar et al.,2024). The Atlantic Meridional Overturning Circulation from the GOBMs is here defined 649 
as the maximum of the Atlantic meridional overturning streamfunction at 26°N. This is compared to data from 650 
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the RAPID array at 26°N (Moat et al., 2024). An uncertainty of 0.9 Sv  was reported in McCarthy et al. (2015). 651 
We use the years 2005-2022, which are all complete calendar years available from the RAPID data set, and 652 
report the temporal standard deviation over that period.  653 
The Southern Ocean sea surface salinity is reported for the subpolar seasonally stratified biome (SPSS) and for 654 
the area covering both the SPSS and subtropical seasonally stratified (STSS) biomes. Biome definitions are 655 
taken from Fay and McKinley (2014, as provided for the RECCAP2 project). The sea surface salinity was first 656 
used as an emergent constraint for the Southern Ocean CO2 uptake with Earth System Models (Terhaar et al. 657 
2021, 2022) using the interfrontal salinity between the polar and subtropical fronts with dynamic fronts. As the 658 
GOBMs are forced with reanalysis data, the fronts do not vary as much as in the ESMs, and thus the use of fixed 659 
biomes is justified (Hauck et al., 2023b, Terhaar et al., 2024). We use the time period 2005-2022 for consistency 660 
with the AMOC metric. The observational sea surface salinity values are calculated from the EN4 data set 661 
(Good et al., 2013; using the objective analyses – Gouretski and Reseghetti (2010) XBT corrections and 662 
Gouretski and Cheng (2020) MBT corrections) with the aid of the Fay and McKinley (2014) mask. 663 
  664 
The Southern Ocean stratification index is a simplified version of the metric used in Bourgeois et al. (2022). It is 665 
defined as the difference between in situ density at the surface and at 1000 m depth in the latitudinal band of 666 
30°S to 55°S. Each model provider calculated this metric based on their native model mesh. We use again the 667 
period of 2005-2022 for consistency with the AMOC metric. The same metric was calculated from the EN4 data 668 
set mentioned above (Good et al., 2013). 669 
  670 
Finally, the global surface ocean Revelle factor is reported. Monthly 1°x1° gridded fields were provided by the 671 
modelling groups, based on standard carbonate chemistry routines (e.g., mocsy, Orr & Epitalon, 2015; 672 
PyCO2SYS, Humphreys et al., 2022a,b). The observational metrics come from two sources, firstly the gridded 673 
GLODAP data set v2.2016 (Lauvset et al., 2016), which is a climatology centered around the year 2002. For 674 
comparison with GLODAP, the models were subsampled to GLODAP data coverage and to a comparable time 675 
window also centred around 2002 (1997-2007). Secondly, the OceanSODA_v2024 data set (Gregor and Gruber, 676 
2020, updated) was used, which has all input data available to calculate the surface ocean Revelle factor. 677 
OceanSODA covers a slightly smaller surface area (~96 % of GLODAP), but provides data until 2021. The 678 
period 2005-2021 was used due to data availability and the models were subsampled to the same spatial and 679 
temporal coverage. 680 
  681 
For this release, only the comparison of the metrics between GOBMs and observational data sets is presented, 682 
whereas it is foreseen to translate this comparison into a quantitative benchmarking comparable to the iLAMB 683 
benchmarking for the DGVMs and the corresponding iOMB framework (Ogunro et al., 2018). In a next step, 684 
model weighting can be applied based on the benchmarking (e.g., Brunner et al., 2020). 685 
 686 
S3.4 fCO2-product trend benchmarking 687 
 688 
In addition to the air-sea CO2 flux estimates, fCO2-product providers reconstructed the sea surface fCO2 of a set 689 
of 4 GOBM´s, namely CESM-ETHZ, FESOM2.1REcoM, MRI-ESM2 and IPSL, that were submitted to the 690 
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GCB2023 (Friedlingstein et al. 2023) following the approach of Hauck et al. (2023). A total of 6 fCO2-products 691 
conducted the benchmark test (VLIZ-SOMFFN, NIES-ML3, Jena-MLS, CSIR-ML6,  OceanSODA-ETHZv2 and 692 
JMA-MLR).  The GOBM´s serve as known truth and are subsampled according to the real world observation 693 
tracks. The fCO2-products then reconstruct the true model field, based on the subsampled information provided. 694 
We then compare trends for the period 2001-2021, i.e. the period where we see the divergence between fCO2-695 
products and models, removing the final year to avoid the tail effect. The trends of the individual fCO2-products 696 
from the GCB24 were then plotted against the mean of the trend reconstruction bias (evaluated against the 697 
known truth GOBM trends) of the 4 GOBM. This is shown in Figure S3. The figure illustrates the tendency that 698 
fCO2-products with negative biases in the fCO2 reconstruction show the strongest air-sea CO2 flux trends and 699 
vice versa for the fCO2 products with positive biases. Overall, the ensemble of 6 fCO2 methods shows a 700 
tendency to underestimate the fCO2 trend from the GOBMs (with a mean bias across 6 fCO2-products and 4 701 
model reconstructions of 0.25 µatm/decade) and thus an inferred tendency to overestimate the air-sea CO2 flux 702 
trend (mean across 6  fCO2-products of 0.50±0.13 PgC yr-1 decade-1), however, due to compensating negative 703 
and positive  fCO2 biases, the ensemble mean trend bias is smaller than suggested from previous studies 704 
focusing on one or two  fCO2-products only (see e.g. Gloege et al. 2021, Hauck et al. 2023). The inferred global 705 
trend of 0.43±0.13 PgC yr-1 decade-1 that intercepts with the 0 bias line closely corresponds to a recent estimate 706 
by Mayot et al. 2024 of 0.42±0.06 PgC yr-1 decade-1  (period 2000-2022) in the mean, although with a 707 
substantially larger uncertainty and different time period. The evidence basis, thus, remains low due to the small 708 
sample size of  fCO2-products (n=6) and reconstructed GOBMs (n=4), thus a more detailed analysis is required 709 
to better constrain  fCO2-product trends. 710 

S3.4 Uncertainty assessment for SOCEAN 711 

We quantify the 1-σ uncertainty around the mean ocean sink of anthropogenic CO2 by assessing random and 712 
systematic uncertainties for the GOBMs and fCO2-products. The random uncertainties are taken from the 713 
ensemble standard deviation (0.3 GtC yr-1 for GOBMs, 0.3 GtC yr-1 for fCO2-products). We derive the GOBMs 714 
systematic uncertainty by the deviation of the DIC inventory change 1994-2007 from the Gruber et al. (2019) 715 
estimate (0.4 GtC yr-1) and suggest these are related to physical transport (mixing, advection) into the ocean 716 
interior. For the fCO2-products, we consider systematic uncertainties stemming from uncertainty in fCO2 717 
observations (0.2 GtC yr-1 , Takahashi et al., 2009; Wanninkhof et al., 2013), gas-transfer velocity (0.2 GtC yr-1 , 718 
Ho et al., 2011; Wanninkhof et al., 2013; Roobaert et al., 2018), wind product (0.1 GtC yr-1, Fay et al., 2021), 719 
river flux adjustment (0.3 GtC yr-1, Regnier et al., 2022, formally 2-σ uncertainty), and fCO2 mapping (0.2 GtC 720 
yr-1, Landschützer et al., 2014). Combining these uncertainties as their squared sums, we assign an uncertainty 721 
of ± 0.5 GtC yr-1 to the GOBMs ensemble mean and an uncertainty of ± 0.6 GtC yr-1 to the fCO2-product 722 
ensemble mean, which is smaller than a recent estimate by Ford et al. (2024), who estimate an uncertainty of 723 
±0.7 GtC yr-1 based on propagating different sources of uncertainty in fCO2-products. Here, the uncertainties 724 
are propagated as σ(SOCEAN) = (1/22 * 0.52 + 1/22 * 0.62)1/2 GtC yr-1 and result in an ± 0.4 GtC yr-1 uncertainty 725 
around the best estimate of SOCEAN.  726 
 727 
We examine the consistency between the variability of the GOBMs and the fCO2-products to assess confidence 728 
in SOCEAN. The interannual variability of the ocean fluxes (quantified as A-IAV, the standard deviation after 729 
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detrending, Figure S2) of the eight fCO2-products plus the UExP-FNN-U product (Watson et al., 2020; Ford et 730 
al., accepted) for 1990-2023, ranges from 0.08 to 0.37 GtC yr-1 with the lower estimates by the three ensemble 731 
methods (NIES-ML3, CMEMS-LSCE-FFNN, OS-ETHZ-GRaCER). The inter-annual variability in the GOBMs 732 
ranges between 0.10 and 0.20 GtC yr-1, hence there is overlap with the A-IAV estimates of the fCO2-products. 733 
 734 
Individual estimates (both GOBMs and fCO2products) generally produce a higher ocean CO2 sink during strong 735 
El Niño events. There is emerging agreement between GOBMs and fCO2-products on the patterns of decadal 736 
variability of SOCEAN with a global stagnation in the 1990s, an extra-tropical strengthening in the 2000s 737 
(McKinley et al., 2020, Hauck et al., 2020). More recently, a fast growth of the sink is simulated by both 738 
methods between 2001 and 2016, and a stagnation period since then. A stagnation or even decline of SOCEAN 739 
occurred during the triple La Niña years 2020-2023. The central estimates of the annual flux from the GOBMs 740 
and the fCO2-products have a correlation r of 0.98 (1990-2023). The agreement between the models and the 741 
fCO2products reflects some consistency in their representation of underlying variability since there is little 742 
overlap in their methodology or use of observations.  743 
 744 

S.4 Methodology Land CO2 sink 745 

S.4.1 DGVM simulations 746 

The DGVMs model runs were forced by either the merged monthly Climate Research Unit (CRU) and 6 hourly 747 
Japanese 55-year Reanalysis (JRA-55) data set or by the monthly CRU data set, both providing observation-748 
based temperature, precipitation, and incoming surface radiation on a 0.5°x0.5° grid and updated to 2023 (Harris 749 
et al., 2014, 2020). The combination of CRU monthly data with 6 hourly forcing from JRA-55 (Kobayashi et al., 750 
2015) is performed with methodology used in previous years (Viovy, 2016) adapted to the specifics of the JRA-751 
55 data.  752 
Introduced in GCB2021 (Friedlingstein et al., 2022a), incoming short-wave radiation fields take into account 753 
aerosol impacts and the division of total radiation into direct and diffuse components as summarised below. 754 
The diffuse fraction dataset offers 6-hourly distributions of the diffuse fraction of surface shortwave fluxes over 755 
the period 1901-2023. Radiative transfer calculations are based on monthly-averaged distributions of 756 
tropospheric and stratospheric aerosol optical depth, and 6-hourly distributions of cloud fraction. Methods 757 
follow those described in the Methods section of Mercado et al. (2009), but with updated input datasets. 758 
The time series of speciated tropospheric aerosol optical depth is taken from the historical and RCP8.5 759 
simulations by the HadGEM2-ES climate model (Bellouin et al., 2011). To correct for biases in HadGEM2-ES, 760 
tropospheric aerosol optical depths are scaled over the whole period to match the global and monthly averages 761 
obtained over the period 2003-2020 by the CAMS Reanalysis of atmospheric composition (Inness et al., 2019), 762 
which assimilates satellite retrievals of aerosol optical depth. 763 
The time series of stratospheric aerosol optical depth is taken from the by Sato et al. (1993) climatology, which 764 
has been updated to 2012. Years 2013-2020 are assumed to be background years so replicate the background 765 
year 2010. That assumption is supported by the Global Space-based Stratospheric Aerosol Climatology time 766 
series (1979-2016; Thomason et al., 2018). The time series of cloud fraction is obtained by scaling the 6-hourly 767 
distributions simulated in the Japanese Reanalysis (Kobayashi et al., 2015) to match the monthly-averaged cloud 768 
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cover in the CRU TS v4.06 dataset (Harris et al., 2020). Surface radiative fluxes account for aerosol-radiation 769 
interactions from both tropospheric and stratospheric aerosols, and for aerosol-cloud interactions from 770 
tropospheric aerosols, except mineral dust. Tropospheric aerosols are also assumed to exert interactions with 771 
clouds. The radiative effects of those aerosol-cloud interactions are assumed to scale with the radiative effects of 772 
aerosol-radiation interactions of tropospheric aerosols, using regional scaling factors derived from HadGEM2-773 
ES. Diffuse fraction is assumed to be 1 in cloudy sky. Atmospheric constituents other than aerosols and clouds 774 
are set to a constant standard mid-latitude summer atmosphere, but their variations do not affect the diffuse 775 
fraction of surface shortwave fluxes. 776 
In addition to the climate forcing, the DGVMs forcing also include the global atmospheric CO2 time series, 777 
same as for the GOBMs and described in Section S.3.2 (Lan et al. (2023), the gridded land cover changes (see 778 
Supplement S.2.2), and the gridded nitrogen deposition and fertilisers (see Table S1 for specific models details).  779 
Four simulations were performed with each of the DGVMs. Simulation 0 (S0) is a control simulation which 780 
uses fixed pre-industrial (year 1700) atmospheric CO2 concentrations, cycles early 20th century (1901-1920) 781 
climate and applies a time-invariant pre-industrial land cover distribution and pre-industrial wood harvest rates. 782 
Simulation 1 (S1) differs from S0 by applying historical changes in atmospheric CO2 concentration and N 783 
inputs. Simulation 2 (S2) applies historical changes in atmospheric CO2 concentration, N inputs, and climate, 784 
while applying time-invariant pre-industrial land cover distribution and pre-industrial wood harvest rates. 785 
Simulation 3 (S3) applies historical changes in atmospheric CO2 concentration, N inputs, climate, and land 786 
cover distribution and wood harvest rates.  787 
S2 is used to estimate the land sink component of the global carbon budget (SLAND). S3 is used to estimate the 788 
total land flux but is not used in the global carbon budget. We further separate SLAND into contributions from 789 
CO2 (=S1-S0) and climate (=S2-S1+S0).  790 
 791 

S.4.2 DGVM evaluation 792 

We apply three criteria for minimum DGVMs realism by including only those DGVMs with (1) steady state 793 
after spin up, (2) global net land flux (SLAND – ELUC) that is an atmosphere-to-land carbon flux over the 1990s 794 
ranging between -0.3 and 2.3 GtC yr-1, within 90% confidence of constraints by global atmospheric and oceanic 795 
observations (Keeling and Manning, 2014; Wanninkhof et al., 2013), and (3) global ELUC that is a carbon source 796 
to the atmosphere over the 1990s, as already mentioned in Supplement S.2.2. All DGVMs meet these three 797 
criteria.  798 
In addition, the DGVMs results are also evaluated using the International Land Model Benchmarking system 799 
(ILAMB; Collier et al., 2018). This evaluation is provided here to document, encourage and support model 800 
improvements through time. ILAMB variables cover key processes that are relevant for the quantification of 801 
SLAND and resulting aggregated outcomes (see Figure S4 for the results and for the list of observed databases). 802 
Results are shown in Figure S4 and briefly discussed in Section 3.7.5. 803 
The International LAnd Model Benchmarking (ILAMB) system (Collier et al. 2018; version 2.7.2 (2024): 804 
https://github.com/rubisco-sfa/ILAMB/releases/tag/v2.7.2) was used to compare the 21 models (20 DGVMs and 805 
CARDAMOM)  to observational benchmarks for a number of different variables related to the land surface: 806 
gross primary productivity (GPP), leaf area index (LAI), ecosystem respiration, soil carbon, evapotranspiration, 807 

https://github.com/rubisco-sfa/ILAMB/releases/tag/v2.7.2
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runoff, burned areas, fire CO2 emissions, and soil respiration), either for the entire global land surface or for the 808 
different RECCAP regions. Furthermore, relationships between selected pairs of variables can be visualised 809 
with ILAMB. Each row for each variable in Figs. S4 is clickable in the full website version  https://gws-810 
access.jasmin.ac.uk/public/landsurf_rdg/pmcguire/ILAMB_output/TRENDYv13_latest/) and gives access to 811 
geographic plots for such quantities as bias relative to observational benchmark, temporal RMSE from the 812 
observational benchmark, and difference in max month from the observational benchmark. The full website 813 
version also gives a spatial Taylor diagram for all the models, as well as time series comparisons of the regional 814 
mean time-series and the regional mean annual cycle. The Biomass variable was not included this year, due to a 815 
mismatch between the TRENDY cVeg variable (above-ground and below-ground biomass, for all PFTs) and 816 
two of the previously-used observational benchmark datasets for biomass (Saatchi et al., 2011 and Thurner et 817 
al., 2014), which are both only for forests and for above-ground biomass.  818 
In the ILAMB setup for TRENDYv13, we have added three more variables (annual-averaged Burned Area, Fire 819 
Emissions, and Soil Respiration) and we have modified the Koven visualisation slightly for the Soil Carbon 820 
variable. All four of these changes have been put into a category of variables that we call ‘Ecosystem and 821 
Carbon Cycle Extended’. Two of the models (EDv3 and SDGVM) compute burned area either on a national 822 
level or without considering arid non-vegetated lands, as the model biases for burned area for these two models 823 
are rather high in the world’s deserts, compared to the GFED4.1S observational benchmark until the year 2016. 824 
However, in the case of SDGVM, the positive burned-area bias in the deserts is not apparent in the fire 825 
emissions variable.  The Soil Respiration variable has been added only for those models that provided the soilr 826 
model output, which is calculated as the sum of heterotrophic respiration and root respiration. For the soil 827 
respiration variable, three observational benchmarks were selected (Tang et al. 2019, 2020, Raich et al. 2002 828 
and Hashimoto et al. 2015) from the data sets contrasted by Hashimoto et al. (2023). The Koven analysis of the 829 
Soil Carbon turnover time is part of the standard setup in ILAMB version 2.7.2, but we put it into the Extended 830 
category largely since it seems to be missing proper application of an aridity mask for all of the models, unlike 831 
for the Observational Benchmark. We also added a model-fit curve to the Koven analysis, for better 832 
visualisation by allowing the comparison to the benchmark-fit curve. The TRENDYv13 version of the updated 833 
ILAMB version 2.7.2 GitHub code fork/branch is available at: 834 
https://github.com/mcguirepatr/ILAMB/tree/master 835 

S.4.3 Uncertainty assessment for SLAND 836 

For the uncertainty for SLAND, we use the standard deviation of the annual CO2 sink across the DGVMs, 837 
averaging to about ± 0.6 GtC yr-1 for the period 1959 to 2021. We attach a medium confidence level to the 838 
annual land CO2 sink and its uncertainty because the estimates from the residual budget and averaged DGVMs 839 
match well within their respective uncertainties (Table 5).  840 
 841 

S.5 Methodology Atmospheric Inversions 842 

S.5.1 Inversion System Simulations 843 

Fourteen atmospheric inversions (details of each in Table S4) were used to infer the spatio-temporal distribution 844 
of the CO2 flux exchanged between the atmosphere and the land or oceans. These inversions are based on 845 

https://gws-access.jasmin.ac.uk/public/landsurf_rdg/pmcguire/ILAMB_output/TRENDYv13_latest/
https://gws-access.jasmin.ac.uk/public/landsurf_rdg/pmcguire/ILAMB_output/TRENDYv13_latest/
https://github.com/mcguirepatr/ILAMB/tree/master
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Bayesian inversion principles with prior information on fluxes and their uncertainties. They use very similar sets 846 
of surface measurements of CO2 time series (or subsets thereof) from various flask and in situ networks. Six 847 
inversion systems used satellite xCO2 retrievals from GOSAT and/or OCO-2, of which two systems used a 848 
combination of satellite and surface observations.  849 
Each inversion system uses different methodologies and input data but is rooted in Bayesian inversion 850 
principles. These differences mainly concern the selection of atmospheric CO2 data and prior fluxes, as well as 851 
the spatial resolution, assumed correlation structures, and mathematical approach of the models. Each system 852 
uses a different transport model, which was demonstrated to be a driving factor behind differences in 853 
atmospheric inversion-based flux estimates, and specifically their distribution across latitudinal bands (Gaubert 854 
et al., 2019; Schuh et al., 2019). 855 
Most of the fourteen inversion systems prescribe similar global fossil fuel emissions for EFOS; specifically, the 856 
GCP’s Gridded Fossil Emissions Dataset version 2024.0 (GCP-GridFEDv2024.0; Jones et al., 2024), which is 857 
an update through 2023 of the first version of GCP-GridFED presented by Jones et al. (2021b) (Table S4). All 858 
GCP-GridFED versions scale gridded estimates of CO2 emissions from EDGARv4.3.2 (Janssens-Maenhout et 859 
al., 2019) within national territories to match national emissions estimates provided by the GCP for the years 860 
1959-2023, which are compiled following the methodology described in Supplement S.1. GCP-861 
GridFEDv2024.0 adopts the seasonality of emissions (the monthly distribution of annual emissions) from the 862 
Carbon Monitor (Liu et al., 2020a,b; Dou et al., 2022) for Brazil, China, all EU27 countries, the United 863 
Kingdom, the USA and shipping and aviation bunker emissions. The seasonality present in Carbon Monitor is 864 
used directly for years 2019-2023, while for years 1959-2018 the average seasonality of 2019, and 2021 and 865 
2022 are applied (avoiding the year 2020 during which emissions were most impacted by the COVID-19 866 
pandemic). For all other countries, seasonality of emissions is taken from EDGAR (Janssens-Maenhout et al., 867 
2019; Jones et al., 2023), with small annual correction to the seasonality present in 2010 based on heating or 868 
cooling degree days to account for the effects of inter-annual climate variability on the seasonality of emissions 869 
(Jones et al., 2021b). 870 
Small remaining differences between regridding of the GridFED inputs, or the use of different fossil fuel 871 
emission priors are corrected for by scaling the resulting inverse fluxes to GridFEDv2024.0. The consistent use 872 
of EFOS ensures a close alignment with the estimate of EFOS used in this budget assessment, enhancing the 873 
comparability of the inversion-based estimate with the flux estimates deriving from DGVMs, GOBMs and 874 
fCO2-based methods. The fossil fuel adjustment (including emissions from cement production and cement 875 
carbonation CO2 sink) ensures that the estimated uptake of atmospheric CO2 by the land and oceans was fully 876 
consistent within the inversion ensemble.  877 
The land and ocean CO2 fluxes from atmospheric inversions contain anthropogenic perturbation and natural pre-878 
industrial CO2 fluxes. On annual time scales, natural pre-industrial fluxes are primarily land CO2 sinks and 879 
ocean CO2 sources corresponding to carbon taken up on land, transported by rivers from land to ocean, and 880 
outgassed by the ocean. These pre-industrial land CO2 sinks are thus compensated over the globe by ocean CO2 881 
sources corresponding to the outgassing of riverine carbon inputs to the ocean, using the exact same numbers 882 
and distribution as described for the oceans in Section 2.5. To facilitate the comparison, we adjusted the inverse 883 
estimates of the land and ocean fluxes per latitude band with these numbers to produce historical perturbation 884 
CO2 fluxes from inversions. 885 
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 886 

S.5.2 Inversion System Evaluation 887 

All participating atmospheric inversions are checked for consistency with the annual global growth rate, as both 888 
are derived from the global surface network of atmospheric CO2 observations. In this exercise, we use the 889 
conversion factor of 2.086 GtC/ppm to convert the inverted carbon fluxes to mole fractions, as suggested by 890 
Prather (2012). This number is specifically suited for the comparison to surface observations that do not respond 891 
uniformly, nor immediately, to each year’s summed sources and sinks. This factor is therefore slightly smaller 892 
than the GCB conversion factor in Table 1 (2.142 GtC/ppm, Ballantyne et al., 2012). Overall, the inversions 893 
agree with the growth rate with biases between 0.0002-0.065 ppm yr-1 (0.0004-0.13 GtCyr-1) for the period 894 
2015-2023. 895 
The atmospheric inversions are also evaluated using vertical profiles of atmospheric CO2 concentrations (Figure 896 
S5). More than 30 aircraft programs over the globe, either regular programs or repeated surveys over at least 9 897 
months (except on the SH), have been used in order to draw a robust picture of the system performance (with 898 
space-time data coverage irregular and denser in the 0-45°N latitude band; Table S8 and lower panel in Figure 899 
S4). The fourteen systems are compared to these independent aircraft CO2 observations between 2 and 7 km 900 
above sea level between 2001 and 2023. Results are shown in Figure S5, where the inversions generally match 901 
the atmospheric mole fractions to within 0.7 ppm at all latitudes. 902 
 903 

S.6 Processes not included in the global carbon budget  904 

S.6.1 Contribution of anthropogenic CO and CH4 to the global carbon budget 905 

Equation (1) includes only partly the net input of CO2 to the atmosphere from the chemical oxidation of reactive 906 
carbon-containing gases from sources other than the combustion of fossil fuels, such as: (1) cement process 907 
emissions, since these do not come from combustion of fossil fuels, (2) the oxidation of fossil fuels, (3) the 908 
assumption of immediate oxidation of vented methane in oil production. However, it omits any other 909 
anthropogenic carbon-containing gases that are eventually oxidised in the atmosphere, forming a diffuse source 910 
of CO2, such as anthropogenic emissions of CO and CH4. An attempt is made in this section to estimate their 911 
magnitude and identify the sources of uncertainty. Anthropogenic CO emissions are from incomplete fossil fuel 912 
and biofuel burning and deforestation fires. The main anthropogenic emissions of fossil CH4 that matter for the 913 
global (anthropogenic) carbon budget are the fugitive emissions of coal, oil and gas sectors (see below). These 914 
emissions of CO and CH4 contribute a net addition of fossil carbon to the atmosphere. 915 
In our estimate of EFOS we assumed (Section 2.1.1) that all the fuel burned is emitted as CO2, thus CO 916 
anthropogenic emissions associated with incomplete fossil fuel combustion and its atmospheric oxidation into 917 
CO2 within a few months are already counted implicitly in EFOS and should not be counted twice (same for ELUC 918 
and anthropogenic CO emissions by deforestation fires). The diffuse atmospheric source of CO2 deriving from 919 
anthropogenic emissions of fossil CH4 is not included in EFOS. In reality, the diffuse source of CO2 from CH4 920 
oxidation contributes to the annual CO2 growth. Emissions of fossil CH4 represent 30% of total anthropogenic 921 
CH4 emissions (Saunois et al. 2020; their top-down estimate is used because it is consistent with the observed 922 
CH4 growth rate), that is 0.083 GtC yr-1 for the decade 2008-2017. Assuming steady state, an amount equal to 923 
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this fossil CH4 emission is all converted to CO2 by OH oxidation, and thus explain 0.083 GtC yr-1 of the global 924 
CO2 growth rate with an uncertainty range of 0.061 to 0.098 GtC yr-1 taken from the min-max of top-down 925 
estimates in Saunois et al. (2020). If this min-max range is assumed to be 2 σ because Saunois et al. (2020) did 926 
not account for the internal uncertainty of their min and max top-down estimates, it translates into a 1-σ 927 
uncertainty of 0.019 GtC yr-1. 928 
Other anthropogenic changes in the sources of CO and CH4 from wildfires, vegetation biomass, wetlands, 929 
ruminants, or permafrost changes are similarly assumed to have a small effect on the CO2 growth rate. The CH4 930 
and CO emissions and sinks are published and analysed separately in the Global Methane Budget and Global 931 
Carbon Monoxide Budget publications, which follow a similar approach to that presented here (Saunois et al., 932 
2020; Zheng et al., 2019).  933 
 934 

S.6.2 Contribution of other carbonates to CO2 emissions 935 

Although we do account for cement carbonation (a carbon sink), the contribution of emissions of fossil 936 
carbonates (carbon sources) other than cement production is not systematically included in estimates of EFOS, 937 
except for Annex I countries and lime production in China (Andrew and Peters, 2021). The missing processes 938 
include CO2 emissions associated with the calcination of lime and limestone outside of cement production. 939 
Carbonates are also used in various industries, including in iron and steel manufacture and in agriculture. They 940 
are found naturally in some coals. CO2 emissions from fossil carbonates other than cement not included in our 941 
dataset are estimated to amount to about 0.3% of EFOS (estimated based on Crippa et al., 2019).  942 
 943 

S.6.3 Anthropogenic carbon fluxes in the land-to-ocean aquatic continuum 944 

The approach used to determine the global carbon budget refers to the mean, variations, and trends in the 945 
perturbation of CO2 in the atmosphere, referenced to the pre-industrial era. Carbon is continuously displaced 946 
from the land to the ocean through the land-ocean aquatic continuum (LOAC) comprising freshwaters, estuaries, 947 
and coastal areas (Bauer et al., 2013; Regnier et al., 2013). A substantial fraction of this lateral carbon flux is 948 
entirely ‘natural’ and is thus a steady state component of the pre-industrial carbon cycle. We account for this 949 
pre-industrial flux where appropriate in our study (see Supplement S.3). However, changes in environmental 950 
conditions and land-use change have caused an increase in the lateral transport of carbon into the LOAC – a 951 
perturbation that is relevant for the global carbon budget presented here.  952 
The results of the analysis of Regnier et al. (2013) can be summarised in two points of relevance for the 953 
anthropogenic CO2 budget. First, the anthropogenic perturbation of the LOAC has increased the organic carbon 954 
export from terrestrial ecosystems to the hydrosphere by as much as 1.0 ± 0.5 GtC yr-1 since pre-industrial 955 
times, mainly owing to enhanced carbon export from soils. Second, this exported anthropogenic carbon is partly 956 
respired through the LOAC, partly sequestered in sediments along the LOAC and to a lesser extent, transferred 957 
to the open ocean where it may accumulate or be outgassed. The increase in storage of land-derived organic 958 
carbon in the LOAC carbon reservoirs (burial) and in the open ocean combined is estimated by Regnier et al. 959 
(2013) at 0.65 ± 0.35GtC yr-1. The inclusion of LOAC related anthropogenic CO2 fluxes should affect estimates 960 
of SLAND and SOCEAN in Eq. (1) but does not affect the other terms. Representation of the anthropogenic 961 
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perturbation of LOAC CO2 fluxes is however not included in the GOBMs and DGVMs used in our global 962 
carbon budget analysis presented here. 963 
 964 

S.6.4 Loss of additional land sink capacity 965 

Historical land-cover change was dominated by transitions from vegetation types that can provide a large carbon 966 
sink per area unit (typically, forests) to others less efficient in removing CO2 from the atmosphere (typically, 967 
croplands). The resultant decrease in land sink, called the ‘loss of additional sink capacity’, can be calculated as 968 
the difference between the actual land sink under changing land-cover and the counterfactual land sink under 969 
pre-industrial land-cover. This term is not accounted for in our global carbon budget estimate. Here, we provide 970 
a quantitative estimate of this term to be used in the discussion. Seven of the DGVMs used in Friedlingstein et 971 
al. (2019) performed additional simulations with and without land-use change under cycled pre-industrial 972 
environmental conditions. The resulting loss of additional sink capacity amounts to 0.9 ± 0.3 GtC yr-1 on 973 
average over 2009-2018 and 42 ± 16 GtC accumulated between 1850 and 2018 (Obermeier et al., 2021). 974 
OSCAR, emulating the behaviour of 11 DGVMs finds values of the loss of additional sink capacity of 0.7 ± 0.6 975 
GtC yr-1 and 31 ± 23 GtC for the same time period (Gasser et al., 2020). Since the DGVM-based ELUC 976 
estimates are only used to quantify the uncertainty around the bookkeeping models' ELUC, we do not add the 977 
loss of additional sink capacity to the bookkeeping estimate. 978 
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Supplementary Tables 

 

Table S1. Comparison of the processes included in the bookkeeping method and DGVMs in their estimates of ELUC and SLAND. See Table 4 for model references. All models include deforestation and forest regrowth 
after abandonment of agriculture (or from afforestation activities on agricultural land). Processes relevant for ELUC are only described for the DGVMs used with land-cover change in this study. 

 

Bookkeeping Models DGVMs 

H&C2
023 BLUE OSCA

R LUCE CABL
E-POP 

CLASS
IC 

CLM6
.0 DLEM EDv3 ELM IBIS iMAP

LE ISAM ISBA-
CTRIP 

JSBAC
H 

JULES
-ES 

LPJ-
GUES

S 
LPJml LPJws

l 
LPX-
Bern 

OCNv
2 

ORCH
IDEEv

3 
SDGV

M VISIT 
CARD
AMO

M 
Processes relevant for ELUC 

Wood harvest and forest 
degradation (a) yes yes yes yes yes no yes yes yes yes yes no yes no yes no yes no yes no (d) yes yes yes yes yes 

(R+L) 
Shifting cultivation / Subgrid 
scale transitions 

yes 
(b) yes yes yes yes no yes no yes yes yes no no no yes no yes no yes no (d) no no yes yes no 

Cropland harvest (removed, R, 
or added to litter, L) 

yes 
(R) (j) 

yes 
(R) (j) 

yes 
(R) 

yes 
(R) (j) 

yes 
(R) 

yes 
(L) 

yes 
(R+L) yes yes 

(R+L) 
yes 
(L) 

yes 
(R) 

yes 
(L) yes yes 

(R) 
yes 

(R+L) 
yes 
(R) 

yes 
(R) 

yes 
(R+L) 

yes 
(L) 

yes 
(R) 

yes 
(R+L) 

yes 
(R) 

yes 
(R) 

yse 
(R) no 

Peat fires yes 
(k) 

yes 
(k) 

yes 
(k) 

yes 
(k) no no yes no no no no no no yes no no no no no no no no no no yes 

(k) 
fire as a management tool yes (j) yes (j) yes 

(h) yes(j) no no no no no no no no no no no no no no no no no no no no yes 
(k) 

N fertilisation yes (j) yes (j) yes 
(h) yes(j) no no yes yes no no yes no yes no no yes(i) yes yes no yes yes yes no no no 

tillage yes (j) yes (j) yes 
(h) yes(j) no yes 

(g) yes yes no no no no no no no no yes yes no no no yes 
(g) no no no 

irrigation yes (j) yes (j) yes 
(h) yes(j) no no yes yes no no no no yes no no no yes yes no no no no no no no 

wetland drainage yes (j) yes (j) yes 
(h) yes(j) no no no no no no no no yes no no no no no no no no no no no no 

erosion yes (j) yes (j) yes 
(h) yes(j) no no no yes no no yes no no no no no no no no no no no no yes no 

peat drainage yes 
(k) 

yes 
(k) 

yes 
(k) 

yes 
(k) no no no no no no no no no no no no no no no no no no no no no 

Grazing and mowing Harvest 
(removed, R, or added to litter, 
L) 

yes 
(R) (j) 

yes 
(R) (j) 

yes 
(R) yes (r) 

(j) 
yes 
(R) no no no yes 

(R+L) no yes no yes 
(R, L) no yes 

(L) no yes 
(R) 

yes 
(R+L) 

yes 
(L) no yes 

(R+L) no no no no 
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Processes also relevant for SLAND (in addition to CO2 fertilisation and climate) 

ecosystem demography (ED) / 
vegetation competition (VC)     

yes 
(ED), 
No 

(VC) 
 no no yes no 

yes 
ED, 

no VC 
no  no no 

No 
ED, 
Yes 
VC 

yes 
no 
ED, 
yes 
VC 

yes 
no 
ED, 
yes 
VC 

no ED, VC for PFT-internal dynamics, no dynamic changes of 
fractional cover  yes no no 

Fire simulation and/or 
suppression N.A. N.A. N.A. N.A. no yes yes no yes yes yes no no yes yes yes yes yes yes yes no no yes yes yes 

(k) 
Carbon-nitrogen interactions, 
including N deposition N.A. N.A. N.A. N.A. yes no (f) yes yes no yes yes no (f) yes no yes yes yes yes no yes yes yes yes 

(c) no no 
Separate treatment of direct 
and diffuse solar radiation N.A. N.A N.A N.A yes no yes no no yes yes yes no no no yes no no no no no no no no no 

(a) Refers to the routine harvest of established managed forests rather than pools of harvested products. 
(b) No back- and forth-transitions between vegetation types at the country-level, but if forest loss based on FRA exceeded agricultural expansion based on FAO, then this amount of area was cleared for cropland and 
the same amount of area of old croplands abandoned. 

(c) Limited. Nitrogen uptake is simulated as a function of soil C, and Vcmax is an empirical function of canopy N. Does not consider N deposition. 
(d) Available but not active. 

(f) Although C-N cycle interactions are not represented, the model includes a parameterization of down-regulation of photosynthesis as CO2 increases to emulate nutrient constraints (Arora et al., 2009) 

(g) Tillage is represented over croplands by increased soil carbon decomposition rate and reduced humification of litter to soil carbon. 

(h) as far as the DGVMs that OSCAR is calibrated to include it 

(i) perfect fertilisation assumed, i.e. crops are not nitrogen limited and the implied fertiliser diagnosed 

(j) Process captured implicitly by use of observed carbon densities. 

(k) Emissions added from external datasets. 
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Table S2. Comparison of the processes and model set up for the Global Ocean Biogeochemistry Models for their estimates of SOCEAN. See Table 4 for model references. 

 
NEMO-

PlankTOM12 
NEMO4.2-

PISCES (IPSL) 

MICOM-
HAMOCC 

(NorESM1-
OCv1.2) 

MPIOM-
HAMOCC6 

FESOM-2.1-
REcoM3 

NEMO3.6-
PISCESv2-gas 

(CNRM) 
MOM6-COBALT 

(Princeton) CESM-ETHZ MRI-ESM2-3 
ACCESS 
(CSIRO) 

Model specifics   
Physical ocean model 

NEMOv3.6-ORCA2 
NEMOv4.2-
eORCA1L75 

MICOM (NorESM1-
OCv1.2) MPIOM FESOM-2.1 

NEMOv3.6-
GELATOv6-
eORCA1L75 MOM6-SIS2 

CESMv1.3 (ocean 
model based on 
POP2) MRI.COMv5 MOM5 

Biogeochemistry model 
PlankTOM12 PISCESv2 

HAMOCC 
(NorESM1-OCv1.2) HAMOCC6 REcoM-3 PISCESv2-gas COBALTv2 

BEC (modified & 
extended) NPZD+Fe WOMBAT 

Horizontal resolution 
2° lon, 0.3 to 1.5° 

lat 1° lon, 0.3 to 1° lat 
1° lon, 0.17 to 0.25 

lat 1.5° 

unstructured mesh, 
20-120 km 

resolution (CORE 
mesh) 1° lon, 0.3 to 1° lat 

0.5° lon, 0.25 to 
0.5° lat 

1.125° lon, 0.53° to 
0.27° lat 

1° lon, 0.3 to 0.5° 
lat 

1°x1° with enhanced 
latitudinal resolution 
in the tropics and high-
lat Southern Ocean 

Vertical resolution 

31 levels 
75 levels, 1m at the 
surface 

51 isopycnic layers 
+ 2 layers 

representing a bulk 
mixed layer 40 levels 

46 levels, 10 m 
spacing in the top 

100 m 
75 levels, 1m at 

surface 
75 levels hybrid 
coordinates, 2m at 
surface 60 levels 

60 levels with 1-
level bottom 

boundary layer 
50 levels, 20 in the top 
200m 

Total ocean area on native grid (km2) 
3.6080E+08 3.6360E+08 3.6006E+08 3.6598E+08 3.6435E+08 3.6270E+14 3.6111E+08 3.5926E+08 3.6094E+08 3.6134E+08 

Gas-exchange parameterization 
Wanninkhof et al 
(1992) 

Orr et al., 2017 Orr et al., 2017, but 
with a=0.337 

Orr et al., 2017 Orr et al., 2017 Orr et al., 2017; 
Wanninkhof et al. 
2014 

Wanninkhof et al., 
2014 

Wanninkhof (1992, 
coefficient a scaled 
down to 0.31) 

Orr et al., 2017 
Wanninkhof et al 
(1992) 

CO2 chemistry routines 
OCMIP2 (Orr et al. 
2017) mocsy 

Following Dickson 
et al. 2007 

Ilyina et al. (2013) 
adapted to comply 
with OMIP protocol 
(Orr et al., 2017) mocsy mocsy mocsy 

OCMIP2 (Orr et al. 
2017) mocsy 

OCMIP2 (Orr et al. 
2017) 

River input (PgC/yr) 
(organic/inorganic DIC) 

0.723 / - 0.9167 (0.2577 / 
0.659) 

0 0.77 / - 0 / 0 0.611 / - ~0.07 / ~0.15 0.33 / - 0 / 0 
0/0 

Net flux to sediment (PgC/yr) 
(organic/other) 

0.723 / - 0.3969 (0.0855 / 
0.3114) 

around 0.54 / - 0.71/- 0 / 0 around 0.656 / - ~0.11 / ~0.07 
(CaCO3) 

0.21 / - 0 / 0 
0/0 

SPIN-UP procedure   
Initialisation of carbon chemistry 

GLODAPv2 
(preindustrial DIC) 

GLODAPv2 
(preindustrial DIC) 

GLODAPv1 
(preindustrial DIC) 

initialization from 
previous simulation 

GLODAPv2 
(preindustrial DIC) GLODAPv2 

GLODAPv2 
(Alkalinity, DIC). 
DIC corrected to 

1959 level 
(simulation A and 

C) and to pre-
industrial level 

(simulation B and 
GLODAPv2 

(preindustrial DIC) 
GLODAPv2 

(preindustrial DIC) 
GLODAPv1 
preindustrial DIC 
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D) using Khatiwala 
et al 2009 

Preindustrial spin-up prior to 1850 

spin-up 1750-1947 
~300 yrs with 

xCO2=278ppm 
1000 year spin up 

(prior to 1762) ~2000 years 189 years 

long spin-up (> 
1000 years) from 
1750 fixed 
conditions 

Other bgc tracers 
initialized from a 
GFDL-ESM2M 
spin-up (> 1000 
years) 

1422 years (329-
1750) with xCO2 = 

278 
1661 years with 

xCO2 = 278 1000+ years 
Atmospheric forcing fields and CO2  
Atmospheric forcing for (i) pre-
industrial spin-up, (ii) spin-up 1850-
1958 for simulation B, (iii) simulation 
B 

looping ERA5 year 
1990 

looping first ten 
years (1958-1967) 
of JRA55-do-v1.4 

CORE-I (normal 
year) forcing (i, ii, 

iii) 
OMIP climatology 
(i), NCEP year 
1957 (ii,iii) 

JRA55-do v.1.4.0 
repeated year 1961 

(i, ii, iii) 

JRA55-do-v1.5.0 
full reanaylsis (i) 

cycling year 1958 
(ii,iii) 

GFDL-ESM2M 
internal forcing (i), 
JRA55-do-v1.5.0 
repeat year 1959 

(ii,iii) 

(i) until 1750: JRA 
cycles 1958-2022 
(ii, iii) after 1750: 
NYF (mean of 
1958-2018 with 
2001 anomalies) 

JRA55-do v1.5.0 
repeat year 

1990/91 (i, ii, iii) 

(i) 800+ years CORE 
spinup. 250 years 
with JRA55-do and 
another 500 years 
JRA55-do and 
278ppm CO2, (ii) 
and (iii) JRA55-do, 
1990/1991 repeat 
year forcing 

Atmospheric CO2 for control spin-up 
1850-1958 for simulation B, and for 
simulation B 

constant 278ppm; 
converted to pCO2 

temperature 
formulation 

(Sarmiento et al., 
1992) 

xCO2 of 278ppm, 
converted to pCO2 
with constant sea-
level pressure and 

water vapour 
pressure 

xCO2 of 278ppm, 
converted to pCO2 

with sea-level 
pressure and water 

vapour pressure 
xCO2 of 278ppm, 
no conversion to 
pCO2 

xCO2 of 278ppm, 
converted to pCO2 

with sea-level 
pressure and water 

vapour pressure 

xCO2 of 278 ppm, 
converted to pCO2 
with constant sea-
level pressure and 

water vapour 
pressure 

xCO2 of 278ppm, 
converted to pCO2 

with sea-level 
pressure and water 

vapour pressure 

xCO2 = 278 ppm, 
converted to pCO2 
with atmospheric 

pressure, and 
water vapour 

pressure 

xCO2 of 278ppm, 
converted to pCO2 
with water vapour 

and sea-level 
pressure (JRA55-

do repeat year 
1990/91) 

xCO2 of 278ppm, 
converted to pCO2 

with sea-level 
pressure 

Atmospheric forcing for historical 
spin-up 1850-1958 for simulation A 
(i) and for simulation A (ii) 

1750-1940: looping 
ERA5 year 1990; 
1940-2023: ERA5 

1750-1958 : first 
ten years (1958-

1967) of JRA55-do-
v1.4 , then full 

JRA55 reanalysis : 
JRA55-do-v1.4 

then 1.5 for 2020-
23 (ii) 

CORE-I (normal 
year) forcing; from 

1948 onwards 
NCEP-R1 with 

CORE-II 
corrections 

NCEP 6 hourly 
cyclic forcing (10 
years starting from 
1948, i), 1948-
2021: transient 
NCEP forcing 

JRA55-do-v1.4.0 
repeated year 1961 

(i), transient 
JRA55-do-v1.4.0 

(1958-2019), 
v1.5.0.1 (2020-

2023,ii) 

JRA55-do cycling 
year 1958 (i), 

JRA55-do-v1.5.0 
(ii) 

JRA55-do-v1.5 
repeat year 1959 
(i), v1.5.0 (1959-
2019, v1.5.0.1b 
(2020), v1.5.0.1 

(2021; ii) 

(i): JRA55 version 
1.5.0.1, repeat 

cycle 1958-2023 (ii) 
JRA55 1.5.0.1 

1968-2023 

1653-1957: 
repeated cycle 

JRA55-do v1.5.0 
1958-2018 (i), 

v1.5.0 (1958-2018), 
v1.5.0.1 (2019-

2023; ii) 

(i) JRA55-do, 
1990/1991 repeat 
year forcing, (ii) 
JRA55-do v1.5.0 for 
1958-2019, and 
v1.5.0.1 for 2020-
2023. 

Atmospheric CO2 for historical spin-
up 1850-1958 for simulation A (i) and 
simulation A (ii) xCO2 provided by 

the GCB; converted 
to pCO2 

temperature 
formulation 

(Sarmiento et al., 
1992), monthly 
resolution (i, ii) 

xCO2 as provided 
by the GCB, global 

mean, annual 
resolution, 

converted to pCO2 
with sea-level 

pressure and water 
vapour pressure (i, 

ii) 

xCO2 as provided 
by the GCB, 

converted to pCO2 
with sea level 

pressure (taken 
from the 

atmopheric forcing) 
and water vapor 
correction (i, ii) 

transient monthly 
xCO2 provided by 
GCB, no 
conversion (i, ii) 

xCO2 as provided 
by the GCB, 

converted to pCO2 
with sea-level 

pressure and water 
vapour pressure, 

global mean, 
monthly resolution 

(i, ii) 

xCO2 as provided 
by the GCB, 

converted to pCO2 
with constant sea-
level pressure and 

water vapour 
pressure, global 

mean, yearly 
resolution (i, ii) 

xCO2 at year 1959 
level (315 ppm, i) 

and as provided by 
GCB (ii), both 

converted to pCO2 
with sea-level 

pressure and water 
vapour pressure, 

global mean, yearly 
resolution 

xCO2 as provided 
by the GCB in 2024 

(from 1751 
onward), converted 

to pCO2 with 
locally determined 
atm. pressure, and 

water vapour 
pressure (i, ii) 

xCO2 as provided 
by GCB, converted 
to pCO2 with water 

vapour and sea-
level pressure (i, ii). 

xCO2 as provided by 
the GCB, converted 
to pCO2 with sea-

level pressure 
 
 

Table S3: Description of ocean fCO2-products used for assessment of SOCEAN. See Table 4 for references. 
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 Jena-MLS VLIZ-SOMFFN CMEMS-LSCE-
FFNN 

UExP-FNN-U 
(previously 
Watson et al.) 

NIES-ML3 JMA-MLR OceanSODA-
ETHZv2 

LDEO HPD CSIR-ML6 

Method Spatio-temporal 
interpolation 
(version 
oc_v2023). Spatio-
temporal field of 
ocean-internal 
carbon 
sources/sinks is fit 
to the 
SOCATv2022 
pCO2 data. 
Includes a multi-
linear regression 
against 
environmental 
drivers to bridge 
data gaps, 

A feed-forward 
neural network 
(FFN) determines 
non-linear 
relationship 
between SOCAT 
pCO2 
measurements 
and 
environmental 
predictor data for 
16 
biogeochemical 
provinces (defined 
through a self-
organizing map, 
SOM) and is used 
to fill the existing 
data gaps. 

An ensemble of 
neural network 
models trained on 
100 subsampled 
datasets from 
SOCAT and 
environmental 
predictors. The 
models are used 
to reconstruct sea 
surface fugacity of 
CO2 and convert 
to air-sea CO2 
fluxes 

A self organising 
map feed forward 
neural network 
(SOM-FNN) 
implementation 
using SOCATv2024 
fCO2 database, 
corrected to the 
subskin 
temperature (ESA 
CCI v3 bias 
corrected to 
surface drifter 
data following 
recommendations 
in Dong et al. 
2022) of the 
ocean as 
measured by 
satellites 
(Goddijn-Murphy 
et al, 2015). Flux 
calculation 
corrected for the 
cool and salty 
surface skin. 
Monthly skin 
temperature 

The ensemble of a 
random forest, a 
gradient boost 
machine, and a 
feed forward 
neural network 
trained on SOCAT 
2024 fCO2 and 
environmental 
predictor 
variables. The 
interannual trend 
of fCO2 was 
estimated first by 
the decadal trend 
of atmospheric 
CO2 and then 
corrected by a so-
called leave-one-
year-out 
validation 
method. The 
trend was used to 
normalize fCO2 to 
the mid year of 
1982-2023 for 
model training. 
The monthly fCO2 

Fields of total 
alkalinity (TA) 
were estimated by 
using a multiple 
linear regressions 
(MLR) method 
based on 
GLODAPv2.2023 
and satellite 
observation data. 
SOCATv2024 fCO2 
data were 
converted to 
dissolved 
inorganic carbon 
(DIC) with the TA. 
Fields of DIC were 
estimated by 
using a MLR 
method based on 
the DIC and 
satellite 
observation data 

OceanSODA-
ETHZv2 is a two-
phase machine 
learning 
approach. In 
phase 1, we 
estimate the 
∆fCO2 8-day 
seasonal cycle 
climatology with a 
Gradient Boosted 
Decision Tree 
which is used as a 
predictor in the 
next phase. In 
phase 2, we 
predict the non-
thermal 
component of 
∆fCO2 at a 8-day 
by 0.25° by 0.25° 
resolution with a 
two-layer fully-
connected neural 
network using 35 
ensemble 
members. The 
atmospheric CO2 

Based on fCO2-
misfit between 
observed fCO2 
and 10 Global 
Carbon 
BudgetGOBMs. 
The eXtreme 
Gradient Boosting 
method links this 
misfit to 
environmental 
observations to 
reconstruct the 
model misfit 
across all space 
and time., which is 
then added back 
to the model-
based fCO2 
estimate. The final 
reconstrucion of 
surface fCO2 is 
the average across 
the 10 
reconstructions. A 
climatology of the 
misfits calculated 
for the years 

An ensemble 
average of six 
machine-learning 
models, where 
each model is 
constructed with a 
two-step 
clustering-
regression 
approach to 
determine a non-
linear relationship 
between SOCAT 
fCO2 
measurements 
and 
environmental 
proxy variables, 
and it used to fill 
the existing data 
gaps. The 
clustering step 
consists of two 
methods: the 
Mini-batch K-
means clustering 
and the extended 
Fay and McKinley 
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calculated from 
ESA CCI v3 
(Embury et al. 
2024) with the 
cool skin 
difference 
calculated using 
NOAA COARE 3.5. 
Flux calculations 
completed using 
FluxEngine 
(Shutler et al., 
2016; Holding et 
al., 2019). 

maps were 
reconstructed 
using model 
prediction and the 
trend. 

and non-thermal 
component are 
added back to the 
result. 

2000-2023 is used 
as an offset for 
years prior to 
1982 when 
no/limited 
envionmental 
observations are 
available to train 
the ML algorithm. 

(2014) biomes. 
The regression 
step consists of 
three methods: 
Gradient Boosting 
Machine, Support 
Vector Regression, 
and Feed-forward 
Neural Network. 

Gas-
exchange 
parameteriza
tion 

Wanninkhof 1992. 
Transfer 
coefficient k 
scaled to match a 
global mean 
transfer rate of 
16.5 cm/hr by 
(Naegler, 2009) 

Wanninkhof 1992. 
Transfer 
coefficient k 
scaled to match a 
global mean 
transfer rate of 
16.5 cm/hr 

Wanninkhof 2014. 
Transfer 
coefficient k 
scaled to match a 
global mean 
transfer rate of 
16.5 cm/hr 
(Naegler, 2009) 

Nightingale et al 
2000 

Wanninkhof, 
2014. Transfer 
coefficient k 
scaled to match a 
global mean 
transfer rate of 
16.5 cm/hr in 
1990-2019 (Fay et 
al., 2021) 

Wanninkhof., 
2014. Transfer 
coefficient k 
scaled to match a 
global mean 
transfer rate of 
16.5 cm/hr 
(Naegler, 2009) 

Wanninkhof 1992, 
averaged and 
scaled for three 
reanalysis wind 
data, to a global 
mean 16.5 cm/hr 
(after Naegler 
2009; Fay & 
Gregor et al. 
2021) 

Wanninkhof 1992 
parameterization. 
Transfer 
coefficient k 
scaled to match a 
global mean 
transfer rate of 
16.5 cm/hr 
(Naegler, 2009) 

Wanninkhof 1992, 
averaged and 
scaled for three 
reanalysis wind 
data, to a global 
mean 16.5 cm/hr 
(after Naegler 
2009; Fay & 
Gregor et al. 
2021) 

Wind 
product 

JMA55-do 
reanalysis 

ERA 5 ERA5 CCMP3.1 ERA5 JRA3Q ERA5 ERA5 ERA 5 

Spatial 
resolution 

2.5 degrees 
longitude x 2 
degrees latitude 

1x1 degree 0.25x0.25 degree 
regridded to 1x1 
degree 

1x1 degree Regrid 0.25x0.25 
degree monthly 
data to 1x1 

1x1 degree 0.25x0.25 degree 
regridded to 1x1 
degree 

1x1 degree 1x1 degree 
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degree 

Temporal 
resolution 

daily monthly monthly monthly monthly monthly 8-daily regridded 
to monthly 

monthly monthly 

Atmospheric 
CO2 

Spatially and 
temporally 
varying field 
based on 
atmospheric CO2 
data from 169 
stations (Jena 
CarboScope 
atmospheric 
inversion 
sEXTALL_v2021) 

Spatially varying 
1x1 degree 
atmospheric 
pCO2_wet 
calculated from 
the NOAA ESRL 
marine boundary 
layer xCO2 and 
NCEP sea level 
pressure with the 
moisture 
correction by 
Dickson et al 
2007. 

Spatially and 
monthly varying 
fields of 
atmospheric pCO2 
computed from 
CO2 mole fraction 
(CO2 atmospheric 
inversion from the 
Copernicus 
Atmosphere 
Monitoring 
Service), and 
atmospheric dry-
air pressure which 
is derived from 
monthly surface 
pressure (ERA5) 
and water vapour 
pressure fitted by 
Weiss and Price 
1980 

Atmospheric fCO2 
(wet) calculated 
from NOAA 
marine boundary 
layer XCO2(atm) 
and ERA5 sea level 
pressure, with 
pH2O calculated 
from Cooper et al. 
(1998). 2023 XCO2 
marine boundary 
values were not 
available at 
submission so we 
used preliminary 
values, estimated 
from 2022 values 
and increase at 
Mauna Loa. 

NOAA 
Greenhouse Gas 
Marine Boundary 
Layer Reference. 
https://gml.noaa.
gov/ccgg/mbl/mbl
.html 

Atmospheric xCO2 
fields of JMA-
GSAM inversion 
model (Maki et al. 
2010; Nakamura 
et al. 2015) were 
converted to 
pCO2 by using 
JRA3Q sea level 
pressure. 2023 
xCO2 fields were 
not available at 
this stage, and we 
used Cape Grim 
and Mauna Loa 
xCO2 increments 
from 2022 to 2023 
for the southern 
and northern 
hemispheres, 
respectively. 

NOAA's marine 
boundary layer 
product for xCO2 
is linearly 
interpolated onto 
a 0.25°x0.25° grid 
and resampled 
from weekly to 8-
daily. xCO2 is 
multiplied by 
ERA5 mean sea 
level pressure, 
where the latter 
corrected for 
water vapour 
pressure using 
Dickson et al. 
(2007). These 
results are 
regridded to a 
monthly 1x1 
degree pCO2atm. 

NOAA's marine 
boundary layer 
(MBL) surface 
xCO2 product is 
linearly 
interpolated to a 
1x1 degree 
monthly grid for 
years 1979-2023. 
Prior to 1979, 
calculating an 
offset between 
the MBL and 
Mauna Loa 
seasonal 
climatologic xCO2 
values for a subset 
of common years 
(1979-1989) yields 
a mean 
seasonality 
difference which 
is then applied to 
the Mauna Load 
time series. 
Monthly 1x1 
degree xCO2 is 
multiplied by 

NOAA's marine 
boundary layer 
product for xCO2 
is linearly 
interpolated onto 
a 1x1 degree grid 
and resampled 
from weekly to 
monthly. ERA5 
mean sea level 
pressure is used, 
where the latter 
corrected for 
water vapour 
pressure using 
Dickson et al. 
(2007). 
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ERA5 mean sea 
level pressure, 
with the 
correction for 
water vapour 
pressure using 
Dickson et al. 
2007, using ERA5 
SST and EN4 SSS. 
FInally converted 
to fCO2 using 
ERA5 SST and SLP. 

Total ocean 
area on 
native grid 
(km2) 

3.63E+08 3.63E+08 3.50E+08 3.61E+08 

3.62E+08 

3.19E+08 3.55E+08 3.586 E+8 3.63E+08 

method to 
extend 
product to 
full global 
ocean 
coverage 

 Arctic and 
marginal seas 
added following 
Landschützer et 
al. (2020). No 
coastal cut. 

   Fay & Gregor et al. 
2021 

Coverage of the 
global ice free 
ocean (ice frac < 
0.9) 

Based on method 
in Fay & Gregor et 
al. 2021. Gaps 
were filled with 
monthly 
climatology 
(Landschützer et 
al. 2020) scaled 
for interannual 
variability based 
on the temporal 
evolution of this 
product for all 
years. 

Method has near 
full coverage 
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Table S4. Comparison of the inversion set up and input fields for the atmospheric inversions. Atmospheric inversions see the full CO2 fluxes, including the anthropogenic and pre-industrial 
fluxes. Hence they need to be adjusted for the pre-industrial flux of CO2 from the land to the ocean that is part of the natural carbon cycle before they can be compared with SOCEAN and 
SLAND from process models. See Table 4 for references. 
Name Jena 

CarboScope 
Copernicus 
Atmosphere 
Monitoring 
Service 
(CAMS) 

Carbon-
Tracker 
Europe 
(CTE) 

NISMON-
CO2 

CT-NOAA CMS-Flux Copernicus 
Atmosphere 
Monitoring 
Service 
(CAMS) 

GONGGA COLA GCASv2 UoE IAPCAS MIROC-
ACTM 

NTFVAR 

Version 
number 

r76nbetEXT
oc_v2024E 

v23r1 v2024 v2024.1 CT2022 + 
CT-
NRT.v2024-1 

v2024 FT24r1 v2023 v2024 v2024 v2024 v2024 v2024 v2024 

Flags               
Observations               
Atmospheric 
observations (a, 
b) 

Flasks and 
hourly from 
various 
institutions 
(outliers 
removed by 
2σ criterion) 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v9.0 
and 
NRT_v9.3 
and 
obspack_co
2_466_GVe
u_v9.2_202
40502 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v8.0 
and v9.0 and 
NRT_v9.2 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v9.0 
and 
NRT_v9.3 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v7.0 
and 
NRT_v9.2. 

ACOS-
GOSAT B9 
and OCO-2 
V11.1 and 
obspack 
GLOBALVIE
Wplus v9.1 

OCO-2 ACOS 
retrievals 
from NASA, 
v11.1 

OCO-2 v11r 
data that 
scaled to 
WMO 2019 
standard 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v9.1 
and 
NRT_v9.2. 
And OCO-
2_b11.1_LN
LG 

ACOS v11 
OCO-2 XCO2 
retrievals, 
scaled to 
WMO 2019 
standard 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v9.1 
and 
NRT_v9.2 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v9.1 
and 
NRT_v9.2 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v9.1 
and 
NRT_v9.3 
and JMA 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIEW
plus v9.1 and 
NRT_v9.2 
and GOSAT 
XCO2 data 
NIES Level 2 
product 
v02.97 and 
v03.05 

Period covered 1976-2023 1979-2023 2001-2023 1990-2023 2000-2023 2010-2023 2015-2023 2015-2023 2015-2023 2015-2023 2001-2023 2001-2023 2001-2023 2010-2023 
Prior fluxes               



36 
 

Biosphere and 
fires Zero ORCHIDEE, 

GFEDv4.1s 
SiB4-MERRA 
and GFAS 

VISIT and 
GFEDv4.1s 

GFED-CASA 
and 
GFED_CMS(
Climatology 
for the CT-
NRT of 
CT2022 plus 
statistical 
flux anomaly 
model). 

CARDAMOM ORCHIDEE, 
GFEDv4.1s 

ORCHIDEE-
MICT and 
GFEDv4.1s 

VEGAS + 
GFAS 

BEPS CASA v1.0, 
climatology 
after 2016 
and GFED4.0 

CASA v1.0, 
climatology 
after 2016 
and GFED4.0 

CASA-3h Zeng et al. 
2020 and 
GFAS 

Ocean CarboScope 
oc_v2024E 

CMEMS-
LSCE-FFNN 
2024 

CarboScope 
v2022 and 
v2023 

JMA global 
ocean 
mapping 
(Iida et al., 
2021) 

Ocean 
inversion 
fluxes, 
Takahashi 
pCO2 

ECCO-
Darwin and 
MOM6 

CMEMS-
LSCE-FFNN 
2023 

Takahashi 
climatology 

Jena OC-
v2023 

JMA Ocean 
CO2 Map 
v2023 
(Global) and 
v2024 
(regional) 

Takahashi 
climatology 

Takahashi 
climatology 

Takahashi 
climatology 

Zeng et al. 
2014 

Fossil fuels (c) GridFED 
v2024.0 

GridFED 
2023.1 with 
an 
extrapolatio
n to 2023-24 
based on 
Carbonmoni
tor and NO2 

GridFED 
2023.1 and 
2024.0 

GridFED 
v2024.0 

Miller/CT, 
and 
ODIAC/NAS
A 

GridFED 
v2024.0 

GridFED 
2023.1 with 
an 
extrapolatio
n to 2023-
24based on 
Carbonmoni
tor and NO2 

GridFED 
2024.0 

GridFEDv20
23.1 and 
v2024.0 

GridFEDv20
24.0 

GridFED 
2024.0 

GridFED 
2024.0 

GridFEDv20
24.0 

GridFEDv20
24.0 

Transport and 
optimization               
Transport 
model TM3 LMDZ v6 TM5 NICAM-TM TM5 GEOS-CHEM LMDZ v6 GEOS-Chem 

v12.9.3 
GEOS-CHEM 
v13.0.2 

MOZART-4 GEOS-CHEM GEOS-CHEM 
v12.5 

MIROC-
ACTM 

NIES-TM-
FLEXPART 

Weather forcing ERA ECMWF ECMWF JRA55 ERA5 MERRA2 ECMWF MERRA2 MERRA-2 GEOS5 MERRA MERRA JRA-55 ERA5(NIES-
TM)/JRA-
55(FLEXPART
) 

Horizontal 
Resolution Global 

3.83°x5° 
global ~90 
km in the 
horizontal 

Global 3°x2°, 
Europe 
1°x1°, North 

glevel-5 
(~223 km) 

Global 3°x2°, 
North 
America 

Global 4°x5° global ~90 
km in the 
horizontal 

Global 
2°x2.5° 

2°×2.5° 2.5°×1.875° Global 
2°x2.5° 

Global 4°x5° 2.8°×2.8° NIES-TM 
3.75x3.75°an
d FLEXPART 
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(hexagons) America 
1°x1° 

1°x1° (hexagons) 0.1x0.1° 

Optimization Conjugate 
gradient (re-
ortho-
normalizatio
n) 

Variational 5-week 
ensemble 
Kalman 
smoother 

Variational 12-week 
ensemble 
Kalman 
smoother 

Variational Variational Nonlinear 
least 
squares 
four-
dimensional 
variation 
(NLS-4DVar) 

Ensemble 
Kalman 
Filter (LETKF 
with 
CEnKF/AAP
O) 

Ensemble 
Kalman filter 

Ensemble 
Kalman filter 

Ensemble 
Kalman filter 

Bayesian 
inversion, 
similar to 
that of 
Rayner et al. 
(Tellus, 
1999) 

Variational, 
M1QN3 

(a) Schuldt et al. 2023. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957-2022; obspack_co2_1_GLOBALVIEWplus_v9.0_2023-09-09; NOAA Earth System Research Laboratory, Global Monitoring 
Laboratory. http://doi.org/10.25925/20230801. 

(b) Schuldt et al. 2024. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 2023-2024; obspack_co2_1_NRT_v9.2_2024-03-25; NOAA Earth System Research Laboratory, Global Monitoring Laboratory. 
http://doi.org/10.25925/20240215. 
(c) GCP-GridFED v2024.0 and v2023.1 (Jones et al., 2024, 2023) are updates through the year 2023 of the GCP-GridFED dataset presented by Jones et al. (2021b). 

 

 
  

http://doi.org/10.25925/20230801.
http://doi.org/10.25925/20230801.
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Table S5: Overview of the Earth System Models (ESMs) and the simulations. 

Model CanESM5 EC-Earth3-CC IPSL-CM6A-CO2-LR MIROC-ES2L MPI-ESM1.2-LR 

Resolution Atmosphere 
T63, 49 hybrid levels up to 
1hPa 

T255, 91 levels 2.5°x1.25°, 79 levels T42, 40 levels T63, 47 levels 

Resolution Ocean 
1° refined meridionally to 
1/3° near Equator, 45 levels 

1°, 75 levels 1° (nominal), 75 levels Tripolar (∼1°), 62 levels 1.5°, 40 levels 

Assimilation 
Atmosphere 

ERA-Interim (Dee et al. 
2011) from 1980 to 2018 
and ERA5 (Hersbach et al. 
2020) afterwards: full-field 
nudging of temperature, 
horizontal wind and specific 
humidity 

ERA5 (Hersbach et al. 2020) 
full-field 

None 

3D full field wind and T of 
JRA55 (Kobayashi et al. 
2015) with the simplified 
IAU (Tatebe et al. 2012) 

ERA-40 (Uppala et al. 2005) 
before 1979 and ERA5 
(Hersbach et al. 2020) from 
1980: Vorticity, divergence, 
log(p), T; full field with 
nudging 
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Assimilation Ocean 

Nudging to 3D potential 
temperature and salinity 
from ORAS5 reanalysis (Zuo 
et al. 2019). Sea surface 
temperature relaxed to 
interpolated values from 
NOAA’s OISSTv2 from Nov. 
1981 to present, and 
NOAA’s ERSSTv3 prior 
(Smith et al. 2008). 

EN4 (Good et al. 2013) 3D 
nudging T and S with 
weaker nudging band 
around equator. SST and 
SSS restoring to ORAS5 (Zuo 
et al. 2019). Atmospheric 
forcing: DFS5.2 1958-1979 
and ERA5 after 1980 

Nudging towards SST 
(ERSSTv5) and SSS (EN4) 
using a restoring coefficient 
dependent on the mixed 
layer depth (Ortega et al. 
2017) 

3D full field T, S, and sea-ice 
concentration of an ocean 
objective analysis (Ishii and 
Kimoto 2009) with the 
simplified IAU (Tatebe et al. 
2012) 

EN4 (Good et al. 2013) 3D 
full field T and S with 
ensemble Kalmann filter 
(Brune et al. 2018) 

Assimilation Land 
Indirectly through response 
of CLASS-CTEM to the data-
constrained coupled ESM 

LPJ-GUESS forced offline 
with ERA5 1979-2020 after 
preindustrial 
spinup+transient up to 
1979 

None None 

Indirectly initialized by 
atmospheric and oceanic 
data assimilation within the 
fully coupled ESM 

Ensemble Size 10 10 10 10 10 

Period of reconstruction 1960-2023 1980-2023 1960-2023 1960-2023 1960-2023 

Hindcasts and forecasts 
1 year starting from Jan. 1st 
1980-2024 

14 months starting from 
Nov.1st 1980-2023 

1 year starting from Jan. 1st 
1981-2024 

14 months starting from 
Nov. 1st 1980-2023 

14 months starting from 
Nov.1st 1980-2023 

External forcings 

The Coupled Model Intercomparison Project Phase 6 (CMIP6) historical (1960-2014) plus SSP2-4.5 baseline and CovidMIP two year blip scenario 
(after 2015) (Eyring et al. 2016; Lamboll et al. 2021). The CO2 emissions forcing from 2015 onward are substituted by GCP-GridFED (Jones et al. 
2021; 2023) for all the models except for IPSL-CM6A-CO2-LR. Note the difference in global integrated CO2 emissions between CMIP6 CovidMIP 
and GCP-GridFED in recent years is within the emission uncertainty. 
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Table S6. Comparison of the projection with realised fossil CO2 emissions (EFOS). The ‘Actual’ values are first the estimate available using actual data, and the ‘Projected’ values refers to 
estimates made before the end of the year for each publication. Projections based on a different method from that described here during 2008-2014 are available in Le Quéré et al., 
(2016). All values are adjusted for leap years. 
 World China USA EU28 / EU27 (i) India Rest of World (ii) 
 Projected Actual Projected Actual Projected Actual Projected Actual Projected Actual Projected Actual 

2015 (a) 
–0.6% 

0.06% 
–3.9% 

–0.7% 
–1.5% 

–2.5% – – – – 
1.2% 

1.2% 
(–1.6 to 0.5) (–4.6 to –1.1) (–5.5 to 0.3) (–0.2 to 2.6) 

2016 (b) 
–0.2% 

0.20% 
–0.5% 

–0.3% 
–1.7% 

–2.1% – – – – 
1.0% 

1.3% 
(–1.0 to +1.8) (–3.8 to +1.3) (–4.0 to +0.6) (–0.4 to +2.5) 

2017 (c) 
2.0% 

1.6% 
3.5% 

1.5% 
–0.4% 

–0.5% – – 
2.00% 

3.9% 
1.6% 

1.9% 
(+0.8 to +3.0) (+0.7 to +5.4) (–2.7 to +1.0) (+0.2 to +3.8) (0.0 to +3.2) 

2018 (d) 
2.7% 

2.1% 
4.7% 

2.3% 
2.5% 

2.8% 
-0.7% 

-2.1% 
6.3% 

8.0% 
1.8% 

1.7% 
(+1.8 to +3.7) (+2.0 to +7.4) (+0.5 to +4.5) (-2.6 to +1.3) (+4.3 to +8.3) (+0.5 to +3.0) 

2019 (e) 

0.5% 
0.1% 

2.6% 
2.2% 

-2.4% 
-2.6% 

-1.7% 
-4.3% 

1.8% 
1.0% 

0.5% 
0.5% 

(-0.3 to +1.4) (+0.7 to +4.4) (-4.7 to -0.1) (-5.1% to 
+1.8%) (-0.7 to +3.7) (-0.8 to +1.8) 

2020 (f) 
-6.7% 

-5.4% 
-1.7% 

1.4% 
-12.2% 

-10.6% 

-11.3% 
(EU27) -10.9% 

-9.1% 
-7.3% 

-7.4% 
-7.0% 

      

2021 (g) 4.8% 5.1% 4.3% 3.5% 6.8% 6.2% 6.3% 6.8% 11.2% 11.1% 3.2% 4.5% 
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(4.2% to 
5.4%) 

(3.0% to 
5.4%) 

(6.6% to 
7.0%) 

(4.3% to 
8.3%) 

(10.7% to 
11.7%) 

(2.0% to 
4.3%) 

2022 (h) 

1.1% 
0.9% 

-1.5% 
0.9% 

1.6% 
1.0% 

-1.0% 
-1.9% 

5.6% 
5.8% 

2.5% 
0.6% 

(0% to 1.7%) (-3.0% to 
0.1%) 

(-0.9% to 
4.1%) 

(-2.9% to 
1.0%) 

(3.5% to 
7.7%) 

(0.1% to 
2.3%) 

2023 (j) 

1.1% 
1.3% 

4.0% 
4.9% 

-3.0% 
-3.3% 

-7.4% 
-8.4% 

8.2% 
8.2% 

0.4% 
0.7% (0.0% to 

2.1%) 
(1.9% to 

6.1%) (-5% to -1%) (-9.9% to -
4.9%) 

(6.7% to 
9.7%) 

(-1.4% to 
2.3%) 

2024 (k) 

0.8% 
 

0.2% 
 

-0.6% 
 

-3.8% 
 

4.6% 
 

1.6% 
 

(-0.3% to 
1.9%) 

(-1.6% to 
2.0%) 

(-2.9% to 
1.7%) 

(-6.2% to -
1.4%) 

(3.0% to 
6.1%) 

(-0.4% to 
3.6%) 
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Table S7 Attribution of fCO2 measurements for the year 2023 included in SOCATv2024 (Bakker et al., 2016, 2024) to 
inform ocean fCO2-based data products. 

Platform 
Name Regions 

No. of 
measureme

nts Principal Investigators 
No. of 

datasets 
Platform 
Type 

Atlantic 
Explorer North Atlantic, coastal 48,596 Bates, N. R.; Enright M. 20 Ship 
Atlantic Sail North Atlantic, coastal 16,770 Steinhoff, T.; Körtzinger, A. 3 Ship 
Bell M. 
Shimada 

North Pacific, Tropical Pacific, 
coastal 35,730 Alin, S.; Feely, R. 7 Ship 

Cap San 
Lorenzo Tropical Atlantic, coastal 18,343 Lefèvre, N. 1 Ship 
CCE1_122W_3
3N Coastal 1,426 Sutton, A.; Send, U.; Ohman, M. 1 Mooring 
CCE2_121W_3
4N Coastal 417 Sutton, A.; Send, U.; Ohman, M. 1 Mooring 
Colibri North Atlantic, coastal 24,528 Lefèvre, N. 3 Ship 

Equinox 
North Atlantic, Tropical 
Atlantic, coastal 19,612 Wanninkhof, R.; Pierrot, D. 12 Ship 

F.G. Walton 
Smith Coastal 3,831 

Barbero L.; Pierrot, D.; 
Wanninkhof, R. 3 Ship 

Finnmaid Coastal 311,468 
Rehder, G; Bittig, H. C.; Glockzin, 
M. 10 Ship 

G.O. Sars Arctic, North Atlantic, coastal 103,965 Skjelvan, I. 12 Ship 
GAKOA_149W_
60N Coastal 470 Monacci, N. 1 Mooring 
Gordon Gunter North Atlantic, coastal 24,848 Wanninkhof, R.; Pierrot, D. 4 Ship 
Henry B. 
Bigelow Coastal 18,661 Wanninkhof, R.; Pierrot, D. 3 Ship 
Heron Island Coastal 1,322 Tilbrook, B.; van Ooijen E. 1 Mooring 
Investigator Southern Ocean 152,788 Tilbrook, B.; Akl, J.; Neill, C. 7 Ship 
Kangaroo 
Island Southern Ocean 378 Tilbrook, B.; van Ooijen E. 1 Mooring 
KC_BUOY Coastal 3,020 Evans, W. 1 Mooring 

Keifu Maru II 
North Pacific, Tropical Pacific, 
coastal 7,300 Enyo, K. 5 Ship 

Maria Island Southern Ocean 1,640 Tilbrook, B.; van Ooijen E. 1 Mooring 
Marion 
Dufresne Indian Ocean, Southern Ocean 5,662 Lo Monaco, C.; Metzl, N. 1 Ship 

New Century 2 

North Atlantic, North Pacific, 
Tropical Pacific, Southern 
Ocean, coastal 258,209 Nakaoka, S.-I.; Takao, S. 16 Ship 

Papa_145W_50
N North Pacific 820 

Sutton, A.; Cronin, M.; Emerson, 
S. 1 Mooring 

Quadra Island 
Field Station Coastal 78,466 Evans, W. 1 Mooring 
R/V Belgica Coastal 4,485 Theetaert, H.; Gkritzalis, T. 1 Ship 

Roger Revelle 
Tropical Pacific, Southern 
Ocean 37,941 

Alin, S.; Woosley R. J.; Feely, R.; 
Martz T. R. 3 Ship 
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Ryofu Maru III 
North Pacific, Tropical Pacific, 
coastal 7,454 Enyo, K. 7 Ship 

SA Agulhas II Southern Ocean 7,123 
Hamnca, S.; Tsanwani, M.; 
Monteiro, P. M. S. 1 Ship 

Sea Explorer 

Southern Ocean, Coastal, 
Tropical Atlantic, North 
Atlantic 69,377 Olivier, L.; Landschützer,P. 3 Ship 

Seaspan Royal Coastal 230,720 Evans, W. 6 Ship 

Simon Stevin Coastal 80,488 
Gkritzalis, T.; Theetaert, H.; 
T'Jampens, M. 11 Ship 

Soyo Maru North Pacific, coastal 42,169 Ono, T. 2 Ship 

Statsraad 
Lehmkuhl 

North Atlantic, Tropical 
Atlantic, Southern Ocean, 
coastal 27,582 Becker, M.; Olsen, A. 2 Ship 

Tangaroa Southern Ocean 15,315 Currie, K. I. 3 Ship 
TAO170W_0N Tropical Pacific 2,091 Sutton, A. 1 Mooring 
Thomas G. 
Thompson 

North Pacific, Tropical Pacific, 
Southern Ocean, coastal 29,782 Alin, S.; Feely, R. 5 Ship 

Trans Future 5 
North Pacific, Tropical Pacific, 
Southern Ocean, coastal 159,856 Nakaoka, S.-I.; Takao, S. 14 Ship 

Tukuma Arctica North Atlantic, coastal 53,130 Becker, M.; Olsen, A. 17 Ship 
Victor 
Angelescu Southern Ocean 23,904 Berghoff C.; Arbilla L.; Veccia M. 3 Ship 
Wakataka 
Maru North Pacific, coastal 62,156 Tadokoro, K.; Ono, T. 5 Ship 
WHOTS_158W
_23N Tropical Pacific 1,440 

Sutton, A.; Weller, B.; 
Pluddemann, A. 1 Mooring 
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Table S8. Aircraft measurement programs archived by Cooperative Global Atmospheric Data Integration 
Project (Schuldt et al. 2023 and 2024) that contribute to the evaluation of the atmospheric inversions (Figure 
S5). 
Site 
code 

Measurement program name in 
Obspack Specific doi Data providers 

AAO 
Airborne Aerosol Observatory, 
Bondville, Illinois  Sweeney, C.; Dlugokencky, E.J. 

ABOVE 

Carbon in Arctic Reservoirs 
Vulnerability Experiment (CARVE) 

https://doi.org/10.3334/ORN
LDAAC/1404 

Sweeney, C., J.B. Miller, A. Karion, S.J. 
Dinardo, 
and C.E. Miller. 2016. CARVE: L2 
Atmospheric Gas Concentrations, Airborne 
Flasks, Alaska, 2012-2 
015. ORNL DAAC, Oak Ridge, Tennessee, 
USA. 

ACG Alaska Coast Guard  Sweeney, C.; McKain, K.; Karion, A.; 
Dlugokencky, E.J. 

ACT 
Atmospheric Carbon and Transport - 
America  Sweeney, C.; Dlugokencky, E.J.; Baier, B; 

Montzka, S.; Davis, K. 
AIRCOR
ENOAA NOAA AirCore  Colm Sweeney (NOAA) AND Bianca Baier 

(NOAA) 

AJAX 

Alpha Jet Atmospheric eXperiment 
(AJAX)   

Emma L. Yates, Laura T. Iraci, Susan S. 
Kulawik, Ju-Mee Ryoo, Josette E. Marrero, 
Caroline L. Parworth, Thao Paul V. Bui, 
Cecilia S. Chang, Jonathan M. Dean-Day 
(NASA Ames Research Center), Jason M. 
St. Clair, Thomas F. Hanisco (Atmospheric 
Chemistry and Dynamics Laboratory, NASA 
Goddard Space Flight Center) 

ALF Alta Floresta  Gatti, L.V.; Gloor, E.; Miller, J.B.; 

AOA 
Aircraft Observation of Atmospheric 
trace gases by JMA  ghg_obs@met.kishou.go.jp 

BGI Bradgate, Iowa  Sweeney, C.; Dlugokencky, E.J. 

BNE Beaver Crossing, Nebraska  Sweeney, C.; Dlugokencky, E.J. 

BRZ Berezorechka, Russia  Sasakama, N.; Machida, T. 

CAR Briggsdale, Colorado  Sweeney, C.; Dlugokencky, E.J. 

CMA Cape May, New Jersey  Sweeney, C.; Dlugokencky, E.J. 

CON 

CONTRAIL (Comprehensive 
Observation Network for TRace gases 
by AIrLiner) 

http://dx.doi.org/10.17595/20
180208.001 

Machida, T.; Ishijima, K.; Niwa, Y.; Tsuboi, 
K.; Sawa, Y.; Matsueda, H.; Sasakawa, M. 

CRV 
Carbon in Arctic Reservoirs 
Vulnerability Experiment (CARVE)  Sweeney, C.; Karion, A.; Miller, J.B.; Miller, 

C.E.; Dlugokencky, E.J. 
DND Dahlen, North Dakota  Sweeney, C.; Dlugokencky, E.J. 

ESP Estevan Point, British Columbia  Sweeney, C.; Dlugokencky, E.J. 

ETL East Trout Lake, Saskatchewan  Sweeney, C.; Dlugokencky, E.J. 

FWI Fairchild, Wisconsin  Sweeney, C.; Dlugokencky, E.J. 

GSFC 
NASA Goddard Space Flight Center 
Aircraft Campaign  Kawa, S.R.; Abshire, J.B.; Riris, H. 

HAA Molokai Island, Hawaii  Sweeney, C.; Dlugokencky, E.J. 

HFM Harvard University Aircraft Campaign  Wofsy, S.C. 

HIL Homer, Illinois  Sweeney, C.; Dlugokencky, E.J. 

HIP 
HIPPO (HIAPER Pole-to-Pole 
Observations) 

https://doi.org/10.3334/CDIA
C/HIPPO_010 

Wofsy, S.C.; Stephens, B.B.; Elkins, J.W.; 
Hintsa, E.J.; Moore, F. 

IAGOS- In-service Aircraft for a Global  Obersteiner, F.; Boenisch., H; Gehrlein, T.; 

https://doi.org/10.3334/ORNLDAAC/1404
https://doi.org/10.3334/ORNLDAAC/1404
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CARIBIC Observing System Zahn, A.; Schuck, T. 
IAGOS-
CORE 

In-service Aircraft for a Global 
Observing System  Christoph Gerbig (Max-Planck-Institut für 

Biogeochemie, Jena) 

INX INFLUX (Indianapolis Flux Experiment)  Sweeney, C.; Dlugokencky, E.J.; Shepson, 
P.B.; Turnbull, J. 

LEF Park Falls, Wisconsin  Sweeney, C.; Dlugokencky, E.J. 

MAN Manaus, Brazil  Miller, J.B.; Martins, G.A.; de Souza, R.A.F. 

NHA 
Offshore Portsmouth, New Hampshire 
(Isles of Shoals)  Sweeney, C.; Dlugokencky, E.J. 

OIL Oglesby, Illinois  Sweeney, C.; Dlugokencky, E.J. 

ORC 
ORCAS (O2/N2 Ratio and CO2 
Airborne Southern Ocean Study) 

https://doi.org/10.5065/D6SB
445X 

Stephens, B.B, Sweeney, C., McKain, K., 
Kort, E. 

PFA Poker Flat, Alaska  Sweeney, C.; Dlugokencky, E.J. 

RBA-B Rio Branco  Gatti, L.V.; Gloor, E.; Miller, J.B. 

RTA Rarotonga  Sweeney, C.; Dlugokencky, E.J. 

SAN Santarem, Brazil  Sweeney, C.; Dlugokencky, E.J.; Gatti, 
L.V.; Gloor, E.; Miller, J.B. 

SCA Charleston, South Carolina  Sweeney, C.; Dlugokencky, E.J. 

SGP Southern Great Plains, Oklahoma  Sweeney, C.; Dlugokencky, E.J.; Biraud, S. 

TAB Tabatinga  Gatti, L.V.; Gloor, E.; Miller, J.B. 

TGC Offshore Corpus Christi, Texas  Sweeney, C.; Dlugokencky, E.J. 

THD Trinidad Head, California  Sweeney, C.; Dlugokencky, E.J. 
UGD Kajjansi Airfield, Kampala, Uganda  McKain, K; Sweeney, C 
ULB Ulaanbaatar, Mongolia  Sweeney, C.; Dlugokencky, E.J. 
WBI West Branch, Iowa  Sweeney, C.; Dlugokencky, E.J. 
(a) Schuldt et al. 2023. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957-2022; 
obspack_co2_1_GLOBALVIEWplus_v9.0_2023-09-09; NOAA Earth System Research Laboratory, Global Monitoring Laboratory. 
http://doi.org/10.25925/20230801. 
(b) Schuldt et al. 2024. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 2023-2024; 
obspack_co2_1_NRT_v9.2_2024-03-25; NOAA Earth System Research Laboratory, Global Monitoring Laboratory. 
http://doi.org/10.25925/20240215. 

 

 

http://doi.org/10.25925/20230801.
http://doi.org/10.25925/20230801.
http://doi.org/10.25925/20230801.
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Table S9. Main methodological changes in the global carbon budget since first publication. Methodological changes introduced in one year are kept for the following years unless noted. Empty 
cells mean there were no methodological changes introduced that year. 

Publication 
year 

Fossil fuel emissions LUC emissions Reservoirs 
Uncertainty & other 

changes Global Country (territorial) Country 
(consumption)  Atmosphere Ocean Land 

2006 (a)  Split in regions       

2007 (b)    ELUC based on FAO-
FRA 2005; constant 
ELUC for 2006 

1959-1979 data from 
Mauna Loa; data 
after 1980 from 
global average 

Based on one ocean 
model tuned to 
reproduced observed 
1990s sink 

 ±1σ provided for all 
components 

2008 (c)    Constant ELUC for 
2007 

    

2009 (d)  Split between Annex 
B and non-Annex B 

Results from an 
independent study 
discussed 

Fire-based emission 
anomalies used for 
2006-2008 

 Based on four ocean 
models normalised 
to observations with 
constant delta 

First use of five 
DGVMs to compare 
with budget residual 

 

2010 (e) Projection for 
current year based 
on GDP 

Emissions for top 
emitters 

 ELUC updated with 
FAO-FRA 2010 

    

2011 (f)   Split between Annex 
B and non-Annex B 

     

2012 (g)  129 countries from 
1959 

129 countries and 
regions from 1990-
2010 based on 
GTAP8.0 

ELUC for 1997-2011 
includes interannual 
anomalies from fire-
based emissions 

All years from global 
average 

Based on 5 ocean 
models normalised 
to observations with 
ratio 

Ten DGVMs available 
for SLAND; First use 
of four models to 
compare with ELUC 
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2013 (h)  250 countriesb 134 countries and 
regions 1990-2011 
based on GTAP8.1, 
with detailed 
estimates for years 
1997, 2001, 2004, 
and 2007 

ELUC for 2012 
estimated from 
2001-2010 average 

 Based on six models 
compared with two 
data-products to 
year 2011 

Coordinated DGVM 
experiments for 
SLAND and ELUC 

Confidence levels; 
cumulative 
emissions; budget 
from 1750 

2014 (i) Three years of BP 
data 

Three years of BP 
data 

Extended to 2012 
with updated GDP 
data 

ELUC for 1997-2013 
includes interannual 
anomalies from fire-
based emissions 

 Based on seven 
models 

Based on ten models Inclusion of 
breakdown of the 
sinks in three 
latitude bands and 
comparison with 
three atmospheric 
inversions 

2015 (j) Projection for 
current year based 
Jan-Aug data 

National emissions 
from UNFCCC 
extended to 2014 
also provided 

Detailed estimates 
introduced for 2011 
based on GTAP9 

  Based on eight 
models 

Based on ten models 
with assessment of 
minimum realism 

The decadal 
uncertainty for the 
DGVM ensemble 
mean now uses ±1σ 
of the decadal 
spread across models 

2016 (k) Two years of BP data Added three small 
countries; China’s 
emissions from 1990 
from BP data (this 
release only) 

 Preliminary ELUC 
using FRA-2015 
shown for 
comparison; use of 
five DGVMs 

 Based on seven 
models 

Based on fourteen 
models 

Discussion of 
projection for full 
budget for current 
year 
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2017 (l) 

Projection includes 
India-specific data 

  

Average of two 
bookkeeping models; 

use of 12 DGVMs 

 

Based on eight 
models that match 

the observed sink for 
the 1990s; no longer 

normalised 

Based on 15 models 
that meet 

observation-based 
criteria (see Sect. 

2.5) 

Land multi-model 
average now used in 
main carbon budget, 

with the carbon 
imbalance presented 
separately; new table 
of key uncertainties 

2018 (m) 
Revision in cement 

emissions; Projection 
includes EU-specific 

data 

Aggregation of 
overseas territories 

into governing 
nations for total of 

213 countries a 

 
Average of two 

bookkeeping models; 
use of 16 DGVMs 

Use of four 
atmospheric 

inversions 

Based on seven 
models 

Based on 16 models; 
revised atmospheric 

forcing from 
CRUNCEP to CRUJRA 

Introduction of 
metrics for 

evaluation of 
individual models 
using observations 

2019 (n) Global emissions 
calculated as sum of 

all countries plus 
bunkers, rather than 
taken directly from 

CDIAC. 

 

 

Average of two 
bookkeeping models; 

use of 15 DGVMs 

Use of three 
atmospheric 

inversions 

Based on nine 
models Based on 16 models  

a Raupach et al. (2007) 
b Canadell et al. (2007) 
c GCP (2008) 
d Le Quéré et al. (2009) 
e Friedlingstein et al. (2010) 
f Peters et al. (2012a) 
g Le Quéré et al. (2013), Peters et al. (2013) 
h Le Quéré et al. (2014) 
i Le Quéré et al. (2015a) 
j Le Quéré et al. (2015b) 
k Le Quéré et al. (2016) 
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l Le Quéré et al. (2018a) 
m Le Quéré et al. (2018b) 
n Friedlingstein et al. (2019) 
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Table S10: Translation of global carbon cycle models' land flux definitions to the definition of the LULUCF 
net flux used by National GHG Inventory (NGHGI) reports to UNFCCC. Non-intact lands are used here as 
proxy for "managed lands" in the country reporting. NGHGIs are gap-filled (see Sec. C.2.3 for details). For 
comparison, we provide the net land flux on managed land from atmospheric inversions and FAOSTAT 
estimates. Units are GtC yr-1. 
Carbon flux Source 2004-2013 2014-2023 

ELUC 
Bookkeeping 
estimates from Table 
5 

1.41 1.13 

SLAND total DGVMs from Table 5 3.15 3.19 
SLAND in non-
intact forest DGVMs 1.75 1.83 
ELUC minus 
SLAND in non-
intact forest 

Bookkeeping ELUC & 
DGVM SLAND -0.34 -0.70 

LULUCF NGHGIs -0.57 -0.76 
Net land flux 
on managed 
land 

Atmospheric 
inversions -0.80 -0.69 

LULUCF FAOSTAT 0.32 0.30 
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Table S11 - Evaluation of global ocean biogeochemistry models based on comparison with observation-based interior 
ocean carbon accumulation and process-based evaluation metrics for Atlantic Meridional Overturning Circulation 
(AMOC), Southern Ocean sea surface salinity and surface ocean Revelle factor (following the RECCAP2 ocean model 
evaluation chapter, Terhaar et al., 2024) and Southern Ocean stratification index (Bourgeois et al., 2022). See 
supplementary text C3.3 for details of calculation and observational data sources. Note that AMOC from MOM6-Cobalt 
(Princeton) is only available between 2018 - 2022, which is the value reported here 

  Global Ocean Biogeochemistry Models 

Metric 
Observat
ions 

ACCES
S 
(CSIRO
) 

CESM-
ETHZ 

FESO
M2.1-
REco
M 

MOM
6-
Cobalt 
(Princ
eton) 

MPIO
M-
HAMO
CC6 

MRI-
ESM2-
3 

NEMO
-
PISCES 
(IPSL) 

NEMO
-
PlankT
OM12 

NEMO
3.6-
PISCES
v2-gas 
(CNR
M) 

NorES
M-
OC1.2 

Interior ocean anthropogenic carbon accumulation in GtC yr⁻¹ 

Global (1994-2007, Gruber et 
al., 2019) 

33.8 ± 
4.0 36.4 26.0 31.4 27.1 19.9 27.4 28.9 25.4 27.1 33.6 

North (1994-2007, Gruber et 
al., 2019) 5.9 6.4 5.3 5.9 5.1 3.6 5.6 6.0 4.3 5.8 6.8 

Tropics (1994-2007, Gruber et 
al., 2019) 17.5 15.0 8.7 13.3 11.5 9.1 12.5 12.8 12.5 12.5 13.7 

South (1994-2007, Gruber et 
al., 2019) 10.4 15.0 12.0 12.3 10.6 7.2 9.4 10.1 8.6 8.8 12.9 

Global (1994-2004, Müller et 
al., 2023) 

29.3 ± 
2.5 24.6 19.5 24.1 20.6 15.3 20.3 21.9 18.5 21.2 24.8 

Global (2004-2014, Müller et 
al., 2023) 

27.3 ± 
2.5 31.4 22.5 27.4 24.2 18.5 23.8 25.0 22.4 23.8 28.5 

            

Atlantic Meridional 
Overturning Circulation at 
26°N, 2005-2022 in Sv (Moat et 
al., 2023) 

17.0 ± 
1.3 9.7 13.0 10.2 10.7 15.3 13.5 14.2 17.9 13.1 22.9 

            

Southern Ocean sea surface salinity 2005-2022 in psu (Good et al., 2013) 

subpolar seasonally stratified 
biome (SPSS) 33.942 34.262 33.809 34.295 34.061 33.925 34.074 34.239 33.873 33.824 34.116 

subpolar seasonally stratified 
and subtropical seasonally 
stratififed biomes (SPSS+STSS) 34.307 34.577 34.185 34.565 34.385 34.254 34.363 34.554 34.358 34.124 34.506 

            

Southern Ocean stratification 
index 2005-2022, in kg m-3 
(Bourgeois et al., 2022, Good 
et al., 2013) 5.88 5.45 5.97 5.68 6.13 5.97 6.03 5.60 5.06 6.18 5.76 
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Surface ocean Revelle factor 

1997-2007, unitless 
(GLODAPv2.2016, Lauvset et al., 
2016) 10.44 10.61 10.33 10.65 10.34 10.72 10.60 10.65 10.49 10.77 10.58 

2005-2021, unitless 
(OceanSODA_v2023, updated 
from Gregor and Gruber, 2021) 10.62 10.77 10.52 10.84 10.52 10.93 10.79 10.81 10.65 10.93 10.75 
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Supplementary Figures 

 
Figure S1. Ensemble mean air-sea CO2 flux from a) global ocean biogeochemistry models and b) fCO2 based 

data products, averaged over 2014-2023 period (kgC m-2 yr-1). Positive numbers indicate a flux into the ocean. 

c) gridded SOCAT v2024 fCO2 measurements, averaged over the 2014-2023 period (µatm). In (a) model 

simulation A is shown. The fCO2-products represent the contemporary flux, i.e. including outgassing of riverine 

carbon, which is estimated to amount to 0.65 GtC yr-1 globally.  
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Figure S2. Evaluation of the GOBMs and fCO2-products using the root mean squared error (RMSE) for the 

period 1990 to 2023, between the individual surface ocean fCO2 mapping schemes and the SOCAT v2024 

database. The y-axis shows the amplitude of the interannual variability of the air-sea CO2 flux (A-IAV, taken as 

the standard deviation of the detrended annual time series). Results are presented for the globe, north (>30°N), 

tropics (30°S-30°N), and south (<30°S) for the GOBMs (see legend, circles) and for the fCO2-based data 

products (star symbols). The fCO2-products use the SOCAT database and therefore are not independent from the 

data (see Section 2.5.1).  
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Figure S3. Trend evaluation of six from the eight fCO2-products used for SOCEAN (blue circles - CSIR-ML6, 

NIES-ML3, VLIZ-SOMFFN, OceanSODA-ETHZv2, JMA-MLR, Jena-MLS) . The x-axis represents the mean 

fCO2 trend bias from a model subsampling exercise (following Hauck et al., 2023) using four of the GCB2023 

GOBMs (CESM, FESOM-REcoM, IPSL and MRI-ESM). The y-axis represents the flux trend as submitted  by 

the fCO2 product to this study. Besides the northern hemisphere, where all of the six fCO2-products overestimate 

the subsampled model trend, there is a clear relationship between the trend reconstruction bias and the flux trend 

(red line with grey dashed lines representing the 1 sigma uncertainty  interval), indicating that flux trends are 

sensitive to the fCO2-products ability to reconstruction biases. 
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Figure S4. Evaluation of the DGVMs using the International Land Model Benchmarking system (ILAMB; 

Collier et al., 2018) Skill scores relative to other models. The benchmarking is done with observations for GPP 

and ecosystem respiration (Reichstein et al., 2007; Lasslop et al., 2010; Knauer et al., 2018; Jung et al., 2017; 

Tramontana et al., 2016; Alemohammad et al., 2017), leaf area index (Vermote, 2019; Claverie et al., 2016; De 

Kauwe et al., 2011; Myneni et al., 1997), soil carbon (Hugelius et al., 2013; Fischer et al., 2008), 

evapotranspiration (De Kauwe et al., 2011; Martens et al., 2017; Miralles et al., 2011; Mu et al., 2011), and 

runoff (Dai and Trenberth, 2002; Hobeichi et al., 2019; Hobeichi et al., 2020). Metrics include relationships 

between carbon cycle variables, precipitation (Adler et al., 2003) and temperature (Harris et al., 2014). For each 

model–observation comparison a series of error metrics are calculated, scores are then calculated as an 

exponential function of each error metric, and finally for each variable the multiple scores from different metrics 

and observational datasets are combined to give the overall variable scores. Overall variable scores increase 

from 0 to 1 with improvements in model performance. The set of error metrics vary with dataset and can include 

metrics based on the period mean, bias, root mean squared error, spatial distribution, interannual variability, and 

seasonal cycle. The relative skill score shown is a Z score, which indicates in units of standard deviation the 

model scores relative to the mean score for a given variable. Grey boxes represent missing model data.  
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Figure S5. Evaluation of the atmospheric inversion products. The mean of the model minus observations is 

shown for four latitude bands in three periods: (first panel) 2001-2023, (second panel) 2010-2023, (third panel) 

2015-2023. The 14 systems are compared to independent CO2 observations from aircraft over many places of 

the world between 2 and 7 km above sea level. Aircraft measurements archived in the Cooperative Global 

Atmospheric Data Integration Project (Schuldt et al. 2023, Schuldt et al. 2024) from sites, campaigns or 

programs that have not been assimilated and cover at least 9 months (except for SH programs) between 2001 

and 2023, have been used to compute the biases (top row) and their standard deviations (middle row) in four 45° 

latitude bins. Land and ocean data are used without distinction, and observation density varies strongly with 

latitude and time as seen on the lower panels. 
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Figure S6. Comparison of the estimates of each component of the global carbon budget in this study (black line) 

with the estimates released annually by the GCP since 2006. Grey shading shows the uncertainty bounds 

representing ±1 standard deviation of the current global carbon budget, based on the uncertainty assessments 
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described in Supplement S1 to S4. CO2 emissions from (a) fossil CO2 emissions excluding cement carbonation 

(EFOS), and (b) land-use change (ELUC), as well as their partitioning among (c) the atmosphere (GATM), (d) the 

land (SLAND), and (e) the ocean (SOCEAN). See legend for the corresponding years, and Tables 3 and A8 for 

description of changes in methodology. The budget year corresponds to the year when the budget was first 

released. All values are in GtC yr-1. 

 

Figure S7. Differences in the HYDE/LUH2 land-use forcing used for the global carbon budgets GCB2022 

(Friedlingstein et al., 2022b), GCB2023 (Friedlingstein et al., 2023), and GCB2024 (this paper). Shown are 

year-to-year changes in cropland area (top panel) and pasture area (middle panel). To illustrate the relevance of 
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the update in the land-use forcing to the recent trends in ELUC, the bottom panel shows the land-use emission 

estimate from the bookkeeping model BLUE (original model output, i.e., excluding emissions from peat fire and 

peat drainage).  
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Figure S8: Split of net fluxes from wood harvest and other forest management into gross emissions and gross 

removals. Solid lines denote the average of the three bookkeeping models and shaded areas the full range (min-

max) of the bookkeeping model estimates. 
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Figure S9. Fire carbon emissions for the months January-September for each year 2003-2024 from two global 

fire emissions products. (Top row) Global emissions. (Middle row) Emissions for the northern hemisphere 

extratropics (>30° N), tropics (30° N-30° S) and southern extratropics (>30° S). (Bottom row) Emissions by 

RECCAP2 region. The Global Fire Assimilation System (GFAS; Di Giuseppe et al., 2018) (left column) and 

the Global Fire Emissions Database (GFED, version 4.1s; van der Werf et al., 2017) (right column) are among 

the most widely applied global fire emissions products based on satellite remote sensing of fire. GFED relies on 

the post-fire detection of burned areas combined with fuel consumption factors. GFAS relies on the detection of 

thermal energy release during active fires. 
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