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Supplementary Information

S.1 Methodology Fossil Fuel CO2 emissions (EFOS)
S.1.1 Cement carbonation

From the moment it is created, cement begins to absorb CO» from the atmosphere, a process known as ‘cement
carbonation’. We estimate this COz sink, from 1931 onwards, as the average of two studies in the literature (Cao
et al., 2020; Guo et al., 2021 extended by Huang et al., 2023). The Global Cement and Concrete Association
reports a much lower carbonation rate, but this is based on the highly conservative assumption of 0% mortar
(GCCA, 2021). Modelling cement carbonation requires estimation of a large number of parameters, including
the different types of cement material in different countries, the lifetime of the structures before demolition, of
cement waste after demolition, and the volumetric properties of structures, among others (Xi et al., 2016).
Lifetime is an important parameter because demolition results in the exposure of new surfaces to the
carbonation process. The main reasons for differences between the two studies appear to be the assumed
lifetimes of cement structures and the geographic resolution, but the uncertainty bounds of the two studies

overlap.

S.1.2 Emissions embodied in goods and services

CDIAC, UNFCCC, and BP national emission statistics ‘include greenhouse gas emissions and removals taking
place within national territory and offshore areas over which the country has jurisdiction’ (Rypdal et al., 2006),
and are called territorial emission inventories. Consumption-based emission inventories allocate emissions to
products that are consumed within a country, and are conceptually calculated as the territorial emissions minus
the ‘embodied’ territorial emissions to produce exported products plus the emissions in other countries to
produce imported products (Consumption = Territorial — Exports + Imports). Consumption-based emission
attribution results (e.g. Davis and Caldeira, 2010) provide additional information to territorial-based emissions
that can be used to understand emission drivers (Hertwich and Peters, 2009) and quantify emission transfers by
the trade of products between countries (Peters et al., 2011a). The consumption-based emissions have the same
global total, but reflect the trade-driven movement of emissions across the Earth's surface in response to human
activities. We estimate consumption-based emissions from 1990-2020 by enumerating the global supply chain
using a global model of the economic relationships between economic sectors within and between every country
(Andrew and Peters, 2013; Peters et al., 2011b). Our analysis is based on the economic and trade data from the
Global Trade and Analysis Project (GTAP; Narayanan et al., 2015), and we make detailed estimates for the
years 1997 (GTAP version 5), 2001 (GTAP6), and 2004, 2007, 2011, and 2014 (GTAP10.0a), covering 57
sectors and 141 countries and regions. The detailed results are then extended into an annual time series from
1990 to the latest year of the Gross Domestic Product (GDP) data (2020 in this budget), using GDP data by
expenditure in current exchange rate of US dollars (USD; from the UN National Accounts main Aggregates

database; UN, 2022) and time series of trade data from GTAP (based on the methodology in Peters et al.,
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2011b). We estimate the sector-level CO2 emissions using the GTAP data and methodology, add the flaring and
cement emissions from our fossil COz dataset, and then scale the national totals (excluding bunker fuels) to

match the emission estimates from the carbon budget. We do not provide a separate uncertainty estimate for the
consumption-based emissions, but based on model comparisons and sensitivity analysis, they are unlikely to be

significantly different than for the territorial emission estimates (Peters et al., 2012b).

S.1.3 Uncertainty assessment for Eros

We estimate the uncertainty of the global fossil CO2 emissions at £5% (scaled down from the published £10 %
at £2¢ to the use of =16 bounds reported here; Andres et al., 2012). This is consistent with a more detailed
analysis of uncertainty of +8.4% at +2c (Andres et al., 2014) and at the high-end of the range of £5-10% at +2c
reported by (Ballantyne et al., 2015). This includes an assessment of uncertainties in the amounts of fuel
consumed, the carbon and heat contents of fuels, and the combustion efficiency. While we consider a fixed
uncertainty of +5% for all years, the uncertainty as a percentage of emissions is growing with time because of
the larger share of global emissions from emerging economies and developing countries (Marland et al., 2009).
Generally, emissions from mature economies with good statistical processes have an uncertainty of only a few
per cent (Marland, 2008), while emissions from strongly developing economies such as China have
uncertainties of around +10% (for £1o; Gregg et al., 2008; Andres et al., 2014). Uncertainties of emissions are
likely to be mainly systematic errors related to underlying biases of energy statistics and to the accounting

method used by each country.

S.1.4 Growth rate in emissions

We report the annual growth rate in emissions for adjacent years (in percent per year) by calculating the
difference between the two years and then normalising to the emissions in the first year: (Eros(to+1)-
Eros(t0))/Eros(to)*100%. We apply a leap-year adjustment where relevant to ensure valid interpretations of
annual growth rates. This affects the growth rate by about 0.3% yr-1 (1/366) and causes calculated growth rates

to go up approximately 0.3% if the first year is a leap year and down 0.3% if the second year is a leap year.

The relative growth rate of Eros over time periods of greater than one year can be rewritten using its logarithm

equivalent as follows:

1 _dEpos _ d(nEfos) )
Epps dt dt

Here we calculate relative growth rates in emissions for multi-year periods (e.g. a decade) by fitting a linear

trend to /n(Eros) in Eq. (2), reported in percent per year.
S.1.5 Emissions projection for 2023
To gain insight on emission trends for 2023, we provide an assessment of global fossil CO2 emissions, Eros, by

combining individual assessments of emissions for China, USA, the EU, and India (the four countries/regions

with the largest emissions), and the rest of the world.

The methods are specific to each country or region, as described in detail below.
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China: We use a regression between monthly data for each fossil fuel and cement, and annual data for
consumption of fossil fuels / production of cement to project full-year growth in fossil fuel consumption and

cement production. The monthly data for each product consists of the following:

- Coal: Production data from the National Bureau of Statistics (NBS), plus net imports from the China
Customs Administration (i.e., gross supply of coal, not including inventory changes), adjusted
using monthly production data for thermal electricity, crude steel, pig iron, coke and cement from
NBS.

- Oil: Production data from NBS, plus net imports from the China Customs Administration (i.e., gross
supply of oil, not including inventory changes)

- Natural gas: Same as for oil

- Cement: Production data from NBS

For oil, we use data for production and net imports of refined oil products rather than crude oil. This choice is
made because refined products are one step closer to actual consumption, and because crude oil can be subject
to large market-driven and strategic inventory changes that are not captured by available monthly data.
Furthermore, refinery output in 2022 was atypically low through August of that year compared to the rest of the
year, which results in very high growth figures for the 2023 data compared to what one can likely expect for the
last four months of this year. The estimate has been adjusted down by 0.8 percentage points to account for this,
corresponding to how much lower the ratio of January-August and September-December refinery output was in

2022 compared to the average for 2014-2022.

For each fuel and cement, we make a Bayesian linear regression between year-on-year cumulative growth in
supply (production for cement) and full-year growth in consumption (production for cement) from annual
consumption data. In the regression model, the growth rate in annual consumption (production for cement) is
modelled as a regression parameter multiplied by the cumulative year-on-year growth rate from the monthly
data through August of each year for past years (through 2022). We use broad Gaussian distributions centered
around 1 as priors for the ratios between annual and through-August growth rates. We then use the posteriors for
the growth rates together with cumulative monthly supply/production data through August of 2023 to produce a
posterior predictive distribution for the full-year growth rate for fossil fuel consumption / cement production in

2023.

If the growth in supply/production through August were an unbiased estimate of the full-year growth in
consumption/production, the posterior distribution for the ratio between the monthly and annual growth rates
would be centered around 1. However, in practice the ratios are different from 1 (in most cases below 1). This is
a result of various biasing factors such as uneven evolution in the first and second half of each year, inventory
changes that are somewhat anti-correlated with production and net imports, differences in statistical coverage,

and other factors that are not captured in the monthly data.

For fossil fuels, the mean of the posterior distribution is used as the central estimate for the growth rate in 2023,
while the edges of a 68% credible interval (analogous to a 1-sigma confidence interval) are used for the upper

and lower bounds.
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USA: We use emissions estimated by the U.S. Energy Information Administration (EIA) in their Short-Term
Energy Outlook (STEO) for emissions from fossil fuels to get both YTD and a full year projection (EIA, 2023).
The STEO also includes a near-term forecast based on an energy forecasting model which is updated monthly
(we use the November 2023 edition), and takes into account expected temperatures, household expenditures by
fuel type, energy markets, policies, and other effects. We combine this with our estimate of emissions from
cement production using the monthly U.S. cement clinker production data from USGS for January-August

2023, assuming changes in clinker production over the first part of the year apply throughout the year.

India: We use monthly emissions estimates for India updated from Andrew (2020b) through August-October
2023. These estimates are derived from many official monthly energy and other activity data sources to produce
direct estimates of national CO2 emissions, without the use of proxies. Emissions from coal are then extended to
October using a regression relationship based on power generated from coal, coal dispatches by Coal India Ltd.,
the composite PMI, time, and days per month. For the last 3-5 months of the year, each series is extrapolated

assuming typical (pre-2019) trends.

EU: We use a refinement to the methods presented by Andrew (2021), deriving emissions from monthly energy
data reported by Eurostat. Some data gaps are filled using data from the Joint Organisations Data Initiative
(JODI, 2022). Sub-annual cement and cement-clinker production data are limited, but data for Germany, Poland
and Spain, the three largest producers, suggest a decline of over 8%. For fossil fuels this provides estimates
through July-September, varying by fuel. We extend coal emissions through October using a regression model
built from generation of power from hard coal, power from brown coal, and the number of working days in
Germany, the biggest coal consumer in the EU. These are then extended through the end of the year assuming
typical trends. We extend oil emissions by building a regression model between our monthly CO:z estimates and
oil consumption reported by the EIA for Europe in its Short-Term Energy Outlook (November edition), and then
using this model with EIA’s monthly forecasts. For natural gas, the strong seasonal signal allows the use of the
bias-adjusted Holt-Winters exponential smoothing method (Chatfield, 1978), although this comes with larger

uncertainty given the unusual energy situation in Europe in 2022-23.

Rest of the world: We use the close relationship between the growth in GDP and the growth in emissions
(Raupach et al., 2007) to project emissions for the current year. This is based on a simplified Kaya Identity,
whereby Eros (GtC yr!) is decomposed by the product of GDP (USD yr™') and the fossil fuel carbon intensity of
the economy (Iros; GtC USD™) as follows:

Eros = GDP X Igpg 3)

Taking a time derivative of Equation (3) and rearranging gives:

1 dEpgs _ 1 dGDP 1 dIrps
Epps dt GDP dt Irps dt

(4)
where the left-hand term is the relative growth rate of Eros, and the right-hand terms are the relative growth

rates of GDP and Iros, respectively, which can simply be added linearly to give the overall growth rate.

The Iros is based on GDP in constant PPP (Purchasing Power Parity) from the International Energy Agency
(IEA) up to 2017 (IEA/OECD, 2019) and extended using the International Monetary Fund (IMF) growth rates
through 2022 (IMF, 2023). Interannual variability in Iros is the largest source of uncertainty in the GDP-based
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emissions projections. We thus use the standard deviation of the annual IFOS for the period 2013-2022 as a
measure of uncertainty, reflecting a =1 as in the rest of the carbon budget. For rest-of-world oil emissions
growth, we use the global oil demand forecast published by the EIA less our projections for the other four
regions, and estimate uncertainty as the maximum absolute difference over the period available for such
forecasts using the specific monthly edition (e.g. August) compared to the first estimate based on more solid

data in the following year (April).

Bunkers: Given the divergence in behaviour of international shipping from countries’ emissions since the
COVID-19 pandemic, we project international bunkers separately using sub-annual data on international
aviation from the OECD (Clarke et al., 2022) and international shipping from MarineBenchmark and IMF
(Cerdeiro et al., 2020).

World: The global total is the sum of each of the countries and regions.

S.2 Methodology CO: emissions from land-use, land-use change and forestry (ELuc)

The net COz flux from land-use, land-use change and forestry (ELuc, called land-use change emissions in the
rest of the text) includes COz fluxes from deforestation, afforestation, logging and forest degradation (including
harvest activity), shifting cultivation (cycle of cutting forest for agriculture, then abandoning), regrowth of
forests following wood harvest or abandonment of agriculture, peat burning, and peat drainage. Land-
management activities are only partly included in our land-use change emissions estimates (Table S1). Some
land-use change and land-management activities cause emissions of CO> to the atmosphere, while others
remove COz from the atmosphere. ErLuc is the net sum of emissions and removals due to all anthropogenic
activities considered. Our annual estimates for 1960-2022 are provided as the average of results from four
bookkeeping approaches (Supplement S.2.1 below): the Bookkeeping of Land Use Emissions model (BLUE;
Hansis et al., 2015), the compact Earth system model OSCAR (Gasser et al., 2020), an estimate from Houghton
and Castanho (2023; hereafter H&C2023), and the Land-Use Change Emissions model (LUCE; Qin et al.,
2024). Peat emissions are added from external datasets (see Supplement S.2.1 below). BLUE and OSCAR are
updated with new land-use forcing data covering the time period until 2023. All four data sets are extrapolated
to provide a projection for 2024 (see Supplement S.2.5 below). In addition, we use results from Dynamic Global
Vegetation Models (DGVMs; see Supplement S.2.2 and Table 4) to help quantify the uncertainty in ELuc
(Supplement S.2.4), and thus better characterise the robustness of annual estimates and trends. In this budget, we
follow the scientific ELuc definition as used by global carbon cycle models, which counts fluxes due to
environmental changes on managed land towards SLanp, as opposed to the national greenhouse gas inventories
(NGHGISs) under the UNFCCC, most of which include them in ELuc and thus often report smaller land-use
emissions (Grassi et al., 2018; Petrescu et al., 2020). Following the methodology of Grassi et al. (2023), we

provide harmonised estimates of the two approaches further below (see Supplement S.2.3).
S.2.1 Bookkeeping models
CO:z emissions and removals from land-use change are calculated by four bookkeeping models. These are based

on the original bookkeeping approach of Houghton (2003), which keeps track of the carbon stored in vegetation

and soils before and after a land-use change event (transitions between various natural vegetation types,
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croplands, and pastures). Literature-based response curves describe the decay of vegetation and soil carbon,
including carbon transfer to product pools of different lifetimes, as well as carbon uptake due to regrowth. In
addition, the bookkeeping models represent long-term degradation of primary forest as lowered standing
vegetation and soil carbon stocks in secondary forests, and include forest management practices such as wood
harvests.

BLUE, LUCE and H&C2023 exclude the transient response of land ecosystems to changes in climate,
atmospheric COz, and other environmental factors, and base the carbon densities of soil and vegetation on
contemporary data from literature and inventory data. Since carbon densities thus remain fixed over time, the
additional sink capacity that ecosystems provide in response to COz fertilisation and some other environmental
changes are not captured by these models (Pongratz et al., 2014). OSCAR includes this transient response, and it
follows a theoretical framework (Gasser and Ciais, 2013) that allows separating bookkeeping land-use
emissions and the loss of additional sink capacity. Only the former is included here, while the latter is discussed
in Supplement S.6.4. The bookkeeping models differ in (1) computational units (spatially explicit treatment of
land-use change at 0.25° resolution for BLUE and LUCE, country-level for H&C2023 and OSCAR), (2)
processes represented (see Table S1), and (3) carbon densities assigned to vegetation and soils for different
types of vegetation (literature-based for BLUE and H&C2023, calibrated to DGVMs for OSCAR, mainly
literature-based but additionally considering the impact of land cohort age on secondary land carbon stocks for
LUCE). A notable difference between models exists with respect to the treatment of shifting cultivation:
H&C2023 assumes that forest loss—derived from the Global Forest Resources Assessment (FRA; FAO,
2020)—in excess of increases in cropland and pastures—derived from FAOSTAT (FAO, 2021)—represents an
increase in shifting cultivation. If the excess loss of forests in a year is negative, it is assumed that shifting
cultivation is returned to forest. Historical areas in shifting cultivation are defined taking into account country-
based estimates of areas in fallow in 1980 (FAO/UNEP, 1981) and expert opinion (from Heinimann et al.,
2017). In contrast, BLUE, OSCAR, and LUCE include subgrid-scale transitions between all vegetation types.
Furthermore, H&C2023 assumes conversion of natural grasslands to pasture, while BLUE, OSCAR, and LUCE
allocate pasture transitions proportionally to all natural vegetation that exists in a grid-cell. This is one reason
for generally higher emissions in BLUE and OSCAR. In this GCB, we split CO2 emissions into emissions from
permanent deforestation and from deforestation for shifting cultivation. Similarly, we separate the forest (re-
)growth estimates into (re-)growth from af/reforestation and from regrowth associated with shifting cultivation.
This distinction is insightful with regard to the levers on the reduction of net emissions: as deforestation for
shifting cultivation is only temporary, the associated CO2 emissions cannot easily be avoided without
compromising the CO2 removals from regrowth in shifting cultivation cycles. By contrast, permanent
deforestation is typically not directly related to af/reforestation. Stopping deforestation for permanent
agricultural expansion and increasing the forest area provide two independent levers for net emissions reduction.
Bookkeeping models do not directly capture carbon emissions from the organic layers of drained peat soils nor
from peat fires. Particularly the latter can create large emissions and interannual variability due to synergies of
land-use and climate variability in equatorial Southeast Asia, especially during El-Nifio events. We add peat fire
emissions based on the Global Fire Emission Database (GFED4s; van der Werf et al., 2017) to the bookkeeping
models’ output. Peat fire emissions are calculated by multiplying the mass of dry matter emitted by peat fires

with the C emission factor for peat fires indicated in the GFED4s database. Emissions from deforestation and
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degradation fires used for extrapolating the H&C2023 data beyond 2020 and to derive the 2023 projection of all
three models (see below) are calculated analogously. The satellite-derived GFED4s estimates of peat fire
emissions start in 1997. For the previous years, we follow the approach by Houghton and Nassikas (2017),
which linearly ramps up from zero emissions in 1980 to 0.04 GtC yr! in 1996, reflecting the onset of major
clearing of peatlands in equatorial Southeast Asia in the 1980s.

We further add estimates of peat drainage emissions, combining estimates from three spatially explicit datasets.
We employ FAO peat drainage emissions 1990-2022 from croplands and grasslands (Conchedda and Tubiello,
2020; FAO, 2023), peat drainage emissions 1700—2010 from simulations with the DGVM ORCHIDEE-PEAT
(Qiu et al., 2021), and peat drainage emissions 1701-2023 from simulations with the DGVM LPX-Bern v1.5
(Lienert and Joos, 2018; Miiller and Joos, 2021), the latter applying the updated LUH2-GCB2024 forcing as
also used by BLUE, OSCAR, LUCE, and the DGVMs. The LPX-Bern simulations started from a transient run
over the last deglaciation (-20,050 to 1700 AD) following Miiller and Joos (2020) and are forced by changes in
climate, atmospheric COz, nitrogen deposition/input, and land-use changes. Simulations were done with and
without prescribing land-use changes since 1700 AD. The difference between the simulations represents
anthropogenic peat drainage emissions. To account for internal variability, we used the median peat drainage
emissions from a 20-member ensemble. In LPX-Bern, peat carbon is stored in (i) active peatlands, (ii) former
peatlands (“natural”), and (iii) former peatlands under anthropogenic use. We average the two CO2 emission
cases from Miiller and Joos (2021), assuming that half the peat carbon is lost immediately to the atmosphere
after transformation from active to former peatland, while the rest decays slowly, pending on local temperature
and soil moisture. The LPX-Bern peat drainage emissions show a very high emission peak in Russia in 1959
followed by very low emissions in 1960. This peak can be attributed to an artefact in the HYDE3.4 dataset,
which was corrected for Brazil and the Democratic Republic of the Congo in GCB2022 (Friedlingstein et al.
2022b) but remains for Russia where it strongly impacts the LPX-Bern peat drainage estimates in 1959 and
1960. To correct for this unrealistic peak, we replace the LPX-Bern peat drainage emissions in Russia in 1959
and 1960 by the average of the estimates in 1958 and 1961. FAO data are extrapolated to 1850-2023 by keeping
the post-2020 emissions constant at 2020 levels and by linearly increasing tropical peat drainage emissions
between 1980 and 1990 starting from 0 GtC yr! in 1980 (consistent with H&N2017’s assumption, Houghton
and Nassikas, 2017), and by keeping pre-1990 emissions from the often old drained areas of the extra-tropics
constant at 1990 emission levels. ORCHIDEE-PEAT data are extrapolated to 2011-2023 by replicating the
average emissions in 2000-2010 (pers. comm. C. Qiu). Further, ORCHIDEE-PEAT only provides peat drainage
emissions north of 30°N, and thus we fill the regions south of 30°N by the average peat drainage emissions from
FAO and LPX-Bern. The final peat drainage emissions are calculated as the average of the estimates from the
three different peat drainage datasets. The net ELuc values indicated in the manuscript are the sum of ELuc
estimates from bookkeeping models, peat fire emissions, and peat drainage emissions.

The four bookkeeping estimates used in this study differ with respect to the land-use change data used to drive
the models. H&C2023 base their estimates directly on the Forest Resource Assessment (FRA) of FAO, which
provides statistics on forest-area change and management at intervals of five years currently updated until 2020
(FAO, 2020). The data is based on country reporting to FAO and may include remote-sensing information in
more recent assessments. Changes in land use other than forests are based on annual, national changes in

cropland and pasture areas reported by FAO (FAO, 2021). BLUE and LUCE use the harmonised land-use
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change data LUH2-GCB2024 covering the period 850-2023 (an update to the previously released LUH2 v2h
dataset; Hurtt et al., 2017; Hurtt et al., 2020), which was also used as input to the DGVMs (Supplement S.2.2).
LUH2-GCB2024 provides land-use change data at 0.25° spatial resolution based on the FAO data (as described
in Supplement S.2.2) as well as the HYDE3.4 dataset (Klein Goldewijk et al., 2017a, 2017b), considering
subgrid-scale transitions between primary forest, secondary forest, primary non-forest, secondary non-forest,
cropland, pasture, rangeland, and urban land (Hurtt et al., 2020; Chini et al., 2021). LUH2-GCB2024 provides a
distinction between rangelands and pasture, based on inputs from HYDE. Rangeland establishment in forests is
assumed to transform forests to grasslands, rangeland establishment in non-forest primary vegetation degrades
primary to secondary vegetation, and rangeland establishment in non-forest secondary vegetation has no effect
(e.g., browsing on shrubland) (Ma et al., 2020). This case distinction is implemented in BLUE based on a forest
mask provided with LUH2-GCB2021. OSCAR was run with both LUH2-GCB2024 and FAO/FRA, where the
drivers of the latter were linearly extrapolated to 2023 using their 2015-2020 trends. The best-guess OSCAR
estimate used in our study is a combination of results for LUH2-GCB2024 and FAO/FRA land-use data and a
large number of perturbed parameter simulations weighted against a constraint (the cumulative SLanp over
1960-2022 of last year’s GCB). As the record of H&C2023 ends in 2020, we extend it up to 2023 by adding the
yearly anomalies of the emissions from tropical deforestation and degradation fires from GFED4s between 2020
and 2022 to the model’s estimate for 2020 (emissions from peat fires and peat drainage are added to all models
later in the process).

The annual ELuc from 1850 onwards is calculated as the average of the estimates from BLUE, H&C2023,
OSCAR, and LUCE. For the cumulative numbers starting in 1750, emission estimates between 1750-1850 are
added based on the average of four earlier publications (30 + 20 GtC 1750-1850, rounded to nearest 5; Le Quéré
et al., 2016).

We provide a split of net ELuc into component fluxes to better identify reasons for divergence between
bookkeeping estimates and to give more insight into the drivers of net ELuc. This split distinguishes between
emissions from deforestation (including due to shifting cultivation), removals from forest (re-)growth (including
regrowth in shifting cultivation cycles), fluxes from wood harvest and other forest management (i.e., emissions
in forests from slash decay and emissions from product decay following wood harvesting, removals from
regrowth after wood harvesting, and fire suppression), emissions from peat drainage and peat fires, and
emissions and removals associated with all other land-use transitions. Additionally, we split deforestation
emissions into emissions from permanent deforestation and emissions from deforestation in shifting cultivation
cycles, and we split removals from forest (re-)growth into forest (re-)growth due to af/reforestation and forest
regrowth in shifting cultivation cycles. This split helps to identify the emission reductions that would be
achievable by halting permanent deforestation, and the removals that are caused by permanently increasing the
forest cover through re/afforestation. Forest (re-)growth due to af/reforestation is calculated using a slightly
updated method compared to GCB2023, now following the method used to calculate CDR due to
re/afforestation in the 2nd State of CDR Report (Pongratz et al., 2024). ELuc data are provided as global sums,
as spatially explicit estimates at 0.25° spatial resolution (i.e., the native LUH2 resolution), and for 199 countries
(based on the list of UNFCCC parties). Spatially explicit ELuc estimates for BLUE and LUCE are directly
available at 0.25°. For OSCAR and H&C2023, the country-level estimates were scaled to 0.25° based on the

patterns of gross emissions and gross removals in BLUE (see Schwingshackl et al. 2022 for more details about
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the methodology). The gridded net ELuc estimates of BLUE, LUCE, OSCAR, and H&C2023 are averaged, and
the gridded estimates of peat drainage emissions (average of FAO, LPX-Bern, and ORCHIDEE-PEAT) and of
peat fire emissions (from GFED4s) are added. Country-level estimates for the gridded datasets (BLUE, LUCE,
LPX-Bern, ORCHIDEE-PEAT, GFED4s) are calculated based on a country map from Eurostat (Eurostat,
2024), which was remapped to 0.25°. In case multiple countries are present in a 0.25° grid cell, the ELuc

estimates are allocated proportional to each country’s land fraction in that grid cell.

S.2.2 Dynamic Global Vegetation Models (DGVMs)

Land-use change CO: emissions are also estimated by an ensemble of 20 DGVMs. The DGVMs account for
deforestation and regrowth, the most important components of ELuc, but they do not represent all processes
resulting directly from human activities on land (Table S1). All DGVMs represent processes of vegetation
growth and mortality, as well as decomposition of dead organic matter associated with natural cycles, and
include the vegetation and soil carbon response to increasing atmospheric CO2 concentration, to climate
variability and to climate change. Most models explicitly simulate the coupling of carbon and nitrogen cycles
and account for atmospheric N deposition and N fertilisers (Table S1). The DGVMs are independent from the
other budget terms except for their use of atmospheric CO2 concentration to calculate the fertilisation effect of
CO:z on plant photosynthesis.

All DGVMs use the LUH2-GCB2024 dataset as input, which includes the HYDE cropland/grazing land dataset
(Klein Goldewijk et al., 2017a, 2017b), and some additional information on land-use transitions, land-use
management activities and wood harvest. This includes annual, quarter-degree (regridded from 5 minute
resolution), fractional data on cropland and pasture from HYDE3.4.

DGVMs that do not simulate subgrid-scale transitions (i.e., those estimating net land-use emissions; see Table
S1) used the HYDE information on agricultural area change. For all countries, with the exception of Brazil, the
Democratic Republic of the Congo, Indonesia, and China these data are based on the available annual FAO
statistics of change in agricultural land area available from 1961 up to and including 2017. The FAO
retrospectively revised their reporting for the Democratic Republic of the Congo, which was newly available
until 2020 as reported in GCB2022. In addition to FAO country-level statistics, the HYDE3.4 cropland/grazing
land dataset is constrained spatially based on multi-year satellite land cover maps from ESA CCI LC (see
below). The extension of HYDE beyond the years that were directly informed by data was done as part of the
LUH2 methodology this year and was a simple extension of the previous 5-year trend. The actual years for this
extension varied by country since some countries were based on FAO data (2021), some used the China data
(2019), and some used MapBiomas data (Brazil and Indonesia, 2022). This methodology is not appropriate for
countries that have experienced recent rapid changes in the rate of land-use change, e.g. Brazil which has
experienced a recent upturn in deforestation. For Brazil and Indonesia we replace FAO state-level data for
cropland and grazing land in HYDE by those from the satellite-based land cover dataset MapBiomas (collection
7) for 1985-2022 (Brazil) (Souza et al. 2020) and 2000-2022 (Indonesia). ESA-CCI is used to spatially
disaggregate as described below.. The pre-1985 period is scaled with the per capita numbers from 1985 from

MapBiomas, so this transition is smooth.



341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

377

378
379

HYDE uses satellite imagery from ESA-CCI from 1992-2018 for more detailed yearly allocation of cropland
and grazing land, with the ESA area data scaled to match the FAO annual totals at country-level. The original
300 metre spatial resolution data from ESA was aggregated to a 5 arc minute resolution according to the
classification scheme as described in Klein Goldewijk et al. (2017a).

DGVMs that simulate subgrid-scale transitions (i.e., those estimating gross land-use emissions; see Table S1)
use more detailed land use transition and wood harvest information from the LUH2-GCB2024 data set. LUH2-
GCB2024 is an update of the comprehensive harmonised land-use data set (Hurtt et al., 2020), that includes
fractional data on primary and secondary forest vegetation, as well as all underlying transitions between land-
use states (850-2023; Hurtt et al., 2011, 2017, 2020; Chini et al., 2021; Table S1). This data set consists of 0.25°
fractional areas of land-use states and all transitions between those states, including a new wood harvest
reconstruction, new representation of shifting cultivation, crop rotations, management information including
irrigation and fertiliser application. The land-use states include five different crop types in addition to splitting
grazing land into managed pasture and rangeland. Wood harvest patterns are constrained with Landsat-based
tree cover loss data (Hansen et al. 2013). Updates of LUH2-GCB2024 over last year’s version (LUH2-
GCB2023) are using the most recent HYDE release. HYDE4.3 is based on new FAO inputs for years 1961-
2021, new MapBiomas inputs for Brazil (for years 1985-2022) and Indonesia (for years 2000-2022) and new
cropland data for China from Yu et al. 2022 (for years 1900-2019).

We use updated FAO wood harvest data for all dataset years from 1961 to 2022, and linearly extended to the
year 2023. The HYDE3.4 population data is also used to extend the wood harvest time series back in time.
Other wood harvest inputs (for years prior to 1961) remain the same in LUH2. These updates in the land-use
forcing are shown in Figure S7 in comparison to LUH2-GCB2022 and LUH2-GCB2023. DGVMs implement
land-use change in different ways (e.g. an increased cropland fraction in a grid cell can either be at the expense
of grassland, shrubs, or forest, the latter resulting in deforestation; land cover fractions of the non-agricultural
land differ between models). Similarly, model-specific assumptions are applied to convert deforested biomass or
deforested area, and other forest product pools into carbon, and different choices are made regarding the
allocation of rangelands as natural vegetation or pastures.

The difference between two DGVMs simulations (see Supplement S.4.1 below), one forced with historical
changes in land-use and a second one with time-invariant pre-industrial land cover and pre-industrial wood
harvest rates, allows quantification of the dynamic evolution of vegetation biomass and soil carbon pools in
response to land-use change in each model (ELuc). Using the difference between these two DGVM simulations
to diagnose ELuc means the DGVM estimate includes the loss of additional sink capacity (around 0.4 + 0.3 GtC
yr-1; see Section 2.10 and Supplement S.6.4), while the bookkeeping model estimate does not.

As a criterion for inclusion in this carbon budget, we only retain models that simulate a positive ELuc during the
1990s, as assessed in the [PCC AR4 (Denman et al., 2007) and ARS (Ciais et al., 2013). All DGVMs met this

criterion.

S.2.3 Translation between NGHGIs and Evruc

Land-use emissions estimates from bookkeeping models and from national GHG Inventories (NGHGIs) show a

large gap (see Figure 8 and Table S10). This gap is due to different approaches for calculating “anthropogenic”
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CO: fluxes related to land-use change and land management (Grassi et al. 2018). Land sinks due to
environmental change on managed lands are treated as non-anthropogenic in the global carbon budget, while
they are generally considered as anthropogenic in NGHGIs (“indirect anthropogenic fluxes”’; Eggleston et al.,
2006). Building on previous studies (Grassi et al. 2021), we implement an approach that adds the DGVM
estimates of CO: fluxes due to environmental change from managed forest areas (part of SLanp) to the ELuc
estimate from bookkeeping models. This sum is expected to be conceptually more comparable to NGHGI
estimates than Eruc.

ELuc data are taken from bookkeeping models, in line with the global carbon budget approach. To determine
Scanp in managed forest, the following steps were taken: Spatially gridded data of “natural” forest NBP (SLanp
i.e., including carbon fluxes due to environmental change and excluding land use change fluxes) were obtained
from DGVMs using S2 runs from the TRENDY v13 dataset. Results were first masked with a forest map that is
based on tree cover data from Hansen et al. (2013). To perform the conversion “tree” cover to “forest” cover, we
exclude gridcells with less than 20% tree cover and isolated pixels with maximum connectivity less than 0.5 ha
following the FAO definition of forest. Forest NBP is then further masked with a map of “intact” forest for the
year 2013, i.e. forest areas characterised by no remotely detected signs of human activity (Potapov et al. 2017).
This way, we obtained SLanp in “intact” and “non-intact” forest areas, which previous studies (Grassi et al.
2021) indicated to be a good proxy, respectively, for “unmanaged” and “managed” forest areas in the NGHGI.
Note that only a subset of models had forest NBP at grid cell level. For the other DGVMs, when a grid cell had
forest, all the NBP in that grid cell was allocated to forest. Since S2 simulations use pre-industrial forest cover
masks that are at least 20% larger than today’s forest (Hurtt et al. 2020), we corrected this NBP by a ratio
between observed (based on Hansen et al. 2013) and prescribed (from DGVMs) forest cover. This ratio is
calculated for each individual DGVM that provides information on prescribed forest cover, and a common ratio
(median ratio of this subset of models) is used. The details of the method used are explained in a GitHub
repository (Alkama, 2022).

LULUCEF data from NGHGIs are from Grassi et al. (2023), updated up to August 2024. While Annex I countries
report a complete time series 1990-2021, gap-filling was applied for Non-Annex I countries through linear
interpolation between two points and/or through extrapolation backward (till 2000) and forward (till 2021) using
the single closest available data. For all countries, the estimates of the years 2022 and 2023 are assumed to be
equal to those of 2021. The managed forest area, used to filter SLAND data from DGVMs to derive the natural
land sink in managed forests, accounts for temporal dynamics from 2000 to 2023. This data includes all CO2
fluxes from land considered managed, which in principle encompasses all land uses (forest land, cropland,
grassland, wetlands, settlements, and other land), changes among them, emissions from organic soils (i.e., from
peat drainage) and from fires. In practice, although almost all Annex I countries report all land uses, many non-
Annex I countries report only on deforestation and forest land, and only few countries report on other land uses.
In most cases, NGHGIs include most of the natural response to recent environmental change because they use
direct observations (e.g., national forest inventories) that do not allow separating direct and indirect
anthropogenic effects (Eggleston et al., 20006).

Last, we also used the gridded data of net land flux from 14 atmospheric inversion systems (Table S4) to get an
additional estimate of land-use fluxes in managed land. We applied a correction for riverine transport (see

Supplement S.5.1.) and multiplied the resulting values with the fraction of managed land in each grid cell for
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each inversion. For this purpose, we used masks of managed land from Grassi et al. (2023) available for the
years 1994, 2002, 2010, and 2016. We linearly interpolated the masks in time and replicated the 2016 mask in

the years 2017-2023. Subsequently, we applied another correction for lateral transport due to international wood
and crop trade (data from Deng et al. 2024). The obtained values are summed globally and compared to the

NGHGI estimates and the translated ELuc estimates.

Figure 8 and Table S10 shows the resulting translation of global carbon cycle models' land flux definitions to
that of the NGHGI (discussed in Section 3.2.2). For comparison we also show LULUCF estimates from
FAOSTAT (FAO, 2024), which include emissions from net forest conversion and fluxes on forest land
(Tubiello et al., 2021) as well as CO2 emissions from peat drainage and peat fires. Forest land stock change data
for 2021-2023 are carried forward from the 2020 estimates. The FAO data shows global emissions of 0.30 GtC
yr'!laveraged over 2014-2023, in contrast to the removals of -0.76 GtC yr™! estimated by the gap-filled NGHGI
data. Most of this difference is attributable to different scopes: a focus on carbon fluxes for the NGHGI and a
focus on land-use area and biomass estimates for FAO. In particular, the NGHGI data includes a larger forest
sink for non-Annex | countries resulting from a more complete coverage of non-biomass carbon pools and non-
forest land uses. NGHGI and FAO data also differ in terms of underlying data on forest land (Grassi et al.,
2022).

S.2.4 Uncertainty assessment for ELuc

Differences between the bookkeeping models and DGVMs originate from three main sources: different
methodologies, which among others lead to inclusion of the loss of additional sink capacity in DGVMs (see
Supplement S.6.4), different underlying land-use/land cover datasets, and different processes represented (Table
S1). We examine both the results from DGVMs and from the bookkeeping method and use the resulting
variations as a way to characterise the uncertainty in Eruc.

Despite the existing differences, the ELuc estimate from the DGVM multi-model mean is consistent with the
average of the emissions from the bookkeeping models (Table 5). However, there are large differences among
individual DGVMs (standard deviation at 0.6 GtC yr'!'; Table 5), between the bookkeeping estimates (standard
deviation at 0.3 GtC yr'! for cumulative emissions in 1850-2022), and between the H&C2023 model and its
previous model version H&N2017 (average difference 1850-2015 of 0.2 GtC yr''; see Table 1 in Houghton and
Castanho, 2023). A factorial analysis of differences between BLUE and H&N2017 (the precursor of H&C2023)
attributed them particularly to differences in carbon densities between primary and secondary vegetation (Bastos
et al., 2021). Earlier studies additionally showed the relevance of the different land-use forcing as applied (in
updated versions) also in the current study (Gasser et al., 2020). Ganzenmiiller et al. (2022) showed that ELuc
estimates with BLUE are substantially smaller when the model is driven by a new high-resolution land-use
dataset (HILDA+). They identified shifting cultivation and the way it is implemented in LUH2 as a main reason
for this divergence. They further showed that a higher spatial resolution reduces the estimates of both gross
emissions and gross removals because successive transitions are not adequately represented at coarser
resolution, which has the effect that—despite capturing the same extent of transition areas—overall less area

remains pristine at the coarser compared to the higher resolution.
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The uncertainty in ELuc of £0.7 GtC yr! reflects our best value judgement that there is at least 68% chance
(+10) that the true land-use change emissions lie within the given range, for the range of processes considered
here. Prior to the year 1959, the uncertainty in Eruc is taken from the standard deviation of the DGVMs. We
assign low confidence to the annual estimates of ELuc because of the inconsistencies among estimates and

because of the difficulties to quantify some of the processes with DGVMs.

S.2.5 Land-use emissions projection for 2024

We project the 2024 land-use emissions for BLUE, H&C2023, OSCAR, and LUCE based on their ELuc
estimates for 2023 and on the interannual variability of peat fires and tropical deforestation and degradation fires
as estimated using active fire data (MCD14ML; Giglio et al., 2016). The latter scales almost linearly with GFED
emissions estimates over large areas (van der Werf et al., 2017), and thus allows for tracking fire emissions in
deforestation and tropical peat zones in near-real time. Peat drainage is assumed to be unaltered, as it has low
interannual variability. We project the 2024 land-use emissions for BLUE, H&C2023, OSCAR, and LUCE
based on their ELuc estimates for 2023 and add the change in carbon emissions from peat fires and tropical
deforestation and degradation fires (2024 emissions relative to 2023 emissions) from GFED4s. The GFED4s
estimates for 2024 are as of October 17.

S.3 Methodology Ocean CO2 sink
S.3.1 Observation-based estimates

We primarily use the observational constraints assessed by IPCC of a mean ocean COz sink of 2.2 = 0.7 GtC yr!
for the 1990s (90% confidence interval; Ciais et al., 2013) to verify that the GOBMs provide a realistic
assessment of Socean. This is based on indirect observations with seven different methodologies and their
uncertainties, and further using three of these methods that are deemed most reliable for the assessment of this
quantity (Denman et al., 2007; Ciais et al., 2013). The observation-based estimates use the ocean/land CO» sink
partitioning from observed atmospheric CO2 and O2/N:z concentration trends (Manning and Keeling, 2006;
Keeling and Manning, 2014), an oceanic inversion method constrained by ocean biogeochemistry data
(Mikaloff Fletcher et al., 2006), and a method based on penetration time scale for chlorofluorocarbons (McNeil
et al., 2003). The IPCC estimate of 2.2 GtC yr! for the 1990s is consistent with a range of methods
(Wanninkhof et al., 2013). We refrain from using the IPCC estimates for the 2000s (2.3 + 0.7 GtC yr'!), and the
period 2002-2011 (2.4 + 0.7 GtC yr!, Ciais et al., 2013) as these are based on trends derived mainly from
models and one data-product (Ciais et al., 2013). Additional constraints summarised in AR6 (Canadell et al.,
2021) are the interior ocean anthropogenic carbon change (Gruber et al., 2019) and ocean sink estimate from
atmospheric COz2 and O2/N2 (Tohjima et al., 2019) which are used for model evaluation and discussion,
respectively.

We also use nine estimates of the ocean COz sink and its variability based on surface ocean fCO2 maps obtained
by the interpolation of surface ocean fCO2 measurements. Seven of the methods cover a period from 1990
onwards due to severe restriction in data availability prior to 1990 (Figure 11), whereas two span the time period

from 1957 and 1959 onwards. These estimates differ in many respects: they use different maps of surface fCOx,
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different atmospheric CO2 concentrations, wind products and different gas-exchange formulations as specified
in Table S3. We refer to them as fCOz-products. The measurements underlying the surface fCO> maps are from
the Surface Ocean CO2 Atlas version 2024 (SOCAT v2024; Bakker et al., 2024), which is an update of version
3 (Bakker et al., 2016) and the subsequent annual updates used in previous versions of the global carbon budget.
SOCAT v2024 has an additional 3.0 million fCO2 measurements with an estimated accuracy of better than 5
patm relative to v2023. Of these, 2 million are from 2023 in a total of 210 data sets (Table S7), while the largest
addition from earlier years is from 2022 with 64 data sets new to SOCAT. For the 2023 data, there are a total of
178 data sets with measurements in the Northern hemisphere, while there are only 52 with data from the
Southern hemisphere. For the Southern Ocean, there are only 11 data sets from 2023 in the subpolar zone and
further south (defined as south of 45°S), and only one from Austral winter (June-August). The coverage of
SOCAT observations in 2023 is only about 50% of that in 2016 (Fig. 11), with large reductions in sampling in
both the Northern (from 391 to 178 data sets) as well as Southern hemisphere (from 109 to 52 data sets). This
reduction cannot be explained only in terms of lags in data submission. The quality control criteria used for
SOCATV2024 are described in Lauvset et al. (2018).

. Each of the data-based estimates uses a different method to map the SOCAT v2024 data to the global ocean.
The methods include a data-driven diagnostic method combined with a multi linear regression approach to
extend back to 1957 (Rédenbeck et al., 2022; referred to here as Jena-MLS), four neural network models
(Landschiitzer et al., 2014; referred to as VLIZ-SOMFFN; Chau et al., 2022; Copernicus Marine Environment
Monitoring Service, referred to here as CMEMS-LSCE-FFNN; Zeng et al., 2022; referred to as NIES-ML3;
Gregor et al. 2019, referred to as CSIR-ML6), one cluster regression approach (Gregor et al., 2024; referred to
as OceanSODA-ETHZv2), a multi-linear regression method (lida et al., 2021; referred to as JMA-MLR), and one
method that relates the fCO> misfit between GOBMs and SOCAT to environmental predictors using the extreme
gradient boosting method extending back to 1959 (Gloege et al., 2022).. The ensemble mean of the fCO2-based
flux estimates is calculated from these eight mapping methods. Further, we show the flux estimate of the UExP-
FNN-U method (Watson et al., 2020; Ford et al., accepted) who also use a neural network model to map fCO:
data to the globe, but resulting in a substantially larger ocean sink estimate, owing to a number of adjustments
they applied to the surface ocean fCO: data. Concretely, these authors adjusted the SOCAT fCO. downward to
account for differences in temperature between the depth of the ship intake and the relevant depth right near the
surface, and included a further adjustment to account for the cool surface skin temperature effect. In
Friedlingstein et al. 2023, the UExP-FNN-U product correction was applied illustrating that this temperature
adjustment leads to an upward correction of the ocean carbon sink, up to 0.9 GtC yr’!, that, if correct, should be
applied to all fCOz-based flux estimates. This year, the updated UExP-FFN-U method applies a smaller
adjustment as proposed by Dong et al. (2022), who illustrate a smaller correction effect of 0.6 GtC yr'!. The
impact of the cool skin effect on air-sea CO: flux is based on established understanding of temperature gradients
(as discussed by Goddijn-Murphy et al., 2015 and Woolf et al., 2016), and laboratory observations (Jihne and
Haussecker, 1998; Jahne, 2019), but in situ field observational evidence is lacking (Dong et al., 2022). The
UExP-FNN-U method is thus, similar to the UExP-FNN-U flux estimate in previous editions, not included in the
ensemble mean of the fCO»-based flux estimates. This choice will be re-evaluated in upcoming budgets based

on further lines of evidence.
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Typically, fCOz2-products do not cover the entire ocean due to missing coastal oceans and sea ice cover. The
CO: flux from each fCO»-based product is already at or above 99% coverage (either due to complete coverage
or a posteriori filling) of the ice-free ocean surface area in several products this year (UEXP-FNN-U, IMA-MLR,
VLIZ-SOMFFN, Jena-MLS, OceanSODA-ETHZv2), . The products that remained below 99% coverage of the
ice-free ocean (CMEMS-LSCE-FFNN, NIES-ML3, UExP-FNN-U, CSIR-ML6 ) were scaled by the following
procedure:

Since v2022 of the GCB we now scale fluxes globally and regionally (North, Tropics, South) to match the ice-

free area (using the HadISST sea surface temperature and sea ice cover; Rayner et al., 2003):

region
A . .
reg—scaled __ “(1-ice) region
FCOZ — ,region FCOZ
FCO,

In the equation, 4 represents area, (1 — ice) represents the ice free ocean, Arco2 %" represents the coverage of
the fCO2-product for a region, and FCO2™¢" is the integrated flux for a region.

We further use results from two diagnostic ocean models, Khatiwala et al. (2013) and DeVries (2014), to
estimate the anthropogenic carbon accumulated in the ocean prior to 1959. The two approaches assume constant
ocean circulation and biological fluxes, with Socean estimated as a response in the change in atmospheric CO2
concentration calibrated to observations. The uncertainty in cumulative uptake of £20 GtC (converted to £10) is
taken directly from the IPCC’s review of the literature (Rhein et al., 2013), or about +30% for the annual values
(Khatiwala et al., 2009).

S.3.2 Global Ocean Biogeochemistry Models (GOBMs)

The ocean COz sink for 1959-2023 is estimated using ten GOBMs (Table S2). The GOBMs represent the
physical, chemical, and biological processes that influence the surface ocean concentration of CO2 and thus the
air-sea COz flux. The GOBMs are forced by meteorological reanalysis and atmospheric COz concentration data
available for the entire time period. They mostly differ in the source of the atmospheric forcing data
(meteorological reanalysis), spin up strategies, and in their horizontal and vertical resolutions (Table S2). All
GOBMs except one (CESM-ETHZ) do not include the effects of anthropogenic changes in nutrient supply
(Duce et al., 2008). They also do not include the perturbation associated with changes in riverine organic carbon
(see Section 2.10 and Supplement S.6.3).

Four sets of simulations were performed with each of the GOBMs. Simulation A applied historical changes in
climate and atmospheric CO2 concentration. Simulation B is a control simulation with constant atmospheric
forcing (normal year or repeated year forcing) and constant pre-industrial atmospheric CO2 concentration.
Simulation C is forced with historical changes in atmospheric CO2 concentration, but repeated year or normal
year atmospheric climate forcing. Simulation D is forced by historical changes in climate and constant pre-
industrial atmospheric COz concentration.

The atmospheric COz forcing file was updated in GCB2024 to ensure consistency with the atmospheric CO2
growth rate reported in the GCB. Since January 1980, we use the CO: global growth rate reported by
NOAA/GML (Lan et al., 2024). In the period March 1958-December 1979, we use bias-adjusted values of the

global growth rate based on measurements of atmospheric CO2 made by the Scripps Institution of
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Oceanography at the Mauna Loa Observatory, Hawaii (Keeling et al., 1976; full period of coverage 1758-2024).
Bias adjustment of the Scripps data was performed in three sequential stages as follows:

e First, to correct for differences in the mean atmospheric concentration of CO2 at Mauna Loa versus the
globally averaged value, a constant of -0.231 ppm was added to all Scripps data to improve alignment
of the “COz[trend]” values from the Scripps data with the “COz[trend]” values from the global NOAA
data. The value of -0.231 ppm is the mean offset of “COz[trend]” at Mauna Loa from the global
“COg[trend]” value during 1980-2000.

e Second, to correct for differences in the seasonality of atmospheric CO2 concentrations at Mauna Loa
versus globally, we shifted monthly anomalies between CO:z concentration data and “trend” values
backward in time by one month in the Scripps data. This specifically corrects for the fact that
peaks/troughs in the climatology of "COz[monthly observation] - COz[trend]” at Mauna Loa occur 1
month earlier than peaks/troughs in the climatology of "COz[monthly observation] - COz[trend]” in the
global data from NOAA. A one-month shift to the Scripps data was found to optimally align the
climatologies of "COz[monthly observation] - COz[trend]” in the Scripps and global data.

e Third, to correct for the greater amplitude of seasonal anomalies at Mauna Loa from Scripps than the
global data from NOAA, we apply a monthly multiplier that dampens the magnitude of monthly
anomalies from “trend” values in the Scripps data. The monthly multiplier reduces values of
"CO2[monthly observation] - COz[trend]” in the Scripps data to more closely match values of

"COz[monthly observation] - COx[trend]” in the NOAA global data.

For the period Jan 1750 to February 1958, we use bias-adjusted values of the global growth rate based on
measurements of atmospheric COz from air trapped in ice at Law Dome (Joos and Spahni, 2008; full period of
coverage 1750-2004). Bias adjustments were made to improve alignment with the post-1980 time series of data
from Scripps and NOAA, and were performed in two sequential stages as follows:
e First, a constant of 0.973 was added to all data from Law Dome to improve alignment with the Scripps
data (which had already been bias-corrected as described above). The constant of 0.973 is the mean
offset of CO» annual values (annual mean in the case of the Scripps data) in the period 1958-1979.
e Second, the climatology of "COz[monthly observation] - COz[trend]” from the period 1958-2000 was
superimposed on the data from Law Dome (note that the 1958-2000 data includes both Scripps and
NOAA data, combined as described above). To achieve this, a spline interpolation was fitted to
downscale annual observations from CO:z concentration from Law Dome to monthly values of
“COz[trend]” and the climatological seasonality of "COz[monthly observation] - COz[trend]” from
1958-2000) was then added to the interpolated values of “COz[trend]”.

To derive Socean from the model simulations, we subtracted the slope of a linear fit to the annual time series of
the control simulation B from the annual time series of simulation A. Assuming that drift and bias are the same
in simulations A and B, we thereby correct for any model drift. Further, this difference also removes the natural
steady state flux (assumed to be 0 GtC yr'! globally without rivers), which is often a major source of biases.
Note, however, that Giirses et al. (2023) questioned the assumption of comparable bias and drift in simulations

A and B as they compared two versions of FESOM-REcoM, and found a very similar air-sea COz flux in
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simulation A despite a different bias as derived from simulation B. This approach works for all model set-ups,
including IPSL, where simulation B was forced with variable historical climate changes (looping over a 10-year
forcing). This approach assures that the interannual variability is not removed from IPSL simulation A.

The absolute correction for bias and drift per model in the 1990s varied between <0.01 GtC yr! and 0.31 GtC
yr'!, with five models having positive biases, four having negative biases and one model having essentially no
bias (NorESM). The MPI model uses riverine input and therefore simulates outgassing in simulation B. By
subtracting a linear fit of simulation B, also the ocean carbon sink of the MPI model follows the definition of
Socean. This correction increases the model mean ocean carbon sink by 0.07 GtC yr'! in the 1990s. The ocean

models cover 99% to 101% of the total ocean area, so that area-scaling is not necessary.

S.3.3 GOBM evaluation

The ocean CO: sink for all GOBMs and the ensemble mean falls within 90% confidence of the observed range,
or 1.5 t0 2.9 GtC yr! for the 1990s (Ciais et al., 2013) before and after applying adjustments. The GOBMs and
fCO»-products have been further evaluated using the fugacity of sea surface CO: (fCOz) from the SOCAT v2024
database (Bakker et al., 2016, 2024). We focused this evaluation on the root mean squared error (RMSE)
between observed and modelled fCO2 and on a measure of the amplitude of the interannual variability of the
flux (modified after R6denbeck et al., 2015). The RMSE is calculated from detrended, annually and regionally
averaged time series of fCOz calculated from GOBMs and fCOz-products subsampled to SOCAT sampling
points to measure the misfit between large-scale signals (Hauck et al., 2020). To this end, we apply the
following steps: (i) subsample data points for where there are observations (GOBMs/fCOz-products as well as
SOCAT), (ii) average spatially, (iii) calculate annual mean, (iv) detrend both time-series (GOBMs/fCO»-
products as well as SOCAT), (v) calculate RMSE. We use a mask based on the minimum area coverage of the
fCOz-products. This ensures a fair comparison over equal areas. The amplitude of the Socean interannual
variability (A-IAV) is calculated as the temporal standard deviation of the detrended annual COz flux time series
after area-scaling (Rodenbeck et al., 2015, Hauck et al., 2020). These metrics are chosen because RMSE is the
most direct measure of data-model mismatch and the A-IAV is a direct measure of the variability of Socean on
interannual timescales. We apply these metrics globally and by latitude bands. Results are shown in Figure S2

and discussed in Section 3.6.5.

In addition to the interior ocean anthropogenic carbon accumulation (Section 3.6.5) and SOCAT fCO», we
evaluate the models with process-based metrics that were previously related to ocean carbon uptake. These are
the Atlantic Meridional Overturning Circulation (Goris et al., 2018, Terhaar et al., 2022, Terhaar et al., in
review), the Southern Ocean sea surface salinity (Terhaar et al., 2021, 2022, 2024, Hauck et al., 2023b), the
Southern Ocean stratification index (Bourgeois et al., 2022) and the surface ocean Revelle factor (Terhaar et al.,

2022, 2024).

We follow the methodology of previous studies wherever possible, particularly the RECCAP model evaluation
chapter (Terhaar et al.,2024). The Atlantic Meridional Overturning Circulation from the GOBMs is here defined

as the maximum of the Atlantic meridional overturning streamfunction at 26°N. This is compared to data from
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the RAPID array at 26°N (Moat et al., 2024). An uncertainty of 0.9 Sv was reported in McCarthy et al. (2015).
We use the years 2005-2022, which are all complete calendar years available from the RAPID data set, and
report the temporal standard deviation over that period.

The Southern Ocean sea surface salinity is reported for the subpolar seasonally stratified biome (SPSS) and for
the area covering both the SPSS and subtropical seasonally stratified (STSS) biomes. Biome definitions are
taken from Fay and McKinley (2014, as provided for the RECCAP2 project). The sea surface salinity was first
used as an emergent constraint for the Southern Ocean CO: uptake with Earth System Models (Terhaar et al.
2021, 2022) using the interfrontal salinity between the polar and subtropical fronts with dynamic fronts. As the
GOBMs are forced with reanalysis data, the fronts do not vary as much as in the ESMs, and thus the use of fixed
biomes is justified (Hauck et al., 2023b, Terhaar et al., 2024). We use the time period 2005-2022 for consistency
with the AMOC metric. The observational sea surface salinity values are calculated from the EN4 data set
(Good et al., 2013; using the objective analyses — Gouretski and Reseghetti (2010) XBT corrections and
Gouretski and Cheng (2020) MBT corrections) with the aid of the Fay and McKinley (2014) mask.

The Southern Ocean stratification index is a simplified version of the metric used in Bourgeois et al. (2022). It is
defined as the difference between in situ density at the surface and at 1000 m depth in the latitudinal band of
30°S to 55°S. Each model provider calculated this metric based on their native model mesh. We use again the
period of 2005-2022 for consistency with the AMOC metric. The same metric was calculated from the EN4 data
set mentioned above (Good et al., 2013).

Finally, the global surface ocean Revelle factor is reported. Monthly 1°x1° gridded fields were provided by the
modelling groups, based on standard carbonate chemistry routines (e.g., mocsy, Orr & Epitalon, 2015;
PyCO2SYS, Humphreys et al., 2022a,b). The observational metrics come from two sources, firstly the gridded
GLODAP data set v2.2016 (Lauvset et al., 2016), which is a climatology centered around the year 2002. For
comparison with GLODAP, the models were subsampled to GLODAP data coverage and to a comparable time
window also centred around 2002 (1997-2007). Secondly, the OceanSODA_v2024 data set (Gregor and Gruber,
2020, updated) was used, which has all input data available to calculate the surface ocean Revelle factor.
OceanSODA covers a slightly smaller surface area (~96 % of GLODAP), but provides data until 2021. The
period 2005-2021 was used due to data availability and the models were subsampled to the same spatial and

temporal coverage.

For this release, only the comparison of the metrics between GOBMs and observational data sets is presented,
whereas it is foreseen to translate this comparison into a quantitative benchmarking comparable to the iLAMB
benchmarking for the DGVMs and the corresponding iOMB framework (Ogunro et al., 2018). In a next step,
model weighting can be applied based on the benchmarking (e.g., Brunner et al., 2020).

S3.4 fCO:-product trend benchmarking

In addition to the air-sea CO2 flux estimates, fCO2-product providers reconstructed the sea surface fCO: of a set

of 4 GOBM's, namely CESM-ETHZ, FESOM2.1REcoM, MRI-ESM2 and IPSL, that were submitted to the
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GCB2023 (Friedlingstein et al. 2023) following the approach of Hauck et al. (2023). A total of 6 fCO2-products
conducted the benchmark test (VLIZ-SOMFFN, NIES-ML3, Jena-MLS, CSIR-ML6, OceanSODA-ETHZv2 and
JMA-MLR). The GOBM s serve as known truth and are subsampled according to the real world observation
tracks. The fCOz-products then reconstruct the true model field, based on the subsampled information provided.
We then compare trends for the period 2001-2021, i.e. the period where we see the divergence between fCO»-
products and models, removing the final year to avoid the tail effect. The trends of the individual fCO2-products
from the GCB24 were then plotted against the mean of the trend reconstruction bias (evaluated against the
known truth GOBM trends) of the 4 GOBM. This is shown in Figure S3. The figure illustrates the tendency that
fCOz2-products with negative biases in the fCO: reconstruction show the strongest air-sea CO> flux trends and
vice versa for the fCO2 products with positive biases. Overall, the ensemble of 6 fCO2 methods shows a
tendency to underestimate the fCO: trend from the GOBMs (with a mean bias across 6 fCOz-products and 4
model reconstructions of 0.25 patm/decade) and thus an inferred tendency to overestimate the air-sea CO> flux
trend (mean across 6 fCO:z-products of 0.50+0.13 PgC yr! decade™), however, due to compensating negative
and positive fCOz biases, the ensemble mean trend bias is smaller than suggested from previous studies
focusing on one or two fCOz-products only (see e.g. Gloege et al. 2021, Hauck et al. 2023). The inferred global
trend of 0.43+0.13 PgC yr-1 decade-1 that intercepts with the 0 bias line closely corresponds to a recent estimate
by Mayot et al. 2024 of 0.42+0.06 PgC yr-1 decade-1 (period 2000-2022) in the mean, although with a
substantially larger uncertainty and different time period. The evidence basis, thus, remains low due to the small
sample size of fCO2-products (n=6) and reconstructed GOBMs (n=4), thus a more detailed analysis is required

to better constrain fCO2-product trends.

S3.4 Uncertainty assessment for Socean

We quantify the 1-c uncertainty around the mean ocean sink of anthropogenic COz by assessing random and
systematic uncertainties for the GOBMs and fCO»-products. The random uncertainties are taken from the
ensemble standard deviation (0.3 GtC yr! for GOBMs, 0.3 GtC yr'! for fCO2-products). We derive the GOBMs
systematic uncertainty by the deviation of the DIC inventory change 1994-2007 from the Gruber et al. (2019)
estimate (0.4 GtC yr'!) and suggest these are related to physical transport (mixing, advection) into the ocean
interior. For the fCO2-products, we consider systematic uncertainties stemming from uncertainty in fCOz
observations (0.2 GtC yr'!, Takahashi et al., 2009; Wanninkhof et al., 2013), gas-transfer velocity (0.2 GtC yr!,
Ho et al., 2011; Wanninkhof et al., 2013; Roobaert et al., 2018), wind product (0.1 GtC yr'!, Fay et al., 2021),
river flux adjustment (0.3 GtC yr!, Regnier et al., 2022, formally 2-c uncertainty), and fCO2 mapping (0.2 GtC
yr!, Landschiitzer et al., 2014). Combining these uncertainties as their squared sums, we assign an uncertainty
of £ 0.5 GtC yr'! to the GOBMs ensemble mean and an uncertainty of + 0.6 GtC yr™! to the fCOz-product
ensemble mean, which is smaller than a recent estimate by Ford et al. (2024), who estimate an uncertainty of
+0.7 GtC yr-1 based on propagating different sources of uncertainty in fCO2-products. Here, the uncertainties
are propagated as 6(Socean) = (1/22 * 0.5% + 1/2% * 0.6%)"? GtC yr"' and result in an + 0.4 GtC yr'! uncertainty

around the best estimate of Socgan.

We examine the consistency between the variability of the GOBMs and the fCO2-products to assess confidence

in Socean. The interannual variability of the ocean fluxes (quantified as A-IAV, the standard deviation after
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detrending, Figure S2) of the eight fCO2-products plus the UExP-FNN-U product (Watson et al., 2020; Ford et
al., accepted) for 1990-2023, ranges from 0.08 to 0.37 GtC yr! with the lower estimates by the three ensemble
methods (NIES-ML3, CMEMS-LSCE-FFNN, OS-ETHZ-GRaCER). The inter-annual variability in the GOBMs
ranges between 0.10 and 0.20 GtC yr!, hence there is overlap with the A-IAV estimates of the fCOz-products.

Individual estimates (both GOBMs and fCOzproducts) generally produce a higher ocean COz sink during strong
El Nifio events. There is emerging agreement between GOBMs and fCOz-products on the patterns of decadal
variability of Socean with a global stagnation in the 1990s, an extra-tropical strengthening in the 2000s
(McKinley et al., 2020, Hauck et al., 2020). More recently, a fast growth of the sink is simulated by both
methods between 2001 and 2016, and a stagnation period since then. A stagnation or even decline of Socean
occurred during the triple La Nifia years 2020-2023. The central estimates of the annual flux from the GOBMs
and the fCOz-products have a correlation » of 0.98 (1990-2023). The agreement between the models and the
JSCOzproducts reflects some consistency in their representation of underlying variability since there is little

overlap in their methodology or use of observations.

S.4 Methodology Land CO: sink
S.4.1 DGVM simulations

The DGVMs model runs were forced by either the merged monthly Climate Research Unit (CRU) and 6 hourly
Japanese 55-year Reanalysis (JRA-55) data set or by the monthly CRU data set, both providing observation-
based temperature, precipitation, and incoming surface radiation on a 0.5°x0.5° grid and updated to 2023 (Harris
et al., 2014, 2020). The combination of CRU monthly data with 6 hourly forcing from JRA-55 (Kobayashi et al.,
2015) is performed with methodology used in previous years (Viovy, 2016) adapted to the specifics of the JRA-
55 data.

Introduced in GCB2021 (Friedlingstein et al., 2022a), incoming short-wave radiation fields take into account
aerosol impacts and the division of total radiation into direct and diffuse components as summarised below.
The diffuse fraction dataset offers 6-hourly distributions of the diffuse fraction of surface shortwave fluxes over
the period 1901-2023. Radiative transfer calculations are based on monthly-averaged distributions of
tropospheric and stratospheric aerosol optical depth, and 6-hourly distributions of cloud fraction. Methods
follow those described in the Methods section of Mercado et al. (2009), but with updated input datasets.

The time series of speciated tropospheric aerosol optical depth is taken from the historical and RCP8.5
simulations by the HadGEM2-ES climate model (Bellouin et al., 2011). To correct for biases in HadGEM2-ES,
tropospheric aerosol optical depths are scaled over the whole period to match the global and monthly averages
obtained over the period 2003-2020 by the CAMS Reanalysis of atmospheric composition (Inness et al., 2019),
which assimilates satellite retrievals of aerosol optical depth.

The time series of stratospheric aerosol optical depth is taken from the by Sato et al. (1993) climatology, which
has been updated to 2012. Years 2013-2020 are assumed to be background years so replicate the background
year 2010. That assumption is supported by the Global Space-based Stratospheric Aerosol Climatology time
series (1979-2016; Thomason et al., 2018). The time series of cloud fraction is obtained by scaling the 6-hourly

distributions simulated in the Japanese Reanalysis (Kobayashi et al., 2015) to match the monthly-averaged cloud
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cover in the CRU TS v4.06 dataset (Harris et al., 2020). Surface radiative fluxes account for aerosol-radiation
interactions from both tropospheric and stratospheric aerosols, and for aerosol-cloud interactions from
tropospheric aerosols, except mineral dust. Tropospheric aerosols are also assumed to exert interactions with
clouds. The radiative effects of those aerosol-cloud interactions are assumed to scale with the radiative effects of
aerosol-radiation interactions of tropospheric aerosols, using regional scaling factors derived from HadGEM2-
ES. Diffuse fraction is assumed to be 1 in cloudy sky. Atmospheric constituents other than aerosols and clouds
are set to a constant standard mid-latitude summer atmosphere, but their variations do not affect the diffuse
fraction of surface shortwave fluxes.

In addition to the climate forcing, the DGVMs forcing also include the global atmospheric COz time series,
same as for the GOBMs and described in Section S.3.2 (Lan et al. (2023), the gridded land cover changes (see
Supplement S.2.2), and the gridded nitrogen deposition and fertilisers (see Table S1 for specific models details).
Four simulations were performed with each of the DGVMSs. Simulation 0 (S0) is a control simulation which
uses fixed pre-industrial (year 1700) atmospheric CO2 concentrations, cycles early 20th century (1901-1920)
climate and applies a time-invariant pre-industrial land cover distribution and pre-industrial wood harvest rates.
Simulation 1 (S1) differs from SO by applying historical changes in atmospheric CO2 concentration and N
inputs. Simulation 2 (S2) applies historical changes in atmospheric CO2 concentration, N inputs, and climate,
while applying time-invariant pre-industrial land cover distribution and pre-industrial wood harvest rates.
Simulation 3 (S3) applies historical changes in atmospheric COz concentration, N inputs, climate, and land
cover distribution and wood harvest rates.

S2 is used to estimate the land sink component of the global carbon budget (SLanp). S3 is used to estimate the
total land flux but is not used in the global carbon budget. We further separate SLanp into contributions from

CO: (=S1-S0) and climate (=S2-S1+S0).

S.4.2 DGVM evaluation

We apply three criteria for minimum DGVMs realism by including only those DGVMs with (1) steady state
after spin up, (2) global net land flux (SLanp — ELuc) that is an atmosphere-to-land carbon flux over the 1990s
ranging between -0.3 and 2.3 GtC yr!, within 90% confidence of constraints by global atmospheric and oceanic
observations (Keeling and Manning, 2014; Wanninkhof et al., 2013), and (3) global ELuc that is a carbon source
to the atmosphere over the 1990s, as already mentioned in Supplement S.2.2. All DGVMs meet these three
criteria.

In addition, the DGVMs results are also evaluated using the International Land Model Benchmarking system
(ILAMB; Collier et al., 2018). This evaluation is provided here to document, encourage and support model
improvements through time. ILAMB variables cover key processes that are relevant for the quantification of
Scanp and resulting aggregated outcomes (see Figure S4 for the results and for the list of observed databases).
Results are shown in Figure S4 and briefly discussed in Section 3.7.5.

The International LAnd Model Benchmarking (ILAMB) system (Collier et al. 2018; version 2.7.2 (2024):
https://github.com/rubisco-sfa/[L AMB/releases/tag/v2.7.2) was used to compare the 21 models (20 DGVMs and
CARDAMOM) to observational benchmarks for a number of different variables related to the land surface:

gross primary productivity (GPP), leaf area index (LAI), ecosystem respiration, soil carbon, evapotranspiration,
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runoff, burned areas, fire CO2 emissions, and soil respiration), either for the entire global land surface or for the
different RECCAP regions. Furthermore, relationships between selected pairs of variables can be visualised
with ILAMB. Each row for each variable in Figs. S4 is clickable in the full website version https://gws-
access.jasmin.ac.uk/public/landsurf rdg/pmcguire/ILAMB output/ TRENDYv13 latest/) and gives access to

geographic plots for such quantities as bias relative to observational benchmark, temporal RMSE from the
observational benchmark, and difference in max month from the observational benchmark. The full website
version also gives a spatial Taylor diagram for all the models, as well as time series comparisons of the regional
mean time-series and the regional mean annual cycle. The Biomass variable was not included this year, due to a
mismatch between the TRENDY cVeg variable (above-ground and below-ground biomass, for all PFTs) and
two of the previously-used observational benchmark datasets for biomass (Saatchi et al., 2011 and Thurner et
al., 2014), which are both only for forests and for above-ground biomass.

In the ILAMB setup for TRENDYV13, we have added three more variables (annual-averaged Burned Area, Fire
Emissions, and Soil Respiration) and we have modified the Koven visualisation slightly for the Soil Carbon
variable. All four of these changes have been put into a category of variables that we call ‘Ecosystem and
Carbon Cycle Extended’. Two of the models (EDv3 and SDGVM) compute burned area either on a national
level or without considering arid non-vegetated lands, as the model biases for burned area for these two models
are rather high in the world’s deserts, compared to the GFED4.1S observational benchmark until the year 2016.
However, in the case of SDGVM, the positive burned-area bias in the deserts is not apparent in the fire
emissions variable. The Soil Respiration variable has been added only for those models that provided the soilr
model output, which is calculated as the sum of heterotrophic respiration and root respiration. For the soil
respiration variable, three observational benchmarks were selected (Tang et al. 2019, 2020, Raich et al. 2002
and Hashimoto et al. 2015) from the data sets contrasted by Hashimoto et al. (2023). The Koven analysis of the
Soil Carbon turnover time is part of the standard setup in ILAMB version 2.7.2, but we put it into the Extended
category largely since it seems to be missing proper application of an aridity mask for all of the models, unlike
for the Observational Benchmark. We also added a model-fit curve to the Koven analysis, for better
visualisation by allowing the comparison to the benchmark-fit curve. The TRENDYV13 version of the updated
ILAMB version 2.7.2 GitHub code fork/branch is available at:
https://github.com/mcguirepatr/ILAMB/tree/master

S.4.3 Uncertainty assessment for Sanp

For the uncertainty for SLanp, we use the standard deviation of the annual COz sink across the DGVMs,
averaging to about + 0.6 GtC yr! for the period 1959 to 2021. We attach a medium confidence level to the
annual land COz sink and its uncertainty because the estimates from the residual budget and averaged DGVMs

match well within their respective uncertainties (Table 5).

S.5 Methodology Atmospheric Inversions

S.5.1 Inversion System Simulations

Fourteen atmospheric inversions (details of each in Table S4) were used to infer the spatio-temporal distribution

of the CO: flux exchanged between the atmosphere and the land or oceans. These inversions are based on
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Bayesian inversion principles with prior information on fluxes and their uncertainties. They use very similar sets
of surface measurements of COz time series (or subsets thereof) from various flask and in situ networks. Six
inversion systems used satellite xCOz retrievals from GOSAT and/or OCO-2, of which two systems used a
combination of satellite and surface observations.

Each inversion system uses different methodologies and input data but is rooted in Bayesian inversion
principles. These differences mainly concern the selection of atmospheric COz data and prior fluxes, as well as
the spatial resolution, assumed correlation structures, and mathematical approach of the models. Each system
uses a different transport model, which was demonstrated to be a driving factor behind differences in
atmospheric inversion-based flux estimates, and specifically their distribution across latitudinal bands (Gaubert
et al., 2019; Schuh et al., 2019).

Most of the fourteen inversion systems prescribe similar global fossil fuel emissions for Eros; specifically, the
GCP’s Gridded Fossil Emissions Dataset version 2024.0 (GCP-GridFEDv2024.0; Jones et al., 2024), which is
an update through 2023 of the first version of GCP-GridFED presented by Jones et al. (2021b) (Table S4). All
GCP-GridFED versions scale gridded estimates of CO2 emissions from EDGARv4.3.2 (Janssens-Maenhout et
al., 2019) within national territories to match national emissions estimates provided by the GCP for the years
1959-2023, which are compiled following the methodology described in Supplement S.1. GCP-
GridFEDv2024.0 adopts the seasonality of emissions (the monthly distribution of annual emissions) from the
Carbon Monitor (Liu et al., 2020a,b; Dou et al., 2022) for Brazil, China, all EU27 countries, the United
Kingdom, the USA and shipping and aviation bunker emissions. The seasonality present in Carbon Monitor is
used directly for years 2019-2023, while for years 1959-2018 the average seasonality of 2019, and 2021 and
2022 are applied (avoiding the year 2020 during which emissions were most impacted by the COVID-19
pandemic). For all other countries, seasonality of emissions is taken from EDGAR (Janssens-Maenhout et al.,
2019; Jones et al., 2023), with small annual correction to the seasonality present in 2010 based on heating or
cooling degree days to account for the effects of inter-annual climate variability on the seasonality of emissions
(Jones et al., 2021b).

Small remaining differences between regridding of the GridFED inputs, or the use of different fossil fuel
emission priors are corrected for by scaling the resulting inverse fluxes to GridFEDv2024.0. The consistent use
of Eros ensures a close alignment with the estimate of Eros used in this budget assessment, enhancing the
comparability of the inversion-based estimate with the flux estimates deriving from DGVMs, GOBMs and
JSCOz-based methods. The fossil fuel adjustment (including emissions from cement production and cement
carbonation COz sink) ensures that the estimated uptake of atmospheric CO:z by the land and oceans was fully
consistent within the inversion ensemble.

The land and ocean COz fluxes from atmospheric inversions contain anthropogenic perturbation and natural pre-
industrial COz fluxes. On annual time scales, natural pre-industrial fluxes are primarily land COz sinks and
ocean COz sources corresponding to carbon taken up on land, transported by rivers from land to ocean, and
outgassed by the ocean. These pre-industrial land COz sinks are thus compensated over the globe by ocean CO2
sources corresponding to the outgassing of riverine carbon inputs to the ocean, using the exact same numbers
and distribution as described for the oceans in Section 2.5. To facilitate the comparison, we adjusted the inverse
estimates of the land and ocean fluxes per latitude band with these numbers to produce historical perturbation

CO: fluxes from inversions.
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S.5.2 Inversion System Evaluation

All participating atmospheric inversions are checked for consistency with the annual global growth rate, as both
are derived from the global surface network of atmospheric CO2 observations. In this exercise, we use the
conversion factor of 2.086 GtC/ppm to convert the inverted carbon fluxes to mole fractions, as suggested by
Prather (2012). This number is specifically suited for the comparison to surface observations that do not respond
uniformly, nor immediately, to each year’s summed sources and sinks. This factor is therefore slightly smaller
than the GCB conversion factor in Table 1 (2.142 GtC/ppm, Ballantyne et al., 2012). Overall, the inversions
agree with the growth rate with biases between 0.0002-0.065 ppm yr™! (0.0004-0.13 GtCyr™!) for the period
2015-2023.

The atmospheric inversions are also evaluated using vertical profiles of atmospheric CO2 concentrations (Figure
S5). More than 30 aircraft programs over the globe, either regular programs or repeated surveys over at least 9
months (except on the SH), have been used in order to draw a robust picture of the system performance (with
space-time data coverage irregular and denser in the 0-45°N latitude band; Table S8 and lower panel in Figure
S4). The fourteen systems are compared to these independent aircraft CO2 observations between 2 and 7 km
above sea level between 2001 and 2023. Results are shown in Figure S5, where the inversions generally match

the atmospheric mole fractions to within 0.7 ppm at all latitudes.

S.6 Processes not included in the global carbon budget
S.6.1 Contribution of anthropogenic CO and CHjs to the global carbon budget

Equation (1) includes only partly the net input of COz to the atmosphere from the chemical oxidation of reactive
carbon-containing gases from sources other than the combustion of fossil fuels, such as: (1) cement process
emissions, since these do not come from combustion of fossil fuels, (2) the oxidation of fossil fuels, (3) the
assumption of immediate oxidation of vented methane in oil production. However, it omits any other
anthropogenic carbon-containing gases that are eventually oxidised in the atmosphere, forming a diffuse source
of COz, such as anthropogenic emissions of CO and CHs. An attempt is made in this section to estimate their
magnitude and identify the sources of uncertainty. Anthropogenic CO emissions are from incomplete fossil fuel
and biofuel burning and deforestation fires. The main anthropogenic emissions of fossil CH4 that matter for the
global (anthropogenic) carbon budget are the fugitive emissions of coal, oil and gas sectors (see below). These
emissions of CO and CH4 contribute a net addition of fossil carbon to the atmosphere.

In our estimate of Eros we assumed (Section 2.1.1) that all the fuel burned is emitted as COz, thus CO
anthropogenic emissions associated with incomplete fossil fuel combustion and its atmospheric oxidation into
COz within a few months are already counted implicitly in Eros and should not be counted twice (same for ELuc
and anthropogenic CO emissions by deforestation fires). The diffuse atmospheric source of COz deriving from
anthropogenic emissions of fossil CH4 is not included in Eros. In reality, the diffuse source of CO2 from CHa
oxidation contributes to the annual CO2 growth. Emissions of fossil CHs represent 30% of total anthropogenic
CHa emissions (Saunois et al. 2020; their top-down estimate is used because it is consistent with the observed

CHs growth rate), that is 0.083 GtC yr! for the decade 2008-2017. Assuming steady state, an amount equal to
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this fossil CH4 emission is all converted to CO2 by OH oxidation, and thus explain 0.083 GtC yr™! of the global
COz growth rate with an uncertainty range of 0.061 to 0.098 GtC yr'! taken from the min-max of top-down
estimates in Saunois et al. (2020). If this min-max range is assumed to be 2 ¢ because Saunois et al. (2020) did
not account for the internal uncertainty of their min and max top-down estimates, it translates into a 1-c
uncertainty of 0.019 GtC yr..

Other anthropogenic changes in the sources of CO and CH4 from wildfires, vegetation biomass, wetlands,
ruminants, or permafrost changes are similarly assumed to have a small effect on the CO2 growth rate. The CHa
and CO emissions and sinks are published and analysed separately in the Global Methane Budget and Global
Carbon Monoxide Budget publications, which follow a similar approach to that presented here (Saunois et al.,

2020; Zheng et al., 2019).

S.6.2 Contribution of other carbonates to CO:2 emissions

Although we do account for cement carbonation (a carbon sink), the contribution of emissions of fossil
carbonates (carbon sources) other than cement production is not systematically included in estimates of Eros,
except for Annex I countries and lime production in China (Andrew and Peters, 2021). The missing processes
include CO2 emissions associated with the calcination of lime and limestone outside of cement production.
Carbonates are also used in various industries, including in iron and steel manufacture and in agriculture. They
are found naturally in some coals. CO2 emissions from fossil carbonates other than cement not included in our

dataset are estimated to amount to about 0.3% of Eros (estimated based on Crippa et al., 2019).

S.6.3 Anthropogenic carbon fluxes in the land-to-ocean aquatic continuum

The approach used to determine the global carbon budget refers to the mean, variations, and trends in the
perturbation of CO: in the atmosphere, referenced to the pre-industrial era. Carbon is continuously displaced
from the land to the ocean through the land-ocean aquatic continuum (LOAC) comprising freshwaters, estuaries,
and coastal areas (Bauer et al., 2013; Regnier et al., 2013). A substantial fraction of this lateral carbon flux is
entirely ‘natural’ and is thus a steady state component of the pre-industrial carbon cycle. We account for this
pre-industrial flux where appropriate in our study (see Supplement S.3). However, changes in environmental
conditions and land-use change have caused an increase in the lateral transport of carbon into the LOAC —a
perturbation that is relevant for the global carbon budget presented here.

The results of the analysis of Regnier et al. (2013) can be summarised in two points of relevance for the
anthropogenic CO:z budget. First, the anthropogenic perturbation of the LOAC has increased the organic carbon
export from terrestrial ecosystems to the hydrosphere by as much as 1.0 + 0.5 GtC yr! since pre-industrial
times, mainly owing to enhanced carbon export from soils. Second, this exported anthropogenic carbon is partly
respired through the LOAC, partly sequestered in sediments along the LOAC and to a lesser extent, transferred
to the open ocean where it may accumulate or be outgassed. The increase in storage of land-derived organic
carbon in the LOAC carbon reservoirs (burial) and in the open ocean combined is estimated by Regnier et al.
(2013) at 0.65 + 0.35GtC yr'. The inclusion of LOAC related anthropogenic CO: fluxes should affect estimates

of Scanp and Socean in Eq. (1) but does not affect the other terms. Representation of the anthropogenic
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perturbation of LOAC CO: fluxes is however not included in the GOBMs and DGVMs used in our global

carbon budget analysis presented here.

S.6.4 Loss of additional land sink capacity

Historical land-cover change was dominated by transitions from vegetation types that can provide a large carbon
sink per area unit (typically, forests) to others less efficient in removing COz from the atmosphere (typically,
croplands). The resultant decrease in land sink, called the ‘loss of additional sink capacity’, can be calculated as
the difference between the actual land sink under changing land-cover and the counterfactual land sink under
pre-industrial land-cover. This term is not accounted for in our global carbon budget estimate. Here, we provide
a quantitative estimate of this term to be used in the discussion. Seven of the DGVMs used in Friedlingstein et
al. (2019) performed additional simulations with and without land-use change under cycled pre-industrial
environmental conditions. The resulting loss of additional sink capacity amounts to 0.9 + 0.3 GtC yr'! on
average over 2009-2018 and 42 + 16 GtC accumulated between 1850 and 2018 (Obermeier et al., 2021).
OSCAR, emulating the behaviour of 11 DGVMs finds values of the loss of additional sink capacity of 0.7 + 0.6
GtC yr'! and 31 + 23 GtC for the same time period (Gasser et al., 2020). Since the DGVM-based ELUC
estimates are only used to quantify the uncertainty around the bookkeeping models' ELUC, we do not add the
loss of additional sink capacity to the bookkeeping estimate.
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Supplementary Tables

Table S1. Comparison of the processes included in the bookkeeping method and DGVM s in their estimates of ELUC and SLAND. See Table 4 for model references. All models include deforestation and forest regrowth
after abandonment of agriculture (or from afforestation activities on agricultural land). Processes relevant for ELUC are only described for the DGVMs used with land-cover change in this study.

Bookkeeping Models DGVMs
LPJ- ORCH CARD
H&C2 OSCA CABL | CLASS | CLM6 iMAP ISBA- | JSBAC| JULES LPJws| LPX- [ OCNv SDGV
023 BLUE R LUCE epopl IC 0 DLEM| EDv3 | ELM | IBIS LE ISAM criel H ‘ES GLéES LPJml | Bern N IDEEV M VISIT Ak/I/IO
Processes relevant for ELUC
Wood harvest and forest es es es es no es es es es es no es no es no es no es |no(d)| yes es es es | Y&
degradation (a) y y y ves y y Y Y Y Y Y Y Y Y Y Y Y Y (R+L)
Shifting cultivation / Subgrid yes
<cale transitions (b) yes | yes yes yes no yes no yes | yes | yes no no no yes no yes no yes [no(d)| no no yes | yes no
Cropland harvest (removed, R, | yes | yes | yes | yes | yes | yes | yes ves yes | yes | yes | yes ves yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yse no
or added to litter, L) RIGRIG] (R) [(RIG)] (R) [ (L) |(R+L) Rep) | (1) | (R) | (1) (R [(R+L)| (R) | (R) J(R+#L)| (1) | (R) [(R+L)| (R) | (R) | (R)
Peat fires YES | Ves | yes | yes no no es no no no no no no es no no no no no no no no no no yes
CERCEECERC) Y Y (k)
) . | yes yes
fire as a management tool ves (j) | yes (j) h) | yes(i) no no no no no no no no no no no no no no no no no no no no )
I . | yes .
N fertilisation ves (j) | yes (j) h) | yes(i) no no yes | yes no no yes no yes no no |[yes(i)| yes | yes no yes | yes | yes no no no
. . | yes yes yes
tillage ves (j) | yes (j) h) | yes(i) no () yes | yes no no no no no no no no yes | yes no no no () no no no
irrigation ves (j) | yes (j) \(/E)S ves(i) no no yes | yes no no no no yes no no no yes | yes no no no no no no no
. . | yes
wetland drainage ves (j) | yes (j) h) | yes(i) no no no no no no no no yes no no no no no no no no no no no no
erosion yes (j) | yes (j) \(/E)S ves(i) no no no yes no no yes no no no no no no no no no no no no yes no
peat drainage YES | Yes | Ves | yes no no no no no no no no no no no no no no no no no no no no no
(k) | (k) | (k) | (k)
(Gr;anilgfeijn?? n;(:\glcljr:jge: atcr)vﬁts'cter Yes | ves | ves yes (r) yes no no no yes no yes no yes no yes no ves | yes | ves no yes no no no no
L Y "TRYG RG] (R) () (R) (R+L) (R, L) (L) (R) | (R+L) | (L) (R+L)
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Processes also relevant for SLAND (in addition to CO2 fertilisation and climate)

yes os No no no
ecosystem demography (ED) / (ED), ¥ ED, ED, ED, |dynam
. o no no yes no ED, no no no yes yes . yes no no
vegetation competition (VC) No o VC Yes yes yes tfional c
(VC) VC VC VC
Fire simulation and/or yes
suppression N.A. | N.A. | NAA. [ NA. no yes yes no yes yes yes no no yes yes yes yes yes yes yes no no yes yes (k)
Carbon-nitrogen interactions, yes
including N deposition N.A. | NAA. | NAAL | NA. | yes |no(f)]| yes | yes no ves | yes [no(f)| vyes no yves | yes | yes | yes no yes | yes | yes () no no
Separate treatment of direct
N.A. | NNA | NNAA [ NA | yes no yes no no yes yes yes no no no yes no no no no no no no no no

and diffuse solar radiation

(a) Refers to the routine harvest of established managed forests rather than pools of harvested products.

(b) No back- and forth-transitions between vegetation types at the country-level, but if forest loss based on FRA exceeded agricultural expansion based on FAO, then this amount of area was cleared for cropland and

the same amount of area of old croplands abandoned.

(c) Limited. Nitrogen uptake is simulated as a function of soil C, and Vcmax is an empirical function of canopy N. Does not consider N deposition.

(d) Available but not active.

(f) Although C-N cycle interactions are not represented, the model includes a parameterization of down-regulation of photosynthesis as CO2 increases to emulate nutrient constraints (Arora et al., 2009)
(g) Tillage is represented over croplands by increased soil carbon decomposition rate and reduced humification of litter to soil carbon.

(h) as far as the DGVMs that OSCAR is calibrated to include it

(i) perfect fertilisation assumed, i.e. crops are not nitrogen limited and the implied fertiliser diagnosed

(j) Process captured implicitly by use of observed carbon densities.

(k) Emissions added from external datasets.
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Table S2. Comparison of the processes and model set up for the Global Ocean Biogeochemistry Models for their estimates of SOCEAN. See Table 4 for model references.

MICOM-
HAMOCC NEMO3.6-
NEMO- NEMO4.2- (NorESM1- MPIOM- FESOM-2.1- PISCESv2-gas MOMG6-COBALT ACCESS
PlankTOM12 PISCES (IPSL) OCv1.2) HAMOCC6 REcoM3 (CNRM) (Princeton) CESM-ETHZ MRI-ESM2-3 (CSIRO)
Model specifics
Physical ocean model NEMOv3.6- CESMv1.3 (ocean
NEMOv4.2- MICOM (NorESM1- GELATOvV6- model based on
NEMOV3.6-ORCA2 eORCA1L75 OCv1.2) MPIOM FESOM-2.1 eORCA1L75 MOM6-S1S2 POP2) MRI.COMv5 MOM5
Biogeochemistry model HAMOCC BEC (modified &
PlankTOM12 PISCESv2 (NorESM1-OCv1.2) HAMOCCS6 REcoM-3 PISCESv2-gas  COBALTvV2 extended) NPZD+Fe WOMBAT
Horizontal resolution unstructured mesh, 1°x1° with enhanced
20-120 km latitudinal resolution
2°lon, 0.3to0 1.5° 1°lon, 0.17 to 0.25 resolution (CORE 0.5°lon, 0.25t0  1.125°lon, 0.53°to = 1°lon, 0.3 to 0.5° | in the tropics and high-
lat 1°lon, 0.3 to 1° lat lat 1.5° mesh) 1°lon, 0.3 to 1° lat 0.5° lat 0.27° lat lat lat Southern Ocean
Vertical resolution 51 isopycnic layers
+ 2 layers 46 levels, 10 m 75 levels hybrid 60 levels with 1-
75 levels, 1m at the ' representing a bulk spacing in the top 75 levels, 1m at  coordinates, 2m at level bottom 50 levels, 20 in the top
31 levels surface mixed layer 40 levels 100 m surface surface 60 levels boundary layer  200m
Total ocean area on native grid (km2) 3.6080E+08 3.6360E+08 3.6006E+08 3.6598E+08 3.6435E+08 3.6270E+14 3.6111E+08 3.5926E+08 3.6094E+08 3.6134E+08
Gas-exchange parameterization Orr et al., 2017 Orretal., 2017, but  Orret al., 2017 Orr et al., 2017 Orret al., 2017; Wanninkhof et al., Wanninkhof (1992, Orr et al., 2017
Wanninkhof et al with a=0.337 Wanninkhof etal. | 2014 coefficient a scaled Wanninkhof et al
(1992) 2014 down to 0.31) (1992)
CO2 chemistry routines llyina et al. (2013)
adapted to comply
OCMIP2 (Orr et al. Following Dickson | with OMIP protocol OCMIP2 (Orr et al. OCMIP2 (Orr et al.
2017) mocsy et al. 2007 (Orretal., 2017) mocsy mocsy mocsy 2017) mocsy 2017)
River input (PgClyr) 0.723 /- 0.9167 (0.2577 / 00.77 /- 0/0 0.611/- ~0.07/~0.15 0.33/- 0/0
(organic/inorganic DIC) 0.659) 0/0
Net flux to sediment (PgClyr) 0.723 /- 0.3969 (0.0855 / around 0.54 / - 0.71/- 0/0 around 0.656 / - ~0.11/~0.07 0.21/- 0/0
(organic/other) 0.3114) (CaCO03) 0/0
SPIN-UP procedure
Initialisation of carbon chemistry GLODAPvV2
(Alkalinity, DIC).
DIC corrected to
1959 level
(simulation A and
C) and to pre-
GLODAPvV2 GLODAPvV2 GLODAPV1 initialization from GLODAPvV2 industrial level GLODAPvV2 GLODAPvV2 GLODAPV1

(preindustrial DIC)

(preindustrial DIC)

(preindustrial DIC)

previous simulation = (preindustrial DIC) GLODAPv2
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Preindustrial spin-up prior to 1850

spin-up 1750-1947

~300 yrs with
xC0O2=278ppm

1000 year spin up
(prior to 1762)

~2000 years

189 years

long spin-up (>
1000 years) from
1750 fixed
conditions

D) using Khatiwala
et al 2009

Other bgc tracers
initialized from a
GFDL-ESM2M
spin-up (> 1000
years)

1422 years (329-
1750) with xCO2 =
278

1661 years with
xCO2 =278

1000+ years

Atmospheric forcing fields and CO2

Atmospheric forcing for (i) pre-
industrial spin-up, (ii) spin-up 1850-
1958 for simulation B, (iii) simulation
B

Atmospheric CO2 for control spin-up
1850-1958 for simulation B, and for
simulation B

Atmospheric forcing for historical
spin-up 1850-1958 for simulation A
(i) and for simulation A (ii)

Atmospheric CO2 for historical spin-
up 1850-1958 for simulation A (i) and
simulation A (ii)

looping ERAS5 year

constant 278ppm;
converted to pCO2

(Sarmiento et al.,

1750-1940: looping
ERADS year 1990;
1940-2023: ERA5

xCO2 provided by
the GCB; converted

(Sarmiento et al.,

looping first ten
years (1958-1967)
of JRA55-do-v1.4

xCO2 of 278ppm,
converted to pCO2
with constant sea-
level pressure and
water vapour
pressure
1750-1958 : first
ten years (1958-
1967) of JRA55-do-
v1.4 , then full
JRABSS5 reanalysis :
JRAS5-do-v1.4
then 1.5 for 2020-
23 (ii)

xCO2 as provided
by the GCB, global
mean, annual
resolution,
converted to pCO2
with sea-level
pressure and water
vapour pressure (i,

i)

CORE-I (normal
year) forcing (i, ii,

i)

xCO2 of 278ppm,
converted to pCO2
with sea-level
pressure and water
vapour pressure

CORE-I (normal
year) forcing; from
1948 onwards
NCEP-R1 with
CORE-II
corrections

xCO2 as provided
by the GCB,
converted to pCO2
with sea level
pressure (taken
from the
atmopheric forcing)
and water vapor
correction (i, ii)

OMIP climatology
(i), NCEP year

xCO2 of 278ppm,
no conversion to
pCO2

NCEP 6 hourly
cyclic forcing (10
years starting from
1948, i), 1948-
2021: transient
NCEP forcing

transient monthly
xCO2 provided by
GCB, no
conversion (i, ii)

JRA55-do v.1.4.0
repeated year 1961
@, i, iii)

xCO2 of 278ppm,
converted to pCO2
with sea-level
pressure and water
vapour pressure

JRA55-do-v1.4.0
repeated year 1961
(i), transient
JRA55-do-v1.4.0
(1958-2019),
v1.5.0.1 (2020-
2023,ii)

xCO2 as provided
by the GCB,
converted to pCO2
with sea-level
pressure and water
vapour pressure,
global mean,
monthly resolution

(i, ii)

Table S3: Description of ocean fCO2-products used for assessment of SOCEAN. See Table 4 for references.

JRA55-do-v1.5.0
full reanaylsis (i)
cycling year 1958

xCO2 of 278 ppm,
converted to pCO2
with constant sea-
level pressure and
water vapour
pressure

JRA55-do cycling
year 1958 (i),
JRA55-do-v1.5.0

(ii)

xCO2 as provided
by the GCB,
converted to pCO2
with constant sea-
level pressure and
water vapour
pressure, global
mean, yearly
resolution (i, ii)

GFDL-ESM2M
internal forcing (i),
JRA55-do-v1.5.0
repeat year 1959

xCO2 of 278ppm,
converted to pCO2
with sea-level
pressure and water
vapour pressure

JRA55-do-v1.5
repeat year 1959
(i), v1.5.0 (1959-
2019, v1.5.0.1b
(2020), v1.5.0.1

(2021; ii)
xCO2 at year 1959
level (315 ppm, i)
and as provided by
GCB (ii), both
converted to pCO2
with sea-level
pressure and water
vapour pressure,
global mean, yearly
resolution

(i) until 1750: JRA
cycles 1958-2022

NYF (mean of
1958-2018 with
2001 anomalies)

xCO2 = 278 ppm,
converted to pCO2
with atmospheric
pressure, and
water vapour
pressure

(i): JRAS5 version
1.5.0.1, repeat

JRAS55-do v1.5.0
repeat year
1990/91 (i, ii, iii)
xCO2 of 278ppm,
converted to pCO2
with water vapour
and sea-level
pressure (JRA55-
do repeat year
1990/91)

1653-1957:
repeated cycle
JRA55-do v1.5.0
1958-2018 (i),

cycle 1958-2023 (i) v1.5.0 (1958-2018),

JRA55 1.5.0.1
1968-2023

xCO2 as provided
by the GCB in 2024
(from 1751
onward), converted
to pCO2 with
locally determined
atm. pressure, and
water vapour
pressure (i, ii)

v1.5.0.1 (2019-
2023; ii)

xCO2 as provided
by GCB, converted
to pCO2 with water
vapour and sea-
level pressure (i, ii).

(i) 800+ years CORE
spinup. 250 years
with JRA55-do and
another 500 years
JRA55-do and
278ppm CO2, (i)
and (jii) JRA55-do,
1990/1991 repeat
year forcing

xCO2 of 278ppm,
converted to pCO2
with sea-level
pressure

(i) JRA55-do,
1990/1991 repeat
year forcing, (ii)
JRA55-do v1.5.0 for
1958-2019, and
v1.5.0.1 for 2020-
2023.

xCO2 as provided by
the GCB, converted
to pCO2 with sea-
level pressure
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Jena-MLS VLIZ-SOMFFN CMEMS-LSCE- UEXP-FNN-U NIES-ML3 JMA-MLR OceanSODA- LDEO HPD CSIR-ML6
FFNN (previously ETHZv2
Watson et al.)
Method Spatio-temporal |A feed-forward An ensemble of  [A self organising [The ensemble of a Fields of total OceanSODA- Based on fCO2- An ensemble

interpolation
(version
oc_v2023). Spatio-
temporal field of
ocean-internal
carbon
sources/sinks is fit
to the
SOCATv2022
pCO2 data.
Includes a multi-
linear regression
against
environmental
drivers to bridge
data gaps,

neural network
(FFN) determines
non-linear
relationship
between SOCAT
pCO2
measurements
and
environmental
predictor data for
16
biogeochemical
provinces (defined
through a self-
organizing map,
SOM) and is used
to fill the existing
data gaps.

neural network
models trained on
100 subsampled
datasets from
SOCAT and
environmental
predictors. The
models are used
to reconstruct sea
surface fugacity of
CO2 and convert
to air-sea CO2
fluxes

map feed forward
neural network
(SOM-FNN)
implementation
using SOCATv2024
fCO2 database,
corrected to the
subskin
temperature (ESA
CCl v3 bias
corrected to
surface drifter
data following
recommendations
in Dong et al.
2022) of the
ocean as
measured by
satellites
(Goddijn-Murphy
et al, 2015). Flux
calculation
corrected for the
cool and salty
surface skin.
Monthly skin
temperature

random forest, a
gradient boost
machine, and a
feed forward
neural network
trained on SOCAT
2024 fCO2 and
environmental
predictor
variables. The
interannual trend
of fCO2 was
estimated first by
the decadal trend
of atmospheric
CO2 and then
corrected by a so-
called leave-one-
year-out
validation
method. The
trend was used to
normalize fCO2 to
the mid year of
1982-2023 for
model training.
The monthly fCO2
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alkalinity (TA)

were estimated by

using a multiple
linear regressions
(MLR) method
based on
GLODAPv2.2023
and satellite
observation data.
SOCATv2024 fCO2
data were
converted to
dissolved
inorganic carbon
(DIC) with the TA.
Fields of DIC were
estimated by
using a MLR
method based on
the DIC and
satellite
observation data

ETHZv2 is a two-
phase machine
learning
approach. In
phase 1, we
estimate the
AfCO2 8-day
seasonal cycle
climatology with a
Gradient Boosted
Decision Tree
which is used as a
predictor in the
next phase. In
phase 2, we
predict the non-
thermal
component of
AfCO2 at a 8-day
by 0.25° by 0.25°
resolution with a
two-layer fully-
connected neural
network using 35
ensemble
members. The
atmospheric CO2

misfit between
observed fCO2
and 10 Global
Carbon
BudgetGOBMs.
The eXtreme
Gradient Boosting
method links this
misfit to
environmental
observations to
reconstruct the
model misfit
across all space
and time., which is
then added back
to the model-
based fCO2
estimate. The final
reconstrucion of
surface fCO2 is
the average across
the 10
reconstructions. A
climatology of the
misfits calculated
for the years

average of six
machine-learning
models, where
each model is
constructed with a
two-step
clustering-
regression
approach to
determine a non-
linear relationship
between SOCAT
fco2
measurements
and
environmental
proxy variables,
and it used to fill
the existing data
gaps. The
clustering step
consists of two
methods: the
Mini-batch K-
means clustering
and the extended
Fay and McKinley




Gas-
exchange
parameteriza
tion

Wind
product
Spatial
resolution

Wanninkhof 1992.
Transfer
coefficient k
scaled to match a
global mean
transfer rate of
16.5 cm/hr by
(Naegler, 2009)

JMA55-do
reanalysis

2.5 degrees
longitude x 2
degrees latitude

calculated from
ESA CClv3
(Embury et al.
2024) with the
cool skin
difference
calculated using
NOAA COARE 3.5.
Flux calculations
completed using
FluxEngine
(Shutler et al.,
2016; Holding et
al., 2019).

Wanninkhof 1992.
Transfer
coefficient k
scaled to match a
global mean
transfer rate of
16.5 cm/hr

ERAS

1x1 degree

Wanninkhof 2014.
Transfer
coefficient k
scaled to match a
global mean
transfer rate of
16.5 cm/hr
(Naegler, 2009)

ERAS5

0.25x0.25 degree

regridded to 1x1
degree

Nightingale et al
2000

CCMP3.1

1x1 degree

maps were
reconstructed
using model
prediction and the
trend.

Wanninkhof,
2014. Transfer
coefficient k
scaled to match a
global mean
transfer rate of
16.5 cm/hr in
1990-2019 (Fay et
al., 2021)

ERAS
Regrid 0.25x0.25
degree monthly

data to 1x1
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Wanninkhof.,
2014. Transfer
coefficient k
scaled to match a
global mean
transfer rate of
16.5 cm/hr
(Naegler, 2009)

JRA3Q

1x1 degree

and non-thermal
component are
added back to the
result.

Wanninkhof 1992,
averaged and
scaled for three
reanalysis wind
data, to a global
mean 16.5 cm/hr
(after Naegler
2009; Fay &
Gregor et al.
2021)

ERAS

0.25x0.25 degree
regridded to 1x1
degree

2000-2023 is used
as an offset for
years prior to
1982 when
no/limited
envionmental
observations are
available to train
the ML algorithm.

Wanninkhof 1992
parameterization.
Transfer
coefficient k
scaled to match a
global mean
transfer rate of
16.5 cm/hr
(Naegler, 2009)

ERAS5

1x1 degree

(2014) biomes.
The regression
step consists of
three methods:
Gradient Boosting
Machine, Support
Vector Regression,
and Feed-forward
Neural Network.

Wanninkhof 1992,
averaged and
scaled for three
reanalysis wind
data, to a global
mean 16.5 cm/hr
(after Naegler
2009; Fay &
Gregor et al.
2021)

ERA5

1x1 degree




Temporal
resolution
Atmospheric
C0o2

daily

Spatially and
temporally
varying field
based on
atmospheric CO2
data from 169
stations (Jena
CarboScope
atmospheric
inversion
SEXTALL_v2021)

monthly

Spatially varying
1x1 degree
atmospheric
pCO2_wet
calculated from
the NOAA ESRL
marine boundary
layer xCO2 and
NCEP sea level
pressure with the
moisture
correction by
Dickson et al
2007.

monthly

Spatially and
monthly varying
fields of
atmospheric pCO2
computed from
CO2 mole fraction
(CO2 atmospheric
inversion from the
Copernicus
Atmosphere
Monitoring
Service), and
atmospheric dry-
air pressure which
is derived from
monthly surface
pressure (ERAS)
and water vapour
pressure fitted by
Weiss and Price
1980

degree

monthly
Atmospheric fCO2 NOAA
(wet) calculated
from NOAA
marine boundary
layer XCO2(atm)

and ERAS sea level gov/ccgg/mbl/mbl

pressure, with .html
pH20 calculated
from Cooper et al.
(1998). 2023 XCO2
marine boundary
values were not
available at
submission so we
used preliminary
values, estimated
from 2022 values
and increase at
Mauna Loa.
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monthly

Greenhouse Gas
Marine Boundary
Layer Reference.
https://gml.noaa.

monthly

Atmospheric xCO2
fields of IMA-
GSAM inversion
model (Maki et al.
2010; Nakamura
et al. 2015) were
converted to
pCO2 by using
JRA3Q sea level
pressure. 2023
xCO2 fields were
not available at
this stage, and we
used Cape Grim
and Mauna Loa
xCO2 increments
from 2022 to 2023
for the southern
and northern
hemispheres,
respectively.

8-daily regridded
to monthly
NOAA's marine
boundary layer
product for xCO2
is linearly
interpolated onto
a 0.25°x0.25° grid
and resampled
from weekly to 8-
daily. xCO2 is
multiplied by
ERAS5 mean sea
level pressure,
where the latter
corrected for
water vapour
pressure using
Dickson et al.
(2007). These
results are
regridded to a
monthly 1x1
degree pCO2atm.

monthly

NOAA's marine
boundary layer
(MBL) surface
xCO2 product is
linearly
interpolated to a
1x1 degree
monthly grid for
years 1979-2023.
Prior to 1979,
calculating an
offset between
the MBL and
Mauna Loa
seasonal
climatologic xCO2

monthly

NOAA's marine
boundary layer
product for xCO2
is linearly
interpolated onto
a 1x1 degree grid
and resampled
from weekly to
monthly. ERAS
mean sea level
pressure is used,
where the latter
corrected for
water vapour
pressure using
Dickson et al.

values for a subset (2007).

of common years
(1979-1989) yields
a mean
seasonality
difference which
is then applied to
the Mauna Load
time series.
Monthly 1x1
degree xCO2 is
multiplied by



Total ocean 3.63E+08
areaon

native grid

(km2)

method to

extend

product to

full global

ocean

coverage

3.63E+08

Arctic and
marginal seas
added following
Landschitzer et
al. (2020). No
coastal cut.
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3.62E+08

3.55E+08

Fay & Gregor et al. Coverage of the

2021

global ice free
ocean (ice frac <
0.9)

ERAS5 mean sea
level pressure,
with the
correction for
water vapour
pressure using
Dickson et al.
2007, using ERAS
SST and EN4 SSS.
FInally converted
to fCO2 using
ERAS SST and SLP.
3.586 E+8

Based on method Method has near
in Fay & Gregor et full coverage

al. 2021. Gaps
were filled with
monthly
climatology
(Landschiitzer et
al. 2020) scaled
for interannual
variability based
on the temporal
evolution of this
product for all
years.



Table S4. Comparison of the inversion set up and input fields for the atmospheric inversions. Atmospheric inversions see the full CO2 fluxes, including the anthropogenic and pre-industrial
fluxes. Hence they need to be adjusted for the pre-industrial flux of CO2 from the land to the ocean that is part of the natural carbon cycle before they can be compared with SOCEAN and

SLAND from process models. See Table 4 for references.

Name Jena Copernicus |Carbon- NISMON- CT-NOAA CMS-Flux Copernicus [GONGGA COLA GCASv2 UoE IAPCAS MIROC- NTFVAR
CarboScope |Atmosphere |Tracker Cc02 Atmosphere ACTM
Monitoring |Europe Monitoring
Service (CTE) Service
(CAMS) (CAMS)
r76nbetEXT [v23rl v2024 v2024.1 CT2022 + v2024 FT24r1 v2023 v2024 v2024 v2024 v2024 v2024 v2024
Version oc_v2024E CT-
number NRT.v2024-1
Flags
Observations
AtmOSPh_eric Flasks and  |Hourly Hourly Hourly Hourly ACOS- 0OCO-2 ACOS [0CO-2 vilr |Hourly ACOS v11 Hourly Hourly Hourly Hourly
z;’sewatlons @ hourly from [resolution [resolution |resolution [resolution [GOSATB9 |[retrievals data that resolution |OCO-2 XCO2 [resolution |resolution [resolution |resolution
various (well-mixed |(well-mixed |(well-mixed |(well-mixed |and OCO-2 |from NASA, |scaled to (well-mixed |retrievals, (well-mixed |(well-mixed |(well-mixed |(well-mixed
institutions |conditions) |conditions) |conditions) |[conditions) [V11.1and |v11.1 WMO 2019 |conditions) |scaled to conditions) |conditions) |conditions) |conditions)
(outliers obspack obspack obspack obspack obspack standard obspack WMO 2019 |obspack obspack obspack obspack
removed by |GLOBALVIE [GLOBALVIE |GLOBALVIE [GLOBALVIE |[GLOBALVIE GLOBALVIE [standard GLOBALVIE [GLOBALVIE |GLOBALVIE [GLOBALVIEW
20 criterion) [Wplusv9.0 |Wplusv8.0 |Wplusv9.0 [Wplusv7.0 |Wplusv9.1 Whplus v9.1 Wplusv9.1 |Wplusv9.1 |Wplusv9.1l [plusv9.1and
and and v9.0 and[and and and and and and NRT_v9.2
NRT v9.3 [NRT_v9.2 [NRT_v9.3 |NRT_v9.2. NRT_v9.2. NRT_v9.2 [NRT_v9.2 [NRT_v9.3 |and GOSAT
and And OCO- and JMA XCO2 data
obspack_co 2 b11.1 LN NIES Level 2
2_466_GVe LG product
u_v9.2_202 v02.97 and
40502 v03.05
Period covered |1976-2023 |1979-2023 |[2001-2023 (1990-2023 [2000-2023 (2010-2023 |2015-2023 |2015-2023 |2015-2023 |2015-2023 |[2001-2023 |(2001-2023 (2001-2023 (2010-2023

Prior fluxes
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B.iosphere and |Zero ORCHIDEE, [SiB4-MERRA |VISIT and GFED-CASA |CARDAMOM |ORCHIDEE, [ORCHIDEE- |VEGAS + BEPS CASAv1.0, [CASAv1.0, |CASA-3h Zeng et al.
fires GFEDv4.1s |and GFAS |GFEDv4.1s |and GFEDv4.1s |MICTand |GFAS climatology |climatology 2020 and
GFED_CMS( GFEDv4.1s after 2016 [after 2016 GFAS
Climatology and GFED4.0|and GFED4.0
for the CT-
NRT of
CT2022 plus
statistical
flux anomaly
model).
Ocean CarboScope [CMEMS- CarboScope [JMA global |Ocean ECCO- CMEMS- Takahashi  |Jena OC- JMA Ocean |Takahashi [Takahashi |Takahashi |Zengetal.
oc_v2024E ([LSCE-FFNN |v2022 and |ocean inversion Darwin and |[LSCE-FFNN [climatology |v2023 C0O2 Map climatology [climatology |climatology |2014
2024 v2023 mapping fluxes, MOM®6 2023 v2023
(lidaetal.,, |Takahashi (Global) and
2021) pCO2 v2024
(regional)
Fossil fuels (¢) | GridFED GridFED GridFED GridFED Miller/CT, GridFED GridFED GridFED GridFEDv20 [GridFEDv20 |GridFED GridFED GridFEDv20 |GridFEDv20
v2024.0 2023.1 with {2023.1and |v2024.0 and v2024.0 2023.1 with {2024.0 23.1and 24.0 2024.0 2024.0 24.0 24.0
an 2024.0 ODIAC/NAS an v2024.0
extrapolatio A extrapolatio
n to 2023-24 n to 2023-
based on 24based on
Carbonmoni Carbonmoni
tor and NO2 tor and NO2
Transport and
optimization
Transport T™M3 LMDZ v6 TM5 NICAM-TM | TM5 GEOS-CHEM [LMDZ v6 GEOS-Chem [GEOS-CHEM |MOZART-4 |GEOS-CHEM [GEOS-CHEM |MIROC- NIES-TM-
model v1293  |v13.0.2 vi2.5 ACTM FLEXPART
Weather forcing [ ERA ECMWF ECMWF JRA55 ERA5 MERRA2  [ECMWF MERRA2  [MERRA-2  |GEOS5 MERRA MERRA JRA-55 ERAS(NIES-
TM)/JRA-
55(FLEXPART
)
Horizontal Global global ¥90 |Global 3°x2°,|glevel-5 Global 3°x2°,| Global 4°x5° |global ~90 |Global 2°x2.5° 2.5°x1.875° [Global Global 4°x5° [2.8°x2.8° NIES-TM
Resolution |3 g345°  |kminthe |Europe (~223km)  |North kminthe |2°%2.5° 2°x2.5° 3.75x3.75%n
horizontal 1°x1°, North America horizontal d FLEXPART
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Optimization

(hexagons) [America 1°x1° (hexagons) 0.1x0.1°
1°x1°
Conjugate [Variational |5-week Variational [12-week Variational |Variational |Nonlinear [Ensemble Ensemble Ensemble Ensemble Bayesian Variational,
gradient (re- ensemble ensemble least Kalman Kalman filter | Kalman filter | Kalman filter [inversion, M1QN3
ortho- Kalman Kalman squares Filter (LETKF similar to
normalizatio smoother smoother four- with that of
n) dimensional |CEnKF/AAP Rayner et al.
variation 0) (Tellus,
(NLS-4DVar) 1999)

(a) Schuldt et al. 2023. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957-2022; obspack_co2_1_GLOBALVIEWplus_v9.0_2023-09-09; NOAA Earth System Research Laboratory, Global Monitoring

Laboratory. http://doi.org/10.25925/20230801.

(b) Schuldt et al. 2024. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 2023-2024; obspack_co2_1_NRT_v9.2_2024-03-25; NOAA Earth System Research Laboratory, Global Monitoring Laboratory.
http://doi.org/10.25925/20240215.

(c) GCP-GridFED v2024.0 and v2023.1 (Jones et al., 2024, 2023) are updates through the year 2023 of the GCP-GridFED dataset presented by Jones et al. (2021b).
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http://doi.org/10.25925/20230801.
http://doi.org/10.25925/20230801.

Table S5: Overview of the Earth System Models (ESMs) and the simulations.

Model CanESM5 EC-Earth3-CC IPSL-CM6A-CO2-LR

. T63, 49 hybrid levels up to
Resolution Atmosphere 1hp T255, 91 levels 2.5°x1.25°, 79 levels
a

. 1° refined meridionally to .
Resolution Ocean 1°, 75 levels 1° (nominal), 75 levels
1/3° near Equator, 45 levels

ERA-Interim (Dee et al.
2011) from 1980 to 2018
o and ERAS (Hersbach et al.
Assimilation . ERAS (Hersbach et al. 2020)
2020) afterwards: full-field ] None
Atmosphere . full-field
nudging of temperature,
horizontal wind and specific

humidity

38

MIROC-ES2L

T42, 40 levels

Tripolar (~1°), 62 levels

3D full field wind and T of
JRAS5 (Kobayashi et al.
2015) with the simplified
IAU (Tatebe et al. 2012)

MPI-ESM1.2-LR

T63, 47 levels

1.5°, 40 levels

ERA-40 (Uppala et al. 2005)
before 1979 and ERA5
(Hersbach et al. 2020) from
1980: Vorticity, divergence,
log(p), T; full field with
nudging



Assimilation Ocean

Assimilation Land

Ensemble Size

Period of reconstruction

Hindcasts and forecasts

External forcings

Nudging to 3D potential
temperature and salinity EN4 (Good et al. 2013) 3D

from ORASS reanalysis (Zuo nudging T and S with Nudging towards SST 3D full field T, S, and sea-ice

et al. 2019). Sea surface weaker nudging band (ERSSTv5) and SSS (EN4) concentration of an ocean  EN4 (Good et al. 2013) 3D
temperature relaxed to around equator. SST and using a restoring coefficient objective analysis (Ishii and full field T and S with
interpolated values from SSS restoring to ORASS (Zuo dependent on the mixed Kimoto 2009) with the ensemble Kalmann filter
NOAA'’s OISSTv2 from Nov. et al. 2019). Atmospheric  layer depth (Ortega et al. simplified IAU (Tatebe et al. (Brune et al. 2018)

1981 to present, and forcing: DFS5.2 1958-1979 2017) 2012)

NOAA'’s ERSSTv3 prior and ERAS after 1980

(Smith et al. 2008).

LPJ-GUESS forced offline

. . Indirectly initialized by
Indirectly through response with ERA5 1979-2020 after

atmospheric and oceanic

of CLASS-CTEM to the data- preindustrial None None o .
. ) . data assimilation within the
constrained coupled ESM  spinup+transient up to
fully coupled ESM
1979
10 10 10 10 10
1960-2023 1980-2023 1960-2023 1960-2023 1960-2023
1 year starting from Jan. 1st 14 months starting from 1 year starting from Jan. 1st 14 months starting from 14 months starting from
1980-2024 Nov.1st 1980-2023 1981-2024 Nov. 1st 1980-2023 Nov.1st 1980-2023

The Coupled Model Intercomparison Project Phase 6 (CMIP6) historical (1960-2014) plus SSP2-4.5 baseline and CovidMIP two year blip scenario
(after 2015) (Eyring et al. 2016; Lamboll et al. 2021). The CO2 emissions forcing from 2015 onward are substituted by GCP-GridFED (Jones et al.

2021; 2023) for all the models except for IPSL-CM6A-CO2-LR. Note the difference in global integrated CO2 emissions between CMIP6 CovidMIP

and GCP-GridFED in recent years is within the emission uncertainty.
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Ddscher et al. 2021; Bilbao . .
Swart et al. 2019; Sospedra- Mauritsen et al. 2019; Li et
References et al., 2021; Bernardello et Boucher et al. 2020 Watanabe et al. 2020
Alfonso et al. 2021 L 2024 al. 2023
al.,
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Table S6. Comparison of the projection with realised fossil CO2 emissions (EFOS). The ‘Actual’ values are first the estimate available using actual data, and the ‘Projected’ values refers to

estimates made before the end of the year for each publication. Projections based on a different method from that described here during 2008-2014 are available in Le Quéré et al.,

(2016). All values are adjusted for leap years.

World China USA EU28 / EU27 (i) India Rest of World (ii)
Projected Actual Projected Actual Projected Actual Projected Actual Projected Actual Projected Actual
-0.6% -3.9% -1.5% 1.2%
2015 (a) 0.06% -0.7% -2.5% - - - - 1.2%
(-1.6 t0 0.5) (-4.6 to —1.1) (5.5 to 0.3) (~0.2 to 2.6)
-0.2% -0.5% -1.7% 1.0%
2016 (b) 0.20% -0.3% -2.1% - - - - 1.3%
(-1.0 to +1.8) (-3.8 to +1.3) (4.0 to +0.6) (0.4 to +2.5)
2.0% 3.5% -0.4% 2.00% 1.6%
2017 (c) 1.6% 1.5% -0.5% - - 3.9% 1.9%
(+0.8 to +3.0) (+0.7 to +5.4) (=2.7 to +1.0) (+0.2 to +3.8) (0.0to +3.2)
2.7% 4.7% 2.5% -0.7% 6.3% 1.8%
2018 (d) 2.1% 2.3% 2.8% -2.1% 8.0% 1.7%
(+1.8 to +3.7) (+2.0to +7.4) (+0.5 to +4.5) (-2.6 to +1.3) (+4.3 to +8.3) (+0.5 to +3.0)
0.5% 2.6% -2.4% -1.7% 1.8% 0.5%
2019 (e) 0.1% 2.2% -2.6% (-5.1% to -4.3% 1.0% 0.5%
(-0.3 to +1.4) (+0.7 to +4.4) (-4.7 to-0.1) (-0.7 to +3.7) (-0.8 to +1.8)
+1.8%)
-11.3%
-6.7% -1.7% -12.2% -9.1% -7.4%
2020 (f) -5.4% 1.4% -10.6% (EU27) -10.9% -7.3% -7.0%
2021 (g) 4.8% 5.1% 4.3% 3.5% 6.8% 6.2% 6.3% 6.8% 11.2% 11.1% 3.2% 4.5%
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(4.2% to (3.0% to (6.6% to (4.3% to (10.7% to (2.0% to
5.4%) 5.4%) 7.0%) 8.3%) 11.7%) 4.3%)
1.1% -1.5% 1.6% -1.0% 5.6% 2.5%
2022 (h) 0.9% (-3.0% to 0.9% (-0.9% to 1.0% (-2.9% to -1.9% (3.5% to 5.8% (0.1% to 0.6%
(0% to 1.7%)
0.1%) 4.1%) 1.0%) 7.7%) 2.3%)
1.1% 4.0% -3.0% -7.4% 8.2% 0.4%
2023 () [ (0.0%to 1.3% (1.9% to 4.9% (5% to-1%) -3.3% (-9.9% to - -8.4% (6.7% to 8.2% (-1.4% to 0.7%
2.1%) 6.1%) ’ ’ 4.9%) 9.7%) 2.3%)
0.8% 0.2% -0.6% -3.8% 4.6% 1.6%
2024 (k)
(-0.3% to (-1.6% to (-2.9% to (-6.2% to - (3.0% to (-0.4% to
1.9%) 2.0%) 1.7%) 1.4%) 6.1%) 3.6%)
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Table S7 Attribution of fCO2 measurements for the year 2023 included in SOCATv2024 (Bakker et al., 2016, 2024) to
inform ocean fCO2-based data products.

No. of
Platform measureme No. of Platform
Name Regions nts Principal Investigators datasets Type
Atlantic
Explorer North Atlantic, coastal 48,596 Bates, N. R.; Enright M. 20 Ship
Atlantic Sail North Atlantic, coastal 16,770 Steinhoff, T.; Kértzinger, A. 3 Ship
Bell M. North Pacific, Tropical Pacific,
Shimada coastal 35,730/ Alin, S.; Feely, R. 7 Ship
Cap San
Lorenzo Tropical Atlantic, coastal 18,343 Lefevre, N. 1 Ship
CCE1_122W 3
3N Coastal 1,426 Sutton, A.; Send, U.; Ohman, M. 1 Mooring
CCE2_121W_3
4N Coastal 417 Sutton, A.; Send, U.; Ohman, M. 1 Mooring
Colibri North Atlantic, coastal 24,528 Lefévre, N. 3 Ship
North Atlantic, Tropical
Equinox Atlantic, coastal 19,612 Wanninkhof, R.; Pierrot, D. 12 Ship
F.G. Walton Barbero L.; Pierrot, D.;
Smith Coastal 3,831 Wanninkhof, R. 3 Ship
Rehder, G; Bittig, H. C.; Glockzin,
Finnmaid Coastal 311,468 M. 10 Ship
G.O. Sars Arctic, North Atlantic, coastal 103,965 Skjelvan, I. 12 Ship
GAKOA_149W_
60N Coastal 470 Monacci, N. 1 Mooring
Gordon Gunter North Atlantic, coastal 24,848 Wanninkhof, R.; Pierrot, D. 4 Ship
Henry B.
Bigelow Coastal 18,661 Wanninkhof, R.; Pierrot, D. 3 Ship
Heron Island Coastal 1,322 Tilbrook, B.; van Ooijen E. 1 Mooring
Investigator Southern Ocean 152,788 Tilbrook, B.; Akl, J.; Neill, C. 7 Ship
Kangaroo
Island Southern Ocean 378 Tilbrook, B.; van Ooijen E. 1 Mooring
KC_BUOY Coastal 3,020 Evans, W. 1 Mooring
North Pacific, Tropical Pacific,
Keifu Maru Il coastal 7,300 Enyo, K. 5 Ship
Maria Island Southern Ocean 1,640 Tilbrook, B.; van Ooijen E. 1 Mooring
Marion
Dufresne Indian Ocean, Southern Ocean 5,662 Lo Monaco, C.; Metzl, N. 1 Ship
North Atlantic, North Pacific,
Tropical Pacific, Southern
New Century 2 Ocean, coastal 258,209 Nakaoka, S.-I.; Takao, S. 16 Ship
Papa_145W_50 Sutton, A.; Cronin, M.; Emerson,
N North Pacific 820 S. 1 Mooring
Quadra Island
Field Station Coastal 78,466 Evans, W. 1 Mooring
R/V Belgica Coastal 4,485 Theetaert, H.; Gkritzalis, T. 1 Ship
Tropical Pacific, Southern Alin, S.; Woosley R. J.; Feely, R.;
Roger Revelle  Ocean 37,941 Martz T.R. 3 Ship
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Ryofu Maru lll

SA Agulhas Il

Sea Explorer

Seaspan Royal

Simon Stevin

Soyo Maru

Statsraad
Lehmkuhl

Tangaroa

TAO170W_ON
Thomas G.
Thompson

Trans Future 5

Tukuma Arctica
Victor
Angelescu
Wakataka
Maru
WHOTS_158W
_23N

North Pacific, Tropical Pacific,
coastal

Southern Ocean
Southern Ocean, Coastal,
Tropical Atlantic, North
Atlantic

Coastal

Coastal

North Pacific, coastal
North Atlantic, Tropical
Atlantic, Southern Ocean,
coastal

Southern Ocean

Tropical Pacific

North Pacific, Tropical Pacific,
Southern Ocean, coastal
North Pacific, Tropical Pacific,
Southern Ocean, coastal

North Atlantic, coastal

Southern Ocean

North Pacific, coastal

Tropical Pacific

7,454

7,123

69,377
230,720

80,488
42,169

27,582
15,315
2,091

29,782

159,856
53,130

23,904

62,156

1,440

Enyo, K.
Hamnca, S.; Tsanwani, M.;
Monteiro, P. M. S.

Olivier, L.; Landschitzer,P.

Evans, W.
Gkritzalis, T.; Theetaert, H.;
T'Jampens, M.

Ono, T.

Becker, M.; Olsen, A.
Currie, K. I.

Sutton, A.

Alin, S.; Feely, R.

Nakaoka, S.-I.; Takao, S.
Becker, M.; Olsen, A.

Berghoff C.; Arbilla L.; Veccia M.

Tadokoro, K.; Ono, T.
Sutton, A.; Weller, B.;
Pluddemann, A.
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Table S8. Aircraft measurement programs archived by Cooperative Global Atmospheric Data Integration

Project (Schuldt et al. 2023 and 2024) that contribute to the evaluation of the atmospheric inversions (Figure

S5).
Site Measurement program name in " . .
Specific doi Data providers
code Obspack
Airborne Aerosol Observatory, )
AAO Bondville, lllinois Sweeney, C.; Dlugokencky, E.J.
Sweeney, C., J.B. Miller, A. Karion, S.J.
Dinardo,
Carbon in Arctic Reservoirs https://doi.org/10.3334/ORN Z?ﬂifﬁxileééioéfﬁiﬁiztinf Aitborne
Vulnerability Experiment (CARVE) LDAAC/1404 Flasks, Alaska, 2012-2
015. ORNL DAAC, Oak Ridge, Tennessee,
ABOVE USA.
Sweeney, C.; McKain, K.; Karion, A_;
ACG Alaska Coast Guard Dlugokencky, E.J.
Atmospheric Carbon and Transport - Sweeney, C.; Dlugokencky, E.J.; Baier, B;
ACT America Montzka, S.; Davis, K.
AIRCOR ) Colm Sweeney (NOAA) AND Bianca Baier
ENOAA NOAA AirCore (NOAA)
Emma L. Yates, Laura T. Iraci, Susan S.
Kulawik, Ju-Mee Ryoo, Josette E. Marrero,
Caroline L. Parworth, Thao Paul V. Bui,
Alpha Jet Atmospheric eXperiment Cecilia S. Chang, Jonathan M. Dean-Day
(AJAX) (NASA Ames Research Center), Jason M.
St. Clair, Thomas F. Hanisco (Atmospheric
Chemistry and Dynamics Laboratory, NASA
AJAX Goddard Space Flight Center)
ALF Alta Floresta Gatti, L.V.; Gloor, E.; Miller, J.B;
Aircraft Observation of Atmospheric . .
AOA trace gases by JMA ghg_obs@met kishou.go.jp
BGI Bradgate, lowa Sweeney, C.; Dlugokencky, E.J.
BNE Beaver Crossing, Nebraska Sweeney, C.; Dlugokencky, E.J.
BRZ Berezorechka, Russia Sasakama, N.; Machida, T.
CAR Briggsdale, Colorado Sweeney, C.; Dlugokencky, E.J.
CMA Cape May, New Jersey Sweeney, C.; Dlugokencky, E.J.
ggiﬁﬁtn(ﬁimih@ﬁface rees |ttPi//dx.doi.0TG/10.17595/20 | Machida, T.; Ishijima, K.; Niwa, Y.; Tsubo
. 9 180208.001 K.; Sawa, Y.; Matsueda, H.; Sasakawa, M.
CON by AlrLiner)
Carbon in Arctic Reservoirs Sweeney, C.; Karion, A.; Miller, J.B.; Miller,
CRV Vulnerability Experiment (CARVE) C.E.; Dlugokencky, E.J.
DND Dahlen, North Dakota Sweeney, C.; Dlugokencky, E.J.
ESP Estevan Point, British Columbia Sweeney, C.; Dlugokencky, E.J.
ETL East Trout Lake, Saskatchewan Sweeney, C.; Dlugokencky, E.J.
FWI Fairchild, Wisconsin Sweeney, C.; Dlugokencky, E.J.
NASA Goddard Space Flight Center
GSFC Aircraft Campaign Kawa, S.R.; Abshire, J.B.; Riris, H.
HAA Molokai Island, Hawaii Sweeney, C.; Dlugokencky, E.J.
HEM Harvard University Aircraft Campaign Wofsy, S.C.
HIL Homer, lllinois Sweeney, C.; Dlugokencky, E.J.
HIPPO (HIAPER Pole-to-Pole https://doi.org/10.3334/CDIA |Wofsy, S.C.; Stephens, B.B.; Elkins, J.W.;
HIP Observations) C/HIPPO_010 Hintsa, E.J.; Moore, F.
IAGOS- |In-service Aircraft for a Global Obersteiner, F.; Boenisch., H; Gehrlein, T ;
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https://doi.org/10.3334/ORNLDAAC/1404
https://doi.org/10.3334/ORNLDAAC/1404

CARIBIC |Observing System Zahn, A.; Schuck, T.
IAGOS- |In-service Aircraft for a Global Christoph Gerbig (Max-Planck-Institut fir
CORE Observing System Biogeochemie, Jena)
INX INFLUX (Indianapolis Flux Experiment) i‘_’:??jfg&;l’DJI_UgOkeany’ E.J.; Shepson,
LEF Park Falls, Wisconsin Sweeney, C.; Dlugokencky, E.J.
MAN Manaus, Brazil Miller, J.B.; Martins, G.A.; de Souza, R.A.F.
NHA (OI:[ZZOJSSZ%ZSISOUth’ New Hampshire Sweeney, C.; Dlugokencky, E.J.
oIL Oglesby, lllinois Sweeney, C.; Dlugokencky, E.J.
ORCAS (0O2/N2 Ratio and CO2 https://doi.org/10.5065/D6SB | Stephens, B.B, Sweeney, C., McKain, K.,
ORC Airborne Southern Ocean Study) 445X Kort, E.
PFEA Poker Flat, Alaska Sweeney, C.; Dlugokencky, E.J.
RBA-B |Rio Branco Gatti, L.V.; Gloor, E.; Miller, J.B.
RTA Rarotonga Sweeney, C.; Dlugokencky, E.J.
SCA Charleston, South Carolina Sweeney, C.; Dlugokencky, E.J.
SGP Southern Great Plains, Oklahoma Sweeney, C.; Dlugokencky, E.J.; Biraud, S.
TAB Tabatinga Gatti, L.V.; Gloor, E.; Miller, J.B.
TGC  |Offshore Corpus Christi, Texas Sweeney, C.; Dlugokencky, E.J.
THD Trinidad Head, California Sweeney, C.; Dlugokencky, E.J.
UGD Kajjansi Airfield, Kampala, Uganda McKain, K; Sweeney, C
ULB Ulaanbaatar, Mongolia Sweeney, C.; Dlugokencky, E.J.
WBI West Branch, lowa Sweeney, C.; Dlugokencky, E.J.

(a) Schuldt et al. 2023. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957-2022;
obspack_co2_1_GLOBALVIEWplus_v9.0_2023-09-09; NOAA Earth System Research Laboratory, Global Monitoring Laboratory.
http://doi.org/10.25925/20230801.

(b) Schuldt et al. 2024. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 2023-2024;
obspack_co2_1_NRT_v9.2_2024-03-25; NOAA Earth System Research Laboratory, Global Monitoring Laboratory.
http://doi.org/10.25925/20240215.
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Table S9. Main methodological changes in the global carbon budget since first publication. Methodological changes introduced in one year are kept for the following years unless noted. Empty

cells mean there were no methodological changes introduced that year.

Fossil fuel emissions LUC emissions Reservoirs
Publication Uncertainty & other
Country
year Global Country (territorial) . Atmosphere Ocean Land changes
(consumption)
2006 (a) Split in regions
2007 (b) ELUC based on FAO- [1959-1979 data from |Based on one ocean +10 provided for all
FRA 2005; constant |Mauna Loa; data model tuned to components
ELUC for 2006 after 1980 from reproduced observed
global average 1990s sink
2008 (c) Constant ELUC for
2007
2009 (d) Split between Annex |Results from an Fire-based emission Based on four ocean |First use of five
B and non-Annex B |independent study |anomalies used for models normalised |DGVMs to compare
discussed 2006-2008 to observations with |with budget residual
constant delta
2010 (e) Projection for Emissions for top ELUC updated with
current year based |emitters FAO-FRA 2010
on GDP
2011 (f) Split between Annex
B and non-Annex B
2012 (g) 129 countries from |129 countries and ELUC for 1997-2011 |All years from global |Based on 5 ocean Ten DGVMs available

1959

regions from 1990-
2010 based on
GTAP8.0

includes interannual
anomalies from fire-
based emissions

average

models normalised
to observations with
ratio

for SLAND; First use
of four models to
compare with ELUC
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2013 (h)

250 countriesb

134 countries and
regions 1990-2011
based on GTAPS.1,

ELUC for 2012
estimated from
2001-2010 average

Based on six models
compared with two
data-products to

Coordinated DGVM
experiments for
SLAND and ELUC

Confidence levels;
cumulative
emissions; budget

with detailed year 2011 from 1750
estimates for years
1997, 2001, 2004,
and 2007
2014 (i) Three years of BP Three years of BP Extended to 2012 ELUC for 1997-2013 Based on seven Based on ten models |Inclusion of
data data with updated GDP includes interannual models breakdown of the
data anomalies from fire- sinks in three
based emissions latitude bands and
comparison with
three atmospheric
inversions
2015 (j) Projection for National emissions |Detailed estimates Based on eight Based on ten models |The decadal
current year based  |from UNFCCC introduced for 2011 models with assessment of |uncertainty for the
Jan-Aug data extended to 2014 based on GTAP9 minimum realism DGVM ensemble
also provided mean now uses 10
of the decadal
spread across models
2016 (k) Two years of BP data |Added three small Preliminary ELUC Based on seven Based on fourteen Discussion of

countries; China’s
emissions from 1990
from BP data (this
release only)

using FRA-2015
shown for
comparison; use of
five DGVMs

models

models

projection for full
budget for current
year
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2017 (1)

Projection includes
India-specific data

Average of two
bookkeeping models;
use of 12 DGVMs

Based on eight
models that match
the observed sink for
the 1990s; no longer
normalised

Based on 15 models
that meet
observation-based
criteria (see Sect.
2.5)

Land multi-model
average now used in
main carbon budget,

with the carbon
imbalance presented
separately; new table
of key uncertainties

2018 (m) L Aggregation of Introduction of
Revision in cement o Based on 16 models; )
o . overseas territories Average of two Use of four . . metrics for
emissions; Projection . . . . Based on seven revised atmospheric .
. . into governing bookkeeping models; atmospheric . evaluation of
includes EU-specific . . . models forcing from L
nations for total of use of 16 DGVMs inversions individual models
data . CRUNCEP to CRUJRA . .
213 countries a using observations
2019 (n) Global emissions

calculated as sum of
all countries plus
bunkers, rather than
taken directly from
CDIAC.

a Raupach et al. (2007)
b Canadell et al. (2007)
¢ GCP (2008)

d Le Quéré et al. (2009)

e Friedlingstein et al. (2010)

f Peters et al. (2012a)

g Le Quéré et al. (2013), Peters et al. (2013)

h Le Quéré et al. (2014)
i Le Quéré et al. (2015a)
j Le Quéré et al. (2015b)
k Le Quéré et al. (2016)

Average of two
bookkeeping models;
use of 15 DGVMs
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Use of three
atmospheric
inversions

Based on nine
models

Based on 16 models




| Le Quéré et al. (2018a)
m Le Quéré et al. (2018b)
n Friedlingstein et al. (2019)
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Table $10: Translation of global carbon cycle models' land flux definitions to the definition of the LULUCF
net flux used by National GHG Inventory (NGHGI) reports to UNFCCC. Non-intact lands are used here as
proxy for "managed lands" in the country reporting. NGHGIs are gap-filled (see Sec. C.2.3 for details). For
comparison, we provide the net land flux on managed land from atmospheric inversions and FAOSTAT
estimates. Units are GtC yr-1.

Carbon flux Source 2004-2013 2014-2023
Bookkeeping
ELUC estimates from Table 1.41 1.13
5
SLAND total DGVMs from Table 5 3.15 3.19
SLAND in non-
. DGVMs 1.75 1.83
intact forest
ELUC minus .
. Bookkeeping ELUC &
SLAND in non- -0.34 -0.70
. DGVM SLAND
intact forest
LULUCF NGHGIs -0.57 -0.76
Net land flux .
Atmospheric
on managed . ] -0.80 -0.69
inversions
land
LULUCF FAOSTAT 0.32 0.30
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Table S11 - Evaluation of global ocean biogeochemistry models based on comparison with observation-based interior

ocean carbon accumulation and process-based evaluation metrics for Atlantic Meridional Overturning Circulation

(AMOC), Southern Ocean sea surface salinity and surface ocean Revelle factor (following the RECCAP2 ocean model
evaluation chapter, Terhaar et al., 2024) and Southern Ocean stratification index (Bourgeois et al., 2022). See

supplementary text C3.3 for details of calculation and observational data sources. Note that AMOC from MOM®6-Cobalt

(Princeton) is only available between 2018 - 2022, which is the value reported here

Global Ocean Biogeochemistry Models

NEMO
MOM 3.6-
ACCES FESO |6- MPIO NEMO |NEMO | PISCES
S M2.1- |Cobalt | M- MRI- |- - v2-gas |NorES
Observat | (CSIRO [CESM- |REco |(Princ [HAMO |ESM2- [PISCES |PlankT [(CNR |M-

Metric ions ) ETHZ |M eton) [CC6 3 (IPSL) [OM12 | M) 0C1.2
Interior ocean anthropogenic carbon accumulation in GtC yr™'
Global (1994-2007, Gruber et 33.8+
al., 2019) 4.0 364 | 260 | 314 | 27.1 | 199 | 274 | 289 | 254 | 27.1 | 336
North (1994-2007, Gruber et
al., 2019) 5.9 6.4 5.3 5.9 5.1 3.6 5.6 6.0 4.3 5.8 6.8
Tropics (1994-2007, Gruber et
al., 2019) 175 15.0 8.7 13.3 | 115 9.1 125 | 12.8 | 12,5 | 125 | 13.7
South (1994-2007, Gruber et
al., 2019) 10.4 15.0 | 12.0 | 12.3 | 10.6 7.2 9.4 10.1 8.6 8.8 12.9
Global (1994-2004, Miiller et 293+
al., 2023) 2.5 246 | 195 | 241 | 206 | 153 | 203 | 219 | 185 | 21.2 | 24.8
Global (2004-2014, Miiller et 273 %
al., 2023) 2.5 314 | 225 | 274 | 242 | 185 | 23.8 | 25.0 | 224 | 23.8 | 285
Atlantic Meridional
Overturning Circulation at
26°N, 2005-2022 in Sv (Moatet| 17.0+
al., 2023) 1.3 9.7 13.0 | 10.2 | 10.7 | 153 | 135 | 14.2 | 179 | 13.1 | 229
Southern Ocean sea surface salinity 2005-2022 in psu (Good et al., 2013)
subpolar seasonally stratified
biome (SPSS) 33.942 (34.262|33.809(34.295(34.061|33.925(|34.074(34.239|33.873|33.824(34.116
subpolar seasonally stratified
and subtropical seasonally
stratififed biomes (SPSS+STSS) 34.307 (34.577|34.185(|34.565(34.385|34.254|34.363(34.554|34.358|34.124(34.506
Southern Ocean stratification
index 2005-2022, in kg m-3
(Bourgeois et al., 2022, Good
etal.,, 2013) 5.88 545 ( 597 | 5.68 | 6.13 | 597 | 6.03 | 560 | 5.06 | 6.18 | 5.76

52




Surface ocean Revelle factor

1997-2007, unitless
(GLODAPv2.2016, Lauvset et al.,

2016) 10.44 10.61 | 10.33 | 10.65 | 10.34 | 10.72 | 10.60 | 10.65 | 10.49 | 10.77 | 10.58
2005-2021, unitless

(OceanSODA_v2023, updated

from Gregor and Gruber, 2021) 10.62 10.77 | 10.52 | 10.84 | 10.52 | 10.93 | 10.79 | 10.81 | 10.65 | 10.93 | 10.75

53




Supplementary Figures
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Figure S1. Ensemble mean air-sea COz flux from a) global ocean biogeochemistry models and b) fCO> based
data products, averaged over 2014-2023 period (kgC m™ yr!). Positive numbers indicate a flux into the ocean.
¢) gridded SOCAT v2024 fCO2 measurements, averaged over the 2014-2023 period (patm). In (a) model
simulation A is shown. The fCOx-products represent the contemporary flux, i.e. including outgassing of riverine

carbon, which is estimated to amount to 0.65 GtC yr! globally.
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Evaluation metrics annual detrended time series (masked, 1990-2023)

Global
0314

0.2 1 O

0.1 1

FCO, A-IAV (PgC yr™1)

North

0.0
Tropics
0.3
0.2

011, w8 oo

FCO, A-IAV (PgC yr—1)
;}
b2
©

South

w
x ¥

% O @Yo

0.0 T : .
4 6 8
fCO, root mean squared error (patm)

O MRI-ESM2-2
NEMO-PlankTOM12

ACCESS (CSIRO)

O CESM-ETHZ
FESOM2.1-REcoM3

O MOMe6-Cobalt (Princeton)

MPIOM-HAMOCC6 O NorESM-0C1.2

O NEMO3.6-PISCESv2-gas (CNRM)
NEMOA4.2-PISCES (IPSL)

2 4 6 8
fCO, root mean squared error (natm)

CMEMS-LSCE-FFNN ¥ NIES-ML3
¢ CSIR-ML6 OceanSODA-ETHZ
JMA-MLR ¥¢ UoEX-UEPFFNU
Y7 Jena-MLS VLIZ-SOM-FFN
LDEO-HPD

Figure S2. Evaluation of the GOBMs and fCO»-products using the root mean squared error (RMSE) for the

period 1990 to 2023, between the individual surface ocean fCO2 mapping schemes and the SOCAT v2024

database. The y-axis shows the amplitude of the interannual variability of the air-sea COz flux (A-IAV, taken as

the standard deviation of the detrended annual time series). Results are presented for the globe, north (>30°N),
tropics (30°S-30°N), and south (<30°S) for the GOBMs (see legend, circles) and for the fCO>-based data
products (star symbols). The fCO2-products use the SOCAT database and therefore are not independent from the

data (see Section 2.5.1).
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Figure S3. Trend evaluation of six from the eight fCO2-products used for Socean (blue circles - CSIR-ML6,

NIES-ML3, VLIZ-SOMFFN, OceanSODA-ETHZv2, IMA-MLR, Jena-MLS) . The x-axis represents the mean
fCOz trend bias from a model subsampling exercise (following Hauck et al., 2023) using four of the GCB2023
GOBMs (CESM, FESOM-REcoM, IPSL and MRI-ESM). The y-axis represents the flux trend as submitted by
the fCO> product to this study. Besides the northern hemisphere, where all of the six fCO2-products overestimate
the subsampled model trend, there is a clear relationship between the trend reconstruction bias and the flux trend
(red line with grey dashed lines representing the 1 sigma uncertainty interval), indicating that flux trends are

sensitive to the fCO2-products ability to reconstruction biases.
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Figure S4. Evaluation of the DGVMs using the International Land Model Benchmarking system (ILAMB;
Collier et al., 2018) Skill scores relative to other models. The benchmarking is done with observations for GPP
and ecosystem respiration (Reichstein et al., 2007; Lasslop et al., 2010; Knauer et al., 2018; Jung et al., 2017;
Tramontana et al., 2016; Alemohammad et al., 2017), leaf area index (Vermote, 2019; Claverie et al., 2016; De
Kauwe et al., 2011; Myneni et al., 1997), soil carbon (Hugelius et al., 2013; Fischer et al., 2008),
evapotranspiration (De Kauwe et al., 2011; Martens et al., 2017; Miralles et al., 2011; Mu et al., 2011), and
runoff (Dai and Trenberth, 2002; Hobeichi et al., 2019; Hobeichi et al., 2020). Metrics include relationships
between carbon cycle variables, precipitation (Adler et al., 2003) and temperature (Harris et al., 2014). For each
model—observation comparison a series of error metrics are calculated, scores are then calculated as an
exponential function of each error metric, and finally for each variable the multiple scores from different metrics
and observational datasets are combined to give the overall variable scores. Overall variable scores increase
from 0 to 1 with improvements in model performance. The set of error metrics vary with dataset and can include
metrics based on the period mean, bias, root mean squared error, spatial distribution, interannual variability, and
seasonal cycle. The relative skill score shown is a Z score, which indicates in units of standard deviation the

model scores relative to the mean score for a given variable. Grey boxes represent missing model data.
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Figure S5. Evaluation of the atmospheric inversion products. The mean of the model minus observations is

shown for four latitude bands in three periods: (first panel) 2001-2023, (second panel) 2010-2023, (third panel)

2015-2023. The 14 systems are compared to independent CO- observations from aircraft over many places of

the world between 2 and 7 km above sea level. Aircraft measurements archived in the Cooperative Global

Atmospheric Data Integration Project (Schuldt et al. 2023, Schuldt et al. 2024) from sites, campaigns or

programs that have not been assimilated and cover at least 9 months (except for SH programs) between 2001

and 2023, have been used to compute the biases (top row) and their standard deviations (middle row) in four 45°

latitude bins. Land and ocean data are used without distinction, and observation density varies strongly with

latitude and time as seen on the lower panels.
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Figure S6. Comparison of the estimates of each component of the global carbon budget in this study (black line)
with the estimates released annually by the GCP since 2006. Grey shading shows the uncertainty bounds

representing +1 standard deviation of the current global carbon budget, based on the uncertainty assessments
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described in Supplement S1 to S4. CO2 emissions from (a) fossil CO2 emissions excluding cement carbonation
(Eros), and (b) land-use change (ELuc), as well as their partitioning among (c¢) the atmosphere (Gatm), (d) the
land (Scanp), and (e) the ocean (Socean). See legend for the corresponding years, and Tables 3 and A8 for
description of changes in methodology. The budget year corresponds to the year when the budget was first

released. All values are in GtC yr.
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Figure S7. Differences in the HYDE/LUH2 land-use forcing used for the global carbon budgets GCB2022
(Friedlingstein et al., 2022b), GCB2023 (Friedlingstein et al., 2023), and GCB2024 (this paper). Shown are

year-to-year changes in cropland area (top panel) and pasture area (middle panel). To illustrate the relevance of
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the update in the land-use forcing to the recent trends in Eruc, the bottom panel shows the land-use emission
estimate from the bookkeeping model BLUE (original model output, i.e., excluding emissions from peat fire and

peat drainage).
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Gross fluxes for wood harvest & other forest management
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Figure S8: Split of net fluxes from wood harvest and other forest management into gross emissions and gross
removals. Solid lines denote the average of the three bookkeeping models and shaded areas the full range (min-

max) of the bookkeeping model estimates.
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Figure S9. Fire carbon emissions for the months January-September for each year 2003-2024 from two global

fire emissions products. (Top row) Global emissions. (Middle row) Emissions for the northern hemisphere

extratropics (>30° N), tropics (30° N-30° S) and southern extratropics (>30° S). (Bottom row) Emissions by
RECCAP?2 region. The Global Fire Assimilation System (GFAS; Di Giuseppe et al., 2018) (left column) and

the Global Fire Emissions Database (GFED, version 4.1s; van der Werf et al., 2017) (right column) are among

the most widely applied global fire emissions products based on satellite remote sensing of fire. GFED relies on

the post-fire detection of burned areas combined with fuel consumption factors. GFAS relies on the detection of

thermal energy release during active fires.
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