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Abstract Northeast China, a significant production base for paddy rice, has received lots of attention in crop mapping. 

However, understanding the spatiotemporal dynamics of paddy rice expansion in this region remains limited, making it 

difficult to track the changes in paddy rice planting over time. For the first time, this study utilized multi-sensor Landsat data 

and a deep learning model, the full resolution network (FR-Net), to explore the annual mapping of paddy rice for Northeast 

China from 1985 to 2023 (available at https://doi.org/10.6084/m9.figshare.27604839.v1, Zhang et al., 2024). First, a cross-15 

sensor paddy training dataset comprising 155 Landsat images was created to map the paddy rice. Then, we developed the 

annual result enhancement (ARE) method, which considers the differences in category probability of FR-Net at different stages 

to diminish the impact of the limited training sample in large-scale and across-sensors paddy rice mapping. The accuracy of 

the paddy rice dataset was evaluated using 107954 ground truth samples. In comparison to traditional rice mapping methods, 

the results obtained using the ARE method showed a 6% increase in the F1 score. The overall mapping result obtained from 20 

the FR-Net model and ARE methods achieved high user accuracy (UA), producer accuracy (PA), F1 score, and Matthews 

correlation coefficient (MCC) values of 0.92, 0.95, 0.93, and 0.81, respectively. The study revealed that the area used for paddy 

rice cultivation in Northeast China increased from 1.11×104 km2 to 6.45×104 km2. Between 1985 and 2023, there was an 

overall expansion of 5.34×104 km2 in the paddy rice cultivation area, with the highest growth (4.33×104 km2) occurring in 

Heilongjiang province. This study shows that long-history crop mapping could be achieved with deep learning, and the result 25 

of paddy rice will be beneficial for making timely adjustments to cultivation patterns and ensuring food security. 

1 Introduction 

Paddy rice is an essential cereal crop globally and serves as the staple food for over half of the world’s population (FAO, 2023). 

Therefore, it is crucial to gather accurate information on the temporal-spatial evolution characteristics and the long history of 

rice-growing districts. This knowledge can help us understand the intrinsic reasons affecting the temporal-spatial evolution in 30 

rice cultivation (You et al., 2021) and facilitate more efficient cultivation practices by adjusting the patterns of rice cultivation. 
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Satellite remote sensing technology has been extensively utilized for mapping paddy rice on a regional or global scale, offering 

advantages over traditional ground-based monitoring methods (Yang et al., 2024). Based on the difference in spatial resolution, 

satellite data can be classified as low, medium, and high spatial resolution data. Low-resolution data, such as AVHRR and 

MODIS, provide long-history monitoring data but have limited spatial resolution and cannot recognize detailed spatial features 35 

(Xiao et al., 2005; Luo et al., 2020). High spatial resolution data, including GaoFen, QuickBird, IKONOS, etc., can recognize 

detailed spatial features on a meter scale. However, due to limited coverage availability and revisiting recycling, they are 

unsuitable for large-scale and long-history paddy rice monitoring. Medium-resolution data, such as Landsat, and Sentinel-2, 

can provide reasonable revisit recycling and sufficient spatial resolution in agriculture applications, making them widely used 

in crop mapping (Graesser and Ramankutty, 2017; Deines et al., 2019; Griffiths et al., 2020; Sun et al., 2021). 40 

Commonly used paddy rice mapping methods can be categorized into phenology-based methods and data-driven algorithms. 

The phenology-based method involves using a spectral curve or index to illustrate the phenological differences between paddy 

rice and other crops (Ashourloo et al., 2022). While this method is simple and effective, it is challenged by cloud contamination, 

which leads to a lack of continuous data needed to observe phenotypic features (Dong et al., 2015). Therefore, the phenology-

based method struggles to achieve precise long-history mapping across large areas. Data-driven algorithms include traditional 45 

machine learning and deep learning methods. Traditional machine-learning algorithms usually rely on manual feature 

extraction, which may be less effective in feature abstraction (Goldberg et al., 2021; Khojastehnazhand and Roostaei, 2022). 

Particularly in complex cropping systems, traditional machine-learning algorithms may fail to differentiate between paddy rice 

and other crops (Zhong et al., 2019; Kamir et al., 2020; Gao et al., 2023). 

The demand for accurate and efficient crop mapping is increasing as computer technology advances rapidly. Deep learning 50 

models such as RNN (Recurrent Neural Network) (Thorp and Drajat, 2021) and semantic segmentation networks (Yang et al., 

2022) are increasingly being used for crop identification (Akkem et al., 2023). RNN can remember and recurse, allowing it to 

capture the context in sequential data, thus abstracting the feature information of temporal remote sensing images and 

performing crop mapping (Kong et al., 2019). However, RNN requires continuous clear-sky satellite images as input, which 

is difficult to obtain due to cloud contamination. Under a cloud scene, the sequence feature learned by the model is different 55 

from the test dataset, leading to decreased performance in crop mapping (Chen et al., 2021; Akkem et al., 2023). Semantic 

segmentation is a computer vision task that aims to assign category labels to individual pixels in an image, achieving pixel-

level classification (Lu et al., 2023; Sun et al., 2023). Compared with the RNN, the semantic segmentation model can 

automatically learn spectral and spatial features from one or more satellite images for end-to-end classification, without relying 

on the sequence feature behind the time-series data. Therefore, the input data of the semantic segmentation model is more 60 

flexible (Gao et al., 2023; Lu et al., 2023), making it more suitable for large-scale crop mapping with a long history (Yang et 

al., 2022). 

The semantic segmentation model offers advantages for large-scale mapping. However, determining the final mapping result 

from multiple annual results remains a challenge for large-scale paddy rice mapping (Feng et al., 2023). Paddy rice exhibits 

distinct spectral and spatial characteristics at different growth stages, making it difficult to obtain enough training samples to 65 
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cover the full range of phenology on a large scale. In this situation, the trained model may fail to learn the features presented 

in the test dataset on a large scale, and the results generated by the semantic segmentation model under different phenology in 

one year may present different accuracies ( Zhang et al., 2014; Xia et al., 2022). In practice, the commonly used method to 

obtain yearly final results is to average or overlay the different paddy rice results within the year (Feng et al., 2023). 

Unfortunately, this approach simply merges paddy rice results in different phenology and does not consider the most accurate 70 

paddy rice results in different phenology. As a result, the final annual paddy rice result would inherit the errors from the paddy 

rice results in different phenology. 

The significant increase in rice cultivation in Northeast China has caught the attention of researchers who are interested in 

understanding the spatial and temporal distribution of rice in the region. The area used for growing paddy rice has expanded 

by 144 % from 2000 to 2017 (Xin et al., 2020), and the northern boundary of paddy rice cultivation has shifted about 25 km 75 

northward from 1984 to 2013 (Liang et al., 2021). Despite various efforts to map paddy rice cultivation (Table 1), there is still 

a lack of detailed spatial data for the entire Northeast China. This data gap is hindering the accurate assessment of crop methane 

emissions and the development of sustainable agricultural policies. 

Table 1 Relevant mapping datasets of paddy rice in China 

Coverage of Northeast China Time range/Span Data source Spatial resolution Reference 

Partly 1990–2020/5years Landsat 30 m (Zhang et al., 2023) 

Partly 2015/yearly Sentinel-1 10 m (Onojeghuo et al., 2018) 

Partly 2020/yearly MODIS 500 m (Shao et al., 2023) 

Partly 2020/yearly GF-6 WFV 16 m (Guo and Ren, 2023) 

Partly 2013–2021/yearly Landsat 30 m (Xuan et al., 2023) 

Fully 2000–2017/yearly MODIS 500 m (Xin et al., 2020) 

Fully 2017–2019/yearly Sentinel-2 10 m (Ni et al., 2021) 

Fully 2017–2022/yearly Landsat 30 m (Shen et al., 2023) 

In this study, we focused on paddy rice in Northeast China and used long-term Landsat data from different sensors to track the 80 

annual changes in paddy rice fields for the first time. The contribution of this study is (1) constructing a cross-sensor training 

dataset for paddy rice using Landsat 5 TM and Landsat 8 OLI sensors, (2) proposing an annual results enhancement (ARE) 

method based on category probability to improve annual mapping result of paddy rice under different phenology within a year, 

and (3) generating yearly paddy rice maps with 30m spatial resolution in Northeast China from 1985 to 2023 for the first time. 

These consistent paddy rice maps can be utilized for monitoring paddy rice dynamics and assessing the effects of land-use 85 

policies. 
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2 Materials and Methods 

2.1 Study area 

The study area (38°43′8.4″-53°33′50.4″N, 111°8′38.4″-135°5′45.6″E) shown in Fig.1(a) is located in Northeast China, which 

includes Heilongjiang province, Jilin province, Liaoning province, and northeastern Inner Mongolia. It covers approximately 90 

1.26×106 km2, accounting for 13.13% of China’s total area (Zhang et al., 2014; Xin et al., 2020). Northeast China experiences 

a frigid zone with a continental monsoon climate and an average elevation of 450 m. The average annual temperature is about 

4.37°C, and the average annual precipitation is about 800 mm. One crop per year is cultivated in this region under these 

hydrothermal conditions (Xin et al., 2020). The primary crops are rice (Zheng et al., 2023), maize (Shi et al., 2022), and 

soybeans (Huang et al., 2022), each with distinct growth periods. Paddy rice production in Northeast China consistently 95 

accounts for over 20% of the total paddy rice production in China. The cultivation patterns of paddy rice have undergone 

significant transformations, becoming a prominent driver of land use change in the study area (Griffiths et al., 2019; Jin and 

Zhong, 2022). 

 

Figure 1: (a) Location of the study area. (b) Distribution of ground truth data in Northeast China. (c), (d) are the number of 100 

training datasets for Landsat 5 and Landsat 8/9, respectively. 
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2.2 Methods 

2.2.1 FR-Net 

A Full-Resolution network (FR-Net) was proposed to tackle the problem of low accuracy in edge segmentation caused by the 

loss of spatial information in deep semantic segmentation networks. The core component of FR-Net, aimed at achieving high-105 

resolution semantic segmentation and producing high-precision segmentation outputs, is the multi-resolution feature fusion 

unit (MRFU). The MRFU comprises 3×3 convolutional layers with a stride of 1, a batch normalization (BN) layer, and a 

rectified linear unit (ReLU) activation layer. These components work together to control and fuse feature streams with different 

resolutions. For the specific structure and implementation of FR-Net and MRFU, please refer to the published article by Xia 

et al. (2022). FR-Net has a simple structure and requires minimal computational resources, making it suitable for extracting 110 

characteristic information from Landsat data and mitigating the issue of gradient disappearance. 

2.2.2 Annual results enhancement method 

The commonly used method (Graesser and Ramankutty, 2017) to obtain the final mapping results from multiple mapping 

results within a year in the current large-scale semantic segmentation model for single paddy rice calculated following Eq.(1): 

𝑅𝑒𝑠𝑢𝑙𝑡 = {
𝑛𝑜𝑛𝑝𝑎𝑑𝑑𝑦. 𝑒𝑙𝑠𝑒

𝑝𝑎𝑑𝑑𝑦, ∀𝑖 ∈ [1, …𝑚]: 𝑅𝑒𝑠𝑢𝑙𝑡𝑖 = 𝑝𝑎𝑑𝑑𝑦
 ,       (1) 115 

where 𝑅𝑒𝑠𝑢𝑙𝑡𝑝𝑟𝑒 is the final annual mapping results, m means the number of images during the paddy rice phenological period 

within the year, i refer to order number of images, 𝑅𝑒𝑠𝑢𝑙𝑡𝑖  is the result from the deep learning model, which includes two 

categories: paddy and non-paddy. Eq.(1) states that the output results of the deep learning model indicate that if there is a 

mapping result for any paddy period, the result for that specific year is classified as paddy; otherwise, it is classified as non-

paddy. 120 

In large-scale paddy rice mapping, there are noticeable differences in the spectral and texture characteristics of the rice at 

different growth stages throughout the year (Yin et al., 2020; Pan et al., 2021). Furthermore, the high cost of generating high-

quality training samples presents a significant challenge in ensuring comprehensive coverage of diverse phenological periods 

(Yeom et al., 2021). Therefore, errors may vary in paddy rice results for different phenological periods within the year. Simply 

employing equation (1) would overlook this, perpetuate errors in different phenological periods, and reduce the accuracy of 125 

the final paddy rice map. To enhance the accuracy of annual maps, we proposed the annual results enhancement (ARE) method 

based on a comprehensive consideration of paddy rice mapping category probability at different phenological periods. This 

method differs from previous studies, as demonstrated in Eq.(2): 

𝑡 = 𝐴𝑟𝑔(𝑚𝑎𝑥(|𝑃𝑖 − 0.5|)), 𝑖, 𝑡 ∈ [1, … ,𝑚] 

𝑅𝑒𝑠𝑢𝑙𝑡 = {
𝑛𝑜𝑛𝑝𝑎𝑑𝑑𝑦, 𝑃𝑡 < 0.5
𝑝𝑎𝑑𝑑𝑦, 𝑃𝑡 > 0.5

,          (2) 130 
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where i refers to the order number of images within the growth period, Pi is the category probability output by FR-Net for 

images i, max() means to obtain the maximum, Arg() means to get the order number of images, t represents the image 

corresponding to the highest Pi among m images, Pt is the category probability output by FR-Net for images t, Result is the 

final paddy rice map within the year. 

The ARE method considers the difference in category probability when mapping results show different phenology. It identifies 135 

the most accurate annual paddy rice mapping result by choosing the highest category probability among different mapping 

results. This approach can reduce the impact of feature differences between training and test data sets caused by limited training 

samples on large-scale mapping. It also enhances the annual paddy rice mapping accuracy of the semantic segmentation model. 

2.3 Dataset and processing 

2.3.1 Landsat TM and OLI images 140 

A total of 13809 Landsat Collection 2 Level-2 surface reflectance products with a spatial resolution of 30 m were downloaded 

during the paddy rice growth periods of 1985-2023 for generating paddy rice maps (Fig.2). These images included Landsat 5 

Thematic Mapper (TM) data from 1985 to 2011, as well as Landsat 8/9 Operational Land Imager (OLI) data from 2013 to 

2023. Landsat 7 was adversely affected by stripes, resulting in poor data quality, hence the lack of 2012 imagery acquisition, 

processing, and analysis. In addition, we selected the b2, b3, b4, b5, b6, b7 bands of Landsat 8/9 OLI and b1, b2, b3, b4, b5, 145 

b7 bands of Landsat 5 TM images to map the paddy rice. 

 

Figure 2: Number of Landsat images from 1985 to 2023 used in this study. 

2.3.2 Ground truth dataset 

The ground truth dataset was collected from field surveys and Google Earth conducted across Northeast China. Before 2002, 150 

very high resolution (VHR) was unavailable, so the VHR data was obtained from Google Earth spanning from 2002 to 2023. 

The field survey data was gathered from 2011 to 2023. Paddy data from the field survey were identified using a digital camera 

and a Global Positioning System (GPS) receiver (Garmin GPSMAP 78s) with an accuracy of ±3 m (Xia et al., 2022). The 
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ground truth dataset comprises 68856 samples of paddy and 39098 samples of non-paddy (Fig.1(b)). More specifically, 21254 

samples of paddy and 13160 samples of non-paddy were obtained from the field survey, while 47602 samples of paddy and 155 

25938 samples of non-paddy were obtained from Google Earth VHR data. This dataset was used to evaluate the accuracy and 

reliability of the paddy rice mapping results. 

2.3.3 Construction of training and test dataset 

The training and test data were obtained from the paddy mapping results based on eXtreme Gradient Boosting (XGBoost) 

maps after manual correction, as described below. First, we identified paddy and non-paddy regions of interest (ROIs) in 160 

Landsat images, and used these ROIs to train the XGBoost model. The XGBoost model was then utilized to initially obtain 

the temporal spatial distribution of paddy rice in the selected images. After that, manual correction was conducted to correct 

the temporal results of XGBoost. This process resulted in a high-precision paddy rice mapping dataset that covers the years 

from 1985 to 2023 with a total of 155 scenes (Fig.1(c), (d)). This dataset is divided into 3:1 for training and validation 

(Supplementary Table 1). 165 

We have generated the training and validation labels for the FR-Net as below (available at 

https://doi.org/10.6084/m9.figshare.28283606, Zhang, 2025). Both the Landsat images and their corresponding masks were 

rotated by 5°. Subsequently, all the Landsat images and masks were cropped into several small images with dimensions of 256 

× 256. These small images covered the Landsat images completely without any overlap, and any cropped image without paddy 

rice pixels was removed. The training and validation sets for Landsat 5 images were 29906 and 9968, respectively, the training 170 

and validation sets for Landsat 8/9 images were 50956 and 16985, respectively. 

2.4 Agricultural statistical data during 1985-2022 

We have utilized agricultural statistical data obtained from district, municipal, and provincial statistical bureaus dating from 

1985 to 2022. The statistical data we used includes paddy planted areas, which helped us confirm the accuracy and reliability 

of the paddy rice maps we provided for Northeast China. This confirmation was based on the total area under cultivation per 175 

year and temporal variations. As agricultural statistical data for 2023 are not yet available, we validated the paddy rice maps 

from 1985 to 2022. The accuracy of the paddy rice map in 2023 was verified using the ground truth data obtained in 2023. 

2.5 Model training and accuracy assessment 

The model was implemented on a workstation equipped with a single NVIDIA GeForce RTX 3090 GPU, Intel i5-13400K 

CPU, and 1 TB SSD. We installed Keras 2.5, Tensorflow 2.6, CUDA 11.3, and cuDNN 8.2 on the workstation for model 180 

training. The Adam with a constant learning rate of 0.001 was selected as the optimizer, and the batch size was 8. The model 

was trained five times, and the one with the best validation accuracy was used for mapping the paddy rice. 

In this study, we used the user accuracy (UA), producer accuracy (PA), F1 score, and Matthews correlation coefficient (MCC) 

to evaluate the accuracy of the long history paddy rice maps, as shown in Eq.(3)–(6): 
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𝑈𝐴 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,            (3) 185 

𝑃𝐴 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,            (4) 

𝐹1 = 2 ×
𝑈𝐴∗𝑃𝐴

𝑈𝐴+𝑃𝐴
,            (5) 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
,         (6) 

where TP is the true positive, TN is the true negative, FP is the false positive, and FN is the false negative. UA, PA, and F1 

score are commonly used metrics in the evaluation of classification accuracy (Foody, 2020; Xu et al., 2023), and F1 is a 190 

harmonic mean of precision and recall. The MCC is a comprehensive performance indicator that takes into account TP, TN, 

FP, and FN to reduce the randomness and imbalance of classification results (Zhu, 2020). 

3 Results 

3.1 Performance of ARE method 

To verify the necessity of using the ARE method to enhance the results of paddy rice mapping, we conducted a comparison 195 

between the results obtained using ARE and those obtained from overlay or single temporal methods (Fig.3). Our findings 

indicate that there are significant variations in the results for paddy rice with different phenologies. The single and overlay 

methods have limitations, while the ARE method can effectively address these limitations by considering the differences in 

category probability mapping results at different phenological stages. This enhances the accuracy and reliability of paddy rice 

maps. In addition, the presence of salt and pepper noise in images can significantly impact the accuracy of plot segmentation. 200 

However, the ARE method can produce clearer plot edges and demonstrate improved classification performance compared to 

the results of the paddy rice maps that were overlayed at different periods. 
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Figure 3: Comparison of paddy rice maps between ARE, single temporal, and overlay methods using Landsat 5 TM and Landsat 8 

OLI images. (A1)-(A3), (C1)-(C3) represent pseudo-colored maps of three regions in the Landsat 8 images (bands 6, 5, and 4) from 205 

June to September. (A4), (A5), (C4), and (C5) represent pseudo-colored maps of two regions in the Landsat 5 images (bands 5, 4, 3) 

from June to September. (B1)-(B5) display the paddy rice maps corresponding to the images in (A1)-(A5). (D1)-(D5) shows the paddy 

rice maps corresponding to the images in (C1-(C5). (E1)-(E5) are the overlay results of the paddy rice maps from June to September. 

(F1)-(F5) depict ARE paddy rice maps. The red circles in the overlay and ARE maps indicate areas with significant differences in 

paddy rice. 210 

We chose areas in Northeast China that were captured by multiple Landsat scenes at different growth stages. We also had 

corresponding ground truth data to quantitatively evaluate the performance of the ARE method. We used a confusion matrix 

to compare and analyze the performance of the ARE method (Table 2). In comparison to traditional rice mapping methods, 

the results obtained using the ARE method showed a 6% increase in the F1 score. The F1 score of the ARE results was 0.93, 

which is higher than the F1 score of 0.87 for the overlay results. These results indicate that the ARE method exhibits higher 215 

accuracy and better performance, while the overlay maps and single temporal results demonstrated more severe 

misclassification and omission. 

Table 2 Confusion matrix for ARE results, overlay results, and single temporal results based on ground truth data. 

Truth 

Prediction 

Result 1 Result 2 Overlay maps ARE maps 

Paddy Non-paddy Paddy Non-paddy Paddy Non-paddy Paddy Non-paddy 

Field Paddy 6306 1453 6638 1273 7334 945 7716 541 
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survey Non-paddy 2196 3811 1864 3991 1168 4319 786 4723 

Total 8502 5264 8502 5264 8502 5264 8502 5264 

F1 score 0.78 0.81 0.87 0.92 

VHR 

Paddy 13594 2700 14529 2157 15812 1454 17266 893 

Non-paddy 5446 7675 4511 8218 3228 8921  1774 9482 

Total 19040 10375 19040 10375 19040 10375 19040 10375 

F1 score 0.77 0.81 0.87 0.93 

All 

Paddy 19900 4153 21167 3430 23146 2399 24982 1434 

Non-paddy 7642 11486 6375 12209 4396 13240 2560 14205 

Total 27542 15639 27542 15639 27542 15639 27542 15639 

F1 score 0.77 0.81 0.87 0.93 

3.2 Performance of the paddy rice results 

3.2.1 Accuracy evaluation 220 

The performance of the FR-Net and ARE methods for paddy rice mapping was evaluated using confusion matrices and metrics 

such as UA, PA, F1, and MCC based on ground truth data (Table 3). The annual confusion matrix metrics were all found to 

be at least 0.90 for UA, 0.89 for PA, 0.90 for F1, and 0.77 for MCC. The overall confusion matrices for UA, PA, F1, and MCC 

are 0.92, 0.95, 0.93, and 0.81, respectively. These findings demonstrate the effectiveness of the FR-Net and ARE methods in 

accurately mapping long-history paddy rice cultivation in Northeast China, confirming their strong generalization across both 225 

time and space. 

Table 3 Confusion matrix of paddy rice maps. 

Year Validation 
Truth 

UA PA F1 MCC 
Paddy Non-paddy 

2002 
Paddy 1649 32 

0.91 0.98 0.95 0.77 
Non-paddy 156 498 

2003 
Paddy 2364 103 

0.92 0.96 0.94 0.81 
Non-paddy 197 1182 

2004 
Paddy 854 109 

0.93 0.89 0.91 0.86 
Non-paddy 62 1061 

2005 
Paddy 793 98 

0.91 0.89 0.90 0.82 
Non-paddy 76 834 

2006 
Paddy 917 94 

0.92 0.91 0.91 0.84 
Non-paddy 78 962 

2007 
Paddy 1096 75 

0.92 0.94 0.93 0.83 
Non-paddy 97 847 

2008 
Paddy 1872 135 

0.91 0.93 0.92 0.81 
Non-paddy 176 1274 

2009 
Paddy 1539 149 

0.90 0.91 0.91 0.81 
Non-paddy 163 1472 

2010 
Paddy 1672 168 

0.91 0.91 0.91 0.81 
Non-paddy 173 1527 

2011 
Paddy 1937 175 

0.90 0.92 0.91 0.81 
Non-paddy 206 1864 

2013 
Paddy 2176 168 

0.92 0.93 0.92 0.82 
Non-paddy 193 1647 

https://doi.org/10.5194/essd-2024-516
Preprint. Discussion started: 29 January 2025
c© Author(s) 2025. CC BY 4.0 License.



11 

 

2014 
Paddy 3079 195 

0.91 0.94 0.93 0.80 
Non-paddy 287 1764 

2015 
Paddy 3346  157 

0.92 0.96 0.94 0.82 
Non-paddy 275 1762 

2016 
Paddy 3869 273 

0.91 0.93 0.92 0.80 
Non-paddy 373 2618 

2017 
Paddy 5746 247 

0.92 0.96 0.94 0.79 
Non-paddy 493 2372 

2018 
Paddy 4923 213 

0.92 0.96 0.94 0.80 
Non-paddy 446 2474 

2019 
Paddy 5239 224 

0.91 0.96 0.93 0.79 
Non-paddy 508 2405 

2020 
Paddy 4837 162 

0.91 0.97 0.94 0.77 
Non-paddy 473 1772 

2021 
Paddy 5368 235 

0.92 0.96 0.94 0.79 
Non-paddy 437 2137 

2022 
Paddy 5219 259 

0.94 0.95 0.94 0.83 
Non-paddy 358 2473 

2023 
Paddy 4783 238 

0.93 0.95 0.94 0.83 
Non-paddy 351 2644 

Overall  
Paddy 63278 3509 

0.92 0.95 0.93 0.81 
Non-paddy 5578 35589 

3.2.2 Compare with agricultural statistics 

The accuracy of the paddy rice maps we provided has been confirmed using agricultural statistics data. These maps have 

demonstrated strong consistency and correlation with the agricultural statistics data, as shown in Fig.4 (a). The high R2 value 230 

of 0.93 indicates a robust positive correlation between the provided paddy rice maps and the agricultural statistics data. 

However, the paddy rice cultivation areas were overestimated, as shown in Fig.4 (b). This suggests that while these maps 

provide relatively accurate information on the distribution of paddy cultivation, they cannot be completely accurate. It is 

essential to consider potential sources of error or uncertainty in both the agricultural statistics data and the mapping 

methodology, including factors such as data collection methods, spatial resolution, and limitations of the statistical models 235 

used. Despite these potential limitations, Figure 4 provides strong evidence supporting the credibility of the provided paddy 

rice maps. 

 

Figure 4 Comparison of paddy rice maps with agricultural statistical data. 
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3.2.3 Comparison with other paddy rice datasets 240 

In this study, we compared the paddy rice products with other representative products (Fig.5). These included products 

generated by the coarse resolution of MODIS data (Liu et al., 2018), the phenology-based method using optical Landsat data 

(Zhang et al., 2023), and the combined use of Sentinel-1/2 SAR and optical data (Shen et al., 2023). The results showed that 

the paddy rice products obtained from MODIS data overestimation due to fragmented plots and mixed pixels in rice cultivation 

areas, as shown in Fig.5 (C1)-(C4). Similarly, the paddy rice products generated using the phenology-based method with 245 

optical Landsat data demonstrated omissions, as illustrated in Fig.5 (D1)-(D4). In contrast, the results of this study, shown in 

Fig.5 (B1)-(B4), reveal that most paddy pixels were well recognized using the FR-Net and ARE methods. Furthermore, the 

mapping results that combined SAR and optical data also exhibited some leakage of the paddy pixels. The speckle noise from 

Sentinel-1 contributed to an increase in salt-and-pepper noise in the paddy rice results, which in turn reduced the mapping 

accuracy, as illustrated in Fig.5 (E1)-(E4). The deep network FR Net and ARE achieved a more complete representation of 250 

rice plots with clearer boundaries and improved mapping accuracy compared to individual phenological methods. 

 

Figure 5: Comparison of the paddy rice products of this study with the existing products. (A1)-(A4), represents pseudo-colored 

(bands 6, 5, and 4) of Landsat 8/9 images. (B1)-(B4) is the result of this study. (C1)-(C4) shows the paddy rice with MODIS data. 

(D1)-(D4) demonstrate the paddy rice with Landsat data. (E1)-(E4) depict the paddy rice maps using Sentinel-1 and Sentinel-2 255 

images. The red circles indicate areas with significant differences in paddy rice. 
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3.3 Spatiotemporal patterns of paddy rice from 1985 to 2023 

In the long history of paddy rice mapping, clouds have posed a challenge that hinders the accuracy of the annual mapping 

results. In certain areas, it is difficult to obtain clear-sky observation data during the growth period of paddy rice, resulting in 

limited coverage in the annual mapping results. Figure 6 shows the study area, which lacks at least one clear-sky observation 260 

during the yearly growth stage of paddy rice. This figure demonstrates that in Northeast China, there are areas where at least 

one clear-sky observation during the annual growth stage of paddy fields is not possible. To improve the quality of the yearly 

mapping results in this study, the missing pixels were filled based on good observations from before and after the year, and 

year-to-year cloud coverage maps were obtained. 

 265 

Figure 6: Areas lack at least one clean-sky observation during the annual growth stage of paddy. 

Figure 7 shows the filled paddy cultivation in Northeast China from 1985 to 2023, mainly distributed along river banks. A 

noteworthy increase in the area of paddy rice cultivation was observed in the central region of the study area between 1985 

and 1990. Additionally, there was a significant expansion of paddy rice cultivation in northeastern Heilongjiang Province from 

2005 to 2010. In contrast, the area of rice cultivation in Liaoning Province remained relatively stable throughout the entire 270 

period from 1985 to 2023. 
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Figure 7: Spatial distribution of paddy rice in Northeast China. 

We examined the changes in paddy field distribution in Northeast China from 1985 to 2023. The changes are illustrated in 

Fig.8. The paddy area in the study area exhibited significant growth, with a net increase of 5.34×104 km2. Different provinces 275 

exhibited varying patterns of change. Heilongjiang province saw the largest increase in paddy area, with a gain of 4.33×104 

km2 from 1985 to 2023, followed by Jilin province with a 0.70×104 km2 increase. Liaoning province and northeastern Inner 

Mongolia experienced smaller increases, with 0.16 × 104 km2 and 0.15×104 km2, respectively. This suggests that regions at 

high latitudes have become more suitable for paddy rice cultivation in recent decades. Additionally, Liaoning province 

experienced the largest reduction in paddy rice cultivation area, with a decrease of 0.20×104 km2, followed by Jilin province, 280 

Heilongjiang province, and northeastern Inner Mongolia with a decrease of 0.09×104 km2, 0.03×104 km2 and 0.01×104 km2, 

respectively. 
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Figure 8: Trends of paddy rice cultivation area in Northeast China from 1985 to 2023. 

4 Discussion 285 

4.1 How the cross-sensor training sample impacts the accuracy of long history mapping 

The Landsat 8/9 OLI sensor is an improvement and enhancement of the Landsat 5 TM sensor. It shares many characteristics 

such as the same spatial resolution, scene size, etc. However, there are slight differences in spectral range and sensor radiation 

calibration quality. These differences lead to variations in feature distribution, impacting the accuracy of crop mapping. This 

study focuses on the impact of these differences on paddy rice mapping accuracy. We conducted a comprehensive paddy rice 290 

mapping using an across-sensor training dataset to understand how these differences affect the accuracy of the model and how 

we can combine this dataset to achieve the best mapping accuracy. In this study, we employed nine different combinations of 

training and test sets to assess the performance of the cross-sensor dataset for paddy rice mapping in Northeast China (Table 

4). 

Table 4 Performance of different combinations of training and test datasets. 295 

Combination Num. Training set Test set F1 UA PA 

1 Landsat 5 Landsat 5 0.85 0.83 0.89 

2 Landsat 5 Landsat 8 0.48 0.46 0.53 

3 Landsat 8 Landsat 5 0.53 0.51 0.57 

4 Landsat 8 Landsat 8 0.86 0.84 0.90 

5 Landsat 5 Landsat 5+Landsat 8 0.62 0.61 0.65 
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6 Landsat 8 Landsat 5+Landsat 8 0.64 0.62 0.67 

7 Landsat 5+Landsat 8 Landsat 5+Landsat 8 0.84 0.82 0.88 

8 

Landsat 5 

(Transfer learning with 

Landsat 8) 

Landsat 8 0.67 0.65 0.70 

9 

Landsat 8  

(Transfer learning with 

Landsat 5) 

Landsat 5 0.70 0.68 0.74 

In Table 4, we observed varying classification accuracy performances when using different combinations of training and test 

datasets. Combinations with minimal differences in feature distribution between the training and test datasets tended to have 

higher mapping accuracy. For example, combination numbers 1 and 4 achieved the highest values for the F1 score, UA, and 

PA. However, combination numbers 2 and 3, which had significant feature distribution differences between the training and 

test datasets, exhibited the lowest values of F1 score, UA, and PA. This suggests that when mapping paddy rice over a long 300 

history, using data from only one sensor may not yield reasonable results due to differences in feature distribution between 

sensors. 

Furthermore, we implemented transfer learning by utilizing partial Landsat 5 TM or Landsat 8/9/ OLI data as the training set 

to fine-tune the models developed using combination numbers 1 and 4. Specifically, 20% of the Landsat 5 TM or Landsat 8/9 

OLI images were selected as the training set to fine-tune the model originally trained with a training sample of combination 305 

numbers 1 and 4. The results revealed that fine-tuning the models enhanced accuracy. However, the accuracy of the fine-tuned 

models was lower than that of the models trained using a cross-sensor dataset, or the same sensor data, i.e. combination 

numbers 1, 4, and 7. 

In summary, due to differences in spectral ranges, spectral characteristics, and spectral responses between the Landsat 5 TM 

and Landsat 8/9 OLI sensors, it is essential to use sufficient numbers of training data to achieve fine-mapping results. Moreover, 310 

while model fine-tuning can improve accuracy and generalization ability, it may not be effective for crop mapping in this case, 

especially when dealing with a long history and data from different sensors. 

4.2 Contribution of ARE method in overcoming errors caused by feature differences in training and test dataset 

Landsat images exhibit significant differences in spectral and spatial characteristics during the different growth periods of 

paddy rice. However, it is challenging to gather sufficient training samples to cover the entire growth period of paddy rice on 315 

a large scale and over an extended period. Consequently, the trained model may struggle to learn the features present in the 

test dataset on a large scale, leading to significant differences in the mapping results of paddy rice at different phenological 

stages. Figure 10 illustrates the difference in paddy rice results between the overlay and ARE methods. Compared to the ARE 

result, the overlay method exhibits a phenomenon of misclassification (Fig.9 (b)). As shown in Fig.9 (a) and (c), pixels with a 

lower category probability mean a significant difference between the learned features of FR-Net and the features of the 320 

predicted images. These uncertainties were inherited by the overlay method, but the ARE method selected the best category 

probability and thus presented fewer false alarms or omissions, as shown in Fig.9 (d). 
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Figure 9: Comparison of paddy rice results between overlay and ARE results. (a) and (c) show the category possibilities for 

identifying paddy rice at different stages. (b) presents the overlay result, while (d) displays the ARE result.  (e) depicts the pseudo-325 

colored map, and (f) is the true map of paddy rice based on manual interpretation. 

To assess the capability of ARE in overcoming the differences in features between training and test samples in different 

phenological periods and regions, we used the Landsat images with a Path/Row of 120/028 in 2016 as an example. We 

evaluated the UA, PA, and F1 scores of paddy rice mappings from individual phenological periods and the ARE paddy rice 

map (Table 5). In this work, we used the image acquired on May 31st as the training set, and the images from other periods 330 

were individually used as the test set to demonstrate the effectiveness of the ARE method in enhancing paddy rice mapping 

results at different phenological stages. 

Table 5 Comparison of accuracy among single phenological period maps and the ARE paddy rice map. 

Training image date Testing image date 
Matrices  

UA PA F1 

31/05 

16 June 2016 0.66 0.95 0.74 

02 July 2016 0.62 0.87 0.72 

18 July 2016 0.59 0.80 0.68 

03 August 2016 0.58 0.77 0.67 

19  August 2016 0.63 0.92 0.71 

20 September 2016 0.52 0.66 0.64 

ARE map 0.92 0.94 0.93 

Moreover, we separately utilized Landsat images from different regions in the same year as the test set to evaluate the accuracy 

of the FR-Net model and then compared the accuracy of paddy rice maps from different regions within the same year with 335 

those achieved by the ARE method. The Landsat images with different Path/Row in 2016 were used as the inputs to calculate 

the UA, PA, and F1 scores of FR-Net (Table 6). 

Table 6 Comparison of accuracy among the paddy rice maps with different Path/Row and the ARE paddy rice map. 

Training image Path/Row Testing image Path/Row Matrices  
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UA PA 
F1 

score 

116/026 

116/028 0.68 0.58 0.59 

120/026 0.32 0.44 0.37 

120/027 0.71 0.79 0.73 

120/028 0.70 0.64 0.65 

120/029 0.15 0.34 0.17 

122/030 0.06 0.21 0.09 

ARE map 0.91 0.93 0.92 

Tables 5 and 6 confirmed the benefits of using the ARE method to significantly improve the temporal and spatial mapping 

accuracy of FR-Net for paddy rice. Additionally, optimizing the mappings of paddy rice based on multiple phenological periods 340 

can help diminish the impact of cloud cover on satellite image quality. Therefore, introducing the ARE method is crucial for 

enhancing the accuracy of paddy rice maps in large-scale and long history mapping. 

4.3 Uncertainties in paddy rice classification 

As the results and comparison are shown in this study, the presented ARE method can effectively improve the annual mapping 

accuracy by using category probability at different phenological periods. However, it also has limitations. First, the ARE 345 

method improves mapping accuracy by processing multiple classification category probability of FR-Net and cannot improve 

mapping accuracy when only a single image is available. Furthermore, the efficacy of the ARE method is intricately linked to 

the quantity and quality of the training samples. When the quantity and quality of training samples are limited, the confidence 

of the category probability of the paddy rice mapping results integrated into the ARE method is low, the improvement in 

precision that the ARE method can provide may be insignificant. Finally, due to the time restrictions of field investigations 350 

and the availability of Google Earth data, this study only validated the paddy rice mapping results from 1985 to 2001 using 

agricultural statistical data, which may reduce the confidence level in the long history mapping. Therefore, continuous 

improvement of methods and techniques is essential to enhance the reliability of paddy rice mappings in light of the current 

issues associated with ARE methods. 

5 Code/Data availability 355 

The FR-Net codes are available at https://github.com/xialang2012/Paddy. The paddy rice maps produced with 30 m resolution 

in this study are accessible at https://doi.org/10.6084/m9.figshare.27604839.v1 (Zhang et al., 2024). The dataset includes a set 

of GeoTIFF images in the ESPG: 4326 spatial reference system. The values 1 and 0 represent paddy and non-paddy, 

respectively. We encourage users to independently verify the paddy rice maps. In addition, Landsat 5 TM and Landsat 8/9 OLI 

are available on United States Geological Survey (USGS) (https://earthexplorer.usgs.gov). 360 
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6 Conclusions 

 This study developed a cross-sensor training dataset for recognizing paddy rice in Northeast China from 1985 to 2023 at a 30-

meter spatial resolution. The presented annual result enhancement (ARE) method, which considers the differences in category 

probability of FR-Net at different growth stages to alleviate the impact of the limited training sample in large-scale and across-

sensors paddy rice mapping. The ARE method showed a 6% increase in the F1 score than the compared methods, with UA, 365 

PA, F1 score, and MCC values of 0.92, 0.95, 0.93, and 0.81, respectively. Compared to other traditional classification methods, 

the results of this study demonstrate improved mapping accuracy, with a 4% increase in UA, 7% in PA, 6% in F1 score, and 

14% in MCC. The overall trend from 1985 to 2023 indicated a significant increase of 5.34×104 km2 in the rice cultivation area, 

expanded by 4.81 times. In all, this study confirmed that the semantic segmentation network FR-Net and ARE methods could 

accurately realize the large-scale and long-history monitoring of paddy rice, and it would provide a paddy rice classification 370 

dataset to detect the spatiotemporal patterns and dynamic mechanisms of paddy rice. 
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