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Abstract 12 

Quantitative Flood Estimation (QFE) in complex terrain remains a grand challenge in 13 

operational hydrology due to the lack of accurate high-resolution Quantitative Precipitation 14 

Estimates (QPE) at spatial and temporal resolutions needed to capture the variability of orographic 15 

precipitation and where radar-based QPE are available there are significant biases due to the 16 

geometry and constraints of radar operations. Here, we present a high-resolution (i.e. 250m, 17 

5minute-hourly) QPE dataset for 215 extreme (flood-producing) events from 2008 to 2024 for  26 18 

gauged basins in the Appalachian mountains constrained to meet basin-scale water budget closure 19 

through inverse rainfall-runoff modeling to correct the Next Generation Weather Radar 20 

(NEXRAD) Stage IV analysis (4 km resolution, hourly) using a fully-distributed uncalibrated 21 

hydrological model that leverages recent advances in hydrologic modeling in mountainous regions 22 

(e.g. improved river routing and initial soil moisture estimation). The corrected Stage IV analysis 23 

QPE is referred to as StageIV-IRC (Inverse Rainfall Correction).  Previously, a subset of this 24 

dataset informed the construction of a generalized QPE error prediction model and providing 25 

physics insights into orographic QPE uncertainties for various radar-based QPE products in 26 

complex terrain. The unique advantage of the StageIV-IRC QPE is it is in agreement with ground-27 

based rainfall measurements and achieves water budget closure at the storm-flood event scale 28 

within observational uncertainty of streamflow observations when it is used to drive hydrological 29 

simulations of historical floods, that is the golden standard in hydrological modeling. The QPE 30 

dataset is publicly available at:  https://doi.org/10.5281/zenodo.14028867 (Liao and Barros, 2024). 31 
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1.  Introduction 33 

Over the past few decades, extreme precipitation has become an increasingly important 34 

research topic due to its social, economic, and environmental impacts (Alimonti et al., 2022; 35 

Wernberg et al., 2013). Studies show that both total annual precipitation and extreme precipitation 36 

events have increased in the US and in other parts of the world during the last century (e.g. Milly 37 

et al., 2002), often resulting in floods (e.g. Pielke and Downtown, 2002), and flash floods in the 38 

context of complex terrain due to steep slopes (e.g. Schumacher, 2017; Czigány et al., 2010). Flash 39 

floods are characterized  by fast rainfall runoff responses on the scale of a few hours (< 6 hours) 40 

after extreme precipitation events, with watershed areas often ranging from a few tens to hundreds 41 

of square kilometers (Borga et al., 2010; Lumbroso and Gaume, 2012). As one of the deadliest 42 

natural hazards, flash floods often are associated with landslide events (e.g. Gupta et al., 2016; 43 

Deijns et al., 2022) and cause severe life loss and property damage (Saharia et al., 2017; Špitalar 44 

et al., 2014) such as recently in the USA and in Spain.  An estimated 94 million people are affected 45 

worldwide every year since 2000 (Guha-Sapir et al., 2018; Wu et al., 2020) and the average annual 46 

economic loss in the U.S. subjected to freshwater flooding  exceeds USD $8 billion (Wing et al., 47 

2018). A recent noteworthy example is Hurricane Helene in late September 2024, with a death toll 48 

over 200 in the Southeast U.S. Despite extensive studies on improving flash flood simulations in 49 

small headwater basins, hydrological skill scores (e.g. Kling-Gupta Efficiency or KGE) remain 50 

poor at event scales largely due to significant difficulties involved in estimating highly localized 51 

orographic precipitation in complex terrain (e.g. Mtibaa and Asano, 2022; Ghimire et al., 2022; 52 
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Arulraj and Barros, 2021; Barros and Arulraj, 2020; Zhang et al., 2012; Huffman et al., 2007; 53 

Andrieu et al. 1997).  54 

With global warming and projected heavier precipitation and higher probability of floods 55 

in climate change hotspots and significantly modification of the hydrologic cycles in complex 56 

terrain (Nijssen et al., 2001), substantial efforts have been made understand and quantify 57 

precipitation uncertainties in the mountains and nearby lowlands (Pepin et al., 2022). Increased 58 

warming causes reduction in snowpack during winter/spring impacting seasonal streamflow 59 

patterns (Moraga et al., 2021; Saunders et al., 2008; Arnell 2003).  Increasing probabilities of 60 

severe summer thunderstorms (e.g., Brooks 2013) are already one of the largest contributors to 61 

global losses (> $10 billion USD a year, Allen 2018). The urgent need to improve precipitation 62 

estimation and forecasting, particularly for warm-season flood-producing precipitation events, is 63 

unprecedented.     64 

Current approaches involved in precipitation measurement and Quantitative Precipitation 65 

Estimation (QPE) broadly include in-situ point-scale observations using rain gauges and 66 

disdrometers, and remote spatial observations using ground-based radar and space-based sensors. 67 

In complex terrain, there is often a scarcity of  in-situ measurements due to difficult access. Radar-68 

based QPE products are plagued by uncertainties from various sources (e.g. ground clutter effects, 69 

retrieval uncertainties, radar viewing geometry, (Villarini and Krajewski, 2010; Arulraj and 70 

Barros, 2021; Barros and Arulraj, 2020; Zhang et al., 2012; Kreklow et al., 2020; Huffman et al., 71 

2007; Andrieu et al. 1997; Creutin et al., 1997; Durden et al., 1998)). Numerical weather prediction 72 

(NWP) is an alternative to measurement.  However, QPE produced by NWP models are 73 

characterized by large uncertainties when evaluated against rain gauges (e.g. Zhang and 74 

Anagnostou, 2019) leading to large runoff deviations from streamflow measurements when used 75 
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as inputs to hydrological models (e.g., Tao et al., 2016; Weiland et al., 2015; Diomede et al., 2008; 76 

Kobold and Suselj 2005). Due to these uncertainties and errors involved, significant efforts have 77 

been devoted to improving QPE via various approaches in the past few decades such as radar-78 

raingauge data fusion (e.g. McKee and Binns, 2016; Goudenhoofdt and Delobbe, 2009; Delrieu et 79 

al., 2014; Nanding et al., 2015; Sideris et al. 2013; Schiemann et al. 2011; Berndt et al. 2014), 80 

radar reflectivity and retrieval corrections (e.g. Vignal et al., 2000; Shao et al., 2021; Dinku et al., 81 

2002) and data assimilation of various radar products (e.g. Rafieeinasab et al., 2015; Wehbe et al., 82 

2020). Rain gauge and disdrometer measurements often provide the ground truth for these QPE 83 

optimization approaches (e.g. Harrison et al., 2000; Shao et al., 2021; Fulton et al., 1998). The 84 

‘ground truth’, however, has its own error (e.g., wind effects around the gauge orifice, 85 

Kochendorfer et al., 2017), and fails to capture highly localized orographic enhancement (e.g. Prat 86 

and Barros, 2010; Gentilucci et al., 2021; Buytaert et al., 2006). Gauge-radar fusion often relies 87 

on geostatistical assumptions that are primarily distance-based (e.g. Areerachakul et al., 2022; 88 

Cassiraga et al., 2021; Wang et al., 2020; Maggioni and Massari, 2018), lacking the full picture of 89 

basin topography which has a regulating role in orographic QPE.   Although there is no definite  90 

consensus on guidance for the placement of rain gauges in mountainous basins (e.g. Suri and Azad, 91 

2024), Barros et al. (2004), Prat and Barros (2010), Barros (2013), Barros et al. (2014), and Duan 92 

et al. (2015) provide consistence guidance regarding the importance to install precipitation 93 

networks on the topographic envelope and at regular intervals along ridges and adjacent valleys 94 

using examples from the Central Himalayas, the Central Andes and the Southern Appalachians.  95 

To address this long standing QPE challenge in complex terrain mainly, a general QPE 96 

error quantification framework was developed leveraging widely available United States 97 

Geological Survey (USGS) streamflow observations at the outlet of headwater basins in complex 98 
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terrain, consisting of 2 distinct pathways: 1) rain gauge bias correction, and 2) grid-level QPE 99 

correction constrained to watershed-scale water budget closure. The first  pathway includes rain 100 

gauge bias corrections at gauge locations both at diurnal and climatological scale, and 101 

geostatistical distribution of raingauge biases across a basin. The second  pathway includes an 102 

innovative inverse QPE correction method by backward propagating runoff uncertainty using a 103 

hydrological model via streamlines to precipitation at storm-event scale (i.e. Inverse Rainfall 104 

Correction or IRC, Liao and Barros, 2022 or LB22). It is also worth noting that runoff uncertainty 105 

in hydrological modeling stems from various sources, generally including forcing uncertainties, 106 

land surface condition uncertainties and model specific uncertainties (e.g. Clark, et al., 2008; 107 

Beven and Binley, 1992). 108 

LB22 found that initial soil moisture uncertainty can prevent the IRC framework from 109 

achieving water budget closure because large initial condition errors cause significant travel time 110 

uncertainties. Soil moisture is considered a particularly important factor among soil properties due 111 

to its significant role in regulating runoff generation, hence dramatically altering flood timing and 112 

magnitudes (e.g. Marchi et al., 2010; Penna et al., 2011; Yin et al., 2022; Vivoni et al., 2007), and 113 

soil moisture can change very fast at sub-daily time scales changing saturation to nearly wilting 114 

point levels depending on soil texture and land-use (Grillakis et al., 2016).  Initial soil moisture 115 

conditions can therefore determine whether a rainstorm produces a major flash flood or not (Zehe 116 

and Blöschl, 2004, Komma et al., 2007). However, due to the lack of in situ soil moisture sensors 117 

and reliable high resolution soil moisture products, only a limited number of previous studies in 118 

the peer-review literature focused on soil moisture uncertainty and the impact on flood simulation 119 

(e.g. Laiolo et al., 2016; Zappa et al., 2011; Tao et all. 2016; Silvestro et al., 2019; Silvestro and 120 

Rebora, 2014; Uber et al., 2018). Liao and Barros (2024b) developed an Initial Condition 121 
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Correction (ICC), based upon travel time theory, which is consistent with the general IRC 122 

framework, demonstrating large improvements in initial soil moisture estimation. Note that when 123 

implementing the IRC and ICC, we are using a fully distributed physics-based uncalibrated 124 

hydrological model (i.e. Duke Coupled Hydrological Model, DCHM) that has been used for over 125 

25 years with great success in the Southern Appalachians (e.g., Tao and Barros, 2013, 2014, 2016), 126 

and consequently uncertainty from the model and model parameters is assumed to be negligible. 127 

Hydrological model parameters have impact on rainfall-runoff response, but they are generally 128 

only of secondary importance compared to the precipitation proper and initial soil moisture 129 

conditions particularly in small basins (e.g. Mockler et al., 2016; Dobler et al., 2012; Zappa et al., 130 

2011). Liao and Barros (2024b) also demonstrate that QPE uncertainty dominates runoff 131 

uncertainty for extreme precipitation events compared to initial condition uncertainty, and initial 132 

conditions only begin to play an important role for less extreme events particularly early in the 133 

event prior to the rapid rise of the hydrograph, which is consistent with previous studies where 134 

initial soil moisture uncertainty usually has a decreasing impact on runoff uncertainty as 135 

precipitation continues (e.g., Figure 8 in Iwasaki et al., 2020).  136 

In this work, IRC and ICC are coupled into one framework (referred to as the coupled IRC-137 

ICC framework) to construct a high resolution QPE dataset aiming to close the water budget at the 138 

scale of storm-flood events along the latitudinal range of the Appalachian Mountains across 139 

diverse hydroclimatic and geomorphic regions. The coupled IRC-ICC framework is applied to 26 140 

headwater basins and 215 flood-producing events from 2008 to 2024 using Next Generation 141 

Weather Radar (NEXRAD) StageIV dataset as original inputs, at a spatial and temporal resolution 142 

of 250 m and 5 minutes respectively, and the improved post IRC-ICC QPE data (i.e. StageIV-IRC) 143 

are made available in this study.  144 
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The manuscript is organized as follows. The data sources, and QPE error quantification 145 

framework which consists of raingauge bias correction and the coupled IRC-ICC framework, are 146 

detailed in Section 2. Section 3 presents this new dataset (StageIV-IRC) along with data 147 

assessment from various aspects. Section 4 discuss the potential application of this new dataset 148 

and future work. Section 5 provides the access to the dataset and summary of the work.  149 

 150 

2.  Data and Methodology  151 

2.1 Radar QPE StageIV 152 

The NCEP/EMC (Environmental Modeling Center) StageIV is a QPE product from the 153 

National Weather Service (NWS) derived from the regional hourly and 6-hourly multisensor  154 

(radar + NWS raingauges) precipitation analyses (MPEs), which is further improved with new 155 

analyses from River Forecast Centers (RFCs) over the conterminous United States (CONUS) (Lin 156 

and Mitchell, 2005). In mountainous regions, StageIV datasets suffer from the blockage of 157 

complex terrain, resulting in ground clutter, overshooting and retrieval uncertainties, 158 

demonstrating significant biases and errors in rainfall detection. In support of the NASA’s 159 

Precipitation Measurement Missions (PMM) program ground validation (GV) activities (Prat and 160 

Barros, 2010a), a dense network of raingauges was installed in the Southern Appalachians in 2007 161 

and has been well-maintained since 2007 (Barros at al., 2014). In this study, the raingauge 162 

observations from the Southern Appalachians are used to correct StageIV. 163 

2.2 GV Raingauge Observations 164 

A high resolution raingauge network consisting of 34 tipping bucket raingauges has been 165 

maintained in the Pigeon River basin, over the ten-year reference period 2007-2018, during and 166 

https://doi.org/10.5194/essd-2024-513
Preprint. Discussion started: 2 January 2025
c© Author(s) 2025. CC BY 4.0 License.



9 
 

immediately after IPHEx (Integrated Precipitation and Hydrology Experiment or IPHEx, Barros 167 

et al. 2014). A map of the raingauge network is shown in Figure 1 with each raingauge labelled 168 

with a number, and the detailed locations of these gauges are documented in Table 1. Besides 169 

spatial representativeness errors related to the setup of the raingauge network as stated earlier, 170 

common errors include funnel wetting, pipe clogging and turbulent winds near gauges (e.g. Wang 171 

and Wolff, 2010). The raingauge network is regularly visited and maintained for at least three 172 

times a year including on-site cleaning and calibration. In this work, we use these rainfall 173 

measurements to adjust hourly StageIV QPE. In-situ rain-gauge data are publicly and available 174 

and can be found at  http://dx.doi.org/10.5067/GPMGV/IPHEX/GAUGES/DATA301.(Barros et 175 

al., 2017) In addition to raingauges, a network of Parsivel disdrometers was installed during the 176 

IPHEx EOP (Extended Observing Period, 2013-2014), with each disdrometer location denoted by 177 

the letter P in Figure 1.  Due to the limited duration of the disdrometer measurements, the 178 

disdrometer data were used only for the purpose of independent evaluation. Note that raingauges 179 

are placed mostly on ridges while disdrometers are generally located on the hillslopes and 180 

lowlands. 181 

 182 

<Figure 1 here please> 183 

 184 

2.3 Methodology 185 

The methodology of this work includes 3 major components: 1) raingauge bias correction, 186 

2) grid-scale QPE correction by closing the water budget using streamgauge measurements, and 187 

methods involved in 3) basin and event selection procedures, and model setup.   188 
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2.3.1 Raingauge Bias Correction 189 

A schematic drawing of the raingauge bias correction framework to derive gauge-improved 190 

QPE (named StageIVDBKC) is summarized in Figure 2.  191 

<Figure 2 here please> 192 

 193 

First, to make meaningful comparison between StageIV and raingauges in space, a fractal 194 

downscaling algorithm is used to generate high spatial resolution StageIVD at 1km from the 195 

original StageIV product (4 km resolution). After downscaling, bias correction at event scale and 196 

ordinary kriging are applied consecutively to modify the StageIVD to StageIVDB at hourly time-197 

scale. Subsequently, StageIVDB data are evaluated against the raingauge climatology from 2008 to 198 

2017 to reduce any remaining biases conditional on weather regime, and climatological biases are 199 

geostatistically interpolated using the ordinary Kriging method. The resulting dataset is named 200 

StageIVDBKC (abbreviated as STIVDBKC).  201 

2.3.2 Fractal downscaling 202 

Aiming to derive high resolution QPE datasets in complex terrain, the assumption of self-similarity 203 

is imposed. The Hurst coefficient H, fractal dimension D, and the spectral exponent β are described as the 204 

following: 205 

𝐷 =  
7−𝛽

2
                             (1) 206 

𝐻 =  
𝛽−1

2
                                                             (2) 207 
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The parameter β describes rainfall statistics at different scales, and it is estimated as the slope of 208 

the power spectral density curve in 2D Fourier domain of the rainfall field (log-log plot). The power spectral 209 

density Z(u,v) in the 2D Fourier domain is :  210 

𝑍(𝑢, 𝑣) = (
𝐿

𝑁
)

2
∑ ∑ 𝑧(𝑥, 𝑦)𝑁−1

𝑦=0
𝑁−1
𝑥=0 𝑒𝑥𝑝 [−

2𝜋𝑖

𝑁
(𝑢𝑥 + 𝑣𝑦)]                                      (3) 211 

where u and v represent the transform of x and y in Fourier domain, N is the total number of grid 212 

points in each direction, and z(x,y) is the rainfall field. Additionally, the spectral density at wavenumber k 213 

= 1 is defined as the roughness factor, that is the variance of the field. The Hurst coefficient describes the 214 

auto correlation strength (range from 0 to 1) with higher values of H implying higher auto-correlation, that 215 

is persistence. The mean power spectral density in 2-D Fourier domain is given: 216 

                       𝑆𝑗 =
1

𝐿2𝑁𝑗
∑ |𝑍(𝑢, 𝑣)|2𝑁𝑗

1                                       (4)  217 

where Nj is the number of coefficients that satisfy the condition  𝑗 < √𝑢2 + 𝑣2 < 𝑗 + 1.  The mean 218 

power spectral density has a power-law relationship with wave number k, and k is defined as below: 219 

 𝑘 =
2𝜋

√𝑢2+𝑣2
       (5) 220 

 𝑆  ~  𝑘−𝛽−1       (6) 221 

where 𝛽 is the spectral exponent calculated as the slope of power density spectrum. Assuming the 222 

rainfall fields are self-similar, then the information at fine resolutions can be derived from the information 223 

at coarser resolution. This is accomplished using a Brownian surface (Zb, H=0.5) at the desired fine 224 

resolution as spatial support for the interpolation, which is modified in the Fourier domain (ZD) to replicate 225 

the distribution of energy slope of the spectral slope and roughness factor according to Bindlish and Barros 226 

(1996): 227 

 𝑍𝐷(𝑢, 𝑣) =
𝑍𝑏(𝑢,𝑣)

𝑘𝑟
(𝛽−𝛽𝑏) 2⁄

𝑒𝑥𝑝 [
1

2
(𝑆𝑟,1 −

𝛽+1

𝛽𝑏+1
𝑆𝑟,2)]                                          (7) 228 
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where 𝛽, 𝛽𝑏, ZD(u,v) and Zb(u,v) are respectively the original rainfall fields spectral exponent, 229 

Brownian surface spectral exponent, interpolation surface in Fourier domain and Brownian surface, 230 

respectively; kr is the wavenumber and Sr,1 and Sr,2 are the roughness factor of the original rainfall fields 231 

and Brownian surface. Due to the non-uniqueness of Brownian surfaces, multiple replicates of interpolation 232 

surfaces ZD can be obtained. In this study, an ensemble of ND interpolation surfaces is derived, thus ND 233 

rainfall fields at finer resolution preserving the same rainfall statistics at coarse resolution are generated. 234 

Following Nogueira and Barros (2015), here ND=50 and the correction steps described in Figure 2 are 235 

applied to the ensemble mean of the downscaled rainfall fields.   236 

2.3.3 Bias Correction  237 

The first phase of bias correction is carried out at event scale: a linear regression is 238 

established between raingauge measurements and collocated downscaled radar pixel estimates 239 

using the following formula:  240 

𝑅𝑔
𝑡 (𝑖𝑔, 𝑗𝑔) = 𝜅𝑅𝑟

𝑡(𝑖𝑔, 𝑗𝑔) + 𝜀            (8) 241 

where Rr represent radar measurements, Rg represent raingauge observations, and  are 242 

respectively the slope (conditional bias correction) and the intercept (systematic bias correction). 243 

For each hour, collocated pairs of StageIVD estimates and raingauge observations within a radius 244 

of 5 km centered on the StageIVD pixel were identified as long as more than two raingauges 245 

measure non-zero rainfall. Regional least-square linear regression was applied subsequently to all 246 

StageIVD pixels within ±1-σ deviation of the regional regression line at hourly time-scale by 247 

assuming homogeneity of variances or homoscedasticity. 248 

The second phase of bias correction is done at climatological scale: aiming to reduce 249 

systematic radar errors caused by retrieval uncertainties and viewing geometry in complex terrain, 250 

demonstrating strong diurnal (time of day) and seasonal (weather regime) error dependencies when 251 

k e

https://doi.org/10.5194/essd-2024-513
Preprint. Discussion started: 2 January 2025
c© Author(s) 2025. CC BY 4.0 License.



13 
 

comparing against 10-year raingauge observations due to miss detection of shallow rainfall related 252 

to radar overshooting in the Southern Appalachian (e.g. Wilson and Barros, 2014; Duan and 253 

Barros, 2017; Arulraj and Barros, 2017).  For this purpose, the following corrections were added 254 

for rainfall below and above a threshold X, where X=2mm/hr in the Pigeon River Basin. When 255 

raingauge measurements are less than 2mm/hr and Stage IVD estimates are 0, the StageIVD value 256 

was replaced by the raingauge observations, here termed Light Rainfall Correction (LRC). 257 

Furthermore, for each hour, nil StageIVD estimates where raingauge measurements are greater than 258 

X=2mm/hr were identified and replaced by the mean of the corresponding collocated raingauge 259 

measurements, hereafter Mean Rainfall Correction (MRC). Finally, for localized precipitation (i.e. 260 

only two or fewer rainguages detect nonzero rainfall) normally associated with isolated convective 261 

activity, the anomalies calculated as the differences between the StageIVD and the local raingauge 262 

measurements were linearly distributed among the surrounding 25 pixels (5 pixel window centered 263 

at the StageIVD pixel)– Convective Rainfall Correction (CRC).When more than 2 raingauges 264 

measured rainfall, then the anomalies for each pixel were spatially distributed using ordinary 265 

Kriging as described below – Global Rainfall Correction (GRC). 266 

2.3.4 Ordinary Kriging 267 

The Ordinary Kriging (OK) is a linear weighted geostatistical estimator that interpolates values of 268 

a variable at a specific location using weights derived from spatial covariances aiming to minimize 269 

prediction variance. In our case, the rainfall differences among raingauge measurements and StageIVDB at 270 

all raingauge locations were calculated and denoted as 𝐺(𝑥𝑖) at gauge location i. To produce estimates at 271 

any location within the study domain, a continuous model describing spatial covariance structure of the 272 

data is necessary. A commonly used semi-variogram model is the spherical model, exhibiting linear 273 

behavior at the origin. A review and comparison of different types of semivariogram models can be found 274 

(e.g. Li and Heap 2008; Oliver and Webster, 2014; Zimmerman and Zimmerman, 2012). Bohling (2005) 275 
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analyzed the differences of several commonly used semivariogram models and pointed out that, given the 276 

same variogram parameters (nugget, sill and range), spherical models reach to the maximum for 277 

comparatively shorter spatial lags, and thus are suitable to capture strong spatial dependencies over short 278 

distances as in the case of orographic precipitation (see also McBratney and Webster, 1986, for detailed 279 

description of spherical model): 280 

𝛾(ℎ) = 𝐶0 + (𝐶 − 𝐶0) (
3ℎ

2𝑑
−

1

2
(

ℎ

𝑑
)

3
)  if   0 ≤ h ≤ d                           (9.1)    281 

          = 𝐶                                     if     h>d                       (9.2) 282 

𝛾0𝑖 =
1

𝑁𝐴
∑ 𝛾𝑘𝑖

𝑁𝐴
𝑘=1                                                                (9.3) 283 

𝛾00 =
1

𝑁𝐴
∑ ∑ 𝛾𝑘𝑙

𝑁𝐴
𝑙=1

𝑁𝐴
𝑘=1                                                                 (9.4)    284 

where d is the range, h is the lag, NA is the number of available gauge locations, C and C0 are the sill and 285 

nugget values.  Neglecting local variability and measurement error at the spatial scale of the downscaled 286 

radar and raingauge (point) measurements, the nugget is constant and equal to zero (Diggle & Ribeiro, 287 

2007). The rainfall difference at a target point x0 𝑍𝑜𝑘
∗ (𝑥0) is calculated using a weighted linear combination 288 

of all available differences with constraints of unbiased estimator 289 

𝑍𝑜𝑘
∗ (𝑥0) = ∑ 𝜆𝑖

𝑜𝑘𝐺(𝑥𝑖)𝑛
𝑖=1                                                     (10.1) 290 

∑ 𝜆𝑖
𝑜𝑘 = 1𝑛

𝑖=1                                       (10.2) 291 

Optimal weights can be obtained by solving following equation by employing Lagrange multiplier 𝜇: 292 

(

𝛾11 … 𝛾𝑛1

⋮ ⋱ ⋮
𝛾1𝑛 ⋯ 𝛾𝑛𝑛

1
⋮
1

1  ⋯   1 0

) (

𝜆1
OK

⋮
𝜆𝑛

𝑂𝐾

𝜇

) = (

𝛾01

⋮
𝛾0𝑛

1

)       (11) 293 

In this study, OK distributes spatially the differences between available raingauge measurements and radar 294 

data, resulting in the generation of STIVDBKC dataset.  295 
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2.3.5 Ordinary Kriging 296 

Standard performance metrics (McBride and Ebert 2000; Wang, 2014) including false alarm rate 297 

(FR), probability of detection (PD), threat score (TS), and Heidke skill score (HSS), as well as bias, and the 298 

root-mean-square error (RMSE) are used to evaluate the corrected downscaled hourly rainfall. An instance 299 

when both radar QPE and raingauge observation exceed a specified rain rate threshold is a hit (H); when 300 

observation matches the criterion and radar QPE does not, it is classified as a miss (M), if the opposite 301 

happens, then it is a false alarm (FA). The performance metrics are determined by combination of Hs, Ms 302 

and FAs: 303 

𝐵𝑖𝑎𝑠 =
1

𝑁
∑ (𝑂𝑛 − 𝑅𝑛)𝑁

𝑛=1                                                                               (12)     304 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑂𝑛 − 𝑅𝑛)2𝑁

𝑛=1                                                                      (13) 305 

𝐹𝑅 =
𝐹𝐴

𝐻+𝐹𝐴
, 0 ≤ 𝐹𝑅 ≤ 1                                                                           (14) 306 

𝑃𝐷 =
𝐻

𝐻+𝑀
, 0 ≤ 𝑃𝐷 ≤ 1                                                                            (15) 307 

𝑇𝑆 =
𝐻

𝐻+𝐹𝐴+𝑀
, 0 ≤ 𝑇𝑆 ≤ 1                                                                   (16) 308 

𝐻𝑆𝑆 = 2 ∗
𝑍∗𝐻−𝐹𝐴∗𝑀

((𝐻+𝐹𝐴)∗(𝑍+𝐹𝐴))+((𝑀+𝐻)∗(𝑀+𝑍))
, −1 ≤ 𝐻𝑆𝑆 ≤ 1                      (17) 309 

where O is raingauge observation and R is radar QPE, and N is the number of points. Z is the overall number 310 

of zeros (when neither radar data nor raingauge measurements match the threshold criterion). A TS of 0.5 311 

implies that the criterion is satisfied at least 50% of the time, and a higher value is indicative of superior 312 

performance. A TS=0.33 is indicative of performance similar to persistence, meaning predicted values in 313 

the next hour are the same values in the previous hour. HSS describes the fractional improvement of the 314 

corrected STIVDBKC over original StageIV. An HSS of 0 means that the performance is not better than 315 

random chance.  316 
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2.3.6 Hydrologic Correction 317 

At flash flood timescale in headwater basins, streamflow uncertainty and precipitation 318 

uncertainty are strongly connected in a nonlinear way through rainfall runoff processes. Liao and 319 

Barros (2022) developed a Lagrangian-based framework named Inverse Rainfall Correction (IRC) 320 

allowing backpropagating streamflow uncertainty to precipitation inputs in space and time through 321 

an uncalibrated distributed hydrological model (i.e. DCHM), achieving water budget closure at 322 

event scale in small headwater basins. As stated earlier, the uncertainties associated with 323 

parameters and the hydrological model DCHM are neglected since the model configurations have 324 

been used and improved over the past two decades for this region accounting for various soil, 325 

vegetation, and river processes (e.g. Tao and Barros, 2013, 2014, and 2018; Lowman and Barros, 326 

2016), and the IRC framework has been tested in multiple headwater basins extensively in this 327 

region with consistent success.  328 

 It is worth noting that IRC is a general framework to improve QPE at watershed scale that 329 

can be incorporated into any distributed hydrological models. Liao and Barros (2024a, 2024b) 330 

investigated the impact of model structure uncertainty and initial condition uncertainty on IRC and 331 

then the downstream product: the resulting IRC-improved QPE. The results suggest with improved 332 

watershed physics at finer resolution (e.g. river bank storage, Liao and Barros, 2024a), river 333 

routing algorithms (e.g. XY routing, Liao and Barros, 2024a) and improved antecedent soil 334 

moisture distributions (Liao and Barros, 2024b), post-IRC QPE demonstrate much more realistic 335 

precipitation features at high resolution that are aligned with basin topography with ridges 336 

associated with higher precipitation than valleys in general, showing a significant improvement 337 

from the original StageIV dataset which is characterized  by unnatural boxy precipitation patterns 338 

in complex terrain due to resolution issue.  339 
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 As briefly mentioned before, LB22  reviewed various sources of uncertainty that can 340 

prevent post-IRC QPE from achieving water budget closure, among which initial condition 341 

uncertainty in soil moisture is a noteworthy source. Improved initial condition estimation results 342 

in significantly improved post-IRC precipitation features in complex terrain by better capturing 343 

transient travel time distributions (Liao and Barros, 2024b). They found that the uncertainty tied 344 

to initial conditions is relatively more important for less extreme events. Nevertheless, the initial 345 

condition correction (i.e. ICC) method is coupled with the IRC framework and the complete 346 

framework is named the coupled IRC-ICC framework since Liao and Barros (2024b) to reflect the 347 

importance of Initial Condition Correction (or ICC). The specifics of IRC, ICC and the coupled 348 

IRC-ICC framework are schematically drawn in Figure 3.  349 

 350 

<Figure 3 here please> 351 

 352 

Based on the characteristic timing definitions in panels d) and c), different temporal 353 

windows are identified corresponding to different flow regimes. In principle, many more windows 354 

can be identified if a rather complex hydrograph with more peaks and inflection points is presented. 355 

ICC is only applied to window 2 and 5 (i.e. rising point mismatch segment, and slow recession, 356 

respectively), assuming precipitation uncertainty is dominating streamflow differences for window 357 

3 and 4 (i.e. the neighborhood of flow peak). Wnm represents precipitation after window m 358 

procedure at iteration n. DCHM stands for Duke Coupled Hydrology Model, which is an 359 

uncalibrated physics-based distributed model, and the spatial and temporal resolution are 250m 360 

and 5 min. 361 
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2.3.7 Lagrangian Tracking  362 

A flood event is simulated by the DCHM to simulate streamflow at the basin outlet with 363 

grid-based time-varying velocity fields for different soil layers. When the precipitation starts (i.e. 364 

basin-averaged precipitation > 0.1mm/hr), new particles (passive tracers)  are launched at non-365 

zero precipitation grids at every model time step (i.e. 5 minutes) in all soil layers following the 366 

velocity fields calculated by the DCHM, and the tracking resolution is 10 seconds, amounting to a 367 

release of approximately 600,000 particles for basin with an area of 120km2  over a 24-hour period. 368 

During the tracking phase, each particle is saved along with information regarding its source 369 

location (grid-point where it originates), time of release ti, and travel time tT (tT is defined as the 370 

difference between current time t and the time of release ti, i.e., tT = t – ti ). Multiple particles from 371 

different source locations can have the same travel time, which is the basis for identifying the 372 

number of trajectories contributing to the hydrograph at the outlet as a function of time.  373 

2.3.8 QPE Correction  374 

At time t, the water difference wd(t) between the observed and simulated streamflow over 375 

the time Δt between two consecutive discharge observations represents the fraction of runoff that 376 

eventually leave the basin as streamflow. Errors in precipitation forcing propagate to the runoff, 377 

under the assumption of negligible model and parameter uncertainties, wd(t) can be entirely 378 

attributed to precipitation error, which is the focus of this work.  379 

𝑤𝑑(𝑡) = [𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑠𝑖𝑚𝑢(𝑡)] × ∆𝑡      (18) 380 

   The subscripts 𝑜𝑏𝑠 and 𝑠𝑖𝑚𝑢 refer to observed and simulated discharge, respectively.  381 

The strategy for the inverse rainfall correction (IRC) using hydrograph analysis is to follow the 382 

trajectories available from the Lagrangian tracking backward from the basin outlet to the source 383 
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locations at time ti and apply a correction at the source locations proportional to original QPE 384 

magnitude to reduce wd at time t. The embedded assumption is that larger QPE values have larger 385 

uncertainties. Note that QPE corrections happened earlier in time will have an impact on runoff 386 

simulation at future times, and this is the reason why IRC framework is a recursive framework. 387 

The detailed rainfall correction steps can be found in (Liao and Barros, 2022). 388 

2.3.9 Methods for Reducing Uncertainties from Other Sources  389 

As briefly mentioned before, uncertainties from other sources (e.g. river routing, model 390 

physics, antecedent soil moisture, etc) have certain impacts on travel time distributions and 391 

simulated streamflow. Previous studies demonstrate that, for flood producing events in small 392 

headwater basins, streamflow response is largely controlled by precipitation inputs (e.g. Iwasaki 393 

et al., 2020). In this section, we briefly describe the methods used to minimize the impacts from 394 

other sources to facilitate the IRC framework to achieve water budge closure.  395 

First and foremost, the DCHM is an uncalibrated model with parameters strongly tied to 396 

this region of study, demonstrating great success over the past 25 years. DCHM has been used 397 

extensively without significant biases, therefore parameter uncertainty and model structure 398 

uncertainty are ignored. The impact of routing algorithm on peak flood timing is investigated in 399 

Liao and Barros (2024a) and they pointed out that variable parameter Muskingum-Cunge routing 400 

leads to artificially fast rising limb of flash flood hydrographs in headwater basins due to the 401 

existence of mild slopes over the valleys. They developed a general routing framework which is 402 

more suitable for stream routing particularly for estimating flood timing in headwater basins (see 403 

Liao and Barros, 2024a for details). Their results also suggest meandering effects, riverbank 404 

storage, and initial soil moisture distributions can impact the early rising period of the hydrographs. 405 

Later, significant and consistent improvements are made when introducing an initial condition 406 
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correction (ICC) module to reduce initial condition uncertainty (Liao and Barros, 2024b). In fact, 407 

numerous studies also point out that precipitation and initial condition are the 2 most important 408 

factors in hydrologic forecasting and simulation. Therefore, this innovative ICC module is coupled 409 

with the IRC framework since then. The red arrows in Figure 3e indicate where ICC are executed 410 

in the general architecture of the IRC framework and the specifics of the ICC module are stated 411 

below. 412 

Particles launched during the IRC process that reached the outlet at time t are traced back 413 

directly to the IC timing or time 0, and their locations at the IC timing are shown in the bottom 414 

maps in Figure 3d as the control points of time t. The downstream area of the control points has 415 

shorter transportation time to arrive at the outlet (e.g. water difference Δ𝑆1), and upstream area of 416 

the control points takes longer to get to the basin outlet (e.g. water difference Δ𝑆2). Similarly, soil 417 

moisture in the impacted area can greatly impact the size of Δ𝑆2 and flow conditions after the 418 

timing t2. Assuming initial condition are only impactful during early period and late recession of 419 

hydrograph, which is supported by the fact that these events are flood-producing events with large 420 

QPE uncertainties dominating the vicinity of peak flow, ICC is used for hydrological windows 421 

near the peak flow. Following the same notation in the IRC framework (Eq. 18), using backward-422 

in-time numerical notation, 𝑤𝑑(𝑡) represents the flow volume difference between simulated and 423 

observed flow between time 𝑡 and 𝑡 − Δ𝑡. A ‘band’ of region can therefore be identified, that is 424 

the region downstream to control points of time 𝑡 and upstream to control points of time 𝑡 − Δ𝑡. 425 

This ‘band’ is then referred to as the impacted area for time 𝑡, and the initial soil moisture in the 426 

impacted area significantly influence basin discharge between time 𝑡 − Δ𝑡 and time 𝑡. Finally, 427 

𝑤𝑑(𝑡) is then applied to initial soil moisture within the impacted area (i.e. the ‘band’) and the 428 

details can be found in Liao and Barros (2024b). 429 
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2.3.10 Hydrological Skill Metrics  430 

The hydrological skill metrics used in this study include the Kling-Gupta Efficiency (KGE) 431 

of the streamflow calculated at time-interval τ (here 15 minutes) determined by the frequency of 432 

observations (i.e. USGS gauge records) over the event duration (here 24 hours): 433 

 𝐾𝐺𝐸τ = 1 − √(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)2+(

𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)2                                  (19) 434 

where r is the correlation, 𝜎𝑜𝑏𝑠 is the standard deviation in discharge observations, 𝜎𝑠𝑖𝑚 the 435 

standard deviation in discharge simulations, 𝜇𝑠𝑖𝑚 and 𝜇𝑜𝑏𝑠 are the mean streamflow of the 436 

simulations and the observations respectively. The subscript τ denotes the time-scale dependence of 437 

the KGE. KGE ranges from negative infinity to 1.  438 

The Nash Sutcliffe Efficiency (NSE) of the streamflow is also calculated at time-interval τ 439 

(here 15 min): 440 

𝑁𝑆𝐸τ = 1 −
∑ (𝑄𝑜

𝑡−𝑄𝑠
𝑡)2𝑇

𝑡=1

∑ (𝑄𝑜
𝑡−𝑄𝑜̅̅ ̅̅ )2𝑇

𝑡=1
       (20) 441 

 442 

where 𝑄𝑜
𝑡  and 𝑄𝑠

𝑡 are the streamflow observation and simulation at time t, and t is ranging from the 443 

first time step to the last time step T. 𝑄𝑜
̅̅̅̅  is the mean of observed streamflow. The subscript τ denotes 444 

the time-scale dependence of the NSE. NSE ranges from negative infinity to 1.  445 

The relative volume error (EV) is the difference between the time integral of the simulated 446 

and observed hydrographs over the event discharge volume:  447 

 448 
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EV =  
Simulated hydrograph volume − Observed hydrograph volume

Observed hydrograph volume
                      (21) 449 

 450 

An overestimation case has EV>0 and an underestimation event has EV<0. 451 

EPT is the error in the timing of peak discharge on the rising limb of the hydrograph. When 452 

calculating EPT, if multiple peaks are present, only the highest peak timing is considered. To better 453 

capture the difference between rising limbs of observations and simulations, EPT is calculated 454 

using both the rising point and the highest peak point; thus, EPT compares the difference between 455 

the mid points of the two rising limbs. 456 

EPV or error in peak volume is a relative error between simulated and observed flood peak, 457 

and the equation is below: 458 

EPV =  
Simulated peak flow − Observed peak flow

Observed peak flow
                      (22) 459 

 460 

2.3.11 Study Domain and Model Setup 461 

 28 headwater basins are selected in the Appalachians as illustrated in Figure 1 with basin 462 

drainage area ranging from 50 km2 to 500 km2. These headwater basins cover a wide range of 463 

geographic regions (e.g. Basin01 and Basin30 are over 2,000 km apart) with diverse weather and 464 

climate regimes, associated with large differences in geomorphology and hydrogeology.   465 

 466 

<Figure 4 here please> 467 
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  468 

Soil-related parameters are downloaded from a global high resolution (1 km) soil data 469 

repository (Zhang et al., 2018). For each basin, the vertical hydraulic conductivity remains the 470 

same for the entire soil column. The lateral hydraulic conductivity in the unsaturated zone was 471 

assumed to be two-three orders of magnitude larger than the vertical conductivity in the shallow 472 

soil layers, with higher values where the stone fraction in the soils is higher (Carlson, 2010, Freeze 473 

and Cherry, 1979). The final scaling factors were obtained through simple sensitivity analysis to 474 

match the curvature and slope of the observed subsurface runoff recession curves (Yildiz and 475 

Barros, 2007; Chen and Kumar, 2001; Linsley et al., 1982), and the final scaling factors are: 1500, 476 

150, 15 and 1.5 for layer 1 (0-10 cm), layer 2 (10-75 cm), layer 3 (75-200 cm) and layer 4 (2-20 477 

m), respectively. No parameter calibration is done in this work as the primary focus of this work 478 

is to develop a QPE dataset that can consistently close the water budget while controlling 479 

uncertainties from other sources, largely advancing the understanding of QPE uncertainties across 480 

climate, weather, and geomorphological regimes.   481 

 Flood-producing events are selected for the headwater basins identified in the 482 

Appalachians for recent years (i.e. the study period is from January 2021 to April 2024). The 483 

selection criteria are threshold-based, specifically the peak flow must be greater than 95% of the 484 

flow records in the study period. The  choice of  95% is a compromise because 99% would yield 485 

too few events while 90% would be too close to the annual flood. Additionally, rainfall runoff 486 

response time must be shorter or equal to 6 hours to be qualified as a flash flood event. Only warm 487 

season liquid precipitation events 2021-2024 are finally selected during this systematic event 488 

selection process. Here, the warm season is specifically defined as from April 1st to September 489 
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30th. Note, data quality control is enforced and events with missing streamflow records are 490 

discarded.  491 

 For the Cataloochee Creek Basin (Basin05), located in the SAM known to have 492 

experienced multiple flash floods in the past (Tao and Barros, 2013), Liao and Barros (2024a) 493 

created a Historical Flood Record database (HFR) for this basin, which includes numerous flood-494 

producing events from 2008 to 2017. The event selection criteria when developing HFR are also 495 

using the same 95% flow threshold method. The difference is that the HFR also includes multiple 496 

winter-time liquid precipitation events  that result in flash floods. In total, there are 54 events for 497 

Basin 05 in the HFR and these events are also used to expand the study sample size in this work.  498 

The hydrological spin-up process starts with iterative DCHM runs from April 30th to 499 

September 30th, 2021, including a total of 5 iterations (i.e. reaching a stable/equilibrium model 500 

state). Then DCHM runs continuously from October 1st 2021, to April 1st, 2024 to derive initial 501 

conditions for events happened after September 30th 2021. During this spin-up process, no 502 

parameter calibration is involved. The initial conditions used for the events in this study are from 503 

the 5th iteration from April 30th to September 30th, 2021, and from the subsequent continuous run 504 

from October 1st, 2021 to April 1st, 2024.   505 

2.4 Caveat  506 

In the entire study domain, rain gauges are only installed in the Southern Appalachians 507 

specifically in the vicinity of the Cataloochee Creek Basin (Basin 05) in the core area of the IPHEx 508 

rain gauge mesonet. The remainder of the studied basins are not monitored by raingauges, and 509 

therefore no raingauge bias correction is done for those basins and the downscaled original dataset 510 

StageIV (i.e. STIVD) is used as inputs for the IRC method and hydrological simulations in this 511 

study. 512 
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As an important component of the IRC framework, the Lagrangian tracking algorithm is 513 

only implemented when transitioning from one hydrological window to the next window, instead 514 

of being implemented every model time step (i.e. 5 minutes), and this is because of computational 515 

constraints. Additionally, we do not differentiate peak flow points and recession inflection points 516 

between simulations and observations when classifying hydrological flow regimes/windows, and 517 

consistently use observations as the reference basis for hydrological window identification because 518 

1) precise locations of particles become much more uncertain later in the hydrograph due to 519 

numerical rounding errors and grid-based abruptly-changing velocity fields used in the Lagrangian 520 

tracking algorithm, and 2) the computational costs associated with excessive running of the 521 

tracking algorithm. Very short travel times (i.e. <15 minutes) are ignored because of temporal 522 

resolution restrictions from streamflow observations. A systematic use of 24 hours for event total 523 

duration is imposed in this work to reduce excessive tracking workload, which might be 524 

problematic for events with very long and heavy tails though not common for flash flood events 525 

in headwater basins. 526 

Nevertheless, the coupled IRC-ICC recursive framework allows us to quantify QPE 527 

uncertainties more realistically by improving initial soil moisture estimation, and this framework 528 

proves to be numerically efficient in achieving good and stable hydrological state after only a few 529 

iterations. In this work, the stable state of IRC-ICC is reached when the Kling-Gupta Efficiency 530 

(KGE) oscillations are within 0.05 from iteration to iteration, calculated at 15-minutes intervals. 531 
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3.  Results and Discussion 532 

3.1 Raingauge Bias Correction  533 

Raingauge bias correction includes linear bias correction for radar-gauge pairs (see Eq. 8) 534 

and a series of biases corrections listed in Section 2.3.1: LRC, MRC, CRC and GRC.  Analysis of 535 

the diurnal cycle on a seasonal basis reveals bias patterns linked to radar operations, and in 536 

particular terrain blockage, radar beam overshooting, and excessive attenuation that may vary from 537 

hour to hour but when taken over a long period of time indicate localized errors in space and time 538 

that reflect the site hydrometeorology.  Light and shallow rainfall is a particular challenge in the 539 

region of study (e.g. Duan et al. 2015; Duan and Barros, 2017; Arulraj and Barros, 2017).  The 540 

peak number of missed rainfall corresponds to about 10-15% of the total number of hours for each 541 

season in the late afternoon. The missed events correspond to both light and moderate rainfall, and 542 

occasionally to isolated heavy rainfall likely associatd with isolated thunderstorms.   543 

  The climatologically corrected STIVDBKC fields have significantly accurate diurnal cycle 544 

comparing to only event-scale bias corrected STIVDBK. This processes is illustrated in Figure 5 for 545 

one raingauge in eastern ridges (left panel)  and another in the western ridges (right panel). 546 

 547 

<Figure 5 here please> 548 

 549 

Biases in original StageIVD are more significant over the western ridges (e.g. right panel) 550 

at all times of day reflecting the impact of cloud immersion and seeder-feeder enhacement of low 551 

level precipitation over the ridges (Duan and Barros, 2017), with mid-day bias being a problem 552 

across the region (e.g., Barros and Arulraj, 2019). Overall, analysis of the StageIVDBKC fields 553 
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demonstrates that the climatology corrections work well in terms of mean rainfall, as well as 554 

reducing miss detection errors. Figure 6 shows the diurnal cycle of missed precipitation at two 555 

selected gauge locations (top row) in the winter (Januray-February and March – JFM) in StageIV 556 

that are preserved in StageIVD (black) and StageIVDBK (cyan). These missed precipitation events 557 

correspond to instances of very light rainfal (bottom row) at the raingauge locations (< 1.5 mm/hr).  558 

After applying the LRC and MRC climatology corrections, the missed detection problems (cyan) 559 

in StageIVDBK are largely eliminated for the StageIVDBKC fields (green). 560 

 561 

<Figure 6 here please> 562 

 563 

When integrated over the ten-year period, the averaged seasonal HSS, TS, and RMSE 564 

statistics of STIVDBKC demonstrate significantly better performance comparing to STIVD for all 565 

hours of the day (Figure 7a). Moreover, note that there is no decreasing trend in TS with increasing 566 

precipitation rate threshold (Figure 7b) which indicates that climatology correction is working for 567 

the heavy rainfall amounts linked to localized thunderstorm activity. Figure 7c shows the diurnal 568 

cycle and seasonality distribution of RMSE conditional on rain rate. The RMSE generally stays 569 

below 0.1 mm/hr except in the early morning and in the late afternoon in the cold season.  In part 570 

this error could be related to snowfall which is not properly accounted for as the raingauges are 571 

not heated. 572 

 573 

<Figure 7 here please> 574 

 575 
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3.2 Hydrologic Correction  576 

The coupled IRC-ICC framework is originally developed and applied in Basin 05, the 577 

Cataloochee Creek Basin, and an example showing the results from iterations is demonstrated in 578 

Figure 8. The notation follows the definition in Figure 3. Note STIVDBKC data derived in Section 579 

3.1 are further downscaled to 250m and used for hydrological simulations in this section. For all 580 

other basins (except Basin05), raingauges are not available and STIVD data are used instead.  581 

 582 

<Figure 8 here please> 583 

 584 

It is demonstrated that for this extreme flood-producing event, IRC-ICC produces stable 585 

results after about 3 to 4 iterations without significant oscillations. In general, for less significant 586 

events, IRC-ICC often reaches an equilibrium state faster (merely 3 iterations), providing fast and 587 

convergent corrections. As explained in the Section 3, the equilibrium state is considered when 588 

oscillations in the KGE values are within 0.05, and then IRC-ICC is stopped immediately. This 589 

study suggests that for most events 3 iterations is a good rule of thumb.  590 

3.2.1 Systematic Application of IRC-ICC 591 

 Systematic application of the coupled IRC-ICC framework is conducted in the 28 basins 592 

selected in the Appalachians for 225 events, and examples are displayed in Figure 9.  593 

 594 

<Figure 9 here please> 595 

 596 
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 The performance of IRC-ICC is in general slightly better in the Southern and Northern 597 

Appalachian Mountains (SAM, NAM) than the Central Appalachian Mountains (CAM). In CAM, 598 

particularly along the border of the state of West Virginia and the state of Virginia, residing 599 

expanded karst terrain, and numerous caverns are identified (see the documented caverns: 600 

http://www.wvgs.wvnet.edu/www/geology/docs/WV_Tax_Districts_Containing_Karst_Terrain.601 

pdf). The current version of DCHM hydrological model does not solve physics involved in Karst 602 

terrain. Here, the advantage of not calibrating parameters becomes obvious because these Karst 603 

terrain related physics can easily be ignored by parameter calibration when domain knowledge is 604 

not sufficient. Being in Karst terrain, Basin 13 and 14 (not shown) demonstrate noticeably poor 605 

simulations with severely underestimated baseflow contribution and artificial peaks due to the lack 606 

of subterranean river representation. This is apparently beyond the resolved scale using the current 607 

DCHM model with current spatiotemporal resolutions (250m, 5minutes). Here, resolved scale 608 

refers to a reasonable scale range where physical processes are represented in the hydrological 609 

model. At coarse scales, physical processes are substantially averaged, and information is 610 

potentially lost during averaging. At fine scales, some physical processes are not yet known or not 611 

parameterized in the model. The 10 events in Basin 13 and 14 are therefore discarded. 612 

 Event 2021-06-10 in Basin 19 (Figure 9) is an example when more hydrological windows 613 

(see Figure 3) are required to capture the subtle changes in the hydrograph for a relatively more 614 

complex hydrograph (e.g. multiple mild peaks around the major peak). These subtle changes could 615 

be a shifting of dominant river branch in the basin due to the movement of rainfall. Again, this 616 

requires much finer resolution both for the hydrological model and for the tracking algorithm to 617 

represent this detailed level of physics for summer thunderstorms. With limited computational 618 

power, this study systematically uses a 4-window IRC-ICC framework, including pre-rising-point 619 
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segment, rising limb, early recession, and late recession (separated by the recession inflection 620 

point). 621 

 622 

3.2.2 IRC and IRC-ICC Precipitation Corrections  623 

 Event total precipitation fields are calculated after IRC-only and IRC-ICC frameworks 624 

reaching an equilibrium state, and these fields are compared with product STIVDBKC used as inputs 625 

for these frameworks. Examples are shown in Figure 10 categorized by seasons in the Cataloochee 626 

Creek Basin (Basin05). Again, warm season is defined as April 1st to September 30th, and the rest 627 

is defined as the cold season, with only liquid precipitation events are studied in this work.  628 

 629 

<Figure 10 here please> 630 

 631 

The original QPE (a1 and b1) shows boxy patterns and abrupt spatial changes, which is a 632 

common issue of radar observations when used at high spatial resolution.  By contrast the IRC-633 

corrected precipitation maps (from both the IRC-only framework and the coupled IRC-ICC 634 

framework) are aligned better with terrain gradients, showing strong spatial patterns with higher 635 

precipitation along ridges and lower precipitation in adjacent valleys. IRC-ICC precipitation fields 636 

have similar patterns to IRC-only precipitation. Note the dark blue colors  corresponding to very 637 

low precipitation near the basin outlet are an artifact of the IRC  tied to very short travel times that 638 

cannot be fully resolved even at the fine scales of 250m and 5minutes. However, with proper IC 639 

uncertainty reduction, these artifacts are dramatically reduced as shown for the 2009-10-14, 2009-640 

04-20, and 2013-04-12 events because of overall basin-wide travel time improvements attributed 641 
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to improved IC. These three events are relatively mild events, indicating larger importance of IC 642 

for events of lower magnitude because of the critical role of IC in runoff generation mechanisms 643 

and travel times distributions.  644 

3.2.3 Precipitation and Hydrologic Statistics 645 

 Event-total precipitation maps are calculated for each basin and event, and basin scale 646 

precipitation statistics (e.g. mean and standard deviation) are derived for each event-total 647 

precipitation map. These statistics are plotted in Figure 11, and subregions are separated by vertical 648 

black lines. Basins 01 to 11 are located in the SAM, Basins 12 to 20 are located in the CAM, and 649 

Basins 21 to 30 are located in the NAM. Given the dramatic impact of the Karst terrain on the 650 

hydrological performance related to Basin 13 and 14, the results from these two basins are not 651 

included in the statistics. 652 

<Figure 11 here please> 653 

 It is clearly demonstrated that the change in the mean (i.e. basin-averaged event total QPE) 654 

is relatively small (from 36.10mm to 38.07mm) compared to the change in the standard deviation 655 

(from 6.63mm to 14.08mm) after the application of the coupled IRC-ICC. The small standard 656 

deviation of the original QPE suggests that original QPE data are spatially tightly clustered with 657 

low variability (see Figure 10a for boxy rainfall features), while larger standard deviation post-658 

IRC-ICC indicates spatial variability is enhanced, which is highlighted by the terrain-aligning 659 

precipitation features in Figure 10c. The relatively small change in the mean indicates that the 660 

original input precipitation (i.e. StageIVDBKC for Basin 05, and StageIVD for the remainder basins) 661 

does not contain significant unconditional systematic biases across basins and events, which  662 

would lead to consistent positive or negative flood volume errors.  This argument is supported by 663 

the fact that only small changes in the mean are introduced by the IRC-ICC framework. As an 664 
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exception, it is worth noting that the standard deviation of Basin 05 events does not change 665 

significantly after the IRC-ICC compared to other basins and events because rain gauge corrections 666 

are employed in Basin 05 but not anywhere else. It can never be overly emphasized that even after 667 

rain gauge bias correction, essentially as a point-scale correction method, the resulting QPE is still 668 

subjected to large water budget closure errors (see Figure 12 for more discussion)  on account of 669 

the highly heterogeneous nature of QPE in complex terrain.       670 

The hydrologic statistics described in Table 1 using all studied events are plotted in Figure 671 

12.  672 

<Figure 12 here please> 673 

Figure 12 shows that the median KGE in each sub-region across the basins and events is 674 

improved from 0.36, 0.39, 0.27 to 0.89, 0.74, 0.84 for SAM, CAM and NAM, respectively. It 675 

should be pointed out that QPE changes for Basin 05 events (event number 55 to 108) are important 676 

for improving water budget closure, albeit small in magnitude compared to other events in other 677 

basins as shown in Figure 11 and 12, and yet critical to capture the complex precipitation 678 

heterogeneity in complex terrain to close the water budget. Basin 05 is a good example illustrating 679 

not only the contributions but also the limitations of rain gauge bias corrections in complex terrain 680 

in general. The relatively mild improvement in the CAM is explained by lacking physics 681 

representation of subterranean rivers in the Karst terrain in the DCHM model, causing large 682 

baseflow errors during hydrograph recession and thus low KGE values. Nevertheless, for 683 

applications in flash floods research, peak flood discharge, flood peak timing, and flood volume 684 

are the most important factors (see the second, third and fourth horizontal subplots in Figure 12. 685 

Flood volume error (the second panel) is controlled within ±10% for over 90% of the flood-686 

producing events in the Appalachians, with the median EV error being less than 5% for post IRC-687 
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ICC products in SAM and NAM. Flood peak volume (the third panel) is controlled within 20% 688 

for most of the events, which is significant because these events are extreme events. This is 689 

demonstrated by Tropical Storm Fred on 2021-08-17 and event that caused floods in multiple SAM 690 

basins, caused 5 deaths and an estimated economic loss of over 1 billion dollars: the KGE improves 691 

to 0.9 and peak timing errors are less than 30 minutes using IRC-ICC. For most of the studied 692 

events, timing errors (shown in the fourth panel) of the post IRC-ICC product are bounded by ±60 693 

minutes, though some outliers are observed in the CAM and NAM potentially due to complex 694 

surface conditions such as antecedent snow on the ground for April events.  695 

Events with relatively large timing errors (±90 minutes) are investigated in detail.  These 696 

include the 2023-07-08 event in Basin 27 in New Hampshire (event number 185, which is 2.5 697 

hours too early).  This was a localized summer thunderstorm event, only taking half an hour to 698 

reach its peak flow, posing a challenge in separating flow regimes using hydrological windows 699 

defined in the IRC-ICC framework at the current model resolution.  The event on 2022-05-27 in 700 

Basin16 (a relatively big basin >400 km2) is a relatively slow rising event (event number 118, 2 701 

hours too early) in West Virginia with rain-on-snow conditions and potentially snowmelt effects 702 

involved at high elevations.  Finally, event 2021-09-22 in Basin19 (event number 133, 2 hours too 703 

late) is a relatively more complex event with multiple rain cells moving over the basin close to 704 

each other in time, therefore requiring many more windows to capture highly transient 705 

hydrological regimes than the 4-window default structure (i.e. pre-rising limb, rising limb, early 706 

recession, late recession) used in the IRC-ICC.  707 

Overall, there are significant improvements in QPE corresponding to improvements in 708 

flood volume, flood peak and flood timing as a result of IRC-ICC. Because the IRC-ICC is a 709 

framework built upon runoff travel time, it cannot be used when precipitation is missing or there 710 
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are  severe timing errors due to the lack of water travel time trajectories to distribute corrections.  711 

From a practical point of view, the QPE IRC-ICC corrections amount to space-time bias 712 

correction. The improved QPE data can be used to build general QPE error prediction models such 713 

as Liao and Barros (2023) and therefore correct remote-sensing products to improve orographic 714 

QPE data to support hydroclimatic studies and model calibration under reduced forcing 715 

uncertainty.   716 

4.  Discussion and Future Work 717 

Limitations in this study stem mainly from computational constraints rather than the 718 

methodology. A systematic definition of 24-hour flood duration is imposed,  implying that for 719 

floods with longer high-flow tails slow contributions from deeper soil layers are not considered. 720 

The current IRC-ICC framework was built to support flash flood studies and only utilizes shallow 721 

subsurface moisture transport information, consistent with the governing role of shallow soil 722 

moisture dynamics in steep topography. It is expected that for long duration precipitation events 723 

or basins with large mild-slope areas, deeper interflows would play a much more important role in 724 

improving flood timing, volume estimation and resulting QPE via IRC-ICC.  725 

We plan to improve the StageIV-IRC product by further improving the IRC-ICC 726 

framework through improved model physics and resolution and utilizing 3D velocity fields to 727 

capture the full travel time distributions. When computational resources allow, the IRC can be 728 

carried out at the same frequency as the model resolution, therefore eliminating any artifacts 729 

produced due to inadequate sampling and updating of travel time distributions. This dataset can 730 

even be used in near real time in operational hydrology to improve Quantitative Precipitation 731 

Forecasts (QPF), advancing flood forecasting and emergency management. 732 
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5.  Data Availability Statement  733 

The StageIV-IRC dataset at 250 m 5 minute resolution for 26 basins and 215 events is 734 

available at: https://doi.org/10.5281/zenodo.14028867.(Liao and Barros, 2024). Associated 735 

geographic documentation of the selected basins is also provided via the same link.  736 

6.  Conclusion 737 

QPE has been an enduring challenge particularly in complex terrain. Radar QPE are 738 

plagued with uncertainties from multiple sources while rain gauge networks are scarce and suffer 739 

from the lack of representativeness in the mountains. To address this grand challenge, we develop 740 

a series of corrections from point-scale to watershed-scale encompassing event, climatology, and 741 

water budget closure corrections for radar QPE: the IRC-ICC framework. To our knowledge, this 742 

is the first QPE dataset aiming to close the water budget at high resolution for flood events, 743 

consistent with fundamental physics at watershed scale,  and achieving superior hydrological 744 

performance at sub-hourly scale in headwater basins.  745 

The coupled IRC-ICC framework is applied to 26 headwater basins in the Appalachians 746 

for 215 events with robust success yielding significant improvements in streamflow simulation, 747 

particularly on flood timing and volume. The tracking algorithm in the IRC-ICC framework is 748 

only updated when shifting from one hydrological window to another but not every time step. With 749 

enough computational resources, post IRC-ICC QPE data should further improve by capturing 750 

transient travel time distributions between model time steps. 751 

Over 90% of the events have flood timing errors within one hour using the StageIV-IRC 752 

product compared to fewer than 20% of the events without the use of IRC-ICC, while the median 753 

KGE improved from 0.34 to 0.86 across the events. Results show that initial conditions are more 754 
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important for less severe precipitation events, especially during the slow rising period of 755 

hydrograph, which influence subsequent streamflow simulations. It is also worth noting that 756 

physical parameters used in this work are not calibrated for any precipitation event in any basin. 757 

This physics-based IRC-ICC framework can capture the fundamental physics involved in flash 758 

flood events, that is the fast hydrological response in surface and shallow subsurface soil layers 759 

due to steep slopes and gravity, therefore skillful hydrologic prediction is achieved without model 760 

calibration by instead focusing on getting the forcing right. 761 

The IRC-ICC is a general framework that can be incorporated into any distributed 762 

hydrological models. Thus, the StageIV-IRC dataset also enables meaningful intercomparison 763 

among different radar QPE dataset, providing physics insights into QPE error structure from water 764 

budget closure perspective, toward improving radar retrievals and to characterize radar specific 765 

errors related to radar operations at high spatial resolution in the mountains. The demonstrated 766 

success of StageIV-IRC in ungauged basins strongly supports the use of IRC-ICC in the vast area 767 

of remote mountains worldwide where raingauges are generally not available. This dataset can be 768 

utilized as a reference for building machine learning models (or even deep-learning models when 769 

the number of studied precipitation events is expanded) that can learn the QPE uncertainties 770 

conditional on time of day, weather, climate and geomorphological regimes for both radar QPE 771 

analysis and forecasts, advancing the understanding of orographic precipitation uncertainties at 772 

high resolution across global mountains. 773 

 774 
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Table 1 – Index, and coordinates for the raingauge stations marked in Figure1. The index is used 1420 

to identify specific gauges in some of the graphs.  Two raingauges at Purchase Knob, a supersite 1421 

in the inner mountain region, are highlighted in bold font. Shaded rows indicate stations with 1422 

collocated raingauges that have different temporal resolution (e.g. tip size). 1423 

NO. Site ID. Lat. Lon. Elev. (m) 

1 RG001 35.39830 -82.91300 1156 

2 RG002 35.41750 -82.97140 1731 

3 RG003 35.38460 -82.91610 1609 

4 RG004 35.36830 -82.99020 1922 

5 RG005 35.40890 -82.96460 1520 

6 RG008 35.38210 -82.97360 1737 

7 RG010 35.45640 -82.94680 1478 

8 RG100 35.58610 -83.07250 1495 

9 RG100T 35.58767 -83.06468 1485 

10 RG101 35.57500 -83.08820 1520 

11 RG102 35.56370 -83.10360 1635 

12 RG103 35.55340 -83.11790 1688 

13 RG104 35.55490 -83.08800 1584 

14 RG106 35.43210 -83.02910 1210 

15 RG109 35.49560 -83.04040 1500 

16 RG110 35.54810 -83.14820 1563 

17 RG300 35.72653 -83.21692 1558 

18 RG301 35.70552 -83.25595 2003 

19 RG302 35.72135 -83.24675 1860 

20 RG303PK 35.58610 -83.07253 1495 

21 RG303S 35.76295 -83.16222 1490 

22 RG304 35.67010 -83.18287 1820 

23 RG305 35.69150 -83.13190 1630 

24 RG306 35.74597 -83.17148 1536 

25 RG307 35.65163 -83.19952 1624 

26 RG308 35.73027 -83.18237 1471 

27 RG309 35.68297 -83.15003 1604 

28 RG310 35.70273 -83.12263 1756 

29 RG311 35.76507 -83.14042 1036 

30 RG400 35.70273 -83.12263 1756 

31 RG401 35.65163 -83.19952 1624 

32 RG402 35.72135 -83.24675 1860 

33 RG403 35.51777 -83.10113 925 

34 RG407 35.51777 -83.10113 925 
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Table 2: Hydrologic skill metrics used in this study. 1426 

Metric Description/Unit Formula/Reference 

KGE Kling-Gupta efficiency Eq. (19) /Gupta et al. (2009)  

NSE Nash-Sutcliffe efficiency Eq. (20) /Nash and Sutcliffe. (1970) 

EV Error in area under the hydrograph Eq. (21) 

EPT Error in Time to Peak (minutes) Time diff. between mid-points of rising limbs 

EPV Relative Error in Peak Volume Eq. (22) 
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Table 3 - Basin information including basin index used in this work for simplicity, USGS 1428 

streamflow gauge ID, the corresponding drainage area, highest elevation in the basin and basin 1429 

relief. 1430 

Basin index 
USGS Gauge 

ID 

Drainage area 

(km2) 

Basin highest 

elevation (m) 

Basin 

relief (m) 
Location 

1 3544970 118.7 1442 847 GA 

2 2178400 176.1 1629 1051 GA 

3 3504000 149.9 1667 1032 NC 

4 3497300 317.6 1999 1651 TN 

5 3460000 148.1 1879 1174 NC 

6 3456500 152.8 1873 1157 NC 

8 344894205 41.3 1995 1221 NC 

9 3463300 134.3 1989 1425 NC 

10 3400500 234.7 1257 1257 KY 

11 3479000 283.3 1772 1216 NC 

13 3182700 447.3 1111 717 WV 

14 2011460 194.4 1388 763 VA 

15 1620500 54.5 1321 712 VA 

16 3180500 426.8 1416 621 WV 

17 3068800 437.1 1471 908 WV 

18 1595000 234.8 1230 560 MD 

19 1595300 130.3 1069 712 WV 

20 1544500 445.9 765 457 PA 

21 1422747 81.4 766 394 NY 

22 1415000 106.8 1019 636 NY 

23 1413398 152.8 1094 754 NY 

24 13621955 41.7 1074 717 NY 

25 1421610 51.3 970 497 NY 

26 1074520 389.4 1582 1582 NH 

27 10642505 294.9 1895 1693 NH 

28 1137500 300.3 1894 1546 NH 

29 1133000 183.2 975 719 VT 

30 1055000 334.1 1143 975 MAINE 
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LIST OF FIGURES   1435 

Figure 1 - Map of ground-based observations.  Locations marked by numbers-only are raingauges; 1436 

locations marked by numbers preceded by P are disdrometers. See Table 1 for list of stations and 1437 

geographical coordinates. 1438 

Figure 2 – Workflow to generate the product STIVDBKC. 1439 

Figure 3 – An illustration of the structure of IRC, ICC and the coupled IRC-ICC framework 1440 

including a) the residual hydrograph between the observed and simulated discharge, with the 1441 

discharge water difference wd(t) being distributed across the time window T; b) Example of  travel 1442 

time distribution TT(t) and map (inset) illustrating a hypothetical distribution of runoff source 1443 

areas (in red, ns=3) with travel time x2 contributing to streamflow at time t, meaning that at time 1444 

t-x2 there are three pixels (ns=3) generating runoff that reaches the outlet at time t. T is the time 1445 

window over which runoff source areas with TT < T are mapped and the inverse rainfall correction 1446 

(IRC) are applied; c) Example of IRC windows guided by timescales of dominant hydrological 1447 

processes. The first window solely covers the initial streamflow conditions before the target event. 1448 

The second window depicts the early rising limb of the hydrograph. The third window captures 1449 

the steep rising limb of the hydrograph until it reaches the peak flow. The fourth and fifth windows 1450 

correspond to interflow-dominant and baseflow-dominant stages of the recession curve 1451 

respectively, separated by the recession inflection point; d) A schematic drawing that illustrates 1452 

the Initial Condition Correction (ICC). Characteristic timing of the hydrographs: Tr* and Tr are 1453 

rising points of simulated and observed hydrograph respectively. Tp is peak timing of observed 1454 

flow. TI is the inflection point of observed flow. Flow differences between simulated and observed 1455 

flow at t1 and t2 are denoted as Δ𝑆1 and Δ𝑆2 respectively as examples for discussion in the text. IC, 1456 

P, and Q stand for initial condition, precipitation and discharge, respectively; e) A recursive 1457 

framework consists of Initial Condition Correction and Inverse Rainfall Correction (i.e. the 1458 

coupled IRC-ICC framework) for illustration purposes.  1459 

Figure 4 – Headwater basins selected in the Appalachian Mountains, USA. The USGS gauge ID 1460 

for each basin and basic information are listed in Table 2. For simplicity, sub-regions are identified 1461 

and conveniently named as: Southern Appalachian Mountains (SAM, including Basin 01-11), 1462 

Central Appalachian Mountains (CAM, including Basin 13-20), and Northern Appalachian 1463 

Mountains (NAM, including Basin 21-30).  1464 

Figure 5 - Diurnal cycle of rainfall (mean and ±standard deviation) for different seasons and gauge 1465 

locations.  Left panel - Summer (JAS: July-August-September) at RG008 in the eastern ridges.  1466 

Right panel – Spring (AMJ; April-May-June) at RG302 in the western ridges. Raingauge 1467 

measurements (blue); StageIVDBK (black); StageIVDBKC (green). 1468 

Figure 6 –Top row - Wintertime (January-February-March, JFM) diurnal cycle of missing 1469 

precipitation in the eastern ridges (RG003) and in the inner region (RG103) for each of the RR 1470 

products: .  Bottom row- same as top row for the raingauge climatology of hourly rainfall (blue).  1471 

StageIVD (black); StageIVDBK (cyan); StageIVDBKC (green).  1472 

Figure 7 – Statistics summary: a) Diurnal cycle of mean HSS and TS statistics including all 1473 
raingauges over the 10-year reference period (2008-2017): STIVD (black) and STIVDBKC (green); 1474 

b) Seasonal mean HSS and TS statistics conditional on different rainfall thresholds over the 10-1475 
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year reference period; c) Diurnal cycle of RMSE at hourly time-scale and seasonal-scale RMSE 1476 

conditional on observed rainfall rate. Note only the winter season (JFM, January February, March) 1477 

is demonstrated in this Figure. 1478 

Figure 8 – The application of the coupled IRC-ICC framework to Basin05 (Cataloochee Creek 1479 

Basin, NC) for 2017-10-23 event. This extreme hydrological response is caused by the remnants 1480 

of Hurricane Nate in 2017. This figure includes a) the original simulation results using STIVDBKC 1481 

as inputs; b) the dashed rectangular plot consisting of intermediate results including each iteration 1482 

from the coupled IRC-ICC framework as explained in Figure 3; c) the equilibrium state reached 1483 

by the coupled framework after 5 iterations, and d) KGE value compilation graph calculated using 1484 

15 minutes intervals for each iteration in the coupled framework. 1485 

Figure 9 – The systematic application of the coupled IRC-ICC framework to the 28 basins selected 1486 

in the Appalachians. The results include a) 5 events from the Southern Appalachians; b) 5 events 1487 

from the Central Appalachians; and c) 5 events from the Northern Appalachians. The IRC-ICC 1488 

KGE evolution plots from iterations are included below the hydrographs. The black dash line uses 1489 

the original STIVD and the pink line is the IRC-ICC equilibrium state (STIVD
IRC∗ ), and the 1490 

corresponding colored numbers are KGE values calculated at 15 minutes interval. 1491 

Figure 10 – Event total precipitation maps for a) cold season events and b) warm season events. 1492 

Each category includes 5 columns representing different events and 3 rows with the first row (a1, 1493 

and b1) representing original precipitation input STIVDBKC, and the second row (a2, and b2) 1494 

representing STIVDBKC
IRC∗ from IRC-only framework, and the third row (a3, and b3) representing 1495 

STIVDBKC
IRC∗  from the coupled IRC-ICC framework.   1496 

Figure 11 – Summary charts of precipitation statistics for all event-total precipitation maps. Basin 1497 

mean and standard deviation for each event are represented by circles and triangles in the top and 1498 

bottom panel, respectively. Each panel is separated into 3 sub-regions by vertical black lines: the 1499 

Southern Appalachian Mountains, Central Appalachian Mountains, and Northern Appalachian 1500 

Mountains (SAM, CAM and NAM). The list of events in Basin 05 (with event number ranging 1501 

from 55 to 108) in the SAM is highlighted by a green rectangle for further discussion in the text. 1502 

The average values of all events for both the mean and the standard deviation are calculated and 1503 

shown in the top right corner. Black color and pink color represent pre and post IRC-ICC QPE 1504 

statistics, respectively.    1505 

Figure 12 – Summary charts of hydrologic skill metrics for all events. Horizontal green dash lines 1506 

(i.e. the perfect situation) and green envelopes are for reference purposes. Hydrologic statistics are 1507 

explained: EPV: Error in Peak Volume (Unit: %), EPT: Error in Peak Timing (Unit: minutes), EV: 1508 

Error in flow Volume (Unit: %), note KGE is calculated using 15-minute intervals over a 24 hour 1509 

period. Pink dots and black dots represent post IRC-ICC results, and original inputs results, 1510 

respectively (each dot represents one event). Each panel is separated into 3 sub-regions: the SAM, 1511 

CAM and NAM. Histograms graphs are attached right next to the scatter plot.  1512 

 1513 

 1514 

  1515 
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 1516 

Figure 1 - Map of ground-based observations.  Locations marked by numbers-only are raingauges; 1517 

locations marked by numbers preceded by P are disdrometers. See Table 1 for list of stations and 1518 

geographical coordinates. 1519 

  1520 

60 
 

https://doi.org/10.5194/essd-2024-513
Preprint. Discussion started: 2 January 2025
c© Author(s) 2025. CC BY 4.0 License.



 1521 

Figure 2 – Workflow to generate the product STIVDBKC. 1522 

  1523 
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 1524 

Figure 3 – An illustration of the structure of IRC, ICC and the coupled IRC-ICC framework 1525 

including a) the residual hydrograph between the observed and simulated discharge, with the 1526 

discharge water difference wd(t) being distributed across the time window T; b) Example of  travel 1527 

time distribution TT(t) and map (inset) illustrating a hypothetical distribution of runoff source 1528 

areas (in red, ns=3) with travel time x2 contributing to streamflow at time t, meaning that at time 1529 

t-x2 there are three pixels (ns=3) generating runoff that reaches the outlet at time t. T is the time 1530 

window over which runoff source areas with TT < T are mapped and the inverse rainfall correction 1531 

(IRC) are applied; c) Example of IRC windows guided by timescales of dominant hydrological 1532 

processes. The first window solely covers the initial streamflow conditions before the target event. 1533 

The second window depicts the early rising limb of the hydrograph. The third window captures 1534 

the steep rising limb of the hydrograph until it reaches the peak flow. The fourth and fifth windows 1535 

correspond to interflow-dominant and baseflow-dominant stages of the recession curve 1536 

respectively, separated by the recession inflection point; d) A schematic drawing that illustrates 1537 

the Initial Condition Correction (ICC). Characteristic timing of the hydrographs: Tr* and Tr are 1538 

rising points of simulated and observed hydrograph respectively. Tp is peak timing of observed 1539 

flow. TI is the inflection point of observed flow. Flow differences between simulated and observed 1540 

flow at t1 and t2 are denoted as Δ𝑆1 and Δ𝑆2 respectively as examples for discussion in the text. IC, 1541 

P, and Q stand for initial condition, precipitation and discharge, respectively; e) A recursive 1542 

framework consists of Initial Condition Correction and Inverse Rainfall Correction (i.e. the 1543 

coupled IRC-ICC framework) for illustration purposes.  1544 

  1545 
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 1546 

Figure 4 – Headwater basins selected in the Appalachian Mountains, USA. The USGS gauge ID 1547 

for each basin and basic information are listed in Table 2. For simplicity, sub-regions are identified 1548 

and conveniently named as: Southern Appalachian Mountains (SAM, including Basin 01-11), 1549 

Central Appalachian Mountains (CAM, including Basin 13-20), and Northern Appalachian 1550 

Mountains (NAM, including Basin 21-30).  1551 

  1552 
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 1553 

Figure 5 - Diurnal cycle of rainfall (mean and ±standard deviation) for different seasons and gauge 1554 

locations.  Left panel - Summer (JAS: July-August-September) at RG008 in the eastern ridges.  1555 
Right panel – Spring (AMJ; April-May-June) at RG302 in the western ridges. Raingauge 1556 

measurements (blue); StageIVDBK (black); StageIVDBKC (green). 1557 

  1558 

64 
 

https://doi.org/10.5194/essd-2024-513
Preprint. Discussion started: 2 January 2025
c© Author(s) 2025. CC BY 4.0 License.



 1559 

Figure 6 –Top row - Wintertime (January-February-March, JFM) diurnal cycle of missing 1560 

precipitation in the eastern ridges (RG003) and in the inner region (RG103) for each of the RR 1561 

products: .  Bottom row- same as top row for the raingauge climatology of hourly rainfall (blue).  1562 

StageIVD (black); StageIVDBK (cyan); StageIVDBKC (green).  1563 

  1564 
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 1565 

 1566 

Figure 7 – Statistics summary: a) Diurnal cycle of mean HSS and TS statistics including all 1567 

raingauges over the 10-year reference period (2008-2017): STIVD (black) and STIVDBKC (green); 1568 

b) Seasonal mean HSS and TS statistics conditional on different rainfall thresholds over the 10-1569 

year reference period; c) Diurnal cycle of RMSE at hourly time-scale and seasonal-scale RMSE 1570 

conditional on observed rainfall rate. Note only the winter season (JFM, January February, March) 1571 

is demonstrated in this Figure. 1572 

  1573 
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 1574 

Figure 8 – The application of the coupled IRC-ICC framework to Basin05 (Cataloochee Creek 1575 

Basin, NC) for 2017-10-23 event. This extreme hydrological response is caused by the remnants 1576 

of Hurricane Nate in 2017. This figure includes a) the original simulation results using STIVDBKC 1577 

as inputs; b) the dashed rectangular plot consisting of intermediate results including each iteration 1578 

from the coupled IRC-ICC framework as explained in Figure 3; c) the equilibrium state reached 1579 

by the coupled framework after 5 iterations, and d) KGE value compilation graph calculated using 1580 

15 minutes intervals for each iteration in the coupled framework. 1581 

  1582 
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 1583 

Figure 9 – The systematic application of the coupled IRC-ICC framework to the 28 basins selected 1584 

in the Appalachians. The results include a) 5 events from the Southern Appalachians; b) 5 events 1585 

from the Central Appalachians; and c) 5 events from the Northern Appalachians. The IRC-ICC 1586 

KGE evolution plots from iterations are included below the hydrographs. The black dash line uses 1587 

the original STIVD and the pink line is the IRC-ICC equilibrium state (STIVD
IRC∗ ), and the 1588 

corresponding colored numbers are KGE values calculated at 15 minutes interval. 1589 

  1590 
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 1591 

 1592 
Figure 10 – Event total precipitation maps for a) cold season events and b) warm season events. 1593 

Each category includes 5 columns representing different events and 3 rows with the first row (a1, 1594 

and b1) representing original precipitation input STIVDBKC, and the second row (a2, and b2) 1595 

representing STIVDBKC
IRC∗ from IRC-only framework, and the third row (a3, and b3) representing 1596 

STIVDBKC
IRC∗  from the coupled IRC-ICC framework.   1597 

  1598 
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 1599 

Figure 11 – Summary charts of precipitation statistics for all event-total precipitation maps. Basin 1600 

mean and standard deviation for each event are represented by circles and triangles in the top and 1601 

bottom panel, respectively. Each panel is separated into 3 sub-regions by vertical black lines: the 1602 

Southern Appalachian Mountains, Central Appalachian Mountains, and Northern Appalachian 1603 

Mountains (SAM, CAM and NAM). The list of events in Basin 05 (with event number ranging 1604 

from 55 to 108) in the SAM is highlighted by a green rectangle for further discussion in the text. 1605 

The average values of all events for both the mean and the standard deviation are calculated and 1606 

shown in the top right corner. Black color and pink color represent pre and post IRC-ICC QPE 1607 

statistics, respectively.    1608 

  1609 
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 1610 

 1611 

Figure 12 – Summary charts of hydrologic skill metrics for all events. Horizontal green dash lines 1612 

(i.e. the perfect situation) and green envelopes are for reference purposes. Hydrologic statistics are 1613 

explained: EPV: Error in Peak Volume (Unit: %), EPT: Error in Peak Timing (Unit: minutes), EV: 1614 

Error in flow Volume (Unit: %), note KGE is calculated using 15-minute intervals over a 24 hour 1615 

period. Pink dots and black dots represent post IRC-ICC results, and original inputs results, 1616 

respectively (each dot represents one event). Each panel is separated into 3 sub-regions: the SAM, 1617 

CAM and NAM. Histograms graphs are attached right next to the scatter plot.  1618 
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