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Abstract. This paper reports an innovative mass concentration (mascon) solution obtained with the short-arc approach, named 

“GCL-Mascon2024”, for estimating spatially enhanced mass variations on the Earth's surface by analyzing K-/Ka Band 

Ranging satellite-to-satellite tracking data collected by the Gravity Recovery And Climate Experiment (GRACE) mission. 

Compared to contemporary GRACE mascon solutions, this contribution has three notable and distinct features: First, this 15 

solution recovery process incorporates frequency-dependent data weighting techniques to reduce the influence of low-

frequency noise in observations. Second, this solution uses variable-shaped mascon geometry with physical constraints such 

as coastline and basin boundary geometries to more accurately capture temporal gravity signals while minimizing signal 

leakage. Finally, we employ a solution regularization scheme that integrates climate factors and cryospheric elevation models 

to alleviate the ill-posed nature of the GRACE mascon inversion problem. Our research has led to the following conclusions: 20 

(a) GCL-Mascon2024 mass anomaly estimates from GRACE data show strong agreement with the (Release) RL06 versions 

of mascon solutions (GSFC, CSR, JPL) in both spatial and temporal domains; (b) in Greenland and global hydrologic basins, 

the correlation coefficients of estimated mass changes between GCL-Mascon2024 and other RL06 mascon solutions exceed 

95.0%, with comparable amplitudes; especially over non-humid river basins, the GCL-Mascon2024 suppresses random noise 

by 27.8% compared to contemporary mascon products; and (c) in desert regions, the analysis of residuals calculated after 25 

removing the climatological components from the mass variations indicates that the GCL-Mascon2024 solution achieves noise 

reductions of over 29.3% as compared to the GSFC and CSR RL06 mascon solutions. The GCL-Mascon2024 gravity field 

solution (Yan and Ran, 2025) is available at https://doi.org/10.5281/zenodo.15525467. 

  



2 
 

1 Introduction 30 

Comprehending the Earth as a dynamic system relies heavily on our knowledge of its gravity field, mass variations induced 

by fluid layers, as well as geophysical or climatic processes (e.g., Wahr et al., 1998; Pail et al., 2015). Over the past two 

decades, significant achievements have been made through the availability of observations collected by satellite gravimetry 

missions, such as the Gravity Recovery And Climate Experiment (GRACE) (Tapley et al., 2004; Tapley et al., 2019) and its 

successor, GRACE Follow-On (GRACE-FO) (Flechtner et al., 2016; Landerer et al., 2020). These satellite gravity missions 35 

have not only enhanced our understanding of temporal variations in the Earth's gravity field but also played a crucial role in 

advancing various disciplines, including glaciology, hydrology, geophysics, oceanography, atmosphere, and climate science 

(e.g., Han et al., 2006a; Chen et al., 2009; Rignot et al., 2011; Jacob et al., 2012; Rodell et al., 2018). 

Gravity field variations expressed in spherical harmonics have been extensively and widely employed in satellite geodesy for 

decades (Chen et al., 2022). However, certain limitations persist in the application of spherical harmonic solutions from 40 

GRACE/GRACE-FO data, including the presence of north-south “stripes” (Swenson and Wahr, 2006) as well as signal leakage 

(Kusche et al., 2009), particularly in regions adjacent to the land-sea boundary. The main reasons for the above problems are 

temporal aliasing (Wiese et al., 2011b) and the design of the satellite orbits and tracking systems (Wiese et al., 2011a), 

including inclination, altitude, inter-satellite distance, and a co-planar low-low satellite-to-satellite tracking system. 

Conventional approaches involve the removal of “stripes” through empirical smoothing (e.g., Wahr et al., 1998), de-striping 45 

(e.g., Swenson and Wahr, 2006), or regularization techniques (e.g., Save et al., 2012). It is important to note that though these 

methods are largely effective in preserving signals and suppressing noise, the elimination of stripes also results in a reduction 

in the genuine geophysical signals (e.g., Han et al., 2005; Yi and Sneeuw, 2022; Zhou et al., 2023). Moreover, the efficacy of 

destriping is highly dependent on the characteristics of the signals, including their size, shape, and orientation (Watkins et al., 

2015). It is worth mentioning that the impact of aliasing errors can be mitigated by combining gravity satellite formations 50 

within optimal constellation configurations (Yan et al., 2024) or by recovering the temporal gravity field at a higher temporal 

resolution (Yan et al., 2023). 

Alternatively, mass concentration (mascon) solutions can be utilized to model the temporal gravity field. This technique was 

initially introduced by Muller and Sjogren (1968) in their efforts to develop a model for the static gravity field of the Moon. 

Whereafter, mascon solutions utilizing GRACE Level-1B data were initially conducted in a regional context (e.g., Rowlands 55 

et al., 2005; Luthcke et al., 2006) and subsequently extended to encompass diverse global parameterizations (e.g., Luthcke et 

al., 2013; Watkins et al., 2015; Save et al., 2016; Allgeyer et al., 2022). Besides, some attempts have been made to enhance 

mascon solutions' spatial (e.g., Loomis et al., 2021) or temporal resolution (e.g., Croteau et al., 2020). Afterward, to mitigate 

the computational complexity, alternative variants of the mascon approach have been put forward, which utilize monthly sets 

of spherical harmonic coefficients (SHCs, i.e., Level-2 data) as input (e.g., Forsberg and Reeh, 2006; Baur and Sneeuw, 2011; 60 

Schrama and Wouters, 2011). Numerous recent publications have used mascon solutions released by responsible agencies, 

including the NASA (National Aeronautics and Space Administration) Goddard Space Flight Center (GSFC), the NASA Jet 

Propulsion Laboratory (JPL), and the University of Texas at Austin Center for Space Research (CSR) in the United States. 

The mascon solution released by JPL (JPL RL06 mascon) utilizes explicit partial derivatives with analytical expressions for 

the mascons to establish the relationship between inter-satellite range-rate measurements and individual mascons (Wiese et al., 65 

2018), whereas the latest variants of GSFC mascon solutions (GSFC RL06 mascon) and CSR mascon solutions (CSR RL06 

mascon) are characterized by a finite series of spherical harmonic functions, with the corresponding partial derivatives 

computed using the chain rule (Loomis et al., 2019; Save, 2020). These GRACE/GRACE-FO gravimetry data processing 

centers also offer visualization tools for their mascon products, facilitating analysis and comparison of the latest mascon 

solutions as well as generating time series data for specific regions. 70 
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Various methods including the dynamic approach (e.g., Kvas et al., 2019), the short-arc approach (e.g., Mayer-Gürr, 2008), 

the celestial mechanics approach (e.g., Beutler et al., 2010), the energy balance approach (e.g., Han et al., 2006b), and the 

acceleration approach (e.g., Ditmar and Van Der Sluijs, 2004), play a vital role in modeling the temporal gravity field from 

level-1B satellite gravimetry data. To date, most publicly available global mascon products based on Level-1B data commonly 

rely on longer arcs (e.g., 24-hr ones). This includes the mascon solutions recovered using the dynamic approach by GSFC 75 

(Loomis et al., 2019), CSR (Save, 2020), and JPL (Watkins et al., 2015), as well as the mascon solution by the Australian 

National University (ANU) utilizing the celestial mechanics approach (Allgeyer et al., 2022; Tregoning et al., 2022; Mcgirr et 

al., 2023). This study represents the first application of the short-arc approach to recover the global mascon solution. A 

distinguishing feature of this methodology compared to other conventional approaches lies in its substantially reduced arc 

length integration interval (Mayer-Gürr et al., 2005; Mayer-Gürr, 2008). The temporal gravity field based on the short-arc 80 

approach exhibits enhanced stability and superior accuracy owing to the substantially reduced condition number of the normal 

equation system (Chen et al., 2015). 

Frequency-dependent noise in GRACE measurements significantly limits GRACE from reaching the prelaunch baseline 

accuracy; thus, modeling this noise is a critical aspect for improving the accuracy of temporal gravity field recovery. In the 

context of spherical harmonic coefficient solutions, the impact of frequency-dependent noise in observations is typically 85 

accounted for by introducing empirical parameters (Liu et al., 2010; Zhao et al., 2011) to absorb errors or by using frequency-

dependent data weighting (FDDW) techniques (Klees et al., 2003; Ditmar et al., 2007). However, the potential of suppressing 

frequency-dependent errors in mascon modeling with the FDDW technique remains largely unexplored. 

Herein, the Geodesy and Cryosphere Laboratory (GCL) from the Southern University of Science and Technology has released 

a new series of mascon solutions (hereafter referred to as GCL-Mascon2024) using the short-arc approach and FDDW, as well 90 

as advanced regularization schemes. These mascon solutions incorporate pertinent physical constraints to estimate global mass 

variations directly from inter-satellite range-rate measurements. To alleviate the effects of errors introduced by signal leakage, 

the GCL-Mascon2024 solution employs a strategy that involves segmenting the mascon shape based on land-sea boundaries 

and the boundaries of distinct hydrologic basins. Subsequently, this paper aims to investigate the impact of selecting arc length 

and accelerometer calibration parameters in the short-arc approach on the mascon solutions while also providing a quantitative 95 

evaluation of the GCL-Mascon2024 solution. 

The article is organized as follows. Sect. 2 describes the methodology for recovering global mascon solutions with the short-

arc approach. Sect. 3 discusses the parameter determination on global mascon solutions using the short-arc approach. Sect. 4 

evaluates the scientific results of real data processing with the proposed approach. Finally, Sect. 5 provides the main 

conclusions. Sect. 6 provides detailed information and links for accessing the dataset utilized in this study, along with the 100 

GCL-Mascon2024 solution released in this work. 

2 Methodology 

Building upon the earlier studies by Ran et al. (2018) and Ran et al. (2021), we propose a new mascon approach recovered 

from GRACE Level-1B tracking data based on the short-arc approach. The primary distinction between GCL-Mascon2024 

and the aforementioned mascon solutions lies in the type of exploited input data (i.e., Level-1B vs. Level-2). The mascon 105 

solutions released by Ran et al. (2018) and Ran et al. (2021) are based on spherical harmonic coefficients and cover only mass 

anomalies over Greenland. The GCL-Mascon2024 solution is a series of global mascons with analytical partial derivatives. In 

other words, we establish a direct relationship between the mass variations of mascons and the inter-satellite measurements. 

Sect. 2.1 elaborates on the utilized functional model, which links GRACE Level-1B data to mascon solutions. Sect. 2.2 outlines 

the strategy for defining mascon geometry during the data inversion process. Sect. 2.3 describes the background force models 110 

and input data employed to recover GCL-Mascon2024 solution. Sect. 2.4 explains suppressing frequency-dependent errors by 
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using the FDDW technique. Finally, the advanced spatial constraints exploited in the inversion procedure are presented in Sect. 

2.5. 

2.1 Mathematical Formulation 

A satellite in orbit around the Earth is subject to gravitational forces, which are governed by Newton’s law of universal 115 

gravitation. The temporal gravity field can be modeled as a series of N mascons, with the surface mass density (mass per unit 

area) of mascon Mi represented by ρi (i=1, 2, …, N). When the satellite is at measurement point p, the gravitational forces fp 

exerted on the satellite by the mass variations of the Earth’s surface can be expressed as 
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Here, G is the universal gravitational constant; d෠p is the unit vector directed from the satellite measurement point toward the 120 

surface mass; Define lp the distance between the satellite measurement point p and an integration point on mascon; Iመi,p is a 

vector pointing from the satellite measurement point p to the given mascon Mi, which is calculated using numerical integration. 

To that end, we utilize a composed Newton-Cotes formula (Gonzalez, 2010) applied to the Fibonacci nodes, i.e., the Fibonacci 

nodes as integration points mentioned aforementioned. By defining the surface area and the number of the Fibonacci nodes of 

mascon Mi as Si and Ki, we can calculate Iመi,p as 125 

 
 , ,2

1
,

ˆˆ
iK

i p ij p
j

i ij p

i

K l

S



 


I d , (2) 

where lij,p represents the distance between a Fibonacci point j located in the mascon Mi and the satellite measurement point p; 

d෠ij, p is a unit vector pointing from the satellite measurement point p to a Fibonacci point j located in the mascon Mi. 
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Combining Gp  over multiple positions/epochs within an arc yields the matrix G which is used in the observation model 

(Mayer-Gürr, 2008) with orbit and range-rate measurements as observation types. 

2.2 Parameterization 

The choice of an appropriate mascon partitioning strategy is crucial for mitigating noise amplification during the data inversion 

process (Ran et al., 2018). In this study, the selection of mascon geometry is based on incorporating pertinent physical 135 

constraints, such as the geometry of the coastlines and basin boundaries. The definitions of these basin boundaries are derived 

from Scanlon et al. (2018). Regarding the aforementioned parameterization, the primary assumption is that there is no signal 

correlation between mascons located in different basin systems (Ran et al., 2021), meaning that basins do not share mascons 

with their neighboring basins to reduce signal leakage between the corresponding basins. 

In the GCL-Mascon2024 processing scenario, the estimated monthly mascon solution has a spatial resolution of about 300×300 140 

km and 400×400 km on land and ocean, respectively. The total number of mascons is 4069, with 1852 terrestrial mascons and 

2217 ocean mascons. Figure 1 provides the mascon partitioning of GCL-Mascon2024. It is important to note that the mascons 

located within the basins and coastal regions are defined in accordance with the boundary geometry. The numerical integration 

points, as discussed in Sect. 2.1, are distributed on a Fibonacci grid with an average spacing of 10 km, requiring the generation 
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of approximately 5.1 million Fibonacci grid points for global coverage. Parallel Message Passing Interface (MPI) computing 145 

is used to increase computational efficiency. 

 

Figure 1. Mascon partitioning of GCL-Mascon2024 solution 

2.3 Background Force Models and Input Data 

Using the aforementioned methodology and mascon partitioning strategy, we have produced a time series of mascon solutions 150 

(GCL-Mascon2024) from the GRACE Level-1B data covering the time period from January 2003 to December 2015. Here, 

we concisely introduce the background force models and input tracking data. 

Table 1 provides an overview of the background force models, which encompass various components, including Earth's static 

gravity field, third-body attractions, solid Earth (pole) tides, ocean (pole) tides, atmospheric tides, atmospheric and oceanic 

dealiasing effects, and general relativistic correction. In addition to the background force models mentioned above, mention 155 

that these additional force models and corrections are discussed in detail below. (i) elastic response of the solid Earth to mass 

transport at the Earth's surface, (ii) Glacial Isostatic Adjustments (GIA), (iii) Earth ellipsoidal corrections, (iv) low-degree term 

corrections, and (v) GAD corrections. Following a standardized processing workflow (Watkins et al., 2015; Save et al., 2016; 

Loomis et al., 2019; Tregoning et al., 2022), the uncorrected mascon solutions (i.e., MASCONUncorrected , we will return to that 

point in Sect. 2.5) are systematically integrated with the aforementioned corrected components to generate corrected mascon 160 

grids. The formula to generate the corrected mascon grid is 

 
20 20

MASCON = MASCON MASCON SLR DEG1 GIA GADCorrected Uncorrected C C     . (4) 

Table 1 also lists the input used in mascon recovery, including nongravitational accelerations, satellite attitudes, reduced-

dynamic orbits, kinematic orbits, and k-band range-rate measurements. The Level-1B data used in the mascon recovery are 

mainly from JPL, e.g., ACC1B, SCA1B, GNV1B, and KBR1B. Additionally, the kinematic orbit product released by the Graz 165 

University of Technology (Strasser et al., 2019) was used in the GCL-Mascon2024 recovery framework. 

Table 1. Summary of Background Force Models and Data Used in GRACE Mascon Recovery 

 GSFC RL06 mascon CSR RL06 mascon JPL RL06 mascon GCL-Mascon2024 

Background Force Model 

Static Earth 
Gravity 

GGM05C GGM05C (d/o 360) GIF48 (d/o 180) 
GOCO06s (d/o 300) 
(Kvas et al., 2021) 

Solid Earth tides IERS2010 conventions IERS2010 conventions IERS2010 conventions IERS2010 conventions 
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Ocean tides GOT4.7 (d/o 90) GOT4.8 (d/o 180) 

GOT4.7 and self-
consistent equilibrium 
long-period tide 
(Convolution formalism 
to degree/order 90) 

FES2014b (Lyard et al., 
2021) 

Solid pole tide 
IERS2010 conventions  
(mean polar motion) 

IERS2010 conventions  
(mean polar motion) 

IERS2010 conventions  
(mean polar motion) 

IERS 2010 conventions  
(mean polar motion) 

Ocean pole tide IERS2010 conventions Desai models IERS2010 conventions 
Desai models (Desai, 
2002) 

Nontidal 
atmosphere and 
ocean dealiasing 

ECMWF/MOG2D 
(Carrère and Lyard, 2003) 

AOD1B RL06 AOD1B RL06 
AOD1B RL06 (Dobslaw 
et al., 2017) 

Atmospheric tides - - - AOD1B RL06 

Third-body 
attractions 

* DE-430 DE-421 DE-421 

General relativity * IERS2010 conventions 
Point mass perturbation, 
geodesic and Lense-
Thirring (Sun and Earth) 

IERS2010 conventions 

Local Parameters Estimated 

Satellite state 
Position and velocity 
(Daily) 

Position and velocity 
(Daily) 

Position and velocity 
(Daily) 

Position (2-hr) 

GPS phase bias * - 
Constant (Each GPS-
GRACE pass) 

- 

KBR range-rate 
biases 

Constant, drift, and once 
per revolution (3-hr) 

Constant, drift, and once 
per revolution (1.5-hr) 

Constant, drift, and once 
per revolution (1.5-hr) 

- 

Acceler
ometer 

Bias 
X, Y, and Z components 
(1.5-hr) 

Along-track: 1/day linear 
Cross-track: 8/day linear 
Radial: 1/day linear 

X, Y, and Z components 
(Daily) 

X, Y, and Z components 
(2-hr) 

Drift - - - 
X, Y, and Z components 
(2-hr) 

Scale - Full matrix (Daily) Full matrix (Daily) 
X, Y, and Z components 
(Daily) 

1 
cycle-
per-
revolu
tion 

1.5-hourly 3-D one cycle-
per-revolution empirical 
accelerations 

- - - 

Satellite Observations 

Accelerometer 
observations 

ACC1B RL02 with 1s 
sampling rate 

ACC1B RL02 with 1s 
sampling rate 

ACC1B RL02 with 1s 
sampling rate 

ACC1B RL02 with 1s 
sampling rate 

Attitude 
observations 

SCA1B RL03 with 1s 
sampling rate 

SCA1B RL03 with 1s 
sampling rate 

SCA1B RL03 with 1s 
sampling rate 

SCA1B RL03 with 1s 
sampling rate 

GPS data 
GPS1B RL03 with 30s 
sampling rate 

GPS1B RL03 with 30s 
sampling rate 

GPS1B RL03 with 30s 
sampling rate 

- 

Reduced-dynamic 
orbit 

- - - 
GNV1B RL02 with 5s 
sampling rate 

Kinematic orbit - - - 

Kinematic orbits from 
Graz University of 
Technology with a 10s 
sampling rate 

K-/Ka Band 
Ranging satellite-
to-satellite 
tracking 
measurement 

KBR1B RL03 with 5s 
sampling rate 

KBR1B RL03 with 5s 
sampling rate 

KBR1B RL03 with 5s 
sampling rate 

KBR1B RL03 with 5s 
sampling rate 

Details of Mascon Recovery 

Inversion 
approach 

Dynamic approach Dynamic approach Dynamic approach Short-arc approach 

Inter-satellite 
observation 

Range-rate Range-rate Range-rate Range-rate 

Satellite 
observations 

Level-1B Level-1B Level-1B Level-1B 

Mascon count 41168 40962 4551 4069 

Mascon shape 
(native resolution) 

1-arc-degree equal-area 
cells 

1-degree equal-area 
geodesic grid 

3-degree equal-area 
spherical cap 

Land mascon ~ 300×300 
km, ocean mascon ~ 
400×400 km, and 
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variable-shaped geometry 
constrained to coastlines 
and basin boundaries 

Product 
resampled 
resolution 

0.5°×0.5° 0.25°×0.25° 0.5°×0.5° 1.0°×1.0° 

The relationship 
between inter-
satellite 
measurements and 
mascons 

The mascons are related 
to the inter-satellite 
measurements via a 
spherical harmonic 
expansion that is 
truncated at a finite 
degree and order. 

The mascons are related 
to the inter-satellite 
measurements via a 
spherical harmonic 
expansion that is 
truncated at degree and 
order 180. 

The mascons are related 
to the inter-satellite 
measurements via the 
explicit partial derivatives 
with an analytical 
expression. 

The mascons are related 
to the inter-satellite 
measurements via the 
explicit partial derivatives 
with an analytical 
expression. 

Other Corrections 

Ocean bottom 
pressure  

The 'GAD' fields from the AOD1B product represented on the mascon geodesic grid are added back. 

Glacial Isostatic 
Adjustment 

ICE6G-D (Peltier et al., 
2018) 

ICE6G-D (Peltier et al., 
2018) 

ICE6G-D (Peltier et al., 
2018) 

ICE6G-D (Peltier et al., 
2018) 

Low-degree Term 
correction 

Degree-1 terms replaced 
using Sun et al. (2016). 
C20 replaced by TN-14 
(Loomis et al., 2020). 

Degree-1 terms replaced 
using Swenson et al. 
(2008). 
C20 replaced by TN-14 
(Loomis et al., 2020). 

Degree-1 terms replaced 
using Swenson et al. 
(2008). 
C20 replaced by TN-14 
(Loomis et al., 2020). 

Degree-1 terms replaced 
using Sun et al. (2016). 
C20 replaced by TN-14 
(Loomis et al., 2020). 

Earth Ellipsoidal 
correction 

- 
Ellipsoidal corrections 
from Ditmar (2018)  

Ellipsoidal corrections 
from Li et al. (2017) 

Ellipsoidal corrections 
from Ditmar (2018) 

Mean removed 2004.0-2010.0 2004.0-2010.0 2004.0-2010.0 2004.0-2010.0 

* Data missing; - Data or strategy unavailable 

2.3.1 Earth’s Elastic Response 

The solid Earth is not perfectly rigid but exhibits some elastic response to surface loads (Boy and Chao, 2005). Here, we 170 

estimate the effect of surface load or surface mass changes based on the elastic loading theory of a spherical Maxwell Earth, 

according to Wahr et al. (1998), who used load Love numbers (represented as kl) to quantify Earth's elastic deformation. 

In this study, the temporal gravity field model released by the Institute of Geodesy of the Graz University of Technology 

(ITSG-Grace2018 (Kvas et al., 2019)) is used as the signal source to compute the Earth's elastic deformation. Because this 

model is represented in terms of unfiltered spherical harmonic coefficients, there exist north-south stripes and high-frequency 175 

noise in the spatial domain. Thus, postprocessing in the form of the DDK4 filter (Kusche et al., 2009) is used to mitigate these 

issues. The elastic deformations induced by the filtered ITSG-Grace2018 solutions are incorporated into the GCL-Mascon2024 

recovery framework as an additional background force model. 

2.3.2 Glacial Isostatic Adjustments 

We apply GIA corrections in the GCL-Mascon2024 recovery process as another background force model. The official mascon 180 

products (i.e., CSR RL06 mascon, JPL RL06 mascon, and GSFC RL06 mascon) represent the surface mass deviation relative 

to the 2004.0-2009.999 time-mean baseline. Subsequently, we model the GIA signals relative to the middle epoch of 2007.000, 

utilizing the GIA model ICE-6G, which was developed by Stuhne and Peltier (2015). 

2.3.3 Earth Ellipsoidal Corrections 

Temporal Stokes coefficients derived from GRACE satellite data are typically converted into mass anomalies at the Earth's 185 

surface using spherical harmonic synthesis, as formulated by Wahr et al. (1998). However, the results obtained using this 

approach reflect mass transport at a spherical surface with a fixed radius of 6378 km, which can introduce inaccuracies. Ditmar 

(2018) demonstrated that such a conversion may lack sufficient precision and proposed a revised formulation for converting 

Stokes coefficients into mass anomalies. This updated approach assumes that: (i) mass transport occurs at the reference 
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ellipsoid, and (ii) at each point of interest, the ellipsoidal surface is approximated by a sphere with a radius equal to the local 190 

radial distance from the Earth's center (the “locally spherical approximation”). In this study, we adopt the spherical harmonic 

synthesis method proposed by Ditmar (2018) to account for the effects of the Earth's oblateness and improve the accuracy of 

mass anomaly estimation. 

2.3.4 Low-degree Term Corrections 

Given the inherent limitations of the GRACE twin-satellite tracking, it is not feasible to determine the effects of geocenter 195 

motion, which can be represented in terms of time-varying degree-1 coefficients. Consequently, we utilize the coefficients 

derived by combining GRACE data with geophysical models (Sun et al., 2016). Furthermore, we incorporate the C20 (degree 

2 order 0) coefficients derived from Satellite Laser Ranging (SLR) measurements (Chen et al., 2005; Cheng et al., 2013) to 

enhance accuracy. To this end, and in line with previous studies (Watkins et al., 2015), the mascon grid solutions are first 

converted to the spherical harmonic coefficients by using spherical harmonic analysis. Then, we replace the low-degree terms 200 

(i.e., degree-1 and C20) and utilize spherical harmonic synthesis proposed by Ditmar (2018); the coefficients are converted 

back to mascon grid solutions to correct the implied low-degree term component of GCL-Mascon2024, considering the 

influence of the Earth's oblateness as detailed in Sect. 2.3.3. 

2.3.5 GAD Corrections 

To explicitly contain seafloor pressure anomalies in the corrected mascon solutions, the AOD1B RL06 GAD product (Dobslaw 205 

et al., 2017) is reintegrated into the mascon calibration framework. 

2.4 Frequency-Dependent Data Weighting 

The concept of FDDW originates from the fast collocation technique (Bottoni and Barzaghi, 1993), which assumes stationary 

measurement noise, thereby imparting a Toeplitz structure to the noise covariance matrix. Subsequently, Ditmar et al. (2007) 

provided a detailed discussion of the FDDW concept and employed the technique to estimate the static Earth gravity field from 210 

the kinematic orbital acceleration of the CHAllenging Minisatellite Payload (CHAMP) satellite (Ditmar et al., 2006). The 

FDDW technique was later adapted for solving the temporal gravity field model using the GRACE inter-satellite acceleration 

(Liu et al., 2010). Afterward, Guo et al. (2018) utilized the FDDW technique to account for KBR frequency-dependent noise 

in the classical dynamic approach, leading to the development of the WHU RL01 model. Chen et al. (2019) further extended 

the application of the FDDW technique by incorporating both orbit and KBR frequency-dependent noise into the optimized 215 

short-arc approach and released the temporal gravity model named the Tongji-Grace2018 solution. 

As indicated in numerous previous studies (e.g., Guo et al., 2018; Chen et al., 2019), the inter-satellite range-rate measurements 

are affected by frequency-dependent noise. Before applying the FDDW technique, it is essential to build a stochastic noise 

model using, e.g., postfit residuals from the GRACE measurements. As an example, we select the postfit residuals from June 

2009, calculated using the preliminary mascon solution for that month. As shown in Figure 2 (a) and (c), the time series of 220 

postfit residuals from orbit and range-rate measurements on 5 June 2009 exhibit a clear dependence on frequency. This is 

further illustrated by the power spectral densities (PSDs) displayed in Figure 2 (b) and (d), which indicate that both orbit and 

range-rate measurements, particularly the former ones, are contaminated by low-frequency noise. The frequency-dependent 

noise in GRACE observations is largely attributed to errors in the GRACE orbits (Ditmar et al., 2012). This type of noise, in 

the essence of perfect orbital/instrumental/other models, is typically addressed by either estimating (once or twice per orbital 225 

revolution) periodic parameters to account for unmodeled accelerations or incorporating variance-covariance matrices to 

mitigate these errors (Zhou et al., 2024). In this study, noise whitening filters W, constructed based on postfit residuals derived 

from orbit and range-rate measurements using the autoregressive (AR) noise model implemented in the ARMASA toolbox 

(Broersen and Wensink, 1998; Broersen, 2000), are applied to transform frequency noise 𝜺 into Gaussian white noise 𝜺଴. 
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Following the methodology of Chen et al. (2019), the variance-covariance matrix 𝚺 can be constructed using the law of 230 

variance-covariance propagation: 

       12 21
0

Tdiag
      W W W   . (5) 

 

Figure 2. Time series and power spectrum densities (PSD) of postfit residuals from orbit and KBR range rate 

2.5 Advanced Spatial Constraints 235 

The linear system that connects satellite range-rate observations to the mass anomalies within each mascon for estimation is 

rank-deficient. To stabilize the rank-deficient system of equations in mascon recovery, we employ Tikhonov regularization 

techniques (Tikhonov, 1963). Herein, we estimate the mascon elements using the following equation: 

   1
ˆ T T


  Mx A PA C A PL , (6) 

where 𝒙ෝ represents the estimated mascons without any corrections; A is the design matrix of partial derivatives; L is the 240 

residual vector which is obtained by subtracting the kinematic orbit or KBR measurements from the reference orbit positions 

or KBR data; P is the weight matrix derived from the inverse of the variance-covariance matrix 𝚺 (refer to Sect. 2.4); μ is the 

regularization factor; CM  is a diagonal constraint (or regularization) matrix of size n×n , named the Mass Variation 

Regularization Constraint Normalized (MVRCN) Matrix; n is the number of the mascons to be estimated. 

For the advanced spatial constraints, we construct the MVRCN matrix, which primarily comprises two components: one 245 

derived from the continental region aridity-wetness index, which is defined as the ratio of mean annual precipitation to mean 

annual reference evapotranspiration (Trabucco and Zomer, 2018), and the other from the ETOPO Global Relief Model of ice 

sheet regions (i.e., Greenland and Antarctica) in ice surface version that portrays the topography of the top layer of the polar 

ice sheets (Macferrin et al., 2024). The fundamental premise is that humid basins on the continent require looser constraints 

for recovering higher temporal gravity signals, while arid basins require tighter constraints. Similarly, in polar ice sheets, areas 250 
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at lower elevations necessitate looser constraints to recover mass variations, whereas regions at higher elevations require tighter 

constraints. Figure 3 shows the spatial distribution of the mascon-size MVRCN Matrix. We employ the L-curve method to 

determine the appropriate regularization factor μ, employing monthly-varying factor values to ensure that the resulting 

regularization matrix is sufficiently tight to suppress noise yet loose enough to allow the mascons to adjust to their optimal 

values. 255 

 

Figure 3. The Mass Variation Regularization Constraint Normalized (MVRCN) Matrix  
used in the GCL-Mascon2024 recovery framework 

3 Short-Arc Approach for Gravity Field Inversion 

The short-arc approach, initially introduced by Schneider (1968), is a commonly utilized method for satellite gravity data 260 

inversion. Mayer-Gürr et al. (2005) introduced the short-arc approach to determine a CHAMP gravity field model. Mayer-

Gürr (2008) further proposed a gradient correction algorithm to enhance the accuracy of the short-arc approach and applied it 

to real GRACE data inversion. Since then, the short-arc approach has been employed in processing GRACE data (e.g., Ran et 

al., 2014; Chen et al., 2019), demonstrating its effectiveness and efficiency in recovering temporal gravity field models. Sect. 

3.1 is devoted to the optimal choice of the arc length. Next, Sect. 3.2 discusses the design of calibration parameters estimation 265 

during the gravity inversion process. 

3.1 Arc Length Determination 

Longer arcs (e.g., 24-hr ones) are usually utilized in the dynamic approach to the temporal gravity solution recovery, whether 

it be in the form of the mascon solution (e.g., Watkins et al., 2015) or spherical harmonic solutions (e.g., Mayer-Gürr et al., 

2018). Regarding the short-arc approach, the tendency is to select shorter arc lengths, such as 1-hr arcs for Bonn University’s 270 

ITG-GRACE2010 (Mayer-Guerr et al., 2010) and 6-hr arcs for Tongji University’s Tongji‐Grace2018 (Chen et al., 2019). 

However, as the arc length decreases, the number of parameters per day increases. Given that the total number of observations 

remains constant, this increases the condition number of the estimation process in the temporal gravity field recovery. In the 

mathematical sense, the smaller the condition number of the normal matrix, the more stable the resulting estimate of the gravity 

field (Chen et al., 2019). 275 

To determine the appropriate arc length for GCL-Mascon2024, we conducted computations of a monthly mascon model using 

different arc lengths to compare the stability of the resulting estimates. Table 2 presents the condition numbers of the 

unconstrained normal matrices and the corresponding computational time needed for different arc lengths. From this standpoint, 

the 2-hr arc length corresponds to the most stable arc length in the GCL-Mascon2024 recovery. Figure 4 illustrates that 

increasing the arc length beyond 2 hr in the short-arc approach leads to a significant increase in noise in gravity field estimates 280 

as the normal equations become more ill-conditioned. This observation aligns closely with what we conclude from Table 2. 
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Therefore, an arc length of 2-hr is determined to be the most suitable for the short-arc approach employed in this work. 

Additionally, we incorporate the gradient correction algorithm proposed by Mayer-Gürr (2008) to consider the influence of 

the kinematic orbit errors. 

 285 

Figure 4. Geoid height differences per degree w.r.t GOCO06s from mascon solutions of different arc lengths 

Table 2. Condition numbers (log10) of normal matrixes and inversion time cost  
in the GCL-Mascon2024 recovery framework with different arc lengths 

Arc Length/hr Condition Numbers/log10 Time Cost/hr 

0.5 8.41 06.69 

1.0 7.95 09.04 

2.0 7.93 16.82 

3.0 7.95 29.08 

4.0 7.99 47.16 

6.0 8.28 70.78 

 

3.2 Calibration Parameters Estimation 290 

The accelerometer represents a significant source of errors in the GRACE mission (Kim, 2000), necessitating the 

implementation of robust strategies to manage and mitigate accelerometer errors effectively. Simultaneously, in the analysis 

of GRACE observations, it is necessary to estimate not only the gravity field parameters but also arc-related parameters, such 

as the two boundary position vectors of each arc (Mayer-Gürr, 2008). That is, the error occurring at the boundaries of each arc 

is also of non-negligible magnitude. A commonly used strategy in temporal gravity field recovery is the incorporation of 295 

calibration parameters to mitigate the impact of the aforementioned errors. 

The GRACE raw accelerometer measurements exhibit systematic errors, including bias, scale error, and drifts (Han et al., 

2006b) in three axes (i.e., along, cross, and radial) for both satellites. The findings of Meyer et al. (2016) demonstrate that the 

scale calibration of accelerometer data at daily intervals significantly reduces the impact of solar activity on the derived gravity 

field models. To this end, we conduct the daily estimation of accelerometer scales in three axes for both satellites in this study. 300 

In addition, bias is a frequently employed parameter for estimating the local parameters of accelerometers (Kim, 2000). Based 

on prior studies (e.g., Han et al., 2006b; Bettadpur, 2007), we also incorporate the estimation of drift parameters into the 

recovery of the mascon solution. Combining the biases, drifts, and scales, the calibration formula for the accelerometer data 

can be constructed as 

 new ori t    f bias scale f drift , (7) 305 
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where fori and fnew denote the nongravitational accelerations prior to and after calibration, respectively; bias, scale, and drift 

are the estimated local parameters of the accelerometers; t represents the period about which the drift of nongravitational 

accelerations is calibrated. Figure 5 illustrates the geoid height differences per degree with respect to GOCO06s of the mascon 

solutions with accelerometer calibration parameters (i.e., bias, drift, and scale) co-estimated over different periods. 

Table 3. Estimation periods of accelerometer calibration parameters (Unit: minutes) 310 

Case Bias Drift Scale 

A 0120 0120 1440 

B 0120 0360 1440 

C 0120 0720 1440 

D 0120 1440 1440 

E 0360 0360 1440 

F 0360 0720 1440 

G 0360 1440 1440 

H 0720 0720 1440 

I 0720 1440 1440 

J 1440 1440 1440 

 

Table 3 provides a detailed definition of each considered case, characterized by three pre-defined periods for accelerometer 

calibration parameters: bias, drift, and scale. One can see from Figure 5 that the inversion performs optimally when bias and 

drift are co-eliminated per arc as well as scale elimination on a per-day basis with the premise of estimating the boundary 

position parameters per arc. After generating the normal equation for each arc, the calibration parameters of the boundary 315 

position can be eliminated immediately. Then, once the normal equations for a specific period are generated, the corresponding 

accelerometer calibration parameters are eliminated as well. Last, by combining all the reduced daily normal equations, we 

obtain the final monthly normal equation, which is solved for the mascon coefficients. 

As mentioned above, a 2-hr arc is selected for the GCL-Mascon2024 computation. The calibration parameters for 

accelerometer observations include biases and drifts estimated per arc, as well as scales estimated per day for twin-satellite in 320 

three axes. 

 

Figure 5. Geoid height differences per degree w.r.t GOCO06s from mascon solutions under different scenarios. Each scenario 
corresponds to a distinct set of parameters, reflecting variations in the estimation periods for accelerometer calibration 

parameters (i.e., bias, drift, and scale). Refer to Table 3 for detailed information on parameter settings. 325 

4 Analysis of Scientific Results 

To evaluate and validate the GCL-Mascon2024 solution, we compare the estimates of mass variation globally and over specific 

regions with the RL06 mascon solutions released by GSFC, CSR, and JPL. Here, annual amplitudes, monthly mass variations, 
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basin hydrological signals, and polar region mass balance are utilized to assess the performance of temporal signal retrieval. 

At the same time, continental random noise and desert residuals are used to evaluate temporal noise. 330 

4.1 Global Comparisons 

We first analyze the global mass change signals in GCL-Mascon2024 and in the RL06 mascon solutions provided by GSFC, 

CSR, and JPL. To emphasize the differences in the four mascon solutions, the results are presented as anomalies in relation to 

the baseline defined as the time-mean in the period from January 2004 to December 2009. In Figure 6, we specifically present 

the long-term trends in temporal gravity signals for the time span ranging from January 2003 to December 2015. Upon 335 

observing Figure 6, we can discern a high level of consistency in the global mass change signals across all four models. 

The annual amplitudes in mass change are depicted in Figure 7 for the time span ranging from January 2003 to December 

2015. It is evident that the spatial distribution of the four monthly mascon solutions exhibits a substantial level of concurrence. 

Regions characterized by a more pronounced annual fluctuation in total water storage predominantly concentrate in specific 

areas, namely the Amazon basin in South America, the Niger basin in West Africa, the Zambezi basin in South Africa, as well 340 

as the Ganges and Mekong basins in Southeast Asia. 

 

Figure 6. Long-term trends from January 2003 to December 2015 (in equivalent water height, or EWH). 

 

Figure 7. Annual amplitudes from January 2003 to December 2015 (in equivalent water height, or EWH). 345 

Ditmar (2022) proposed a technique to combine and regularize GRACE-based mass-anomaly time series and, at the same time, 

to quantify the Standard Deviation (SD) of random noise in each time series. The latter is estimated using Variance Component 

Estimation (VCE) as adapted from Koch and Kusche (2002). Figure 8 illustrates the spatial distribution of the random noise 
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SD estimated for various mascon solutions. The noise SD of the mass-anomaly time series over the globe obtained for the 

mascon solutions from GSFC, CSR, and JPL, along with the GCL-Mascon2024, are 3.5 cm, 4.1 cm, 3.9 cm, and 3.7 cm, 350 

respectively. In northern Africa, the Arabian Peninsula, and eastern Asia (the border region between China and Mongolia), 

GCL-Mascon2024 and JPL mascon solutions exhibit similar spatial distributions with smaller SD of random noise compared 

to GSFC and CSR solutions. Given the predominant desert coverage in these regions, it is reasonable to expect lower standard 

deviations of random noise. Further quantitative analyses of random noise over specific local regions, including river basins, 

Greenland, and desert areas, are provided in the following section. 355 

 

Figure 8. Spatial distribution characteristics of random noise of GSFC RL06 mascon, CSR RL06 mascon, JPL RL06 mascon, and 
GCL-Mascon2024 (in equivalent water height, or EWH), with the standard deviation computed according to Ditmar (2022). 

4.2 Regional Comparisons 

For a more comprehensive comparative analysis of signal magnitudes across various mascon solutions, this study selects 360 

distinct river basins, Greenland drainage systems, and typical deserts. These specific selections allow us to discern temporal 

signals associated with hydrological processes, ice melting dynamics, and temporal noise, respectively. 

4.2.1 Hydrology 

Continental water storage is a pivotal constituent within both terrestrial and global hydrological cycles, exerting a significant 

degree of control over intricate processes involving water, energy, and biogeochemical exchanges (Famiglietti, 2003). As such, 365 

it plays a paramount role in shaping and influencing the Earth's climate system (Chen et al., 2010). Of significant importance 

in terrestrial basins, the comprehensive analysis of Total Water Storage (TWS) aids in understanding the intricate dynamics of 

water distribution and availability (Long et al., 2013). TWS refers to the summation of all water present within a given region, 

accounting for its various forms, such as surface water, groundwater, soil moisture, and snowpack. The GRACE mission can 

accurately capture the total mass variation caused by terrestrial water storage change (e.g., Ramillien et al., 2008; Rodell et al., 370 

2018). 

Given the potential divergence in temporal signals of mass variations across river basins characterized by distinct sizes and 

climate classifications, we have statistically analyzed the temporal signals within the 42 largest basins (area > 5×105 km2) in 

the world, which encompass different climate types. This selection intends to showcase the performance of the temporal signals 

recovery by the different mascon solutions. The basic definitions of the aforementioned river basins are all taken from and 375 

credited to Scanlon et al. (2018). 

Figure 9 illustrates the time series of basin mass variations derived from the WaterGAP Global Hydrology Model (WGHM), 

GCL-Mascon2024, and the mascon solutions from GSFC, CSR, and JPL, respectively. The WaterGAP model (Schmied et al., 
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2021; Müller Schmied et al., 2023), primarily developed at the Universities of Kassel and Frankfurt, simulates water flows, 

storage, withdrawals, and consumptive use globally, serving as a tool to evaluate the human–freshwater system under the 380 

influence of global change. As shown in Figure 9, GCL-Mascon2024 exhibits a high level of agreement with the other models 

in terms of mass anomalies across all analyzed river basins. Using WGHM-based mass variations as control data, the time 

series derived from GCL-Mascon2024 for the 42 largest basins demonstrates an approximately 5.3% reduction in error 

compared to the other three mascon solutions released by GSFC, CSR, and JPL, respectively. Notably, in the Murray Basin, 

which exhibits the sub-arid climate type, the GCL-Mascon2024 time series shows a 44.6%−58.0% reduction in error compared 385 

to the other mascon solutions. As shown in Table 4, the correlation coefficients for mass variations within the selected regions 

between GCL-Mascon2024 and the other mascon solutions exceed 95.0%. 

 

Figure 9. Time series of mass anomalies over typical river basins from the hydrology model WaterGAP (outlined by the grey zone) 
and mascon solutions recovered by GSFC, CSR, JPL, and GCL (yellow, green, blue, and red lines, respectively). The base map 390 

illustrates the 42 largest basins (area > 5 × 105 km2) extracted from the Total Runoff Integrating Pathway database as from 
Scanlon et al. (2018). 

Table 4. Correlation coefficients between mass anomaly time series over the representative river basins  
from the GCL-Mascon2024 and from official RL06 Mascon solutions 

Basin name GSFC CSR JPL 

Amazon 0.995 0.995 0.996 

Lena 0.972 0.976 0.971 

Volga 0.981 0.983 0.978 

Murray 0.953 0.957 0.951 

Ganges 0.983 0.987 0.988 

Orinoco 0.986 0.988 0.988 

Tocantins 0.975 0.975 0.972 

Yukon 0.966 0.972 0.929 

According to Table 5, the noise SD of the mass-anomaly time series over the aforementioned river basins for the mascon 395 

solutions from GSFC, CSR, and JPL, along with the GCL-Mascon2024, are 4.2 cm, 4.6 cm, 5.0 cm, and 4.1 cm, respectively. 

It is important to highlight that the ability of the GCL-Mascon2024 solution to suppress random noise is optimal in most non-

humid (i.e., subhumid, semiarid, and arid) basins. This indicates that the noise reduction of the GCL-Mascon2024 solution is 

21.6%, 29.2%, and 32.6%, respectively, compared to the GSFC, CSR, and JPL RL06 mascon solutions. Those improvements 
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provided by the GCL-Mascon2024 solution may benefit from incorporating advanced spatial constraints derived from the 400 

aridity-wetness index of continental regions. 

The results presented in Figure 9, Table 4, and Table 5 demonstrate strong evidence that GCL-Mascon2024 is equally sensitive 

to hydrological signals as the official mascon solutions, despite employing a shorter arc length (i.e., 2 hr) and exhibiting a 

superior capacity for random noise suppression. 

Table 5. The root mean square of random noise over the 42 largest basins (area > 5 × 105 km2) from the mascon solutions 405 
recovered by GSFC, CSR, JPL, and GCL. The definitions of these basin boundaries are derived from Scanlon et al. (2018).  

The bolded value indicates the lowest RMS of random noise. (Unit: centimeters) 

ID Basin name Climate type GSFC CSR JPL GCL 

01 Amazon Humid 7.59 8.64 9.21 9.19 

02 Congo Humid 4.58 4.41 5.39 5.12 

03 Mississippi Humid 4.85 5.13 5.72 4.56 

04 Ob Humid 4.10 4.18 4.41 3.58 

05 Parana Humid 6.02 7.43 7.89 5.82 

06 Nile Semiarid 3.24 4.27 4.62 4.07 

07 Yenisei Humid 3.91 4.06 4.31 3.90 

08 Lena Humid 2.99 2.92 3.31 3.29 

09 Niger Semiarid 2.30 2.53 2.89 2.27 

10 Amur Humid 3.81 3.83 4.07 3.60 

11 Yangtze Humid 3.67 3.78 4.39 4.32 

12 Tamanrasset Arid 1.39 1.05 0.76 0.78 

13 Mackenzie Humid 2.79 2.50 2.92 2.43 

14 Volga Humid 4.52 4.27 4.99 4.60 

15 Zambezi Subhumid 6.61 7.86 7.91 8.86 

16 Lake Eyre Arid 4.25 3.61 3.78 1.40 

17 Nelson Humid 4.36 4.35 4.98 4.46 

18 St. Lawrence Humid 4.69 6.19 5.52 4.68 

19 Murray Semiarid 4.04 4.34 4.95 2.90 

20 Ganges Humid 5.42 8.82 7.82 8.04 

21 Orange Semiarid 2.56 2.36 2.60 1.02 

22 Indus Semiarid 3.73 4.03 4.69 4.83 

23 Chari Semiarid 2.86 2.57 3.43 2.12 

24 Orinoco Humid 7.10 7.96 8.81 9.45 

25 Tocantins Humid 6.59 7.40 8.53 7.78 

26 Yukon Humid 3.72 3.52 4.97 6.21 

27 Danube Humid 4.51 5.00 5.59 5.50 

28 Mekong Humid 4.87 5.55 7.45 5.52 

29 Okavango Semiarid 5.12 6.02 5.89 4.75 

30 Victoria Arid 5.51 5.90 5.64 2.15 

31 Huang He Subhumid 2.91 3.62 2.97 2.05 

32 Euphrates Semiarid 3.35 4.21 4.52 1.92 

33 Jubba Semiarid 2.50 2.11 2.18 1.54 

34 Columbia Humid 3.35 3.00 2.94 2.99 

35 Arkansas Subhumid 5.29 6.06 6.71 5.37 

36 Brahmaputra Humid 3.70 5.59 5.17 6.56 

37 Kolyma Humid 2.86 2.54 3.02 2.74 

38 Colorado Semiarid 3.23 2.39 4.67 2.04 

39 Rio Grande Semiarid 3.47 3.02 3.31 2.36 

40 Sao Francisco Subhumid 6.44 10.91 9.47 4.27 

41 Nullarbor Arid 2.75 2.43 2.27 1.28 

42 Dnieper Humid 4.18 4.19 4.50 3.63 
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4.2.2 Cryosphere 

The Greenland Ice Sheet (GrIS) is home to one of the largest freshwater reserves on our planet. Due to its substantial 

accumulation rate and considerable meltwater runoff, the GrIS is a highly dynamic system (Chen et al., 2006). Rapid 410 

transformations within the GrIS have the potential to raise the mean sea level substantially (Ran et al., 2024) and could 

significantly impact the North Atlantic thermocline circulation, thereby affecting the global climate(Velicogna and Wahr, 

2005). One of the primary means for monitoring mass variation in the GrIS is the GRACE satellite mission (e.g., Schlegel et 

al., 2016; Velicogna et al., 2020). 

 415 

Figure 10. Time series of de-trended mass anomalies for individual drainage systems and the entire Greenland, based on the mass 
balance from the Input-Output Method, i.e., Surface Mass Balance – Ice Discharge (outlined by the grey zone) and mascon 

solutions recovered by GSFC, CSR, JPL, and GCL (yellow, green, blue, and red lines, respectively). The middle panel presents the 
schematic illustration of the mascon division, and its base map portrays the topography of the Greenland Ice Sheet. In this study, 

Greenland is partitioned into 21 mascons and 7 individual drainage systems: North (NO), Northeast (NE), Northwest (NW), 420 
Central East (CE), Central West (CW), Southeast (SE), and Southwest (SW). 

In Greenland, it is critical to emphasize that the mascon geometry of GCL-Mascon2024 is delineated based on the boundaries 

of the Greenland drainage system and the coastline. Greenland is partitioned into 21 mascons and 7 individual drainage systems: 

North (NO), Northeast (NE), Northwest (NW), Central East (CE), Central West (CW), Southeast (SE), and Southwest (SW). 
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The various mascon solutions over different drainage systems of Greenland are validated using the Input-Output Method (IOM) 425 

as control data, i.e., mass balance = Surface Mass Balance – Ice Discharge. Mass variations caused by surface mass balance 

(SMB) processes are derived from the MARv3.14.0 polar regional climate model run at a resolution of 10 km over the whole 

GrIS and 6 hourly forced by the ERA5 reanalysis at its lateral boundaries and over the ocean (Fettweis et al., 2017). The middle 

panel of Figure 10 presents the schematic illustration of the mascon division and the topography of the ice surface on Greenland. 

The other subfigures of Figure 10 illustrate the time series of de-trended mass anomaly based on the mass balance from IOM 430 

outlined by the grey zone and the different mascon solutions integrated over 7 drainage systems, as well as over the entire 

Greenland. As indicated in Figure 10, the time series of mass changes over Greenland is generally consistent across the four 

different mascon solutions, with all models effectively capturing the overall mass change in Greenland. The correlation 

coefficients of mass changes across the seven different drainage systems between GCL-Mascon2024 and the other three RL06 

mascon solutions exceed 98.6%. Furthermore, the correlation coefficient for capturing the total mass change of Greenland 435 

across all four models is as high as 99.8%. Particularly in the Northeast drainage system of Greenland, where the mass variation 

is minimal, the time series for this region, extracted from GCL-Mascon2024, demonstrates about 20% reduction in error 

compared to the other three mascon solutions from GSFC, CSR, and JPL, respectively. By extracting the noise SD of the mass 

anomaly time series within the Greenland drainage system from various mascon solutions (Table 6), we find that the noise SD 

for the GCL-Mascon2024 and GSFC RL06 mascon solutions is 8.7 cm and 9.7 cm, respectively, whereas it is 14.4 cm and 440 

13.7 cm for the CSR and JPL RL06 mascon solutions. This indicates that the GCL-Mascon2024 solution achieves a random 

noise reduction of 32.6% and 29.2% compared to the CSR and JPL RL06 mascon solutions. The observed discrepancies and 

the improvement offered by our mascon solution could be attributed to differences in the definition of mascon geometry and 

the processing methodology. 

4.2.3 Desert 445 

The preceding two sections have delved into the signal characteristics exhibited by the GCL-Mascon2024 solution over river 

basins and Greenland. In this section, we aim to evaluate the uncertainties of our mascon solutions over deserts and compare 

them with those of the other mascon solutions. Our impetus stems from an understanding that precipitation within desert 

regions is limited. It is critical to emphasize that aridity cannot be equated with negligible temporal mass variations (e.g., 

Scanlon et al., 2022). Conversely, low precipitation may stimulate an extensive consumption of groundwater. To that end, the 450 

residuals, calculated after removing the climatological components (i.e., bias, trend, and amplitude) from the mass variations, 

can be regarded as mis-modeling signals or temporal noise that persist in the temporal gravity fields (e.g., Zhou et al., 2024). 

Consequently, we analyze the error characteristics inherent to the mascon models over typical deserts, such as the Sahara 

Desert in Africa, the Taklamakan Desert in Asia, and the Atacama Desert in South America. 

Deserts are territories characterized by low precipitation. They can be classified into several categories based on their 455 

respective geographical locations and prevailing weather patterns, which include trade wind deserts, rain shadow deserts, and 

coastal deserts (Whitford and Duval, 2019). Trade wind deserts are typically found on both sides of the horse latitudes, between 

±30° and ±35°. These regions are characterized by subtropical anticyclones and the large-scale descent of dry air masses 

(Glennie, 1987). The Sahara Desert, the largest hot desert in the world, is an example of this type. By extracting the mass 

variation residuals of the Sahara Desert from varying mascon solutions, the residual of the GCL-Mascon2024 solution and 460 

JPL RL06 mascon solution is 62.7 Gt and 50.5 Gt, but it is 84.5 Gt and 70.2 Gt for GSFC and CSR RL06 mascon solutions, 

respectively. This indicates that the noise reduction of the GCL-Mascon2024 solution is 25.8% and 10.7%, respectively, when 

compared to the GSFC and CSR RL06 mascon solutions. Rain shadow deserts are formed by the rain shadow effect. 

Orographic lift forces air masses to rise over mountains, cooling and losing moisture on the windward slopes. As the air 

descends on the leeward side, it warms, increasing its moisture capacity and creating a drier region with reduced precipitation 465 

(Sun et al., 2008). The Taklamakan Desert, the largest in China, located in the rain shadow of the Himalayas, exemplifies this 
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phenomenon. The residuals of mass variations in this region are estimated to be 3.3 Gt, 2.0 Gt, 1.2 Gt, and 1.7 Gt, according 

to the GSFC RL06, CSR RL06, JPL RL06, and GCL-Mascon2024 mascon solutions, respectively. The Atacama Desert, a 

prime example of a coastal desert, is one of the driest regions on Earth, characterized by an almost complete absence of life 

due to its extreme aridity. This hyperarid climate is primarily caused by the orographic effects of the Andes Mountains to the 470 

east and the Chilean Coast Range to the west, which prevent the desert from receiving significant precipitation. Additionally, 

the cold Humboldt Current and the persistent Pacific anticyclone play critical roles in maintaining the region's dryness. 

(Westbeld et al., 2009). The root mean square (RMS) of mass variations over the Atacama Desert, as derived from the mascon 

solutions by GSFC, CSR, and JPL, along with the GCL-Mascon2024, are 3.8 Gt, 1.9 Gt, 1.4 Gt, and 1.2 Gt, respectively, 

indicating that the GCL-Mascon2024 solution has the smallest error. 475 

 

Figure 11. Time series of mass change residuals over deserts derived from the RL06 mascon solutions from GSFC, CSR, JPL, and 
GCL-Mascon2024. The residuals indicate that the climatological components (i.e., bias, trend, and amplitude) have been removed 

from the mass variation. The deserts chosen are the Sahara Desert, Sechura Desert, Atacama Desert, Kyzylkum Desert, Gobi 
Desert, Taklamakan Desert, and Arabian Desert. 480 

Table 6. The root mean square of random noise over individual drainage systems of Greenland and desert regions from the mascon 
solutions recovered by GSFC, CSR, JPL, and GCL. The bolded value indicates the lowest RMS of random noise. (Unit: centimeters) 

Region type Drainage system / Basin name GSFC CSR JPL GCL 

Polar region 
(Greenland) 

North 7.09 8.77 10.96 6.88 

Northeast 7.00 7.07 7.73 6.43 

Northwest 8.12 20.43 14.69 11.83 

Central East 8.45 10.57 8.74 7.82 

Central West 9.61 14.96 15.48 10.53 

Southeast 11.95 21.01 18.58 12.58 

Southwest 13.55 22.37 23.87 16.72 

entire Greenland 8.86 14.43 13.71 9.68 

Desert region 

Sahara 1.55 1.26 1.15 0.80 

Arabian 1.62 1.75 1.39 0.94 

Gobi 1.55 1.17 1.11 0.82 

Kyzylkum 2.26 2.09 1.63 1.18 

Taklamakan 1.76 1.17 0.59 0.74 

Atacama 3.06 1.32 1.49 0.84 

Sechura 3.07 2.06 3.11 1.03 
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Figure 11 illustrates the mass variations and the RMS of residuals of typical deserts. The deserts selected for this study include 

the Sahara Desert, the Sechura Desert, the Atacama Desert, the Kyzylkum Desert, the Gobi Desert, the Taklamakan Desert, 

and the Arabian Desert. The GCL-Mascon2024 incorporates well-defined physical constraints, such as coastal and basin 485 

boundaries, along with advanced spatial constraints based on the MVRCN matrix, enabling it to reduce errors in desert regions 

by approximately 29.3% compared to the GSFC and CSR RL06 mascon solutions. Meanwhile, JPL RL06 mascon 

demonstrates slightly superior error suppression capability to the GCL-Mascon2024 solution in the aforementioned deserts. 

Notably, especially in the Atacama Desert, which is a long and narrow coastal desert from north to south and the driest desert 

in the world, GCL-Mascon2024 can achieve noise suppression ranging from 35.5% to 68.2% compared to the mascon solutions 490 

provided by GSFC and CSR. As shown in Table 6, the noise SD of the mass-anomaly time series over the selected desert 

regions for the GSFC, CSR, JPL, and GCL-Mascon2024 mascon solutions are 2.1 cm, 1.5 cm, 1.5 cm, and 0.9 cm, respectively. 

This translates to a random noise reduction ranging from 40.0% to 57.1% compared to the GSFC, CSR, and JPL RL06 mascon 

solutions. 

4.2.4 Lake/Ocean 495 

The utilization of mass variations in large lakes (e.g., the Caspian Sea) to assess noise levels in GRACE solutions is a well-

established approach (e.g., Loomis and Luthcke, 2017; Ditmar, 2022). Herein, we choose the largest lake on Earth, the Caspian 

Sea, as an example for verification. We follow the approach proposed by Ditmar (2022), wherein the mass anomaly time series 

derived from GRACE is compared with the water level time series obtained from satellite altimetry observations. The latter 

time series is empirically rescaled (with a scaling factor of 0.687 for the Caspian Sea provided by Ditmar (2022)) to account 500 

for signal damping in the GRACE solution. Figure 12 presents the mass anomaly time series over the Caspian Sea derived 

from various mascon solutions and satellite altimetry data. As illustrated, the GCL-Mascon2024 solution shows strong 

consistency with the other models in capturing mass variations in this region. Using satellite altimetry-derived mass variations, 

scaled by a factor of 0.687, as the reference, the noise SD for the GSFC, CSR, JPL, and GCL-Mascon2024 mascon solutions 

are 5.7 cm, 5.8 cm, 5.6 cm, and 5.2 cm, respectively. 505 

 

Figure 12. Comparison of GRACE-derived mass anomaly time series (expressed in equivalent water height, EWH) from different 
mascon solutions with satellite altimetry-based water level variations over the Caspian Sea. The time series derived from satellite 

altimetry has been downscaled using a scale factor of 0.687 to account for signal attenuation (Ditmar, 2022). 

GRACE satellite gravity measurements over oceanic regions directly correspond to ocean bottom pressure variations at spatial 510 

scales of ~300 km (Watkins et al., 2015). Figure 13 illustrates the time series of basin mass variations derived from different 

mascon solutions. To assess the quality of our solutions for ocean signals, we compute the correlation coefficients between 
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GCL-Mascon2024 and the RL06 mascon solutions released by GSFC, CSR, and JPL. The resulting correlations are 95.7%, 

98.0%, and 98.2%, respectively, indicating a high level of consistency between our products and official mascon products. 

 515 

Figure 13. Comparison of GRACE-derived mass anomaly time series (expressed in equivalent water height, EWH)  
over the global sea from different mascon solutions. 

5 Conclusions 

Mascon solutions of Earth’s temporal gravity field can be considered more “user-friendly” compared to spherical harmonic 

solutions, as they remove the need to apply empirical post-processing filters to eliminate errors in the unconstrained spherical 520 

harmonic solutions. Given this significant advantage, mascon solutions have been garnering increased interest from the 

GRACE applications community. Herein, the Geodesy and Cryosphere Laboratory from the Southern University of Science 

and Technology presents a novel mascon solution named GCL-Mascon2024, derived utilizing the short-arc approach and the 

Level-1B data from GRACE. The GCL-Mascon2024 features uniquely variable-shaped mascon geometries integrated with 

relevant physical constraints such as coastline and basin boundary geometry, which ensures an accurate representation of 525 

temporal gravity signals while minimizing signal leakage. Meanwhile, this series of mascon recovery processes incorporates 

frequency-dependent data weighting techniques to reduce the influence of low-frequency noise in observations. GCL-

Mascon2024 utilizes advanced spatial constraints based on the MVRCN matrix, which is constructed by integrating a priori 

basin climate factors and cryosphere elevation models. The MVRCN matrix is carefully incorporated into the inversion process 

as a regularization matrix to minimize errors, ensuring the improvement of the signal-to-noise ratio in the GCL-Mascon2024 530 

recovery framework. 

To evaluate the quality of GCL-Mascon2024, we analyze the signal/error levels across continental regions globally, assess 

signal strengths over selected river basins and Greenland, and examine noise levels in representative desert areas. Based on 

these analyses, we draw the following conclusions: 

1. Over the continental regions, GCL-Mascon2024 mass anomaly estimates from GRACE data show strong agreement with 535 

the RL06 mascon solutions (GSFC, CSR, JPL) in both spatial and temporal domains. For global ocean signals, the 

correlation between GCL-Mascon2024 and the RL06 mascon products from GSFC, CSR, and JPL exceeds 95.7%. 

2. The long-term trends and amplitudes from GCL-Mascon2024 over river basins and Greenland exhibit strong consistency 

with the RL06 mascon solutions from GSFC, CSR, and JPL. In particular, within non-humid river basins, the GCL-

Mascon2024 suppresses random noise ranging from 21.6% to 32.6% compared to contemporary mascon products. With 540 

SMB-based mass balance as the benchmark, GCL-Mascon2024 achieves about 20% error reduction compared to the other 

three mascon solutions in the northeast drainage system of Greenland, where mass variation is minimal. 
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3. Mass variations in deserts, regions characterized by low precipitation, are typically minimal, offering an ideal basis for 

assessing the temporal errors of different mascon models. Building on this premise, the work investigates the error 

characteristics across diverse desert types, including the Sahara Desert (trade wind type), the Taklamakan Desert (rain 545 

shadow type), and the Atacama Desert (coastal type), along with other deserts. The GCL-Mascon2024 reduces temporal 

errors in these desert regions by approximately 29.3% compared to the RL06 mascon solutions from GSFC and CSR. 

Meanwhile, GCL-Mascon2024 achieves a random noise suppression ranging from 40.0% to 57.1% compared to the other 

three mascon solutions. 

6 Data availability 550 

All datasets used in this study were last accessed on 25 May 2025. The specific data repositories include: GRACE Level-1B 

data downloaded from JPL at https://podaac.jpl.nasa.gov and kinematic orbits available from Graz University of Technology 

at ftp://ftp.tugraz.at. The ITSG-Grace2018 monthly solutions can be accessed via: http://icgem.gfz-potsdam.de/series/03_other 

/ITSG/ITSG-Grace2018/monthly. The RL06 mascon solutions released by JPL, CSR, and GSFC are available respectively at 

https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06.1_V3#, http://www2.csr.utexas. 555 

edu/grace, and https://earth.gsfc.nasa.gov/geo/data/grace-mascons. The visualization tools for RL06 mascon products can be 

accessed through the following websites (https://ccar.colorado.edu/grace/about.html for JPL and GSFC RL06 mascon; 

https://www2.csr.utexas.edu/grace/RL06_Mascon_Viewer/Apps/index.php for CSR RL06 mascon). The WaterGAP Global 

Hydrology Model for comparisons can be downloaded from https://doi.pangaea.de/10.1594/PANGAEA.948461?format=html 

#download. The MAR (version 3.14) model used in this study can be downloaded from http://ftp.climato.be/fettweis/MAR 560 

v3.14/Greenland/. The time series of water level variations in the Caspian Sea is derived from satellite altimetry data provided 

by the USDA/NASA G-REALM program (https://ipad.fas.usda.gov/cropexplorer/global_reservoir). The GCL-Mascon2024 

model is available at https://doi.org/10.5281/zenodo.15525467 (Yan and Ran, 2025). 
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