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Abstract. Nitrate plays a crucial role in marine ecosystems, as it influences primary productivity. Despite its ecological signifi-

cance, accurately mapping its three-dimensional (3D) concentration on a large scale remains a considerable challenge due to the

inherent limitations of existing methodologies. To address this issue, this study proposes a continual learning-based multilayer

perceptron (MLP) model to reconstruct the 3D ocean nitrate concentrations above 2000 m depth over the pan-European coast.

The continual learning strategy enhances the model generalization by integrating knowledge from Copernicus Marine Environ-5

mental Monitoring Service (CMEMS) nitrate data, effectively overcoming the spatial limitations of BGC-Argo observations in

comprehensive nitrate characterization. The proposed approach integrates the advantages of extensive spatial remote sensing

observations, the precision of Biogeochemical Argo (BGC-Argo) measurements, and the broad knowledge from simulated

nitrate datasets, exploiting the capacity of neural networks to model their nonlinear relationships between multi-source sea

surface environmental variables and subsurface nitrates. The model achieves excellent performance in profile cross-validation10

(R2 = 0.98, RMSE=0.592 µmol · kg−1), and maintains robustness across diverse 3D validation scenarios, suggesting its ef-

fectiveness in filling observational gaps and reconstructing the 3D nitrate field. Then, the spatiotemporal distribution of the

reconstructed 3D nitrate field from 2010 to 2023 reveals a spatial distribution pattern, an interannual upward trend, and the

degree of consistency in vertical variation. The contributions of all 22 input features to the model’s estimation were respec-

tively quantified by using Shapley additive explanations values. This study reveals the potential of the proposed approach to15

overcoming observational limitations and enrich further insights into the 3D ocean condition. The reconstructed 3D nitrate

dataset is freely available at https://doi.org/10.5281/zenodo.14010813 (Yu et al., 2024).

1 Introduction

In the last decade, the global oceans have absorbed approximately 25% of anthropogenic carbon dioxide (CO2) from the at-

mosphere, playing a crucial role in mitigating climate change impacts (Friedlingstein et al., 2020). However, oceanic changes,20

such as warming and eutrophication may alter this role, leading to complex effects on marine ecosystems and climate. As the
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primary limiting nutrient in the upper ocean, nitrate is pivotal in regulating primary productivity, especially new productivity

(Bristow et al., 2017; Chen et al., 2023). This could constitute a long-term absorption of CO2 from the surface to the ocean

interior (Eppley and Peterson, 1979; Gregg et al., 2003; Joo et al., 2016; Rafter et al., 2017). Thus, a comprehensive compre-

hension of the temporal and spatial distribution of ocean nitrate is indispensable for conducting research on marine ecology25

and environment.

Most biogeochemical data are collected in situ via coastal surveillance, oceanographic cruises, offshore platforms or au-

tonomous instruments, such as the Global Ocean Data Analysis Project version 2 database (GLODAPv2) and Biogeochemical

Argo (BGC-Argo) (Claustre et al., 2020; Lavigne et al., 2015; Nittis et al., 2007). However, traditional in situ measurements

alone cannot provide large-scale and continuous nitrate data. In contrast, remote sensing offers a promising alternative for30

estimating nitrate due to its broad spatial coverage, temporal consistency, and cost-effectiveness (Chang et al., 2013; Pan et al.,

2018). Previous research has successfully utilized it to retrieve water nutrients (Ansper and Alikas, 2019; Du et al., 2020;

Mortula et al., 2020; Yu et al., 2016). Machine learning (ML) technologies have also been employed for nutrient concentration

retrieval (Huang et al., 2021; Lv et al., 2020; Qun’ou et al., 2021).

Optical satellites face challenges in nitrate retrieval due to the lack of distinctive nitrate signals(Chen et al., 2023; Sathyen-35

dranath et al., 1991). Previous studies have demonstrated a strong empirical correlation between sea surface nitrate (SSN) and

certain measurable seawater parameters (Goes et al., 2000; Joo et al., 2018; Kamykowski et al., 2002; Silió-Calzada et al.,

2008; Switzer et al., 2003). Physical processes, biological activity, and chemical reactions like nitrification are commonly rec-

ognized as the three principal processes in regulating ocean nitrate (Goes et al., 2000, 1999; Kudela and Dugdale, 2000; Pan

et al., 2018). Cold and nitrate-rich water is transported to the euphotic layer through physical processes, including upwelling40

and convective mixing in winter, enriching SSN while decreasing sea surface temperature (SST) (Kudela and Dugdale, 2000;

Pan et al., 2018). Phytoplankton growth consumes nitrate and converts it into organic matter, reducing SSN while increas-

ing Chlorophyll concentration (Chl) (Goes et al., 2000, 1999). Therefore, various physical and biogeochemical characteristics

were frequently utilized as features to establish empirical connections with SSN. The conventional method for nitrate retrieval

typically relies solely on SST for linear regression, given its negative relationship with SSN (Sarangi and Devi, 2017; Switzer45

et al., 2003). Nevertheless, the correlation between SST and SSN is subject to significant geographical and temporal variation,

influenced by differing environmental conditions across regions (Goes et al., 1999; Silió-Calzada et al., 2008). Goes et al.

(1999) found that incorporating Chl-a alongside SST notably improves the accuracy of SSN retrieval compared to using SST

in isolation. Additionally, Colored dissolved organic matter (CDOM) is also a feasible candidate for oceans with considerable

river inflow (Pan et al., 2018).50

One primary limitation of remote sensing retrieval is the challenge of accurately monitoring subsurface environmental pa-

rameters (Akbari et al., 2017; Ali et al., 2004). While in situ data provide precise measurements of local vertical conditions,

they are inadequate in characterizing ecosystem processes occurring at the extensive temporal and spatial scales involved

(Von Schuckmann et al., 2019). Accurate 3D data acquisition for key variables over extensive scales is necessary for a deeper

understanding of marine ecosystems (Rossi et al., 2021). To address this issue, various methods including modeling ecosys-55

tems and ocean dynamics have been explored to estimate biogeochemical variables, with some being widely applied (Baretta
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et al., 1995; Bruggeman and Bolding, 2014; Holt et al., 2012; Kay and Butenschön, 2018). However, these methods require

a thorough representation of physical and biological processes with highly nonlinear dynamics. While they can simulate en-

vironmental parameters and their distribution mechanisms, they may not always achieve the accuracy needed for specific

applications (Storto et al., 2019; Tian et al., 2022).60

In contrast, synergizing the extensive coverage of satellite data with the high precision of in situ data represents an effective

approach, enabling the frequent characterization of the ocean’s vertical structure across an expanded spatial scope (Buon-

giorno Nardelli, 2020; Tian et al., 2022; Gao et al., 2024; Zhou and Zhang, 2023). Empirical models were widely used to

extrapolate important ocean variables from the surface to deeper layers (Morel and Berthon, 1989; Uitz et al., 2006), but they

were vulnerable to inaccurate estimates due to the intricacy and non-linearity, particularly in locations with irregular vertical65

stratification and small-scale phenomena (Sammartino et al., 2020). Recent advancements in neural network (NN) technology

have yielded promising results in addressing this issue (Asdar et al., 2024). For instance, Richardson et al. (2002) pioneered

the use of an unsupervised NN for vertical chlorophyll reconstruction. Supervised NNs are capable of fitting nonlinear re-

lationships between sea surface environmental variables and deep-sea conditions and have been successfully applied to the

estimation or prediction of various subsurface ocean parameters such as temperature and salinity (Buongiorno Nardelli, 2020;70

Qi et al., 2022; Smith et al., 2023; Su et al., 2021), and density (Su et al., 2024). Additional studies have supplemented sea

surface parameters with reanalysis or profile data to reconstruct more subsurface parameters (Hu et al., 2023; Tian et al., 2022;

Zhou and Zhang, 2023). However, due to the complex mechanisms and heterogeneous distribution of nitrate (Webb, 2021),

its 3D reconstruction was not developed as effectively as parameters like temperature, particularly as the need for concurrent

vertical observations of additional variables persists. Wang et al. (2023) employed a regionalized deep neural network (DNN)75

to estimate nitrate concentration in the northwestern Pacific Ocean. Similar supervised techniques based on the Multilayer

Perceptron (MLP) have been utilized to rebuild water-column bio-optical and biogeochemical variables using remote sensing

and BCG-Argo data (Fourrier et al., 2020; Sauzède et al., 2017). A Bayesian strategy was proposed to supplement in situ data

by inferring vertical profiles of unmeasured variables (Bittig et al., 2018). Yang et al. (2024) successfully reconstructed the 3D

nitrate structure of the Indian Ocean from surface data using two advanced artificial intelligence networks. However, relying80

on simulated data rather than actual observations for training cannot overcome the its inherent uncertainties, which may limit

the model’s applicability in real ocean environments.

In this study, we develop an MLP to accurately reconstruct the 3D nitrate concentration upper 2000 m ocean, addressing the

aforementioned challenges. Including vertical profile variables among the features might introduce potential uncertainty and

limit the expansion of the estimation range, so input features are exclusively based on sea surface environmental variables. The85

model employs a continual learning strategy (Kirkpatrick et al., 2017), initially pre-training on simulated nitrate data to boost

its generalization capabilities. The 3D nitrate field of the pan-European ocean from 2010 to 2023 is reconstructed based on this

model and reveals the spatiotemporal distribution and interannual variations. Additionally, the contribution of each feature to

the model estimates is calculated using Shapley values (Lundberg and Lee, 2017; Shapley, 1988), quantifying the effectiveness

of features.90
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Figure 1. The pan-European domain, including the MED and the NEA. The study area is highlighted in blue, with shades of color indicating

ocean depth. The warm-colored grid indicates the count of BGC-Argo observations. Two rectangular boxes are selected as typical data

regions for pattern comparison.

2 Material and methods

2.1 Study area

The study area extends from 30° W to 37° E latitude and 30° N to 65° N longitude, covering the Mediterranean Sea (MED)

and a portion of the Northeast Atlantic (NEA). This area is considered to be coastal of the pan-European domain, as shown

in Fig. 1. It represents a critical zone for biogeochemical studies due to its extensive BGC-Argo observations and its unique95

position as one of the most data-rich coastal-proximate areas, where a portion of the continental shelf seas within this domain

exhibit disproportionately high primary productivity and play a fundamental role in regulating oceanic biogeochemical cycles

(Longhurst et al., 1995; Holt et al., 2009; Smith and Hollibaugh, 1993).
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Nutrients from the open ocean and river runoff create a general and rapid biogeochemical cycle in the NEA (Gattuso et al.,

1998), in contrast to the MED, which is distinguished for its semi-enclosure and oligotrophy conditions. This study aims to100

validate its effectiveness in different marine regions by exploring the relationships among multiple variables and developing a

robust and generalizable modeling framework.

2.2 Data

2.2.1 In situ nitrate data

The in situ data of nitrate concentration used in this study were obtained through BGC-Argo (https://argo.ucsd.edu, https:105

//www.ocean-ops.org), a network of profiling floats equipped with sensors capable of monitoring six biogeochemical variables

(Claustre et al., 2020). The time, longitude, latitude, and pressure representing the depth are also recorded during the obser-

vations. Nitrate concentration is measured using ultraviolet absorption spectroscopy (Johnson et al., 2024), with an average

accuracy of ±0.5µmol · kg−1 (Johnson et al., 2021, 2017; Mignot et al., 2019). In this study, a total of 477,870 data in the

study area are used, with 409,011 collected from the MED and 68,859 from the NEA.110

The GLODAPv2 Database (https://doi.org/10.25921/1f4w-0t92) provides a uniformly calibrated open ocean data product

on inorganic carbon and carbon-relevant variables (Lauvset et al., 2022, 2021; Olsen et al., 2020). GLODAPv2 contains 15

cruises within the study area, utilized for independent validation of the model’s predictive performance.

2.2.2 Simulated nitrate data

While the BGC-Argo network provides a significant amount of in situ data on nitrate concentration, its spatial coverage remains115

inadequate for the entirety of the ocean. Notably, BGC-Argo deployments are sparse in the NEA and coastal areas, where nitrate

concentrations are higher and of greater environmental concern (Berglund et al., 2023; Moore et al., 2013). Conventional

deep learning algorithms typically only perform well when there is a high similarity between test and training datasets. The

lack of comprehensive in situ observations can introduce bias into the training dataset, adversely affecting the performance

and generalization ability of the model. Hence, integrating BGC-Argo nitrate observations with broad simulated nitrate data120

becomes crucial.

Simulated nitrate data is obtained from The CMEMS. The GLOBAL_MULTIYEAR_BGC_001_029 (https://doi.org/10.

48670/moi-00019) product provides daily and monthly analyses of biogeochemical variables with a horizontal resolution of

0.25°×0.25° and feature 75 vertical levels. These products are based on the Pelagic Interactions Scheme for Carbon and Ecosys-

tem Studies (PISCES) biogeochemical model (Aumont et al., 2015), which is part of the Nucleus for European Modelling of125

the Ocean (NEMO) modeling platform (Madec, 2016). The model can simulate biogeochemical cycles across various oceanic

provinces and has been successfully employed in various biogeochemical studies (Tian et al., 2022; Yang et al., 2024).

5

https://argo.ucsd.edu
https://www.ocean-ops.org
https://www.ocean-ops.org
https://www.ocean-ops.org
https://doi.org/10.25921/1f4w-0t92
https://doi.org/10.48670/moi-00019
https://doi.org/10.48670/moi-00019
https://doi.org/10.48670/moi-00019


2.2.3 Matching sea surface environmental variables datasets

Sea surface environmental variables (SSEV) matched to in situ nitrate data are used as input features for the model, detailed in

Table 1. The SSEV data all span from 2010 to 2023, matching the BGC-Argo data since 2012 and enabling the reconstruction130

of the 3D nitrate field since 2010.

The satellite-derived ocean color data were obtained from the European Space Agency’s Global Color Project (Lavender

et al., 2009; Stéphane et al., 2010), with a spatial resolution of 25 km and a temporal resolution of monthly (https://hermes.acri.

fr). The meteorological driver data were taken from the ERA5 reanalysis dataset (Hersbach et al., 2020) (https://cds.climate.

copernicus.eu), with a spatial resolution of 0.25° and the temporal resolution of monthly averaged reanalysis. ERA5 is the135

fifth generation European Center for Medium Weather Forecasting (ECMWF) atmospheric reanalysis of the global climate.

Reanalysis combines model data with observations into a globally complete and consistent dataset. The CMEMS provides

ocean dynamics-related data, which has a spatial resolution of 0.25° and a temporal resolution of monthly averages.

2.3 Methods

Figure 2 depicts the process of estimating nitrate and related research in this paper. The SSEVs and spatiotemporal coordinates140

undergo data preprocessing and resampling (Section 2.3.1) to serve as the feature set for the two-step training of the MLP

model. The simulated and BGC-Argo nitrate concentrations provide the constructed MLP model (Section 2.3.2) with labels

for two-stage continual learning (Section 2.3.3) training. So far, MLP completes modeling the relationship between the surface

environment and internal ocean nitrate. After undergoing four kinds of 3D performance validations, the model reconstructed the

3D nitrate field by inputting iterated spatiotemporal coordinates and corresponding SSEV datasets. The feature contributions145

and the potential mechanisms for estimation was evaluated based on the training datasets and the model (Section 2.3.5).

2.3.1 Data pre-processing

The candidate input variables for estimating nitrate are depth, latitude, longitude, day of the year, and SSEV data mentioned

in Section 2.2.3. The time variables (day of the year) and geographical coordinates (latitude, longitude and depth) are intended

to explain the temporal and spatial variations of the studied parameters. The characteristics of biogeochemistry in the ocean150

properties are described by SSEV such as SST and Chl (D’Ortenzio and Ribera d’Alcalà, 2009). Furthermore, variables such

as SSH provide insights into the ocean dynamics, which may contribute to obtaining more accurate vertical stratification.

All these predictor variables are utilized as input features after preprocessing. By standardizing and resampling, they were

matched to nitrate concentration measurements, serving as features and labels to train the MLP (Fig. 2b). The potential un-

certainty in the input features can be significantly reduced by implicitly incorporating them into the weights of the model155

when utilizing the same data products (Chen et al., 2019). The gridded SSEV data underwent limited linear interpolation along

longitude, latitude, and time, refining localized missing values while filtering out extensive data gaps. Subsequently, the SSEV

feature set was linearly interpolated and resampled to align with the spatiotemporal coordinates of nitrate data, ensuring that
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Parameter Description Unit
Spatial resolu-

tion

Temporal Reso-

lution
Data source

Chl Chlorophyll concentration mg· m−3 25km monthly Globcolour

NFLH Normalised fluorescence line height
mW·cm−2·

microm−1· sr−1

CF Cloud fraction %

PAR Photosynthetically available radiation
einstein·m−2

·day−1

CDM
Coloured dissolved and detrital organic materials absorp-

tion coefficient at 443 nm
m−1

ZHL Heated layer depth m

ZEU Depth of the bottom of the euphotic layer m

ZSD Secchi disk depth m

SST Sea surface temperature K 0.25◦ monthly ERA5

SP Surface pressure Pa

TP Total precipitation m

Z Total depth m

U10 10 m U wind component m · s−1

V10 10 m V wind component m · s−1

S10 10 m wind speed m · s−1

SSH Sea surface height m 0.25◦ monthly CMEMS

MLD Density ocean mixed layer thickness m

Table 1. Details of the SSEV dataset.

grid features with missing neighboring coordinates were excluded to prevent low-quality data from adversely affecting model

training.160

To utilize the annual period, the sampling dates are projected onto the circular coordinates as follows:

Jday1 = cos(2π · (dayofyear/365)), (1)

Jday2 = sin(2π · (dayofyear/365)). (2)

The other input features are then normalized by applying Z-score transformations as follows:165

z(xi) = (xi−µ)/σ, (3)

where µ and i are the mean and standard deviation of each feature of the train set, xi is the input value of feature i. Z-

score transformation is a linear normalization technique commonly used in MLP development to align the inputs and intended

outputs within comparable value ranges.
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Figure 2. Workflow for nitrate estimation and research on reconstructed results.

2.3.2 Multilayer perceptron170

The study develops a Multilayer perceptron (MLP) (Bishop, 1995) model, which is a type of feed-forward neural network that

can be used for various types of input or output mappings (Hagan et al., 1997). MLPs can approximate any continuous and

derivable function by means of an error backpropagation algorithm (Rumelhart et al., 1986). An MLP consists of interconnected

neurons organized into input, hidden, and output layers. Each connection is assigned a weight ‘w’, and the output is generated

by combining inputs and weights using an activation function after adding the neuron’s bias ‘bj’. The weights are iteratively175

updated during the training epochs to minimize the loss function which reduces the quadratic error between MLP outputs and

labels. This iterative process continues until a minimum is reached using the approach of error backpropagation.

The structure of the MLP is determined by a series of experiments with multiple hidden layers, and it utilizes the LeakyRelu

activation function. The optimal network is determined through multiple trials, where the structure with the least amount of

error on the test dataset and the fewest neurons is selected. The final network was configured as (22-128-64-16-1), compris-180

ing one input layer with 22 inputs, three hidden layers with 128, 64, and 16 nodes, and one output layer with the nitrate

concentration as the output value.
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2.3.3 Continual learning

The generalization capability of deep learning models, including MLPs, is highly dependent on the representativeness of the

training data. Insufficient or imbalanced training data can exacerbate generalization errors and increase the risk of model185

overfitting. In the domain of water resource research, challenges associated with the collection of in situ data have highlighted

the effectiveness of transfer learning (TL) techniques(Cao et al., 2020; Harkort and Duan, 2023; Miao et al., 2023; Syariz

et al., 2020; Zhu et al., 2017). Nevertheless, most TL applications are based on fine-tuning (Ma et al., 2024), which limits their

capacity to integrate knowledge from multiple datasets in a more comprehensive manner (Zhou and Zhang, 2023). To overcome

this limitation, we developed the continual learning (CL) strategy to improve the training process of BGC-Argo. CL enables190

the model to assimilate new knowledge continually while retaining previously acquired information, thereby enhancing the

robustness and adaptability of the model.

In practice, the simulated nitrate data are initially employed for pre-training, after which the derived network weights are

transferred to the subsequent training phase supervised by BGC-Argo observations. Ideally, this sequential process enables

the model to capture the general distribution patterns and underlying variation mechanisms present in the simulated nitrate195

data, and subsequently refine its estimations to achieve higher accuracy using BGC-Argo measurements. However, when the

model undergoes incremental training through gradient-based updates, it may experience catastrophic interference or forget-

ting, leading to the degradation of previously acquired knowledge (Kirkpatrick et al., 2017). To address this issue, Elastic

Weight Consolidation (EWC), a regularization-based continual learning algorithm, is applied to constrain weight updates by

assigning greater importance to critical network parameters (Kirkpatrick et al., 2017).200

Figure 3 (Kirkpatrick et al., 2017) illustrates the effect of training strategies on the two-stage training task and how EWC

ensures the retention of knowledge from Task A during the learning of Task B. Sets A and B represent the solution spaces

for two training tasks, specifically the simulated nitrate and BGC-Argo training. After completing the Task A, the parameters

are denoted as θ∗A, and the three trajectory lines depict different training processes under varying loss function constraints.

Constraining each weight equally (green arrow) imposes excessively rigid restrictions, allowing Task A to be retained only205

at the cost of failing to learn Task B. Conversely, applying gradient steps based solely on Task B (blue arrow) effectively

minimizes the loss for Task B but compromises the knowledge acquired from Task A. Although BGC-Argo measurements

are accurate, they are limited in their spatiotemporal coverage for nitrate reconstruction studies, which is insufficient for a

comprehensive global characterization of nitrate distributions. Consequently, the center of Set B represents the optimal solution

for model weights on the BGC-Argo training set, but which is an overfitted and suboptimal for broader global reconstruction.210

In contrast, the EWC trajectory (red line) finds an optimal balance for Task B while calculating the importance of weights for

Task A, thus ensuring minimal loss in Task A’s performance. Robust weights should lie between Sets A and B, balancing the

broad and generalizable knowledge from simulated nitrate with the precise measurements from BGC-Argo. This process can be

understood as guiding the model to retain the broad knowledge to enhance the generalization ability of Task B, or as calibrating

the simulated nitrate with the precision of BGC-Argo. Given that simulated nitrate provides concentration data across the entire215
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Figure 3. Schematic illustration of how training strategies influence study trajectories in a two-stage task (Kirkpatrick et al., 2017)

.

ocean, especially in regions not yet observed by BGC-Argo, this strategy is crucial for enhancing the generalization capability

and robustness of the MLP model.

EWC relies on the Fisher Information Matrix (FIM) to estimate the importance of each model parameter concerning previous

tasks (Fisher and Russell, 1997). The FIM quantifies the amount of information that an observable random variable carries

about an unknown parameter, reflecting how sensitive the likelihood function is to changes in the parameters.The FIM F is220

defined as:

F = Ex,y∼pdata(x,y)

[
∇θ logp(y|x;θ)∇θ logp(y|x;θ)>

]
, (4)

where p(y|x;θ) is the likelihood of the target y of the given data x and model parameters θ, and∇θ logp(y|x;θ) is the gradient

of the log-likelihood with respect to the parameters.

In practical applications, computing the full FIM is computationally expensive, particularly for large neural networks. To225

simplify the computation, it is often assumed that the FIM is diagonal, effectively ignoring dependencies between parameters.

In MLPs, the diagonal elements of the FIM can be approximated as follows:

Fi ≈ Ex,y∼pdate(x,y)

[(
∂ logp(y|x,θ)

∂θi

)2
]
. (5)

Since the true distribution of data is unavailable, training data is typically used for estimation:

Fi ≈
1

N

N∑
n=1

(
∂ logp(yn|xn,θ)

∂θi

)2

, (6)230
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where, N is the number of training samples, (xn,yn) are the data samples, and θi is the i-th parameter of the model.

In regression tasks using MLPs, we model the output y as:

y = f(x;θ)+ ε, ε∼N (0,σ2). (7)

Assuming Gaussian noise with constant variance σ2, the diagonal elements of the FIM can be approximated based on the

gradients of the model’s output with respect to its parameters. Specifically, we compute Fi as:235

Fi ≈
1

N

N∑
n=1

(
∂f(xn;θ)

∂θi

)2

, (8)

where xn is the n-th input sample, and ∂f(xn;θ)
∂θi

is the partial derivative of the model output with respect to parameter θi. This

approximation allows efficient computation of Fi during training.

In the Bayesian framework, the goal is to find the parameter θ that maximizes the posterior probability given both the

previous task data DA and the new task data DB :240

p(θ|DA,DB)∝ p(DB |θ)p(θ|DA). (9)

Since directly computing p(θ|DA) is intractable, we approximate it using a Gaussian distribution centered at the previous

optimal parameters θ∗A with precision given by the FIM (MacKay, 1992):

p(θ|DA)≈N (θ∗A,F
−1). (10)

Taking the negative logarithm of the posterior and ignoring constants independent of θ, we obtain the total loss function:245

LEWC(θ) = LB(θ)+
λ

2

∑
i

Fi(θi− θ∗A,i)2, (11)

where LB (θ) is the loss for the new task only, i labels each parameter, Fi is the FIM of the previous task, θ∗A is the optimal

parameter value after training on the previous task, and λ is a hyperparameter controlling the trade-off between performance

on the new task and retention of the previous task knowledge.

2.3.4 Model validation250

Nitrate concentrations derived from the identical vertical observations by BGC-Argo exhibit a strong correlation and a gradual

variation with increasing depth. Conventional methods that divide the entire dataset proportionally can result in highly similar

data appearing in both the training and test sets, thereby leading to an exaggerated model performance (Salazar et al., 2022).

Hence, it is imperative to partition the BGC-Argo dataset based on the observation period, with each period referred to as a

profile (Sammartino et al., 2020; Sauzède et al., 2017). This division method ensures the identical distribution and independence255

of the training and testing sets. Furthermore, the spatial generalization capabilities of the model can be further assessed by

partitioning the dataset based on devices.
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A 5-fold cross-validation approach is employed to evaluate the model performance using independent test data, which is

widely used in machine learning. The BGC-Argo dataset was evenly divided into five subsets, based on profiles or sites. In five

distinct cycles, each subset (approximately 20% of the total dataset) served as the test set for one fold, with the remaining four260

subsets used to train the MLP model. Upon completion of the five folds, all BGC-Argo data were used for one test and four

training sessions. This process mitigates the influence of data partitioning bias on performance validation, ensuring maximal

data utilization and providing a more robust evaluation of the model’s generalization capability. On the test set, the MLP

performance was evaluated by comparing the estimated values with in situ nitrate values, using statistical metrics including

the determination coefficient (R2), mean bias error (MBE), mean square error (MSE), root mean square error (RMSE), mean265

absolute error (MAE), and median absolute error (MedAE).

2.3.5 Evaluating the contribution of inputs

Another major limitation of MLPs and deep learning networks is the lack of interpretability, which makes it challenging to

evaluate the estimation processes and mechanisms. However, it is essential to assess the validity of environmental parameters

for estimating nitrate concentration, especially since their influence and interactions are not fully elucidated.270

The Shapley values (Shapley, 1988) is a method in coalition game theory that effectively describes how benefits are fairly

distributed among contributions by the difference between the predicted and average predicted values in each case. The Shapley

value of a feature is its weighted and summed contribution to the output over all possible feature combinations:

φj (val) =
∑

S⊆{1,...,p}\{j}

|S|! (p− |S| − 1)!

p!
(val (S ∪{j})− val{S}), (12)

where φj is the contribution of the j-th feature to the results. S is a subset of the model’s features, and p is the total number of275

features. val (S) is the prediction for feature values in S that are marginalized over features not included in S.

Shapley additive explanations (SHAP) (Lundberg and Lee, 2017) is a method for explaining individual estimation results

based on Shapley values, which has been successfully applied to evaluate predictors using machine learning algorithms in

environmental research (Hu et al., 2023). The purpose of SHAP is to compute the contribution of each feature to the result

to explain an instance. The Shapley values are depicted as a linear additive feature attribution approach. SHAP specifies the280

explanation as:

g (x′) = φ0 +

M∑
j=1

φj , (13)

where g is the model to be explained, M is the size of feature space and φj ∈R is the feature contribution for feature j, as

same as the Shapley values of j.

We can calculate SHAP to quantify the contribution of each feature to the prediction results of a black box model in different285

samples. The feature tends to increase the output result when SHAP is positive. Conversely, the feature tends to decrease the
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Figure 4. Estimation performance on the test set validated by BGC-Argo measurements (a). The test set results are further divided into the

MED (b) and NEA (c) regions. The red line indicates the fitted trend of the data while the black dashed line denotes the 1:1 parity line.

output result when SHAP is negative. Absolute SHAP value (ASV) indicates the degree that the feature affects the output. To

observe the overall significance, the mean of ASV for each feature in the data is therefore defined as:

Ij =
1

n

n∑
i=1

∣∣∣φ(i)j ∣∣∣, (14)

where i represents data samples, and j represents features.290

3 Results and discussion

3.1 Model performance

In the 5-fold profile-based cross-validation, all data is used once in the test set. As illustrated in Fig. 4, the model performance is

evaluated by comparing estimated values with BGC-Argo observations. The model demonstrates high accuracy in estimating

nitrate concentration, with estimated values generally aligning along the 1:1 line. Importantly, to ensure a comprehensive295

dataset and enhance the stability of the reconstruction process, we retained all measured labels, including negative values.

Furthermore, a Softplus activation function was applied to the model’s output layer to guarantee non-negative predictions,

albeit at the expense of some degradation in statistical performance metrics. Considering the significant differences between

the two regions of the study area, Fig. 4b&c respectively show the test results for the MED and NEA. Compared to the NEA,

the MED exhibits a smaller range of nitrate variations and demonstrates stronger estimation performance. The MED records300

account for 86% of the total dataset, whereas the NEA contributes only 14%. This data imbalance likely contributes to the

more consistent performance in the MED compared to the NEA.

While the model has shown satisfactory overall performance, it is critical that the accuracy remains consistently desirable

in the vertical dimension. Only then can the model fulfill its intended purpose of estimating and reconstructing the entire 3D
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Figure 5. Vertical profiles of RMSE (a) and MBE (b) for modeled and simulated nitrate compared to BGC-Argo measurements.

ocean nitrate field. Figure 5 illustrates the vertical distribution of the primary statistical metrics and their comparison with305

simulated nitrate. The model maintains robust performance in the vertical dimension, with no significant fluctuations in RMSE

and MBE, which is vital for accurately estimating nitrate profiles. The model exhibits slightly superior performance in the

MED compared to the NEA at most depths. The RMSE in both the MED and NEA is higher between 0 m and 150 m, with a

notable peak at 60 m depth, reaching about 0.8 and 1.4 µmol · kg−1 respectively. Furthermore, the RMSE of MED remains at

a low level and slowly decreases as depth increases. In contrast, the RMSE of the NEA varies drastically, accompanied by a310

larger overall error, particularly in the 400-700 m depth range. As shown in Fig. 5b, MBE values are negative for most depth

ranges in NEA, suggesting a slight overall underestimation of nitrate concentrations, while a slight overestimation occurs in

the upper ocean layers of both sub-regions

The model excels in the deep ocean layers beyond 800 m depth, where nitrates are characterized by low variability and

minimal feedback from the sea surface environment. Nonetheless, through the use of temporal and spatial coordinates and315

a dual training process, the model accurately estimates nitrate concentrations. The model’s relatively weak performance is

observed in the upper 100 m depths, which could be attributed to the sensitivity of the surface layer to external nitrate inputs
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(Altieri et al., 2021), thus leading to deviations from the model-fitted relationship between nitrate and SSEV. Furthermore, the

ocean at these depths is usually influenced by both the euphotic layer and mixed layers, where complex interactions between

ecosystem and ocean dynamics occur, such as water transport, plankton consumption and decomposition. Hence, predicting320

parameters within this depth has usually presented the biggest challenge in vertical dimension estimation (Sammartino et al.,

2020).

In contrast, simulated nitrate exhibits instability in describing the vertical distribution of nitrate concentration. Firstly, sim-

ulated nitrate produces significant errors at the ocean surface, possibly due to the limitations of biogeochemical models in

simulating complex boundary interactions. However, the estimation error here has been significantly ameliorated by MLP ow-325

ing to the strong correlation between SSEV and SSN. Secondly, the characterization of nitrate vertical changes by simulated

nitrate is not precise enough. The vertical inaccuracy may result in disparities in the characterization of the changes, thus pos-

ing a limitation for small-scale biogeochemical research. An evident instance can be observed in the mesopelagic zone (MZ)

layer, ranging from 200 to 1000 m in the NEA. Simulated nitrate faced challenges in accurately describing the vertical rate of

nitrate variations in this range, resulting in a notable overestimation of nitrate concentrations (Fig. 5b). This is also reflected330

in the distinct step-like pattern observed at nitrate concentrations of 10-15 µmol · kg−1 (Fig. 6a) and the overestimation in the

vertical pattern (Fig. 8e). Furthermore, MLP and simulated nitrate present similarities in the vertical profiles of RMSE, while

MLP consistently outperforms simulated nitrate. This also demonstrates that MLP has improved performance by incorporating

prior knowledge from simulated nitrate through CL.

3.2 Spatial generalization ability and enhancement of continual learning335

Due to the limited monitoring range of BGC-Argo, the spatial generalization ability of the model is crucial for accurately

reconstructing the complete nitrate concentration field. Therefore, this section adopts a more rigorous validation procedure by

partitioning the BGC-Argo dataset according to device sites and performing a 5-fold cross-validation as outlined in Section

2.3.4. Under these circumstances, the spatial disparity between the training and testing sets grows significantly, aiding in the

assessment of the model’s predictive performance across unknown marine regions and amplifying the comparative impact of340

CL on spatial generalization.

Figure 6e illustrates the accuracy of simulated nitrate concentrations by interpolating gridded simulated nitrate data across

longitude, latitude, depth, and time to match the spatiotemporal coordinates of BGC-Argo observations, thereby approximating

and validating the simulated values. The results indicate that simulated nitrate tends to form stepwise clusters due to its inertia

and lack of variability in representing localized nitrate fluctuations (Fig. 8), leading to similar y-values within subsets that345

should correspond to x-direction gradients. Nevertheless, the overall agreement between the two datasets remains strong. The

simulated nitrate achieves an acceptable accuracy (R2 = 0.826, RMSE = 1.882 µmol ·kg−1), making it a valuable prior dataset.

This compatibility is crucial, and given that simulated nitrate can provide data of comparable accuracy across the entire ocean,

its shows great potential as a complement to BGC-Argo data. Simulated nitrate aids in understanding the large-scale distribution

of nitrate, offering extensive insights that serves as a beneficial foundation for enhancing fitting relationships during subsequent350

CL training phases.
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Figure 6a illustrates the spatial generalization test performance of the model, demonstrating that CL leads to enhanced test

performance, marked by an increase in R2 of 0.051 and a decrease in RMSE of 0.343 µmol · kg−1, compared to the non-CL

results shown in Fig. 6c. Specifically, the MLP model without CL significantly underestimates high nitrate concentration sam-

ples, primarily due to its limited generalization ability in unfamiliar regions of the NEA during site-specific cross-validation.355

The introduction of CL effectively mitigates this limitation, allowing the model to maintain stable generalized estimates, even

for high nitrate concentration samples. Furthermore, the majority of samples exhibit a more consistent fit to the 1:1 line, sig-

nificantly reducing episodic uncertainty associated with simulated nitrate and the generalization error of the non-CL MLP

model. Notably, coupling with CL retains the influence of prior knowledge from simulated nitrate, resulting in localized vari-

ability differences. For instance, the densely packed high-concentration samples in warm colors transitioned from symmetric360

fitting (Fig. 6c) to step-like clustering (Fig. 6a), but achieving a closer fit and overall improved performance. The extent of this

transformation is influenced by the EWC parameter λ.

Figure 6b presents the horizontal distribution of RMSE. The predictions exhibit the highest accuracy in the central MED,

while larger RMSE values are observed in the NEA and peripheral regions of the MED. The substantial variability in nitrate

concentrations in the NEA is largely attributable to the active exchange of eutrophic seawater. Furthermore, the sparse dis-365

tribution of BGC-Argo measurements in the NEA results in significant deviations from the training data, posing substantial

challenges for accurate cross-validation in this region. Overall, high error rates are frequently observed in coastal locations,

particularly in the western Strait of Gibraltar and southern parts of the MED. These areas are more susceptible to anthropogenic

influences and complex land-sea interactions, which complicate prediction efforts. Additionally, the shallower topography of

these regions contributes to increased errors in the vertical water column, particularly in the error-prone ocean surface layer370

(Fig. 5a).

Notably, regional disparities introduced by CL are evident in Fig. 6d. When the peripheral regions are used as test sets, the

discrepancies between training and test data distributions become more pronounced. This sparsity of BGC-Argo data poses a

considerable challenge for model estimation in regions lacking sufficient global training on similar datasets, leading to reduced

performance metrics. However, CL significantly enhances the model’s estimation capabilities in sparsely observed regions,375

particularly in areas with high RMSE near the boundaries of BGC-Argo coverage. This suggests that CL helps reduce model

instability when generalizing to unfamiliar regions by incorporating prior knowledge from simulated nitrate. For instance,

in the western Strait of Gibraltar, complex environmental interactions and similarities in spatial coordinates with the MED

present significant estimation challenges. Nevertheless, the model demonstrates substantial improvements in both accuracy and

generalization stability compared to the MLP without CL. Moreover, the model achieves more accurate estimates by fitting380

BGC-Argo data, showing a comprehensive improvement over simulated nitrate (Fig. 6f), which is critical for reconstructing the

three-dimensional nitrate field. Interestingly, in data-dense regions such as parts of the Mediterranean, the incorporation of CL

results in a slight increase in RMSE. This phenomenon occurs because, in well-sampled regions, prior knowledge may interfere

with the MLP’s fitting process. However, the influence of this prior knowledge can be optimized by regionally adjusting the

EWC parameter λ. Currently, this parameter has been selected to achieve an overall optimal performance.385
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Figure 6. Illustration of Model performance and spatial generalization in site-based cross-validation (a) and spatial error distributions (b),

compared with the case without CL (c-d) and the case of simulated nitrate itself (e-f). Subplots show: (a) test performance with CL; (b) spatial

distribution of model accuracy; (c) test performance without CL; (d) distribution of RMSE increase (non-CL relative to CL); (e) validation

performance of simulated nitrate concentrations; and (f) spatial distribution of RMSE increase (simulated nitrate relative to model with CL).
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In conclusion, it is reasonable to infer that CL enhances the overall model performance and generalization capability in

regions not covered by BGC-Argo by incorporating relevant knowledge and patterns from simulated nitrate. This process is

influenced by data distribution and weighting parameters.

3.3 Independent validation with GLODAPv2

To further ensure a more stable assessment of the model’s generalization ability in data-sparse regions while avoiding potential390

autocorrelation within the BGC-Argo dataset, the GLODAPv2 dataset was employed for independent validation, which was

not involved in training. Fifteen cruises measuring nitrate concentrations at depths ranging from 0 to 2000 m in the study area

were selected, and their measurements were compared against model estimates and simulated nitrate. Figure 7c illustrates that

a significant portion of the GLODAPv2 data is located in the NEA, thereby allowing for an effective assessment of the model’s

performance in under-sampled regions. The results indicate a strong correlation with the GLODAPv2 nitrate concentrations,395

as evidenced by an R2 value of 0.94 (Fig. 7a).

Figure 7c also depicts the regional distribution of errors, revealing that model performance varies significantly across differ-

ent regions. The lowest errors are observed in the western MED and the southern NEA, whereas larger errors are concentrated

in areas with sparse BGC-Argo observations. This distribution pattern and its underlying causes align with the spatial perfor-

mance in site-based cross-validation, as shown in Fig. 5b. Factors such as enhanced water exchange dynamics (Berglund et al.,400

2023), intricate land-sea interactions, and shallow topography contribute additional complexities. Moreover, several expedi-

tions north of 50°N occurred in 2010 - 2012 and 2015, while most BGC-Argo observations in the same region were conducted

post-2020. The pronounced variability of nitrate concentrations in the NEA, coupled with limited observations and tempo-

ral discrepancies, diminishes the data representativeness, leading to increased RMSE. Overall, the error margins are deemed

acceptable and still outperform the validation accuracy of simulated nitrate (Fig. 7b).405

3.4 Validation of three-dimensional nitrate pattern

To thoroughly examine and contrast the seasonal vertical patterns of BGC-Argo, modeled, and simulated nitrate, two repre-

sentative regions depicted in Fig. 1 were selected to facilitate a comprehensive evaluation of the model’s efficacy. The Box

NEA, situated at 14-19° W and 46-53° N, and the Box MED, located at 26-30° E and 32-36° N, were chosen due to their

frequent BGC-Argo sampling, which ensures high consistency between measured data and observed vertical patterns. The ver-410

tical distribution of nitrate is depicted in Fig. 8 for these two regions, where the MLP model, simulated nitrate, and BGC-Argo

observations are juxtaposed for comparison.

The reconstructed vertical nitrate profiles derived from the MLP model demonstrate greater consistency and robustness

compared to BGC-Argo data, whereas the profiles from simulated nitrate still exhibit significant discrepancies in capturing

seasonal variations. The MLP model has shown a remarkable ability to capture mid-scale features, such as the seasonal increase415

during winter and decrease during summer, aligning well with BGC-Argo data and effectively depicting seasonal variations in

the upper ocean. Furthermore, the MLP model is consistent with BGC-Argo in representing depth-dependent variability within

the Mesopelagic Zone (MZ), while bridging gaps left by the intermittent nature of BGC-Argo measurements. In contrast,
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Figure 7. Accuracy comparison between MLP-estimated nitrate (a) and simulated nitrate (b), using GLODAPv2 measurements for validation,

with colors denoting individual cruises. Subplots show: (a) validation of MLP-estimated nitrate; (b) validation of simulated nitrate; and (c)

spatial RMSE distribution of MLP-estimated nitrate, where the errors are derived from the average vertical measurement error at each cruise

sampling location.
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Figure 8. Comparison of monthly vertical patterns of nitrate in the designated region among BGC-Argo, the MLP model, and simulated

climatology. (a), (c), and (e) correspond to the box MED, while (b), (d), and (f) correspond to the box NEA. The black dashed lines represent

the average MLD from the CMEMS dataset. 20



simulated nitrate tends to underestimate concentrations in the upper ocean (Fig. 5b) and shows relatively sluggish seasonal

variations, including the absence of a pronounced increase during winter in Box NEA and insufficient representation of seasonal420

changes in the upper layers of Box MED.

As previously discussed, the model’s estimation results demonstrate satisfactory accuracy and strong performance on the test

dataset. Additionally, the model’s predictions have been analyzed comprehensively across vertical, horizontal, and temporal

dimensions, all indicating high performance. To ensure robust generalization across diverse oceanic environments, the joint

model was employed to estimate nitrate concentrations in both the MED and NEA, despite facing specific challenges. Given425

the complexity of the marine environment and the fact that the NEA represents only 14% of the dataset, a higher error rate

in this region is acceptable. Despite increased errors in some challenging cases, the model generally proves to be a reliable

approach for reconstructing the 3D nitrate concentration field.

3.5 Spatial and temporal distribution of the reconstructed nitrate field

The reconstruction of the 3D nitrate field from 2010 to 2023 was conducted using the MLP model combined with the SSEV430

for the corresponding period. The reconstructed field features a monthly temporal resolution, a horizontal spatial resolution of

0.25 degrees, and 63 depth levels, with vertical intervals ranging from 5 to 50 m. Figure 9 illustrates the spatial distributions of

the reconstructed nitrate at various depths across the pan-European region, with representative profiles selected at depths of 0,

50, 100, 150, and 500 m.

The reconstructed nitrate field reveals substantial spatial variability, with a clear increasing trend in nitrate concentrations435

with depth. The MED identified as an oligotrophic region, generally exhibits nitrate concentrations below 5 µmol · kg−1 at

depths between 0 and 150 m. Unlike the NEA, the MED nitrate concentrations are less influenced by seasonal dynamics,

primarily due to the region’s enclosed nature and restricted seawater exchange. The oligotrophic characteristics of the MED

intensify from west to east, with more pronounced differences evident in the deeper ocean layers (Pujo-Pay et al., 2011;

Ribera d’Alcalà et al., 2003). In contrast, the NEA is characterized by higher nitrate concentrations and pronounced seasonal440

variability, which is largely driven by the influx of nutrient-rich water masses from the open ocean (Berglund et al., 2023).

The highest nitrate concentrations are found in the northern NEA seawaters, a typical eutrophic region. The spatial pattern of

the reconstructed results aligns well with that of the simulated nitrate dataset overall (Fig. S1), including extensive regions not

covered by BGC-Argo, such as the coastal waters of the UK and Norway. Meanwhile, discrepancies are observed in certain

small-scale 3D structures between the reconstruction and the simulated nitrate field. These differences have the potential to445

provide valuable data foundations and insights for further ecological research.

Figure 10 presents the temporal-depth profiles of nitrate concentration as a function of the month in both the MED and

NEA, allowing for a more detailed examination of their temporal patterns. The seasonal variability of nitrate in the MED is

relatively subtle. During winter, upwelling of nutrient-rich cold water elevates nitrate concentrations in the upper ocean, with a

marked increase observed from October to February of the following year. After reaching this peak, nitrate levels decline due to450

phytoplankton uptake during spring, followed by a secondary rise in autumn as phytoplankton biomass decays (Severin et al.,

2017). Conversely, the NEA exhibits a pronounced temporal pattern in nitrate concentrations, primarily governed by ocean
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Figure 9. Spatial distribution of reconstructed nitrate field, with columns representing four seasons and rows representing five depth slices.
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Figure 10. Monthly distribution profiles of nitrate concentrations in the MED (a) and NEA (b). The black dashed lines represent the average

MLD from the CMEMS dataset.

dynamics. In the mixed layer, from the surface to approximately 100 m depth, nitrate levels increase from October to March

and subsequently decrease from April to August. The temporal pattern in the NEA resembles the winter increase observed in

the MED but lacks a distinct secondary peak, instead showing a more sustained high-nutrient period.455

Figure 11 illustrates the interannual anomalies of nitrate concentrations across the study area, derived by subtracting the

annual mean nitrate value for each year from the monthly nitrate concentrations. In most instances, nitrate anomalies exhibit

consistency throughout the vertical profile, with this uniformity being more pronounced in the MED. Additionally, episodic

discontinuities are often detected at depths around 100 m and approximately 500 m, corresponding to the mixing layer and

certain pycnoclines. In the NEA, where seawater exchange is more dynamic, discontinuities in nitrate concentration are more460

prevalent. Compared with existing data sources, although BGC-Argo and simulated nitrate represent some of the most advanced

nitrate data available from current observational and numerical models, they still face significant challenges in depicting inter-

annual trends (Fig. S2). Due to the varying geographical locations of BGC-Argo observations over time, regional differences in

nutrient levels introduce considerable interference and fluctuations in the calculation of interannual trends. Consequently, the

trends presented by BGC-Argo appear more radical and may even be reversed if the sampling locations encompass both high-465

and low-nutrient regions. As for CMEMS nitrate, its response to mesoscale nitrate variations is relatively sluggish, leading to

an overly homogeneous trend that is likely more conservative than the actual scenario. Nevertheless, its overall trend can serve

as a reference for multi-year scale variations, such as the increasing nitrate levels in the MED and the intensified downward

deposition of upper ocean nitrate in the NEA (Fig. S2).
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Figure 11. Interannual anomaly profiles of reconstructed nitrate concentrations in the MED (a) and NEA (b).

This study identifies three significant temporal trends. Firstly, there is a discernible overall increase in nitrate concentrations,470

characterized by more frequent positive anomalies, particularly since 2021. This trend indicates an increasing fluctuation in

nitrate levels and an escalation in eutrophication within the study area. The reconstruction outcomes align closely with trends

observed in various case studies, and extend these observations by providing results on a broader scale with more detailed

quantification.
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The MED exhibits a notably regular upward trend. BGC-Argo sequence analyses from the Sicily Channel revealed a slightly475

negative nitrate trend from 2011 to 2016, shifting to a positive trajectory thereafter until 2020 (Fourrier et al., 2022) . In

simulations employing physical-biogeochemical models under Representative Concentration Pathways (RCPs) 4.5 and 8.5

scenarios for the northwestern MED, nutrients displayed a general ascending pattern, notably more pronounced in deeper

ocean layers than in surface waters (Reale et al., 2022). Remarkably, an anomalous nutrient surge after 2022 could potentially

be linked to the severe winter storm Carmel in 2021. A detailed time-series analysis over four years at the Levantine basin site480

demonstrated substantial replenishment of marine nitrates during the 2021 winter storm, reversing a declining trend initiated

in 2018 (Ben-Ezra et al., 2024). By contrast, interannual anomalies in the NEA are significantly more volatile. Although

certain hypotheses suggest that intensified ocean stratification due to climate warming could limit nutrient availability in the

upper ocean layers, recent findings indicate this limitation primarily affects phosphates, whereas nitrates continue to exhibit

frequent and pronounced local fluctuations. The reconstruction results provide meticulous trend characterizations, consistent485

with documented positive anomalies observed in NEA upper ocean layers between 2010 and 2014 (Macovei et al., 2019), as

well as the identified growth patterns within the Iberian upwelling system (Padin et al., 2020).

Secondly, while vertical consistency of nitrate anomalies is stronger in the MED compared to the NEA, a decline in upper

ocean nitrate concentrations is evident in the NEA. Ocean warming has hindered the upward transport of nutrient-rich cold

water, modifying the vertical nitrate distribution in the NEA. Moreover, no consistent overall trend of anomalies is apparent in490

surface nitrate concentrations in the NEA, which may be driven by complex ocean-atmosphere interactions and anthropogenic

influences. Thirdly, the transition period of nitrate anomalies appears to be lengthening. The duration of individual positive or

negative anomalies has extended from a few months at the beginning of the study period to several months or even over a year.

This lengthening may indicate irreversible shifts in the marine environment or a decline in the ocean’s self-regulatory capacity.

Furthermore, interannual anomaly trends must be interpreted cautiously due to their dependence on SSEVs and specific495

weights of the model, and their reliability requires further research. For instance, the reconstructed results may overestimate

anomalies in the Bathypelagic Zone (>1000 m). At these depths, nitrate concentrations are relatively stable (Fig. 10) and are

not effectively represented by SSEVs. Nonetheless, the model’s estimates are inevitably influenced by the SSEV signal. The

accuracy of these anomalies is significantly influenced by both the generalization capacity of the model and the stability of

the input features. Despite the model’s proven reliability, particularly with the MEB performance most relevant to anomaly500

calculations consistently maintaining an excellent level of ±0.04 µmol ·kg−1 across multiple validations, small-scale findings

still require further corroboration through targeted case studies. Overall, compared to the limitations posed by the discontin-

uous, discrete observations from BGC-Argo and the inadequacies of simulated nitrate in capturing fine-scale variability, the

reconstructed dataset offers an encouraging and comprehensive perspective for trend analysis.

3.6 Contribution of features to the model output505

The current model is established based on all available features in the dataset, but given the redundancy among these features,

the model may require fewer of the most efficient features. There are two benefits to entering all mentioned features. The ability

of MLP to automatically extract features ensures that the model will be enhanced and minimally affected by feature redundancy.
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Particularly, the utilization of large-scale simulated nitrate data has significantly contributed to the model’s capability to capture

non-linear relationships among multiple features, thus enabling it to effectively monitor nitrate concentration across a wide510

range of SSEV scenarios. On the other hand, analyzing the importance of each feature based on the model with all the input

features is crucial for further studies of nitrate estimation.

Figure 12 depicts the Pearson correlation coefficients among the features. Nitrate has been found to be positively correlated

with depth and Chl, and negatively correlated with SST (Yu et al., 2022). Furthermore, nitrate is also positively correlated with

features such as CDM, NFLH and Si10, and negatively correlated with features including ZEU, ZHL, and ZSD. The spatial515

distribution is characterized by a positive correlation with latitude and a negative correlation with longitude, since nitrate

concentrations in the NEA are generally higher than in the MED. Diverse relationships among the input features suggest the

potential for feature redundancy, exemplified by the marked positive correlation between SST and ZHL, and the negative

correlation between ZSD and Chl. The correlation coefficient can only capture linear relationships between variables, while

MLP is a model to fit nonlinear relationships. Therefore, the contribution of features to results cannot be determined solely520

based on correlation coefficients. The contributions of features based on SHAP values are discussed next.

Given the high computational cost of SHAP (Chau et al., 2022) and the sufficient representativeness of a smaller sample

(Pauthenet et al., 2022), we randomly selected 200,000 samples to estimate feature contributions. Figure 13 illustrates the

probability distribution of SHAP values for each feature, with features ranked according to their average ASV. Given the dif-

ferent mechanisms by which features affect the ocean at various depths, the ocean is divided into two layers in the contribution525

discussion. Bounded by the 200 m depth, the upper layer is the Epipelagic Zone (EZ), and the deeper layer of 200-2000 m is

the Mesopelagic Zone and part of the Bathypelagic Zone.

The input spatial features include depth, longitude, and latitude. Among them, depth is consistently identified as the strongest

feature extracted by the model, which corresponds to the pattern of variations in the vertical distribution of nitrate , as depth

uniquely facilitates the mapping of nitrate profiles (Fig. S3). Particularly in the EZ, the contribution of depth features is ex-530

tremely significant with IEZ
Depth = 2.36 , surpassing that of other features and also much larger than the contribution of depth

in the 200-2000 m depths. This is attributed to the fact that the increase in nitrate concentration with depth is most pronounced

in the EZ. The nitrate concentration at 200 m depth may be several times higher than that at the sea surface. Although such a

trend is also observed in 200-2000 m depths, the magnitude of this change is relatively small. Hence, depth always remains the

most crucial feature, especially in the EZ.535

Furthermore, longitude is the second essential feature in the model. Nitrate concentration in the MED and NEA differs

greatly, resulting in longitude more vital than latitude. In the 200-2000 m depths, the contribution proportion of spatiotemporal

coordinates increase, while the contributions of other SSEV features decrease. On the one hand, nitrate concentration in the

surface ocean is more susceptible to SSEVs. On the other hand, nitrate in the deep ocean exhibits low seasonal variability but

stable regional characteristics, and its concentration is primarily related to its location. The estimation process in the deeper540

ocean mainly relies on spatiotemporal coordinates, supplemented by subtle adjustments in environmental variables.

The feature ranking in Fig. 13 closely aligns with that in Table S1, though there are some minor differences. Both discuss

the importance of features, but the SHAP values in Figure. 13 focus on the contributions of features, while the RMSE changes
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Figure 12. Heatmap for the matrix of Pearson correlation coefficients between nitrate and input variables. The size of the cell represents the

absolute value of the correlation coefficient.

in Table S1 emphasize the irreplaceability of features. For example, Z (Total terrain depth), which provides a unique perspec-

tive, has a small contribution but significantly impacts the model when excluded. Furthermore, when excluding features, we545

combined Jday1 (the cosine function of the Julian day) and Jday2 (the sine function of the Julian day), which have a high

contribution but a minimal impact on model performance when excluded. This is because Jday is a heuristic feature that, while

useful for providing temporal information, can be inferred through the periodic variation of other variables. Figure 12 shows

the correlation heatmap between nitrate and all input variables. The current feature combination is sufficient and potentially

redundant; some highly correlated features can substitute one another to some extent, which is why the RMSE increase after550

excluding high-contribution features like PAR is relatively small. However, the comparison experiments in Table 1 confirm

that the model can accommodate these correlated features and enhance its performance.
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Figure 13. Probability distribution of SHAP values representing the impact of each feature on the model output. The y-axis shows the input

features, sorted by the total magnitude of Ij , while shaded area in the x-axis direction represents the distribution of SHAP values, scaled due

to the large range. The numbers labeled on the left show the mean of the raw SHAP values, while those on the right show the mean of the

ASV. The black vertical dashed lines represent the median and quartiles of the SHAP values.
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Figure 14. Scatter plot of Chl contribution values across data samples. The x-axis represents SHAP contribution values, while the y-axis

represents depth. The color of scatter points indicates the Chl feature values in each sample.

The residual features comprise environmental parameters, which encompass diverse facets of climate, biology, and ocean

dynamics. Among these parameters, SSH exhibited a notably higher Ij , value, and demonstrated the most significant impact

on model performance when excluded (Table S1). SSH reflects various dynamic effects of ocean circulation, mixing layers555

and eddies, which together influence the horizontal and vertical transport of nitrates (Ascani et al., 2013; Fripiat et al., 2021;

Sarangi and Devi, 2017; Wang et al., 2021). SSH reflects the influence of ocean dynamic variability on nitrate concentrations,

typically exhibiting opposing impacts between the EZ and deeper ocean.

Another set of critical features comprises SST-related variables. SST exhibits strong correlations with ZHL, PAR, and ZSD

(Fig. 12), each concurrently presenting high Ij values, underscoring the dominant role SST-related features play in nitrate560

estimation processes. Highly correlated features may dilute their individual contributions to the results, thus SST may have a

more significant role than depicted in the Fig. 13.

Previous studies have established SST as a principal environmental factor for nitrate retrieval, highlighting upwelling and

winter convective mixing constitute two crucial physical processes that drive the transportation of cold, nitrate-rich waters into

the euphotic layer, thereby boosting SSN and simultaneously reducing SST (Kudela and Dugdale, 2000; Pan et al., 2018).565

Since SST and SSH provides information on vertical mixing, its contribution in the deep ocean remains significant compared

to other SSEVs. Among them, ZEU and PAR are indicative of the optical environment as well as NLFH and CF, probably

related to the oxidation of nitrogen by light inhibition and the activity of phytoplankton (Hutchins and Capone, 2022; Zakem

et al., 2018). Furthermore, ocean dynamics parameters (e.g., MLD and S10) also contribute to nitrate estimation by influencing

nutrients in multiple ways (Tuerena et al., 2019; Liu et al., 2019).570
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Notably, Chl has previously been employed as another pivotal variable for SSN retrieval (Goes et al., 1999; Pan et al., 2018;

Sarangi and Devi, 2017). However, in both the EZ and deeper layers, its average contribution remains relatively low, exhibiting

instead a distribution characterized by a long tail of positive values. This phenomenon aligns closely with feature assessments in

nitrate reconstruction in the Indian Ocean Yang et al. (2024) and dissolved organic nitrogen studies in the Atlantic (Altieri et al.,

2016). The predominant limiting factor is the confined spatiotemporal scope; although Chl is intrinsically linked with nitrate,575

its positive contributions are restricted primarily to biologically productive upper layers vertically, and horizontally confined

nutrient-rich regions, where only comprises a small portion of the oceanic 3D field. Consequently, regions minimally influenced

by Chl dilute the average contribution of phytoplankton across broader oceanic estimations. Figure 14 illustrates the distribution

of Chl contributions across specific samples. In the majority of cases, low chlorophyll concentrations yield negligible effects,

while slight increases in Chl typically exert a negative influence, as phytoplankton growth consumes available nitrates (Goes580

et al., 2000). Conversely, exceedingly high chlorophyll levels significantly enhance the nitrate estimation, potentially signaling

eutrophication events. Furthermore, during training, the model seemingly captures more valuable Chl-related information from

alternative features such as CDM, redistributing Chl’s overall contribution to 3D nitrate estimations.

As described above, the SHAP approach can explain the effect of each feature on the MLP output from both holistic and

individual perspectives. This approach enables the comprehension of the role played by features in deep learning black box585

models. The ASV distribution of most features exhibits a long tail Fig. 13), suggesting that even features with low Ij can

have a significant impact on model estimation in extreme environments. Nevertheless, the SHAP contribution is solely based

on mathematical models and data-driven interpretations, which may result in conclusions that deviate physical processes.

Although it has been experimentally validated that removing features with lower Ij results in less decline in model accuracy,

the evaluation of the features still requires caution.590

4 Conclusions

This study developed a continual learning-based MLP model tailored to estimate the 3D ocean nitrate concentration. The model

was cross-validated by independent in situ data profiles and demonstrated satisfactory performance, achieving an R2 of 0.98,

RMSE of 0.592 µmol · kg−1 and MAE of 0.398 µmol · kg−1. It also exhibited robust and reliable performance in both site-

based cross-validation and independent cruise observations. Contrasting experiments show that the model’s generalization is595

notably enhanced by employing continual learning from simulated nitrate, especially in regions with limited data availability.

The estimation accuracy remains general stable across all dimensions, with the more significant error occurring within the

vertical range of 60-100 m and in the sparse region of the observations.

The 3D spatiotemporal distribution of nitrate is analyzed based on the reconstruction results. The findings indicate a pro-

gressive increase in oligotrophy from the western to eastern regions of the study area. Nitrate concentration shows significant600

seasonal variability in the vertical dimension, driven by seawater exchange and biological processes. From an interannual

perspective, a discernible increase in nitrate concentrations was noted, especially since 2021. Besides, vertical consistency in
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interannual anomalies within the NEA was lacking, with discrepancies commonly observed around depths of 100 m and 500

m.

The contribution of each feature is calculated to gain insight into their influence on nitrate estimation. Results reveal that605

spatial coordinates such as depth, longitude and environmental variables represented by SSH and SST exert the most significant

influence. Meanwhile, certain features with low average contribution can still play vital roles in specific instances involving

high anomalies.

The model still has certain limitations that require further improvements. Although its generalization ability has been en-

hanced, the nitrate distribution and trends in data-sparse regions should still be evaluated with caution. Due to the sparsity of610

BGC-Argo and the computational cost of CL, the model is limited to reconstructing water-column profiles without incorpo-

rating large-scale spatiotemporal global features, which may prevent it from fully leveraging the potential of deep learning

models. The structure of the CL strategy imposes strict requirements on the datasets used for the two-stage training and may

be affected by multiple sources of uncertainty, highlighting the need for higher-quality datasets in the future. Additionally, the

current CL approach may introduce potential disturbances and performance fluctuations in regions with extensive BGC-Argo615

sampling. Future improvements could mitigate this limitation through dynamic weight parameters or additional modules.

From future perspectives, integrating remote sensing with deep learning for estimating oceanic 3D conditions holds signifi-

cant research potential. Continual learning allows for the incorporation of numerical model knowledge to address the limitations

of sparse in situ measurements and can be coupled with any deep learning model, making it a promising paradigm for recon-

structing ocean datasets. Given the challenges of continuously high-resolution ocean monitoring, this approach can serve as620

an alternative solution to bridge the observation gap. Leveraging remote sensing expands retrieved variables and adds vertical

dimension insights, supporting further research into marine environment.
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